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We show that the coupling of quantum emitters to a two-dimensional reservoir with a simple band structure
gives rise to exotic quantum dynamics with no analogue in other scenarios and which can not be captured by
standard perturbative treatments. In particular, for a single quantum emitter with its transition frequency in the
middle of the band we predict an exponential relaxation at a rate different from that predicted by the Fermi’s
Golden rule, followed by overdamped oscillations and slow relaxation decay dynamics. This is accompanied by
directional emission into the reservoir. This directionality leads to a modification of the emission rate for few
emitters and even perfect subradiance, i.e., suppression of spontaneous emission, for four quantum emitters.

The interaction of quantum emitters (QEs) with propagat-
ing bosonic particles, e.g., photons, lies at the core of Quan-
tum Optics [1]. This interaction leads, for example, to col-
lective interactions between QEs [2, 3] which can be har-
nessed for both quantum information and simulation applica-
tions. New avenues in the integration of QEs with nanopho-
tonic structures [4–14] provide us with systems in which the
QEs interact with low dimensional bosonic modes, which may
have complicated energy dispersions in the case of engineered
dielectrics [6–12]. Even though originally the main motiva-
tion of such implementations was to exploit the small sizes to
enhance light-matter interactions, it was soon realized that in-
triguing phenomena arise because of the reduced dimension-
ality. One particular aspect is the possibility of realizing chi-
ral emission [15–17], which can display very uncommon fea-
tures [18, 19]. Another one is the possibility of exploiting the
phenomena of sub and superradiance [11, 12, 20–22], e.g., to
enhance the coupling to the emitter [23], to generate QE en-
tanglement [18, 24], to produce non-classical light [25, 26], or
even to perform quantum computation [27].

The dynamics of QEs in 1D reservoirs is relatively sim-
ple, specially when their transition frequency, ωe, lies within
a band. Perturbative treatments predict that a single QE ini-
tially excited decays at a rate, Γ, given by the Fermi’s Golden
Rule (FGR), i.e. proportional to the density of states of the
bath at ωe. The emission mostly occurs in the bath modes that
are resonant with that frequency. Typically, there are two such
modes of associated momentum ±ke, leading to a symmetric
left/right emission. When two (or more) QEs are present, the
existence of only two such modes leads to super/subradiant
states, where the emission is enhanced or suppressed by inter-
ference. In higher dimensions for structureless baths, a single
QE will also decay at a rate given by the FGR. However, the
emission takes place in different directions as there are many
resonant modes in the bath. For two QEs, the interference in
the emission cannot occur in all those modes at the same time
[28] and thus, the phenomena of sub and superradiance are
generically absent.

In this manuscript we use non-perturbative methods to an-
alyze the dynamics of QEs interacting with a simple two-
dimensional (2D) structured reservoir. By structured we mean
with a periodic structure giving rise to a dispersion relation
containing frequency bands. In particular, we contrast our
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Figure 1. (a) [(b)] Energy dispersion ω(k)/J [and density of states
D(E)] for the square lattice tight-binding model with a black line
highlighting the k points satisfying ω(k) = 0.

results with the predictions of perturbative treatments based
on a master equation approach (with Markov approximation).
First, we show how a single excited QE with its energy tuned
in the middle of the band shows an exponential decay at a
rate different from that predicted by FGR. Moreover, at longer
times, this exponential relaxation is followed by an oscilla-
tion and subexponential dynamics. These QE dynamics are
followed by a directional emission [29, 30] into the bath in
two orthogonal quasi-1D directions. As a consequence, when
several QEs are coupled to the bath, this directional emission
induces anisotropic collective dissipation. For two QEs we
observe a modification of the spontaneous emission rate as a
consequence of this directional emission when the QEs lie on
a diagonal line. A related behavior has been predicted in [31]
using perturbative master equations. We find that a total sup-
pression of the emission is not possible for two QEs, and ex-
plain this fact in terms of a partial interference effect. In con-
trast, we show how to design a perfect subradiant state with
four QEs which survives even in the non-perturbative regime,
since in that case the interference can be fully destructive,

We assume a 2D bath with a square-like symmetry de-
scribed by N ×N bosonic modes with energy ωa and with
nearest neighbour coupling J. The Hamiltonian is given
by (using h̄ = 1) HB = −J ∑〈n,m〉

(
a†

man +h.c.
)

, where n =

(nx,ny) is a vector indicating the bosonic mode position within
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the lattice. We have used a rotating frame at a frequency
ωa, such that the zero energy corresponds to the center of
the band structure (see below). This Hamiltonian can be im-
plemented in several platforms, e.g., circuit QED [32–35] or
using cold atoms in state dependent optical lattices [36, 37].
Despite its simplicity, we expect it to describe more com-
plex materials such as photonic crystals, in the same way
that the 1D tight-binding model does for structured waveg-
uide QED. The bath Hamiltonian can be diagonalized in k
space by introducing periodic boundary conditions and the
operators ak = 1

N ∑n e−iknan, where k = (kx,ky) and kx,ky =
2π

N (−N
2 , . . . ,

N
2 −1), such that HB =∑k ω(k)a†

kak with ω(k)=
−2J [cos(kx)+ cos(ky)]. In Fig. 1, we plot the energy disper-
sion of the band ω(k) together with the associated density
of states in the limit N→ ∞, D(E) = 1

(2π)2

∫∫
dkδ [E−ω(k)].

The band extends from [−4J,4J]. At the band edges, the D(E)
is nearly constant as predicted for isotropic dispersions [38].
At the middle of the band it displays a divergence associated to
the saddle point appearing at the energy dispersion ω(k), as it
also happens for real materials [29]. As we show below, this
has important consequences in the dynamics beyond purely
enhancing the emission. We also consider one (or several)
QEs described as two-level systems {|g〉 j , |e〉 j}, with transi-

tion frequency, ωe, whose Hamiltonian reads: HS = ∆∑ j σ
j

ee.
We use the notation σ

j
αβ

= |α〉 j 〈β | for the spin operators and
∆=ωe−ωa represents the detuning with respect to the middle
of the band. Finally, we assume a local coupling of the QEs
to the bath modes, described by Hint = g∑ j

(
an j σ

j
eg +h.c.

)
.

Along this manuscript we consider the QE(s) to be initially
excited in certain QE state |Φ0〉S, whereas the bath starts ini-

tially empty, i.e., |vac〉B = |0〉⊗N2
. Then, we let the system

free to evolve under the total Hamiltonian H =HS+HB+Hint,
and study the QEs relaxation. The situation when the QE en-
ergies lie outside the band, |∆± 4J| � g, where the dynam-
ics are dominated by the presence of a bound state, has been
explored extensively in other works (see, e.g., [39–41]). We
focus here instead on the situation when the QE energies lie
within the band, ∆ ∈ [−4J,4J], with emphasis on what hap-
pens in the middle of the band. In our illustrations, we use
relatively large values of g in order to emphasize the features
in the figures; however, the conclusions can be extended to
smaller g’s that is the common situation in the optical regime.
Nevertheless, we make a complete discussion about the whole
range of parameters and give more details about the calcula-
tion in the accompanying paper [42].

We first consider that a single QE is coupled to the bath,
such that we drop the index j in the QE operators, and assume
|Φ0〉S = |e〉. As the initial state contains a single excitation,
the state at any time, t, can be written as follows:

|Ψ(t)〉=
[
Ce(t)σeg +∑

n
Cn(t)a†

n

]
|g〉⊗ |vac〉B , (1)

In Fig. 2 we show the results of the numerical integra-
tion of the dynamics of the QEs for several detunings for
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Figure 2. (a) Excited state population |Ce(t)|2 for a single QE for
g/J = 0.1 and different QE energies as depicted in the legend. Inset:
Excited state population |Ce(t)|2 in logarithmic scale for ∆ = 0 to
visualize the non-perturbative dynamics. (b-c) Probability amplitude
of the bath modes, |Cn|, for positions n = (nx,ny) at a time tJ = 100
for ∆/J =−3 and 0 respectively.

∆/J = −3,−2,−1,0 and g = 0.1J, which we complement
with the state of the bath excitations, i.e., |Cn|, at tJ = 100
for ∆ =−3J,0. From Fig. 2(a), it seems that the decay of the
QE is basically exponential, with an enhanced decay rate as
its energy is tuned closer to the center of the band. Naively,
this is what one expects from perturbative approaches, which
predict |Ce(t)|2 ≈ e−Γe(∆)t , with a decay rate given by FGR,
Γe(∆) = 2πg2D(∆), where D(∆) is the density of modes eval-
uated at the QE energy ∆. For ∆/J = −3,−2,−1 such pre-
diction works well; however, for ∆ = 0 an straightforward ap-
plication of FGR predicts an infinite decay rate that we do
not observe in Fig. 2(a). Moreover, when plotting the popula-
tion dynamics in logarithmic scale (inset) we observe that the
relaxation is actually non-monotonic showing both an oscilla-
tion and a subexponential decay for long times.

To gain analytical insight into this exotic relaxation, we
apply standard techniques [1] to rewrite the probability
amplitudes in terms of their Fourier transform Ce,k(t) =

i
2π

∫
∞

−∞
dEGe,k(E + i0+)e−iEt , where:

Ge(z) =
1

z−∆−Σe(z)
,

Gk(z) = g
Ge(z)

z−ω(k)
, (2)

and Σe(z) =
g2

N2 ∑k
1

z−ω(k) is the so-called QE self-energy that
captures the effect of the coupling to the bath on the QE dy-
namics. From now on we focus on what happens for energies,
E, around the middle of the band (|E| � J) where the self-
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energy can be expanded as [42–44]

Σe(E + i0+)≈ g2

4J

[
sgn(E)− 2i

π
log
(
|E|
16J

)]
. (3)

In this expression we observe that around E = 0 the real
part, that we denote as δωe(E), has a discontinuous jump,
whereas the imaginary one, denoted as Γe(E), has a logarith-
mic divergence. For the latter, we use the same notation as the
FGR decay rate because they are connected. More concretely,
the standard perturbative approaches, such as the Markov ap-
proximation [45], assume the self-energy to smoothly vary
around ∆ and replace Σe(E + i0+) ≈ Σe(∆+ i0+), recovering
the exponential relaxation of |Ce(t)|2 with decay rate, Γe(∆),
as given by the FGR.

The divergence appearing in the middle of the band, how-
ever, forces us to go beyond the perturbative treatment to un-
ravel the results. In the standard quantum optical scenario [1]
one calculates the exact Fourier transform of Cα(t) by closing
the contour in the lower half complex plane Im(E)< 0, taking
detours at the band edges of ω(k) because of the presence of
branch cuts in the self-energy. The poles in the real axis de-
scribe bound states, and give rise to fractional decay [46]. The
complex ones lead to an exponential decay. Finally, branch
cuts associated to the band-edges give rise to power-law de-
cays, which are, however, typically hidden by the fractional
decay induced by bound states [46]. In the case studied here,
an additional branch cut appears in the (negative) imaginary
axis, associated to the divergence of the D(E) in the middle
of the band. This forces us to take an extra detour in the in-
tegration contour which has two visible consequences in the
inset of Fig. 2(a): i) the slow relaxation dynamics at long
times scaling as O[

(
t log(16Jt)2

)−2
]; ii) there exists a regime

of ∆ ∈ [− g2

2J ,
g2

2J ], in which two unstable poles appear in the
analytical continuation of Gα(z). For ∆ = 0, their imaginary
part coincides and is given by

Γ̄e ≈
g2

πJ
log
(

32πJ2

g2

)
(4)

obtained in the limit 32πJ2

g2 � 1. Their real part is given by

≈ ± g2

2J . This explains both the finite time scale observed in
Fig. 2(a), and the oscillation observed in the inset, which has
a frequency proportional to the difference of the real part of
the unstable poles (∼ g2

J ). Remarkably, for short times one
observes an exponential relaxation with a timescale given by
Eq. 4 rather than the one expected from perturbative argu-
ments that would be O(g2/J).

We also plot the emission into the bath in Figs. 2(b-c). The
bath population can also be obtained exactly in the long-time
limit, as the probability amplitude Ck(t) is still dominated by
the pole contribution of Gk(E + i0+) of Eq. 2 at E = ω(k),
which yields:

lim
t→∞

Ck(t) =
ge−iω(k)t

ω(k)−∆−Σe(ω(k))
, (5)
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Figure 3. (a) Population of states
∣∣Φ2,±

〉
[
∣∣Φ4,±

〉
] for a coupling

g= 0.05J for positions n12 = (6,6) [and (6,0),(0,6),(6,12),(12,6)]
respectively. (b-e) Bath probability amplitude at time tJ = 200 for the
initial states of panel (a) as depicted in the legend.

This expression tells us that the k-modes around ω(k)≈ ∆

for g� J are the ones dominating the emission. This explains
why when ∆ is away from zero, the k modes are isotropi-
cally populated, as ω(k) ≈ f (|k|2). For ∆ ≈ 0, we have that
the modes that dominate fulfill kx ± ky = π , as sketched in
Fig. 1(a). As an aside, let us mention that in the continuum
limit, Eq. 5 predicts no population exactly at the k modes sat-
isfying ω(k) ≡ 0 because of the divergence of the imaginary
part of Σe. For a finite system, however, the divergence renor-
malizes to a finite value such that we only observe a dip that
goes to 0 as the system size increases (not shown).

Now, we include several QEs in the discussion and take ∆=
0. We explore the interplay between the anisotropic emission
and the relative position, n12 of the QEs, to check up to which
point super/subradiance phenomena survive within a non-
perturbative picture. We first study the scenario with two QEs
prepared in a (anti)symmetric superposition |Φ0〉S = |Φ2,±〉=

1√
2

(
σ1

eg±σ2
eg
)
|g〉⊗2. Interestingly, when ω(k) = ω(−k) the

dynamics of the symmetric/antisymmetric state separate be-
cause they couple to orthogonal bath modes. Consequently,
their relaxation dynamics is calculated analogously to the one
of a single QE, but replacing: Σe → Σ± = Σe± Σ12, where
Σ12 =

g2

N2 ∑k
eik·n12

z−ω(k) is the collective QE interaction induced by
the environment, which can be obtained recursively [42–44].
Along this manuscript, we focus on a situation when the two
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QEs lie along a diagonal, n12 = (n,n), as this is where most
of the emission occurs [see Fig. 2(c)], and may lead to modifi-
cations of collective decay [31]. We find that within perturba-
tive Markov approaches Σ12(i0+;n)/Σe(i0+) = (−1)n, which
points to the possibility of perfect super/subradiance. How-
ever, from our single QE study we know at ∆ = 0 perturbative
approaches may fail.

To go beyond perturbative treatments, we first numerically
integrate the dynamics and show that if n is even (odd), the
states

∣∣Φ±(∓)〉 have enhanced (suppressed) decay rates, as ex-
pected from the propagation phases of the bath modes sat-
isfying kx ± ky = π , which are the ones dominating the dy-
namics when ∆ = 0. We show an example of such dynam-
ics in Figs. 3(a-b) for n12 = (6,6), where we observe col-
lective effects leading to enhancement/suppression of sponta-
neous emission. Notice, however, that neither the suppression
nor the enhancement is perfect as it occurs in 1D systems.
The reason behind that can be intuitively understood from the
bath population that we plot in Figs. 3(b-c). For the super-
radiant state, i.e., |Φ2,+〉, the emission occurs in 3 quasi-1D
modes, one collective along the diagonal where the QEs are
placed and two independent ones along the orthogonal direc-
tions. On the contrary, the subradiant state |Φ2,−〉 suppresses
the emission in the diagonal where they are placed, while
emitting into (two) quasi-1D modes along the orthogonal di-
agonals. These independent decay channels forbid finding a
perfectly subradiant state with only two QEs. This enhance-
ment/suppression can also be explained in terms of construc-
tive/destructive interference of the bath modes emitted by the
two QEs at ω(k) = 0, which are mainly given kx + ky = ±π ,
such that their phases: ei(kx+ky)n± ei(kx+ky)n = e±iπn± e±iπn,
add up constructively/destructively depending on the relative
phase between QEs.

Apart from that, we observe: i) retardation effects, as they
also occur in 1D systems; ii) other non-Markovian effects in-
troduced by the divergence of the density of states, which lead
to a logarithmic correction of the super/subradiant decay with
the distance. In fact, we can obtain the behavior of, e.g., the
subradiant decay, Γsb, as a function of n = 2m, by solving the
subradiant pole equation:

8π

(
J
g

)2

=
∫

π

0
dqx

sin2(2qxm)

y
√

y2 + cos2(qx)
(6)

where y = Γsb/(4J). In the limit g2/J2 � 1, the solution
y� 1, such that we can expand the integrand in this limit to
obtain a closed solution for Γsb in terms of polygamma func-
tions. The complete solution is too cumbersome, however,
it simplifies considering its asymptotic expansion in the limit
m� 1, leading to:

Γsb

Γ̄e
≈ [γ + log(8m)]

log
(

32πJ2

g2

) , (7)

where γ is the Euler constant. Importantly, this function gets
corrected for larger distances where it satisfies Γsb ≈ Γ̄e, as we
numerically confirmed.

The intuition obtained with two QEs allows us to build per-
fect subradiant states with four QEs. Let us consider four QEs
at positions (0,2n), (2n,0), (2n,4n) and (4n,2n) and assume
they are in a state |Φ4,±〉 = 1

2

(
σ1

eg±σ2
eg +σ3

eg±σ4
eg
)
|g〉⊗4,

The decay of |Φ4,+〉 is collectively enhanced with an emis-
sion in 8 orthogonal directions as shown in Fig. 3(d). Start-
ing out in |Φ4,−〉, the emission is completely suppressed
(up to retardation effects) because perfect destructive inter-
ference occurs in the eight emission directions, trapping the
light between the four QEs [see Fig. 3(d)]. The analysis to
show that the |Φ4,−〉 is perfectly subradiant relies on the fact
that in this position configuration, the QE modes defined by(
σ1

eg±σ2
eg +σ3

eg±σ4
eg
)

couple to orthogonal bath modes, that
allows us to consider their dynamics as those of a single QE,
but with a modified self-energy. In particular, for the subradi-
ant case the associated self-energy can be shown to be:

Σ4,−(z) =
4g2

π2

∫∫
π

0
dq

sin2(2qxn)sin2(2qyn)
z+4J cos(qx)cos(qy)

,

where we have used the rotated axis coordinates kx,y = qx±qy.
If Σ4,−(z) vanishes at z = 0, this implies that a real bound
state emerges within the band. This can be shown to be the
case because the integrand at z = 0 is separable in qx,y, and
each integrand satisfies: i) I(qx,y) = −I(π

2 − qx,y) and ii) its
divergence appearing because of the zeros in the denominator
for the q modes satisfying qx,y = π/2 is canceled by the one
in the numerator. The last thing to show is that, indeed, its
associated residue, connected to the steady-state population,
is not zero. We can explicitly calculate it obtaining:

C4,−(∞) =
1

1−∂zΣ4,−(z)

∣∣∣
z=0

=
1

1+ g2n2

J2

. (8)

which is therefore very close to 1 as long as retardation effects
are small g2n2

J2 � 1. In any case, we obtain that independent
of the distances there always remains some excitation within
the QEs.

To sum up, we have explored the non-perturbative QEs dy-
namics emerging from their coupling to a two-dimensional
bosonic bath with a square-like geometry when their energies
lie in the middle of the band. For a single QE, we predict an
exponential relaxation at short times, but with a timescale that
escapes Fermi’s Golden Rule description, which is followed
by reversible and slow relaxation dynamics at longer times.
Moreover, such phenomena are accompanied by strongly di-
rectional emission into the bath along two quasi-1D orthog-
onal directions, which lead to super/subradiant states when
many QEs are coupled to the bath. For two QEs, the per-
turbative predictions are corrected due to the divergent den-
sity of states in the middle of the band, which forbids perfect
super/subradiance. We characterize mathematically the phe-
nomena and give an intuitive explanation in terms of interfer-
ence. This understanding allows us to build perfect subradi-
ant states with four QEs where the emission is trapped within
them in spite of the 2D character of the bath.



5

We emphasize that both the directionality phenomena and
the divergent density of states responsible for the phenom-
ena we describe, are associated to the existence of saddle
points in ω(k), and not its interplay with polarization as in
1D chiral systems [17]. Since those points are ubiquitous in
2D reservoirs, we conjecture that our findings will be rele-
vant in more general situations beyond the simple model em-
ployed here [29]. Furthermore, they can also be tested in other
setups, like circuit QED [32–35] or state dependent optical
lattices [36, 37], where our particular model can be imple-
mented.

Acknowledgements. The work of AGT and JIC was funded
by the EU project SIQS and by the DFG within the Cluster of
Excellence NIM. AGT also acknowledges support from Intra-
European Marie-Curie Fellowship NanoQuIS (625955). We
also acknowledge discussions with T. Shi, Y. Wu, S.-P. Yu, J.
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[42] A. González-Tudela and J. I. Cirac, arXiv:1705.06677.
[43] T. Morita, Journal of mathematical physics 12, 1744 (1971).
[44] E. N. Economou, Green’s functions in quantum physics, Vol. 3

(Springer, 1983).
[45] G. W. Gardiner and P. Zoller, Quantum Noise, 2nd ed.

(Springer-Verlag, Berlin, 2000).
[46] S. John and T. Quang, Phys. Rev. A 50, 1764 (1994).
[47] R. H. Dicke, Phys. Rev. 93, 99 (1954).

mailto:alejandro.gonzalez-tudela@mpq.mpg.de
http://dx.doi.org/10.1103/PhysRevA.2.883
http://dx.doi.org/10.1103/PhysRevA.2.889
http://dx.doi.org/10.1103/PhysRevLett.106.096801
http://dx.doi.org/10.1103/PhysRevLett.106.096801
http://dx.doi.org/10.1103/PhysRevX.2.011014
http://dx.doi.org/10.1126/science.1237125
http://dx.doi.org/10.1103/RevModPhys.87.347
http://dx.doi.org/10.1103/RevModPhys.87.347
http://dx.doi.org/ 10.1103/PhysRevLett.115.063601
http://dx.doi.org/ 10.1103/PhysRevLett.115.063601
http://dx.doi.org/10.1126/science.aah6875
http://dx.doi.org/10.1103/PhysRevLett.113.263603
http://dx.doi.org/10.1103/PhysRevLett.113.263603
http://dx.doi.org/ 10.1103/PhysRevLett.117.133603
http://dx.doi.org/ 10.1103/PhysRevLett.117.133603
http://dx.doi.org/ 10.1103/PhysRevLett.110.080502
http://dx.doi.org/ 10.1103/PhysRevLett.110.080502
http://dx.doi.org/10.1103/PhysRevLett.115.163603
http://dx.doi.org/ 10.1103/PhysRevLett.111.053601
http://dx.doi.org/10.1103/PhysRevLett.101.260404
http://dx.doi.org/10.1103/PhysRevLett.101.260404
http://dx.doi.org/10.1103/PhysRevLett.64.2418
http://dx.doi.org/10.1103/PhysRevA.42.2915
http://dx.doi.org/10.1103/PhysRevA.50.1764

	Quantum Emitters in Two-dimensional Structured Reservoirs in the Non-Perturbative Regime
	Abstract
	 Acknowledgments
	 References


