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Abstract: The Phillips catalyst (Cr/SiO2) is successfully used in the large-scale production of 

polyethylene and has attracted a great interest in catalytic community over the last sixty years. 

However, the atomic structure(s) of the active site(s) and the reaction mechanism remain 

controversial, in particular due to the structural complexity and surface heterogeneity of the 

amorphous silica. In this work, we used a well-defined, atomically flat silicate bilayer film grown 

on Ru(0001) as a support offering the opportunity to investigate mechanistic aspects at the 

atomic scale. To fabricate a planar Cr/SiO2 model system suitable for surface science studies, 

chromium was deposited using physical vapor deposition onto the hydroxylated silica film 

surface. Structural characterization and adsorption studies were performed by infrared 

reflection absorption spectroscopy (IRAS) and temperature programmed desorption (TPD). 

Hydroxyls groups seem to serve as anchoring cites to Cr ad-atoms. As monitored by IRAS, 

hydroxyls consumption correlated with the appearance of the new band at ~ 1007 cm-1 typical 

for Cr=O vibrations. In addition, CO titration experiments suggested also the presence of 

“naked” Cr, which transforms into mono- and di-oxo chromyl species and their aggregation 

upon oxidation treatments. TPD experiments of ethylene adsorption at low temperatures under 

UHV conditions showed the formation of butane as one of the main products. The resultant 

surfaces are thermally stable, at least, up to 400 K which allows to investigate ethylene 

polymerization further under more realistic conditions.  
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1. Introduction 

 

The Phillips catalyst (Cr/SiO2) is commercially used in the large-scale production of 

polyethylene and accounts for more than one-third of the annual production worldwide. [1, 2] 

The catalyst is commonly prepared by impregnation of an amorphous silica support with an 

aqueous solution of a chromium compound (e.g. CrO3) and subsequent calcination at elevated 

temperatures in oxygen or dry air, thus forming CrO3 oxide. The latter reacts with hydroxyl 

groups of the silica gel which behave as anchors to hexavalent Cr(VI) species.[3-5] Although 

there are ongoing debates about how many types of chromate species may be present in the 

catalyst, it is believed that polymerization involves monochromate species since model 

catalysts only possessing monochromate species showed very similar catalytic performance. [4, 

6-8] On the other hand, the Phillips catalysts produce polymers with a broad molecular weight 

distribution, which is possibly due to the large diversity of the active sites. [4, 9-11] The 

ethylene polymerization exhibits an induction period, in which Cr(VI) species are thought to 

transform into Cr (II) and/or Cr(III) species. The oxidation state of the active chromium sites and 

the initiation mechanism on the Phillips catalyst remain controversial even after sixty years 

since its invention.  

To elucidate the reaction mechanism, in particular the initial stages of polymerization, 

CO is commonly used as a reducing agent. The reduced catalyst contains mainly Cr(II) species 

and produces very similar polymer as its hexavalent counterpart. Although Cr(II) species is 

considered as an active precursor, the question of whether Cr remains divalent during 

polymerization is still open [2, 4, 12-14]. Zecchina and co-workers [14] presented the first 

spectroscopic evidence of the occurrence of metallocycle intermediate species during ethylene 

polymerization using infrared spectroscopy. In addition, this group found that the initial rate of 

polymerization of the reduced Phillips catalyst could be enhanced by order of magnitude after 

thermal treatment of Cr(II)/SiO2 with N2O which, as proposed, results in Cr(IV)-oxo 

precursor.[15] Scott and co-workers [12, 13] reported results showing that the Cr(III) sites, 

which are formed upon ethylene coordination with Cr(II) sites, are the initiating sites for the 

reaction. The structure of the organoCr(III) sites and a two-step initiation mechanism, in which 
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ethylene oxidative addition leads to various (organo)Cr(IV) sites, and subsequent Cr−C bond 

homolysis results in (organo)Cr(III) site that is capable of polymerizing ethylene, is proposed 

through theory calculations. The calculations also revealed that the initiation reaction strongly 

depends on the Cr coordination number. It is suggested that the siloxanes at self-initiating sites 

should be coordinated just strong enough to be hemilabile, allowing access to both lower and 

higher coordination states. However, there is so far no experimental information available 

about the structure of organoCr(III) sites and also the proposed mechanism. 

Monoi’s group has compared the performance of the Cr[CH(SiMe)2]3/SiO2 catalyst and 

Phillips catalysts towards ethylene polymerization. It is found that the activity per Cr on the 

former one is about 6-7 times higher than the latter one, which indicates that organoCr(III) is 

more active than traditional Phillips catalysts towards ethylene polymerization.[16] 

Activation of the Cr/SiO2 catalysts by ethylene in the induction period was studied by 

Wachs and coworkers using operando spectroscopies.[17, 18] They found that in the initial 

stage Cr(VI) is reduced to Cr(III) with a formation of Cr(III)-(CH2)2CH=CH2 and Cr(III)-CH=CH2 

intermediates, with the latter representing the catalytic active site. However, this active organo 

Cr(III) site develops through ethylene coordination with hydroxylated Cr(III)-OH, instead of Cr(II) 

site as suggested by Scott’s group. The proposed initiation mechanism involves ethylene 

bonding to chromium and formation of water. DFT calculations by Handzlik and coworkers also 

showed that the hydroxylated Cr(III)-OH species, further transforming into Cr(III)-CH=CH2 

complex, is effective for ethylene polymerization. However, the results predict that the 

oxochromacycle ring expansion mechanism is more probable than the routes involving Cr(III)-

CH=CH2 complexes.[11] It is also found that defect sites in the amorphous silica framework can 

play a certain role in low-temperature transformation of Cr(II) species into the active Cr(III) sites. 

Copéret and coworkers employed a molecular approach by anchoring dinuclear Cr(II), 

dinuclear Cr(III) and mononuclear Cr(III) species on silica surface.[19-21] The dinuclear Cr(III) 

species were found highly active towards ethylene in contrast to the Cr(II) ones. Mononuclear 

Cr(III) sites on silica were also active to yield polyethylene with a broad molecular weight 

distribution, similar to that typically obtained from the Phillips catalyst. A dual initiation 

pathway is proposed through the heterolytic C-H bond activation of ethylene on a Cr-O bond 
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and insertion of ethylene into the Cr-O bond. It is found that the highly strained sites facilities 

both path way, especially the latter one, which leads to highly active sites and formation of long 

chain polymers. However less strained sites will initiate more slowly on both path way and 

generate different active site structures, which will likely affect the structure of the final 

polymer. The distribution of active sites in different environments would account for broad 

distribution of polymer chains observed on the sample.[22] The coordination sphere of the 

Cr(III) site also effects formation of oligomers (e.g. butene, hexene) and branching. [23] 

In addition to model studies employing high surface area silicas, planar models suited 

for “surface science” studies have also been suggested, most notably by Niemantsverdriet and 

coworkers.[24-27] Thermally oxidized silica films grown on Si(100) wafers were used as 

supports for chromia deposited from chromate solution using spin coating impregnation. 

Structural characterization by x-ray photoelectron spectroscopy (XPS), secondary ion mass 

spectroscopy, and atomic force microscopy led the authors to conclude that isolated chromium 

sites are the most active, although direct visualization of the active Cr sites was impossible. [7, 

26]  

In all these model studies, the structural complexity and surface heterogeneity of the 

amorphous silica render the characterization of chromium species on an atomic level very 

difficult. In order to circumvent such issue, here we make use of a thin metal-supported silicate 

film representing a two-dimensional analogue of amorphous silica. [28-30] The so-called 

“bilayer” film consists of two silicate layers, each being formed by corner sharing of SiO4 

tetrahedra like in sheet silicates, and the film is weakly bonded to the metal surface.[31] Figure 

1a displays high-resolution microscopy images of the film surface, obtained in our own 

laboratories, which are superimposed with a network of N-member silica rings. Being 

terminated by fully saturated siloxane bonds and hence essentially hydrophobic, the silicate 

surface could, however, be hydroxylated with a help of low energy electron radiation.[32] It is 

thought that surface hydroxyls will behave as anchors for chromium species deposited from 

certain precursors, ultimately resulting in a well-defined planar model system, schematically 

shown in Fig. 1b, which could, in principle, be characterized with atomic resolution using 

scanning tunneling microscopy (STM) in combination with other spectroscopic techniques 
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employed in surface science. In the present study, we only employed Cr physical vapor 

deposition. The structure of resultant Cr species and its reaction with CO, O2 and ethylene were 

studied by infrared reflection-absorption spectroscopy (IRAS) and temperature programmed 

desorption (TPD).  

 
 
 
Figure 1.  a) Atomic force microscopy (AFM, on the left) and STM (on the right) images of amorphous 
bilayer silica film grown on Ru(0001) which are superimposed with a silica network. (Reprinted with 
permission from ref. [33]. Copyright (2012) American Chemical Society.) b) Schematic view of a planar 
model system for the Phillips catalyst, where Cr species are anchored onto an atomically flat 
hydroxylated silicate film. 
 

2. Experimental 

 

The experiments were primarily performed in an UHV chamber (base pressure below 

5×10-10 mbar) equipped with low energy electron diffraction (LEED), Auger electron 

spectroscopy (AES), IRAS (Bruker 66 ivs) and quadrupole mass-spectrometer (QMS) for TPD 

measurements. The Ru(0001) single crystal (from MaTeck) was spot-welded to thin Ta wires for 

resistive heating as well as cooling via filling the manipulator rod with liquid N2. The 
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temperature was measured by a K-type thermocouple spot-welded to the backside of the 

crystal.  

The Ru(0001) surface was cleaned using repeated cycles of Ar+ bombardment and 

annealing in UHV at ~1350 K. Cleanliness of the crystal was checked by LEED, AES and well-

known TPD spectra of CO. Bilayer silicate films were grown on Ru(0001) as described in detail 

elsewhere.[28] Briefly, Si was vapor deposited onto oxygen precovered 3O(2×2)−Ru(0001) 

surface at  ~ 100 K, followed by oxidation at ~ 1200 K in 10−6 mbar O2.  

To hydroxylate the silica film, we make use of a low energy (200 eV) electron 

bombardment of the surface covered by a thin “ice” film formed by water adsorption at 100 K 

as described in detail elsewhere.[32] The sample was then flashed to 300 K to ensure molecular 

water desorption. The amount of hydroxyls ultimately formed may vary from sample to sample 

as it depends on many parameters such as the electron energy, current, exposure time, and ice 

film thickness. Nonetheless, all samples were inspected by IRAS prior to the Cr deposition. 

Chromium was deposited from a Cr rod of 2 mm in diameter using a commercial electron-beam 

assisted evaporator (Focus EMT3).  

The IRA-spectra were recorded using p-polarized light at an 84° grazing angle of 

incidence (resolution 4 cm-1). TPD spectra were recorded by placing the sample ~ 1 mm away 

from the aperture of the gold plated cone shielding a differentially pumped QMS.  

Ethylene (from Messer, 99.95 %, hydrocarbons impurity below 100 vpm) was further 

purified using a cold trap. Prior to the ethylene exposure, the samples were flashed to 400 K to 

get rid of any adsorbate that may adsorb from the residual gases in UHV.   

 

3. Results and discussion 

 

Preparation of Cr/SiO2 model catalysts  

 

Electron bombardment of a double-layer silicate film covered by “ice” (amorphous solid 

water) greatly enhances the degree of hydroxylation without destroying the principal structure 

of the bilayer film as judged by IRAS and also by STM, although atomic resolution had not been 
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achieved.[32] Upon hydroxylation with deuterated water (D2O), two additional bands appear in 

IRA spectra at 2762 and 965 cm-1, as shown in Fig. 2a (black line), which are assigned to (OD) 

and (SiO) stretching vibrations, respectively, in terminal silanols (Si-OD).[32] Apparently, the 

hydroxylation occurs through siloxane bond breaking in the silica network.[32] The density of 

hydroxyls was higher than 0.4 nm-2, on average, as calibrated versus the (OD)  signal obtained 

on  hydroxylated monolayer silicate films where OH species were directly imaged  by STM.[34] 

These hydroxylated films were then used as a support for Cr species. It is well-documented in 

the literature, that metal atoms deposited by physical vapor deposition may penetrate the 

silicate film (as well as other ultrathin films) and thus adsorb at the metal-oxide film interface. 

[35] This effect depends on metal deposited as well as deposition conditions, and can hardly be 

predicted a priori. Therefore, we first examined Cr deposition at low temperatures to minimize 

the effect.  

IRA-spectra of Cr vapor deposited on a silica film at ~ 85 K and subsequently heated to 

200 K revealed attenuation of the silanols related bands with increasing Cr coverage until their 

full disappearance. Therefore, Cr deposition is accompanied by hydroxyls consumption thus 

suggesting the formation of the Cr-O bond(s). The released hydrogen most likely diffuses into 

the interface and ultimately adsorbs on the Ru(0001) surface.  Indeed, heating the sample after 

Cr deposition revealed D2 desorption, with the TPD profile being very similar to that of 

observed on D2/Ru(0001). Concomitantly, a new band appears at around 1007 cm-1 (Fig. 2a, red 

line), albeit the baseline in this region suffers from instrumental instability. This band falls in the 

range characteristic for the metal-oxygen double bond stretching vibrations,[36] and thus 

suggests the formation of chromyl (Cr=O) species on the silica surface. Indeed, experimental 

studies of Cr/SiO2 catalysts, corroborated by calculations, assigned those IR bands at 980 - 1030 

cm-1 to (Cr=O) vibrations, and to vibrations of corresponding Cr-O-Si linkages at 900 - 910 cm-

1.[17, 37-43] In principle, monoxo (Cr=O) species shows only one vibrational band, whereas di-

oxo Cr(=O)2 structures would exhibit both symmetric and asymmetric vibrational bands which 

are separated by 10-30 cm-1.[17, 44] Since only one band is observed in our experiments, one 

could tentatively assign the band at 1007 cm-1 to monoxo Cr=O species. One has to bear in 

mind, however, the surface selection rules applied to IRAS on metal supported systems, which 
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state that only vibrations with net dipole changes normal to the surface are detected. Following 

this, asymmetric vibrations in di-oxo Cr(=O)2 groups standing upright (normal to the surface) 

may hardly be visible.  

 

               

Figure 2. (a) IRA-spectra of a hydroxylated silicate film before (black) and after Cr deposition (red). (b) 
IRA-spectra of a hydroxylated Si18O2 film with D2

18O before (black) and after Cr deposition (red). Cr was 
deposited on a hydroxylated surface at 85 K in UHV and then heated to 200 K. All spectra were taken at 
200 K and referenced to the spectrum taken on the clean Ru(0001) surface. 

 

To shed more light on our chromium species, we performed isotopic labeling 

experiments that can be easily carried out on the thin film based model system introduced here. 

The silicate film was grown using 18O2 and then hydroxylated with D2
18O. IRA spectrum in Fig. 

2b (black line) shows silanol bands (2745 cm-1 for (OD), and 944 cm-1 for (SiO)) which are red-

shifted by 17-21 cm-1 when compared to those in the film grown with 16O2 (Fig. 2a) in full 

agreement with predictions based on the reduced mass analysis. Subsequent Cr deposition 

leads to strong attenuation of the silanols (Si-18OD) bands and the formation of the broad band 

at 990 cm-1. Although in this case precise deconvolution of the spectrum is rather difficult, “the 

center of gravity” of the broad band around 990 cm-1 is consistent with the formation of Cr=18O 

species due to the isotopic shift by ~ 17 cm-1.  
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Thermal stability of deposited Cr species was examined by measuring IRA spectra after 

the sample was flashed in UHV to the temperatures increased stepwise. The results presented 

in Fig. S1 in Electronic Supplementary Information (ESI) show that the considerable changes 

only appear at temperatures as high as 500 K, thus suggesting that the system is fairly stable, at 

least, up to 400 K. 

 

 

Figure 3. (a) IRA spectra of 60 L CO adsorption on a hydroxylated silicate film before (black line) and 
after Cr deposition (red line). All spectra were taken at 150 K and referenced to the spectrum taken on 
clean Ru(0001) single crystal. (b) TPD spectra (28 amu) of CO adsorbed onto a hydroxylated silicate film 
before (black line) and after Cr deposition (red line) at 150 K and subsequently heated with a rate of 3 
K/s.  

 

To determine the oxidation state of the Cr deposited, we measured XP spectra on 

similarly prepared samples in another chamber. However, at such low Cr loadings, even the 

intensity of the strongest, Cr 2p core level, signals was insufficient to precisely determine the 

binding energies. In addition, XP spectra of small clusters and nanoparticles deposited on thin 

insulating films commonly exhibit particle size as well as charge screening effects that renders 

determination of the oxidation state in our samples uncertain. Under these circumstances, we 

made use of adsorption of CO at low temperature whose interaction on solid surfaces and 

corresponding IRAS and TPD fingerprints are fairly well understood. [2, 20, 38, 45-47] 

Figure 3 compares IRA and TPD spectra obtained after dosing ~ 60 L (Langmuirs, 1 L = 10-

6 Torr s) to the pristine and Cr-deposited sample. TPD spectrum on the Cr-free sample revealed 

strongly bound CO species desorbing at ~450 K, which is most likely arising from CO adsorption 

in the “holes” present in small amounts in our silica films. CO adsorbed on the Cr/SiO2 surface 

(Fig. 3a, red line) at 150 K showed a broad band peaked at 2055 cm-1 with a much higher 
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intensity. Accordingly, the desorption profile features two states at ~ 200 and 325 K in addition 

to the above-mentioned signal at 450 K. Clearly, the ability of CO adsorption on Cr sites 

suggests coordinately unsaturated Cr species.  

We also measured IRA spectra of CO adsorbed on “as deposited” Cr at 85 K and after 

thermal flash to the temperatures increased stepwise up to 400 K. Figure 4 shows that the band 

at 2065 cm-1 gradually attenuates and red-shifts until it disappears at 400 K, in full agreement 

with the TPD spectrum shown in Fig. 3b. Accordingly, the weak band at ~ 2160 cm-1 appearing 

at a high frequency side of the main signal, vanishes upon heating to ~ 250 K, which is, again, in 

nice agreement with the TPD signal at ~ 200 K.  

 

 

Figure 4.  IRA-spectra of CO adsorbed on a chromium surface at 85 K and then heated to the temperatures as 
indicated. All spectra were taken at 85 K and were offset for clarity.  

 

It is instructive here to survey infrared spectra of CO on the Cr compounds documented 

in the literature. IR spectra of Cr(CO)6 carbonyl in the vapor phase show only one intense CO 

stretching vibration at ~ 2000 cm-1.[48, 49] Physisorbed Cr(CO)6 on SiO2 exhibits a strong band 

at 1990 cm-1 and a shoulder at 2015 cm-1.[50] In substituted metal carbonyl complexes of the X-

M(CO)5 (where  X is a ligand or a vacancy ) composition, at least three CO vibrational bands are 

IR active: The two A1 and E modes, although the IR-silent B1 mode has also been observed.[49-

51] The corresponding frequencies of these four modes decrease in the order: (A1)1 (at 2142-

2075 cm-1) > (B1) (2090-2075 cm-1) > (E) (2040-2000 cm-1) > (A1)2 (~2000 cm-1), with the E 
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mode having the highest intensity such that the (A1)2 band only appears as a shoulder to the E 

signal.   

As far as Cr/SiO2 catalysts are concerned, CO adsorption on Cr(II) at high exposures gives 

rise to the formation of the so-called “room temperature triplet” in the 2175-2200 cm-1 

region.[2, 38, 45, 46] It was suggested that Cr(II) sites exist in two structural configurations, 

namely: CrA having two CO molecules in the coordination sphere and showing bands at 2184 

cm-1 and 2179 cm-1 (as a shoulder); and CrB  coordinated to one CO molecule thus resulting in 

the band at ~ 2190 cm-1. Finally, IR spectra of CO adsorbed on Cr(III) and Cr(IV) sites show bands 

at 2188 – 2202 cm-1 and 2206 cm-1, respectively.[20, 46, 47] Not surprisingly, CO does not 

adsorb on fully coordinated Cr(VI) sites.  

Following this literature survey, the principal band at 2055-2065 cm-1(Figs. 3a and 4) can 

tentatively be assigned to CO adsorbed on “naked” Cr sites, thus resulting in carbonyl-like 

species, which desorbs at ~ 325 K (see Fig. 3b). Gradual red-shift of this band on heating can be 

explained by decreasing the number of CO molecules coordinated to Cr and hence reducing 

dipole-dipole interaction. Accordingly, the 2160 cm-1 band falls in the range characteristic for 

CO adsorbed on Cr=O species and is more weakly bound (desorption at ~ 200 K). On the basis of 

TPD results, the amount of chromyl species seems to be relatively low in the samples prepared 

by Cr physical vapor deposition.  

 
 
Figure 5. IRA spectra of Cr/SiO2 after sequential oxidation (as indicated). All spectra were recorded at 
150 K and referenced to the spectrum of sample exposed to 5×10-7 mbar O2 at 150 K.  
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To see whether Cr species can further be oxidized, the “as deposited” sample was 

exposed to molecular O2 at increasing pressure and temperature (5×10-7 – 10-5 mbar; 250 – 400 

K) for 2 min each, and monitored by IRAS in UHV at 150 K. For clarity, the spectra presented in 

Fig. 5 are referenced to the spectrum obtained by exposure to 5×10-7 mbar of O2 at 150 K. 

Interestingly, a strong positive signal that is clearly observed in the (CO) region at 2035 cm-1 

indicates the desorption of CO which was initially present in the reference, although CO was not 

deliberately introduced into the chamber during deposition. It, therefore, appears that CO in 

the UHV background may readily adsorb on the naked Cr sites.  

At low pressures (5×10-7 mbar) the original band at 1007 cm-1 (see Fig. 2a) gains 

intensity and slightly shifts to higher frequencies, thus indicating the formation of more chromyl 

species and probably their clustering that causes the blue-shift to 1014 cm-1.[52] This correlates 

well with the CO desorption (as just discussed above) from the naked Cr sites, which become 

oxidized, and the observation of a new small band at 2202 cm-1, which is characteristic for CO 

on Cr(IV).[15] Concomitantly, a new band develops at 1033 cm-1 which further grows upon 

oxidation at 400 K in 1×10-5 mbar O2. Note that the band at 1033 cm-1 was not observed upon 

annealing to 400 K in UHV (Fig. S1). Therefore, its formation includes oxygen from the gas phase. 

To validate this scenario, we performed isotopic experiments where 16O2 was exposed to the 

films grown with 18O2 and hydroxylated with D2
18O. In essence, the same bands (at ~ 1030 and 

1010 cm-1) developed upon oxidation (not shown here), although some oxygen scrambling 

cannot be excluded.  

Subsequent CO exposure to the oxidized samples did not reveal CO-related bands in 

IRAS, thus suggesting that Cr is fully oxidized by those treatments. As DFT calculations predict 

dioxo chromyl species to be more stable than the monoxo counterpart,[41] the IR band at 1033 

cm-1 is indicative of the formation of dioxo species, with the bands at 1033 and 1014 cm-1 being 

assigned to asymmetric and symmetric vibrations of the O=Cr=O bonds, respectively. Albeit the 

absolute wavenumbers are higher as compared to those reported in the literature,[17, 37, 38] 

the deviation  might be related to that our measurements were performed under clean, UHV 

conditions  with no adventitious adsorbates commonly present if measured in low vacuum on 

powdered samples. In attempt to discriminate monoxo and dioxo species we performed 
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isotopic experiments with 18O in the film. Due to spectral broadening and overlapping, it was 

difficult to precisely deconvolute the spectra. However, the 16O=Cr=16O bands dominated the 

spectra, suggesting only a minority of 18O=Cr=16O and Cr=16O species formed. 

On the basis of these results, we propose the following scenario schematically shown 

below. The “as deposited” Cr/SiO2 surface exposes “naked” Cr and Cr=O (as minority) species, 

both of which can adsorb CO as fingerprinted by IRAS and TPD. In oxygen ambient at elevated 

temperatures, all Cr species become oxidized thus forming more monoxo chromyl species (and 

possibly their aggregates). Ultimately, a dioxo chromyl species is formed which is not able to 

coordinate CO.  

 

Scheme 1. Proposed scheme for the formation of Cr species on a silicate film probed by CO adsorption. 

 

3.2 Ethylene adsorption 

 

In the next step, we studied adsorption of ethylene on our model systems under UHV 

conditions. Prior to the ethylene exposure, the “as deposited” samples were flashed to 400 K to 

get rid of any adsorbate, particularly of CO that may adsorb from the vacuum background. For 

comparison, the experiments were performed on a Cr-free hydroxylated silicate film. IRA 

spectra of the sample exposed to 1×10-5 mbar of C2H4 at 85 K for 3 min are shown in Fig. 6a. 

The comparison clearly shows that adsorption and reaction solely occurs on Cr species. 

Surprising is, however, that the observed IRA bands are not known for ethylene-related species. 

For comparison, physisorbed ethylene shows vibrations at 943 cm-1, 1623 cm-1 and 1342 cm-

1.[53] Ethylene chemisorption on metal surfaces either through  or di- bonding shifts the last 
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two bands to ~ 1400 and ~ 1000 cm-1, respectively.[54] Ethylene adsorption on oxides, in 

particular on the Cr2O3(0001) surface, showed IRA bands at around 1000 and 2980 cm-1.[43] 

The 2960 and 2865 cm-1 bands have also been observed previously during polymerization of 

ethylene on the Phillips catalysts. They were assigned to (C-H) in Cr(III)-CH=CH2 and (Cr-CH2) 

in Cr(III)-(CH2)2CH=CH2 complexes, respectively. Beside these two bands, another band at ~1574 

cm-1, was observed and assigned to (C=C) vibrations.[18] In our case, two bands at 1462 and 

1381 cm-1 are only observed in this region which are characteristic for (C-H) vibrations. The 

absence of the (C=C) band could, in principle, be explained by the surface selection rules 

assuming that the C=C bond is parallel to the surface. However, the combination of bands at 

1462 and 1381 cm-1 and 2960, 2931, 2862 and 2874 cm-1 allows us to assign them to C-H 

vibrations in R-CH2-R or R-CH3. Therefore, the observed bands at 2960 and 2874 cm-1, and 1462 

and 1381 cm-1 are characteristic for (C-H) and (C-H) vibrations, respectively, in R-CH3 groups. 

Accordingly, the bands at 2931 and 2862 cm-1, and 1462 cm-1 are assigned to C-H vibrations in 

R-CH2-R.[55] According to the literature database, the observed spectra suggest adsorption of 

butane/hexane molecules or the formation of butadiyl species.[56, 57]  

The TPD spectrum obtained from this sample is depicted in Fig. 6b. For comparison, the 

desorption traces on the Cr-free sample are shown by dashed lines. Focusing on the formation 

of alkene and alkane larger than ethylene, we recorded signals up to m/z+ = 112. No desorption 

of species higher than 84 amu was observed. It is well known that hydrocarbons exhibit rather 

complex fragmentation patterns in QMS. [58, 59] However, all masses belonging to one species 

will show identical desorption profiles. Since most of alkene and alkane species will give 

fragmentations of m/z+ = 27, 28, 41, 56 and 69, the species can be assigned by comparing the 

signal intensity ratios of each. For analysis we have chosen m/z+ = 25 (solely of ethylene), 27, 28, 

41, 56 and 69 (of other alkenes and alkanes).[60] The desorption signals at 110 K can be 

assigned to butene that is formed from butadiyl species as suggested above by IRAS.[56] 

Accordingly, the signals desorbing at 119 K can be assigned to a mixture of ethylene and butane. 

Other species are difficult to assign in a definitive manner solely on the basis of desorption 

profiles. Note that repeated adsorption/desorption IRA/TPD spectra can be repeated and fairly 

well reproduced, suggesting that the Cr sites are not blocked by these exposures. To minimize 
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effects of long desorption “tails” caused by weakly adsorbed species at low temperatures, we 

performed ethylene adsorption (60 L) at 150 K. The TPD spectra (Fig. S2) revealed 41 amu as 

the main signal, whose intensity is comparable with that observed in this region after ethylene 

adsorption at 85 K (Fig. 6). Again, the observation of 41 amu further confirms the formation of 

C4 molecules as a main product of ethylene adsorption. 

Any considerable effect of a Ru(0001) support in observed reactivity can be excluded. 

First, only tiny amounts of holes in the prepared films exposing Ru were observed by CO 

titration (e.g., see Figure 3a). Second, if some amounts of ethylene would adsorb on Ru(0001), 

then ethylene were flat laying parallel to the surface at 120 K and hence will be silent in IRAS 

due to the above mentioned surface selection rules.[61] Third, the bilayer silicate film is only 

weakly bound to a metal support and electronically decoupled from the Ru(0001) surface. On 

the other hand, the formation of C4 molecules would be consistent with the two-steps 

initiation mechanism proposed by Scott and co-workers, in which n-butane is formed.[13] It is 

suggested that butene formation is due to ethylene oligomerization.[23, 62]  

 

    

 

Figure 6. (a) IRA spectra of C2H4 adsorbed on “as deposited” Cr/SiO2 at 85 K(red) and on a pristine 
hydroxylated silicate film before Cr deposition (black). (b) TPD traces of selected masses of C2H4 
adsorbed onto a hydroxylated silicate film before (dash lines) and after Cr deposition (solid lines) at 85 K 
and subsequently heated with a rate of 3 K/s. The spectra are offset for clarity. 
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4. Conclusions 

 

We studied preparation of a well-defined planar system modeling the Phillips (Cr/SiO2) 

polymerization catalysts using Cr physical vapor deposition on a metal-supported atomically flat 

silicate film. Hydroxyls groups, formed on the silica surface by electron beam assisted 

hydroxylation, seem to serve as anchoring centers to Cr species. Monitored by IRAS, hydroxyls 

consumption correlates with the appearance of the new band at ~ 1007 cm-1 assigned to Cr=O 

vibrations. In addition, CO titration experiments suggested also the presence of “naked” Cr, 

which transforms into mono and dioxo chromyl species and their aggregation upon oxidation 

treatment. It appears that mild oxidation allows tuning the oxidation state of surface Cr.  

IRAS and TPD experiments of ethylene adsorption at low temperatures under UHV 

conditions showed the formation of C4 molecules (butene, butane). This finding would, in 

principle, be consistent with previously suggested initiation mechanism suggesting butane 

formation. The resultant surfaces are found thermally stable, at least, up to 400 K which allows 

to investigate ethylene polymerization further under more realistic conditions. Scanning 

tunneling microscopy studies of the prepared model systems are also under way. 
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