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The Influence of Endogenous and 
Exogenous Spatial Attention on 
Decision Confidence
Phillipp Kurtz1,2, Katharine A. Shapcott1, Jochen Kaiser  2, Joscha T. Schmiedt1 & Michael C. 
Schmid1,3

Spatial attention allows us to make more accurate decisions about events in our environment. Decision 
confidence is thought to be intimately linked to the decision making process as confidence ratings 
are tightly coupled to decision accuracy. While both spatial attention and decision confidence have 
been subjected to extensive research, surprisingly little is known about the interaction between these 
two processes. Since attention increases performance it might be expected that confidence would 
also increase. However, two studies investigating the effects of endogenous attention on decision 
confidence found contradictory results. Here we investigated the effects of two distinct forms of 
spatial attention on decision confidence; endogenous attention and exogenous attention. We used 
an orientation-matching task, comparing the two attention conditions (endogenous and exogenous) 
to a control condition without directed attention. Participants performed better under both attention 
conditions than in the control condition. Higher confidence ratings than the control condition were 
found under endogenous attention but not under exogenous attention. This finding suggests that 
while attention can increase confidence ratings, it must be voluntarily deployed for this increase to take 
place. We discuss possible implications of this relative overconfidence found only during endogenous 
attention with respect to the theoretical background of decision confidence.

Spatial attention is a fundamental aspect of everyday life that helps us carry out efficient perceptual decisions. 
The literature differentiates between two forms of spatial attention: endogenous (or top-down) attention is vol-
untary deployed and sustained1, exogenous (or bottom-up) attention however, occurs reflexively2. ‘Reflexive’ and 
‘voluntary’ in this context refer to the finding that peripheral cues (i.e. placed near or directly at the experimen-
tal target stimulus) that are used to guide exogenous attention cannot be ignored or interrupted voluntarily2, 3, 
whereas central cues (i.e. placed away from the target, often around the fixation point) for endogenous attention 
rely on the validity of the cue and the willingness or cognitive control of the subjects to deploy their attention3. 
Additionally, time courses are different between the two forms of attention: Exogenous attention is very rapidly 
deployed. It takes only 90–120 ms until an attention effect with a peripheral cue can be detected, yet benefits only 
last until 300 ms following cue onset1, 4, 5. Endogenous attention on the other hand is engaged only 300–500 ms 
after onset of a central cue1, 4, 5 but can be kept at one location for at least 1200 ms1. Therefore, due to the different 
phenotypes of these two forms of spatial attention they are believed to arise from distinct neuronal mechanisms6, 7 
and might differently affect perceptual decision making. Previous research established that endogenous attention 
can increase perceptual decision accuracy8–11. Whether exogenous attention has a similar effect is not well under-
stood. A primary goal of this study was therefore to directly compare the effects on endogenous vs exogenous 
spatial attention on perceptual decision accuracy.

A second goal was to understand the benefits of attention on decisions beyond accuracy, namely on decision 
confidence. Decision confidence describes the probability that a decision is correct or accurate as estimated by 
the subjects themselves given the evidence available12. People can intuitively report confidence with numerical 
ratings13 or on a continuous scale14, 15. Recent neurophysiological studies have argued that this is so easy because 
an evaluation of the quality of the evidence is inherent to every decision process16, 17. Several models of decision 
confidence therefore assume that the sensory evidence (i.e. the information about the stimulus that is available 
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to the subject) is the major input to the computation of confidence ratings14, 16, 18–21. In simplified terms these 
models compute a decision variable based on accumulated sensory evidence which determines the choice the 
subject makes in the task. Decision confidence is then derived from the strength of the sensory evidence for the 
respective decision. Indeed, confidence is coupled to the objective quality of a decision (performance)22, 23, but it 
can also be modulated by a number of contextual factors. For example task type24, task instruction23, feedback25, 
decision time26 and individual differences27 all influence decision confidence. Recent psychophysical and neuro-
physiological studies have even suggested a separate process for the calculation of confidence13, 28, 29.

Might spatial attention influence perceptual confidence? If confidence and performance are a result of the 
very same brain process, one might expect a positive effect of attention on both. If however, confidence and per-
formance arise from separate processes, attention may affect both differently. To the authors’ knowledge only two 
studies so far have investigated the influence of spatial attention on perceptual confidence. A study by Wilimzig  
et al.30 reported that spatial attention has no influence on decision confidence. In contrast, Zizlsperger et al.29 
found that both spatial and feature-based attention have larger effects on confidence than on performance, and 
may even cause over-confidence. They argued therefore that decisions and decision confidence are likely to arise 
from at least partially separate brain processes, which are differently influenced by endogenous attention.

In this study we provide supporting evidence for the findings of Zizlsperger et al. on the effects of endogenous 
attention. In addition, we show that this finding cannot be extended to exogenous attention. While both endoge-
nous and exogenous attention enhanced performance, only endogenous attention increased confidence ratings. 
We show that this increase could not be explained solely by enhanced performance, which indicates relative 
overconfidence resulting from endogenous attention.

Therefore, our results demonstrate that it is only the voluntary (endogenous) form of attention that affects 
both performance and confidence while the reflexive (exogenous) form of attention affects performance but not 
confidence.

Results
28 participants (23 were analyzed, see Methods) performed an orientation matching task with sinusoidal gratings 
under three different conditions: endogenous attention with central cueing, exogenous attention with peripheral 
cueing and a control condition without cueing. Every participant performed 100 trials per condition. At the end 
of each trial, participants gave a confidence rating about their performance in the respective trial (Fig. 1).

To assess the influence of attention, we initially compared whether performance and confidence differed 
between a condition without cue and endogenous and exogenous cueing. Figure 2a shows mean values for per-
formance in every subject. Performance was more accurate when attention was endogenously or exogenously 
cued compared with the no-cue condition. To quantify this effect and summarize it across all subjects, a one-way 
repeated-measures ANOVA confirmed a significant effect of attention condition on performance (F (df = 2, 
44) = 7.48, p = 0.002). Compared to the no-cue condition (27.5° ± 9.95°), performance was significantly higher 
under endogenous attention (23.6° ± 9.41°) (t (df = 22) = 3.5, p = 0.006). Similarly, performance was significantly 

Figure 1. Orientation matching task. Participants attempted to reproduce the orientation of a grating test 
stimulus using arrow keys to turn the response stimulus. Afterwards they reported the confidence in their 
decision on a continuous scale, again using arrow keys. During the fixation and cueing period eight grey circles 
indicated the possible locations at which the grating could appear. The average trial time was the same across the 
three conditions and the only difference in the trial sequence between conditions was during the cueing period. 
In the endogenous condition a foveally presented “Posner” line pointed for 300–500 ms to the location where 
the stimulus would appear. In the exogenous condition a small grey dot was briefly (16 ms) flashed immediately 
next to the location of the target. Stimulus onset asynchrony (SOA) between cue and target onset was 90–110 
ms in the exogenous condition. Both cues were 100% valid.
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better under exogenous attention (25.08° ± 9.03°) compared to the no cue condition (t (df = 22) = 2.87, p = 0.027). 
Although there was a small trend for better performance under exogenous compared to endogenous attention, 
the difference was not statistically significant (t (df = 22) = 1.35, p = 0.57).

For decision confidence a slightly different pattern was observed. The distribution for endogenous attention 
shows that mean confidence ratings were higher than in the other two conditions (Fig. 2b). As the distributions of 
confidence values were not normally distributed, we used a non-parametric Friedman test to statistically compare 
the effect of attention condition on confidence ratings. This gave a Chi-square value of 12.9 (df = 2, 44), which 
was significant (p = 0.002). Post-hoc comparison with Wilcoxon signed rank tests indicated a difference between 
median confidence in the no-cue condition (median = 0.67, mean = 0.65 ± standard deviation = 0.15) and in 
the endogenous attention condition (0.72, 0.72 ± 0.13) (Z = −3.25, p = 0.003). In addition, mean confidence in 
the endogenous attention was higher than in the exogenous attention condition (0.68, 0.66 ± 0.13) (Z = 3.41, 
p = 0.002). However, there was no difference between exogenous attention and no-cue conditions (Z = −0.91, 
p = 1). Thus, while both attention conditions enhanced performance, only endogenous cueing resulted in 
increased confidence ratings.

We then investigated whether attention changed the relationship between performance and confidence. To 
accommodate for the different distributions underlying the confidence vs performance measures, we binned sin-
gle subject data into quintiles based on performance. In every participant the mean confidence rating for all trials 
in the respective performance quintile was calculated for every condition (Fig. 3a). A two-way (3 attention con-
ditions x 5 performance bins) repeated measures ANOVA yielded main effects of attention (F (df = 2,44) = 11.75, 
p < 0.001) and performance (F (df = 4,88) = 45.25, p < 0.001), while there was no statistically significant inter-
action between both factors (F (df = 8, 176) = 1.73, p = 0.09). Hence, endogenous attention led to higher confi-
dence ratings irrespective of the performance level. This showed that the increase in confidence with endogenous 
attention was not just a faithful reflection of enhanced performance, but rather that trials with equal perfor-
mance showed higher confidence with endogenous attention than in the control condition. We call this a relative 
over-confidence. Exogenous attention led to higher performance but not to higher confidence ratings. Relative 
overconfidence was therefore found selectively for endogenous attention.

To further objectify the impression in Fig. 3a that endogenous attention led to an upwards shift of the 
performance-confidence relationship, a linear model was fit to the data for every participant for every atten-
tional condition. On the results of the fitting parameters a repeated-measures ANOVA was conducted separately 
for slope (see Fig. 3b) and intercept (see Fig. 3c) of the fitted relationship. This showed that while there was no 
significant effect of condition on the slope of the linear fit (F (df = 2, 44) = 1.98, p = 0.1502), the intercept dif-
fered significantly between conditions (F (df = 2, 44) = 14.4, p < 0.0001). Multiple comparisons revealed that 
the endogenous condition had a significantly higher intercept than both no-cue (t (22) = 4.57, p < 0.001) and 
exogenous conditions (t (22) = 3.5, p = 0.006). Again there was no difference between no-cue and exogenous 
condition (t (22) = −2.14, p = 0.13). We therefore concluded that endogenous attention led to an upward shift of 
the performance-confidence relationship leaving the slope of the relation intact. In contrast, exogenous attention 
left this relationship unaffected. This analysis showed that the relative overconfidence we found for endogenous 
attention was not just an effect of binning the data. More elaborate statistical analyses techniques examining inter-
actions or using performance as covariate (see Supplementary Analysis S1) confirmed these results.

Figure 2. Performance and confidence compared across attention conditions. (a) Distribution of subject-
averaged performance data. Every dot represents the mean performance of one participant in the respective 
condition. Every color corresponds to one participant showing how the individual participant contributed to 
the observed result. Both endogenous (left) and exogenous (right) attention conditions have greater means 
(grand average) than the no-cue condition (center). (b) Distribution of subject-averaged confidence data. Note 
the similarity of the exogenous and no-cue distributions. Means are indicated in black. Levels of significance 
were computed using post-hoc comparisons following a one-way repeated-measures ANOVA on mean values 
of participants. Asterisks denote significant results of the post-hoc comparison; **p < 0.01, *p < 0.05, n.s.: not 
significant (p > 0.05). Error bars are standard error of the mean.
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Finally we wanted to confirm that the correlation between performance and confidence was also not just an 
effect of artificial binning. Therefore, we calculated Spearman’s rho for every participant and ran a one-sample 
t-test across participants. This analysis confirmed that in every condition the correlation was statistically signifi-
cant (no-cue: mean = −0.18 ± standard deviation = 0.12, t (22) = −7.39, p < 0.001, endogenous: −0.22 ± 0.11, t 
(22) = −9.51, p < 0.001, exogenous: −0.23 ± 0.12, t (22) = −9.33, p < 0.001). However, using a one-way repeated 
measures ANOVA no statistical difference between conditions could be detected (F (df = 2, 44) = 1.58, p = 0.22). 
This analysis confirmed there was a correlation between performance and confidence and that this correlation 
was comparable across conditions.

One potential caveat of these results might be that confidence was heavily clustered in the high confidence 
range. There was a tendency in some of the subjects to report the highest possible confidence. However, even 
after exclusion of all trials in which the highest possible confidence was reported, neither the effect of attention 
condition on performance nor on confidence changed qualitatively. Results of the repeated-measures ANOVA 
and following multiple comparisons are given in Supplementary Tables S2–S5.

Another possibility was that participants might have performed or rated confidence differently depending 
on the difference between starting orientation of the response grating and the recalled stimulus. This might have 
been because it felt less difficult or was less difficult to match the orientations if this difference was small. If the 
orientation difference did influence performance or confidence, then we should have found that these measures 
were correlated to it. Therefore, we calculated this correlation using Spearman’s rho for the 15 subjects for which 

Figure 3. Relationship between confidence and performance. (a) Mean confidence is higher in the endogenous 
attention condition for a wide range of performances. For this plot we binned single subject data into quintiles 
based on performance. Shown is the grand average for confidence in the respective performance quintile. Error 
bars are standard error of the mean. (b–c) A linear model was fit to the data for every participant for every 
attentional condition. Shown are the mean values for the slope (b) and the intercept (c) of the linear fit for every 
condition respectively. Asterisks denote significant results of the post-hoc comparison; **p < 0.01, *p < 0.05, 
n.s.: not significant (p > 0.05). Error bars are standard error of the mean.
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the difference in orientation was recorded. We then performed a one-sample t-test across participants for the 
correlation with both performance and confidence. This yielded no significant result, neither for performance 
(t (df = 14) = −0.16, p = 0.88) nor for confidence (t (df = 14) = 1.12, p = 0.28). A mediating effect of the starting 
orientation is therefore unlikely.

A final confound that we examined was whether systematic differences in gaze position towards the cued 
location and therefore differential sensory input might account for the observed effects. Details of this anal-
ysis are provided in supplementary material (see Supplementary Figure S6). Gaze positions were not signifi-
cantly directed towards the cued location in either of the attention conditions and therefore could not explain the 
observed differences between the attention conditions.

Discussion
We compared the effects of endogenous and exogenous spatial attention on performance and confidence during a 
perceptual decision task. While both forms of attention led to an increase in performance, only endogenous atten-
tion also led to higher confidence ratings. Additionally we found that endogenous attention went, in some cases, 
beyond an accurate reflection of the enhanced performance and led to relative overconfidence. We found higher 
confidence with endogenous attention compared to the other conditions even when performance was poor. We 
showed that this effect could not be observed with exogenous attention, which did not change the relationship 
between performance and confidence.

Two previous studies examined the effects of endogenous spatial attention on decision performance and con-
fidence and reported discrepant findings. Our work supports the findings by Zizlsperger et al.29 that endogenous 
attention increases decision confidence more than performance. Wilimzig et al.30 on the other hand observed no 
effect of attention on confidence. As Zizlsperger et al. already pointed out this might be because Wilimzig et al. 
instructed participants to answer “as fast and as accurate as possible” because this might have caused subjects to 
rate their confidence before the computation of it was completed. Furthermore, in Wilimzig et al.’s task perfor-
mance increased with attention but confidence did not, perhaps due to a ceiling effect. If a task is very easy, partic-
ipants still sometimes report low confidence. This has been attributed to “a general form of underconfidence”22, 31  
as little effort is required and successes can be attributed to the task design. This might have been the case in the 
attended condition in Wilimzig et al.’s task, since in their yes/no paradigm performance could never be below 
50% correct. Zizlsperger et al. used 4 possible answers and we, at least in theory, provided 180, which substantially 
increased overall uncertainty and difficulty of the decision and therefore should have prevented a ceiling effect.

The dissociation between the effects of the two forms of attention adds supporting evidence for the hypothesis 
that endogenous and exogenous attention are separate processes4, 32. The neural networks for orienting spatial 
attention have not yet been identified unambiguously but it has been proposed that at least two different net-
works exist that might correspond to endogenous and exogenous attention7 (but see refs 33, 34). The neural 
network for decision confidence16, 20 overlaps at least in part with the network linked to endogenous attention 
in the intraparietal sulcus and in the pulvinar nucleus of the visual thalamus35, 36. How attention and decision 
confidence are integrated at the neuronal level is still largely unknown. The results of our experiments indicate 
that under the tested conditions, endogenous, but not exogenous, attention will influence decision confidence. 
Neurophysiological recordings could test for possible neural networks which are responsible for the effects of the 
different forms of attention.

Previous studies on decision confidence have focused on whether confidence is computed at the time point 
of the decision (decisional locus model, see for example ref. 18) or whether it takes information into account that 
was perceived after the decision (post-decisional locus model, see for example ref. 37) (for a review see ref. 38).  
However, these models assume that confidence represents the probability of the decision being correct and can 
therefore in some way be read out from the sensory evidence on which the decision is based14, 16, 17, 19–21. A rela-
tively new theory proposes that confidence could be obtained in a process that is separated from the decision and 
can therefore selectively be manipulated (i.e. without manipulating the sensory evidence)13, 28, 29. Whether the 
objective (performance) and subjective evaluation of a decision (confidence) arise from the same or from differ-
ent processes remains an open question. Our findings add supporting evidence in favor of a separation between 
these processes.

In theory both forms of attention could in some way affect the evidence accumulation process and con-
sequently the decision variable, which determines the decision in a positive manner. This is reflected in the 
increased performance in both attention conditions. If confidence was obtained mainly depending on the 
strength of the sensory evidence for the respective decision - as suggested by many models14, 16, 18–21 - one would 
expect that it would be affected by attention in the same way as the quality of the decision itself (performance). 
In our study however, confidence was only affected by one form of attention. During exogenous attention, con-
fidence faithfully reflected the quality of a decision. For endogenous attention we found selective relative over-
confidence relative to performance. This dissociation can only be explained when we assume a second, separate 
process for obtaining confidence ratings. While attention can improve the first process (performance), it seems 
to have an even stronger effect on the second process (confidence). It is the voluntary, or cognitively controlled, 
form of attention that affects this process while the reflexive, or involuntary, form of attention leaves it unchanged, 
suggesting that confidence might ultimately arise from higher cognitive processes. Another finding that might 
potentially link confidence to higher cognitive processes is that participants are more likely to be overconfident 
in higher cognitive tasks than in perceptual tasks24 (but see ref. 39). Additionally neural correlates of confidence 
have been found in prefrontal areas40, thought to be important for cognitive control41. Taken together, these 
considerations set confidence apart from the externally triggered perceptual decision process itself and link it 
to metacognitive processes, i.e. monitoring mechanisms over perception or memory using high level control42.

One limitation to this study is that there is no possibility to validate post-hoc that the experimental manipu-
lations really resulted in the deployment of different forms of attention. This claim relies on the well documented 
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differences in the time courses between exogenous attention and endogenous attention1, 4, 5, 43, 44. Another possible 
caveat is that attention might not affect confidence as such but simply the reporting process of this internal con-
fidence value. For example, participants might have only reported “certain” rather than truly felt this way during 
their confidence rating, simply because they thought they should be more certain under this task condition. It is 
also possible that in the exogenous attention condition participants felt rushed by the short SOA or were surprised 
by the cue and therefore reduced their confidence ratings accordingly (However, an effect of SOA could be ruled 
out at least within conditions (see Supplementary Analysis S7)). In our experiment these factors cannot be ruled 
out completely and our results should therefore be further validated in combination with a greater range of psy-
chological methods assessing metacognitive processes45.

Conclusions
Reflexive attention to external information does not affect the assessment of a decision in a metacognitive process 
even if it enhances the objective quality of the decision. Deciding voluntarily to do so on the other hand may lead 
us to overestimate the quality of our decisions. Thus, higher level cognitive processes can influence each other, 
while they appear to be at least partially decoupled from the basic reflexive processes that help us perceive our 
environment in an optimal manner.

Methods
Subjects. 28 healthy participants performed the task (12 female, median age: 25 years). All participants had 
normal or corrected to normal vision. Written informed consent was obtained from all subjects. All methods 
were carried out in accordance with relevant guidelines and regulations and approved by the ethics committee of 
the Goethe University Medical Faculty. Participants 1–10 received small gifts for their participation, participants 
11–28 were paid € 15. Apart from 4 participants from the author’s lab (including the first author), all participants 
were naïve to the task. Performing the task including training trials, giving informed consent, task instructions 
(See Supplementary Information S8) and pauses took between one and one and a half hours.

Five participants (8, 9, 13, 21, and 26) performed at chance level and were therefore excluded from analysis. 
We determined participants at chance level by using their median accuracy, which from random guesses between 
0 and 90 would be around 45°, and excluded all participants with a median accuracy larger than 40°. However, 
excluding these participants did not qualitatively change the observed effect.

Task settings were slightly changed from subject 17 onwards (see below) because of feedback from participants 
without experience in psychophysical experiments. Comparing the descriptive statistics between the first and sec-
ond group of participants we found that performance was poorer in the second group in all conditions (endoge-
nous: mean = 18.41° ± standard deviation = 8.36 vs. 30.44° ± 5.67°; exogenous: 21.95° ± 10.49° vs. 29.15° ± 4.49°; 
no-cue: 22.77° ± 9.97° vs. 33.71° ± 5.84°). This was reflected also by lower confidence ratings (endogenous: 
0.74 ± 0.083 vs. 0.68 ± 0.172; exogenous: 0.68 ± 0.116 vs. 0.64 ± 0.159; no-cue: 0.68 ± 0.128 vs. 0.6 ± 0.173). We 
attribute this to the fact that the second group included only participants without experience in psychophysical 
experiments. The main differences between conditions, however, were very similar for both groups. Therefore, all 
participants were treated as one population.

Task Design. The experiment was performed in a quiet, dimly lit room. Participants placed their head in 
a headrest ensuring a constant viewing distance of approximately 60 cm. Stimuli were presented on a Samsung 
SyncMaster 2233RZ monitor with a resolution of 1680 by 1050 pixels and a refresh rate of 120 Hz46. Presentation 
was controlled by a Dell Computer with an Intel Xeon W3503 processor (2.4 GHz) and a NVIDIA Quadro 2000D 
graphics card. The operating system was a 64-bit Windows 7 Professional. The experimental procedure was pro-
grammed using the Psychtoolbox version 3.0.1247 for Matlab version R2014b (Mathworks Inc. TM).

The orientation matching procedure shown in Fig. 1 was based on a paradigm used by Whitney et al.48. All 
stimuli were presented on a grey background. Participants had to fixate a small fixation point with a diameter of 
0.2 visual degrees to start a trial. Eight light grey circles indicated possible stimulus locations at 5 degrees eccen-
tricity. This presentation stayed on for 500 milliseconds (ms) after fixation was acquired and was the same in all 
trials.

Three different conditions were tested: endogenous versus exogenous cueing and a no-cue condition. 
Conditions were pseudo-randomly drawn on a trial-by-trial basis so that every condition was tested in exactly 
one third of the trials.

In the no-cue condition the initial presentation stayed on the screen for an additional 300–700 ms (from 
participant 17 onwards for 350–750 ms) after the initial 500 ms fixation period until the stimulus was presented 
800–1200 ms after trial onset. This condition served as a control condition to assess decision performance and 
confidence in the absence of cued attention.

In the endogenous attention condition a 1 visual degree long black line pointing from the central fixation spot 
towards one of the locations appeared within 200 ms after the end of the fixation period and stayed on for a dura-
tion of 300–500 ms (from participant 17 onwards for 350–550 ms) instructing the subjects to shift their attention 
covertly (without detectable eye movements) to the indicated location. Offset of the cue and onset of the target 
happened simultaneously in this condition.

In the exogenous attention condition after an additional 200–600 ms (from participant 17 onwards: 250–650 
ms) of the initial display, a small dark grey dot (0.5 visual degrees diameter) was flashed for 16 ms next to the 
location where the stimulus would later appear reflexively drawing the subjects’ attention to that location. In this 
condition the time between cue onset and target onset was 90–110 ms. These stimulation times were selected to 
accommodate the known time courses of endogenous and exogenous attention1, 4, 5, 43, 44.

The stimulus was a circular (2 visual degrees diameter) sinusoidal grating. Michelson contrast was between 
0.05 and 0.5 and was set according to performance in a staircase procedure during a prior psychophysical 
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threshold measurement (see below). The spatial frequency of the stimulus and response grating was 6 cycles per 
degree, which yielded robust effects for exogenous attention in a similar task49. The grating’s orientation was ran-
domly drawn on every trial. The target stimulus was presented for 80 ms followed by a random white noise mask 
that was presented for 100 ms to prevent afterimages that could influence the decision process.

After a 500 ms period with a blank screen, a second randomly oriented response grating was presented. 
Participants tried to match the orientation of the response grating to the orientation of the stimulus grating by 
changing the orientation of the response grating in steps of 1° with the arrow (left and right) keys on a keyboard. 
When satisfied with the orientation of the gratings, participants pressed another key to log in their response. Then 
participants rated the confidence in their decision on a continuous scale again using the arrow keys to move a 
slider on the scale. The scale showed the transmission from red on the left side of the scale corresponding to low 
confidence, to green on the right side of the scale for high confidence. The starting point of the slider was set to the 
right edge. A value read out from the position of the slider on the scale between 0 for lowest possible confidence to 
1 for highest possible confidence was recorded. The scale was divided into 256 possible values corresponding to a 
span of 256 pixels, giving the impression of a continuous scale. The length of the scale in visual degrees was 6.94.

Participants received an oral instruction either in English or German, which did not contain speed or accuracy 
statements. Then they performed a training session of 30 to 50 trials using the exogenous cue. These trials were 
used to determine an individual Michelson contrast for the gratings for each subject with a staircase function. 
Since the response was given on a continuous scale we used 15° deviation as a correct/incorrect criterion in the 
staircase procedure. A correct response decreased, and an incorrect response increased the contrast by a step of 
0.05. We then used the lowest contrast at which participants were able to perform better than the threshold for the 
main experiment. In the actual experiment participants performed a total of 300 trials (100 trials per condition).

Additionally we recorded the starting angle of the response grating from participant 11 onwards to check for 
possible influences on responses. The SOA for endogenous trials was prolonged to 350–550 ms for subject 17–28 
because we noticed that participants took longer than expected to allocate attention according to the cue. In trials 
with exogenous attention cues and in trials without cueing we prolonged the waiting time accordingly to obtain 
consistent trial lengths.

Eye-Tracking. The participant’s eye movements and pupil diameter were recorded throughout the whole 
experiment to ensure fixation with an Eyelink 1000 Version 4.56 system from SR Research Ltd. (Mississauga, 
Ontario, Canada). Gaze position was used to initiate a trial as soon as it reached the central fixation window. 
Trials were aborted if gaze position went outside the fixation window before the fixation point was turned off. 
Eye-movement data was saved from subject 7 onwards. The directionality of the eye position was assessed using 
a Rayleigh test.

Statistics. All statistical tests were programmed using the Matlab version 2011a and 2015b and its Statistics 
and Machine Learning Toolboxes (Mathworks Inc.). The two-way repeated measures ANOVA was performed 
using the RMAOV2 function50.

Performance was calculated as the absolute deviation between the response orientation that participants had 
logged in and the orientation of the stimulus grating. Confidence was measured as a value between 0 and 1 in 256 
steps, read out from final position of the slider on the scale.

To assess the statistical significance of effects across participants, we conducted one-way repeated-measures 
analyses of variance (ANOVA) for performance and a Friedman test for confidence. When these tests revealed 
a significant effect (p < 0.05), post-hoc statistical comparison was performed using paired samples t-tests for 
performance and Wilcoxon signed rank tests for confidence with a Bonferroni procedure correcting for multiple 
comparisons.

For the analysis of confidence according to performance level single subject data was binned into quintiles 
and mean confidence values of trials in each condition were calculated for every quintile (Fig. 3). Then a two-way 
(3 attention conditions x 5 performance levels) repeated measures ANOVA was performed to assess statistical 
significance.
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