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In territorial species, the distribution of neighbours and food
abundance play a crucial role in space use patterns but less
is known about how and when neighbours use shared areas
in non-territorial species. We investigated space partitioning
in 10 groups of wild, non-territorial mountain gorillas (Gorilla
beringei beringei). Using location data, we examined factors
influencing daily movement decisions and calculated the
per cent overlap of annual kernel home ranges and core
areas among neighbours. We found that the probability that
a group chose an area was positively influenced by both
food availability and the previous use of that area by the
group. Additionally, groups reduced their overall utilization
of areas previously used by neighbouring groups. Lastly,
groups used their core areas more exclusively than their home
ranges. In sum, our results show that both foraging needs
and avoidance of competition with neighbours determined
the gorillas” daily movement decisions, which presumably
lead to largely mutually exclusive core areas. Our research
suggests that non-territorial species actively avoid neighbours
to maintain core area exclusivity. Together, these findings
contribute to our understanding of the costs and benefits of
non-territoriality.

1. Introduction

Access to critical resources is a major determinant of fitness and
is influenced by space use patterns [1]. In territorial animals,
owners actively exclude conspecifics from fixed areas [2]. Space
use patterns are therefore largely determined by between-group
competition [3-5] and peripheral areas of the territory are often
underused [6-8]. In non-territorial species, individuals or groups
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do not actively exclude conspecifics from their home ranges [2,9] and less is known about how and when
neighbours use shared space (but see [10,11]).

A home range is the overall area used by a group and results from sequential daily movement
decisions, reflecting the multi-faceted interactions between an animal’s behaviour and its ecological
and social environment [12,13]. Movement decisions, i.e. where to move to and how much to use a
chosen area, are influenced by both resource availability [14,15] and competition among neighbouring
groups [6,8]. Animals may use an area exclusively, but exclusive use and territoriality are not the
same [2]. Territories arise when individuals or groups aggressively defend and exclude conspecifics
from either part or all the home range containing limited resources [2,9]. Territoriality is adaptive
when the benefits of monopolizing limited resources outweigh the costs of excluding conspecifics [16].
Territorial behaviour becomes cost-effective when limited resources within a sufficiently small area can
be economically defended against competitors [17-19]. Hence, resource availability and the distribution
of neighbours should affect the costs and benefits of sharing space.

Food availability is a crucial factor influencing space use patterns (e.g. [10,20]). According to the
optimal foraging theory, animals are predicted to spend more time in areas that yield the highest average
rate of energy intake [14,15] and choose habitat types with high-quality food resources (e.g. [21-23]).
Animals with overlapping home ranges need to adjust their spacing patterns to maximize foraging
efficiency, but at the same time, they need to minimize negative effects of between-group competition.

Sharing space in non-territorial species is influenced by between-group scramble competition, where
resources are exploited by the group that arrives first [24,25]. This can lead to increased energetic
costs due to reduced food availability and predictability as a result of depletion by neighbours [26,27].
Sharing space also increases the risk of encountering neighbours and possible injury from fighting [6,8],
resulting in avoidance-based spacing patterns [10,28]. The number of encounters between neighbours
might be expected to increase as home range overlap increases [29,30], although encounters can be
rare in cases of high home range overlap [10,31]. Many studies describe encounters between groups
(e.g. [32,33]), yet only a few investigated how intraspecific competition results in large-scale patterns of
space partitioning [10,31].

To better understand how and when non-territorial neighbours use shared areas, we investigated
the impact of both food availability and neighbours on space partitioning in mountain gorillas.
Mountain gorillas are ideal for investigating how neighbouring groups share space because they are
non-territorial (i.e. they do not actively exclude conspecifics from their home ranges [9]) and show
extensive intergroup home range overlap (range of overlap: 13-100%) [29,34,35]. Additionally, they
face spatial variation in food availability, despite little seasonal variability [36,37] and between-group
competition for access to mates [38,39]. Mountain gorillas live in stable and cohesive social units (mean
group size: 10, range: 2—47), containing one or more adult males, several adult females and their
dependent offspring [40-42]. Although gorillas adapt their space use to the spatial variation in food
availability [35,37,43], the importance of food in influencing interrelated movements among neighbours
remains unknown.

Intraspecific competition in gorillas has been attributed mainly to mate competition, with females
transferring between neighbouring groups during intergroup encounters [38,44]. However, despite
large intergroup home range overlap [34], encounters between groups are rare (monthly average:
0.78 [39]). Encounters impact moving patterns by increasing daily travel distances on the days of
encounters [45]. In addition, the local gorilla population density has a negative relationship with
monthly home range size, suggesting that groups contract their ranges as intraspecific competition
increases [45].

The main objectives of this study were (i) to evaluate how groups adapt their spacing pattern to
food availability and neighbours” use patterns on small temporal and spatial scales (i.e. daily) and
(ii) to examine how this relates to the usage of shared space among neighbouring groups on a larger
scale (i.e. annual). We predicted that gorilla groups will adjust their daily movement decisions to the
spatial variability of herbaceous food resources by foraging in areas with high food availability. At
the same time, we predicted that groups will adapt their movement decisions to both their own and
to the neighbours’ previous ranging patterns. Specifically, we predicted that gorillas will use those
areas with (i) higher herbaceous food availability, (ii) lower previous use by the group, and (iii) lower
previous use by neighbouring groups. However, Virunga gorillas do not deplete previously used
areas [43] and therefore, we alternatively predicted that gorillas will use those areas with (iv) higher
previous use by the group. Lastly, examining space partitioning among neighbours on a large scale, we
predicted that annual core areas will be more exclusive (i.e. less overlap among neighbours) than annual
home ranges.
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Figure 1. Annual kernel home ranges of the 10 mountain gorilla groups studied in 2012 and 2013 in Bwindi Impenetrable National Park,
Uganda. Home range areas (90% fixed kernel density estimates) in the three general locations of the study groups are depicted in grey
and shared areas are indicated by darker grey shading.

2. Material and methods
2.1. Study site and data collection

We studied 10 habituated groups of mountain gorillas in Bwindi Impenetrable National Park, Uganda,
between May 2012 and July 2013, which represent nearly one-third of the social units and individual
gorillas in the population [41]. All study groups shared their annual 90% kernel home range with at
least one neighbouring group (figure 1). We collected all-day location data using global positioning
system (GPS) units (GPSmap 60CSx and 62) recording in 30s intervals. Part of the all-day location data
were recorded by following the groups during the direct observation time, which was limited to 4hd~!
by park authority regulations to reduce anthropogenic disturbance. Owing to the restriction of direct
observation time, we collected the rest of the data by walking along the main trail that was left by a gorilla
group on a respective day. Following the trails gave data on distance travelled in an area but not temporal
use of an area. These trails are easily detectable by bent vegetation, dung and food remains [37,46].
Data were collected by N.S. and trained field assistants for an average of 13 months per group (range:
8-14 months) and for an average of 16 days (range: 2-31 days) per month and group (for more details,
see [45]). The number of observation months was less than 1 year for two groups (Bw and Kak) because
data collection on them began following a group fission during the study period. On a bi-monthly basis,
N.S. checked the compliance of each assistant with the data collection protocol. We determined the mean
group size per month for each group, defined as the average number of weaned individuals (range: 4-13
individuals) because group composition changed for some groups by one to two individuals during the
study period.

2.2. Movement decisions

2.2.1. Herbaceous food availability per grid cell

Herbaceous food availability per grid cell was measured as the energy density of herb species that
contributed to at least 1% of the diet recorded for all groups over the study period (N=24) [36].
Those species were determined based on instantaneous scan sampling at 5 min intervals of all weaned
individuals in view throughout the daily observation period to record dietary intake of the study groups.
We directly observed 124 gorillas for an average total observation time of 258 h (range 86-1383 h).
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Energy density was based on biomass density estimates derived from vegetation sampling and
nutritional content of herb species. As the temporal variation of herbaceous biomass in Bwindi is
negligible [36], we determined biomass of herbaceous food species once by sampling a total of 490
transects. Transects were of 200 m length and randomly placed within 500 x 500 m grid cells (for details
and justification, see electronic supplementary material, S1) overlaid onto a map including the study
groups’ home ranges. For each plant and along each transect, we measured stem length or number of
leaves in 10 1m? plots, which were placed on alternate sides in 20 m intervals [36,46]. Using regression
equations relating the respective measure recorded in the vegetation transects to the dry weight of
sampled plants (electronic supplementary material, S2 and table S2), we calculated dry biomass (g m~2).
We then multiplied the predicted metabolic energy of each herb species (kcalg™!) estimated from
nutritional analysis by its biomass (gm~™2) and summed all species’ energy contents (kcalm~2) to
determine energy density per grid cell (for more details, see electronic supplementary material, S2). The
average energy density of the most important herbaceous food species per grid cell was 959 kcal m~2
(range: 0-13 054 kcal m~2; electronic supplementary material, S2 and figure S2).

2.2.2. Previous use of grid cells by the group and by its neighbouring groups

We used all-day location data for each group (location points taken every 30 s) to calculate (i) the previous
use of grid cells by the group and (ii) the previous use of grid cells by its neighbouring groups. For each
day and each group, we determined the previous use of all visits to each 500 x 500 m grid cell by both
the group and also by all habituated neighbouring groups collectively. This resulted in two predictor
variables per group and day: the previous use by the group and the previous use by its neighbouring
groups. We incorporated three measures into these two variables: (i) mean group size, to account for
larger groups depleting an area more than smaller groups, (ii) time since the previous visit to a given cell,
as a measure of time for regeneration of food resources, and (iii) distance travelled during the previous
visit, as a proxy for the utilization of that cell (for details and justification, see electronic supplementary
material, S3). As a composite measure of previous use for each group and visit to a grid cell, we divided
the size of the group and each neighbouring group, respectively, by the time passed in days since the
last visit of that group to a cell and multiplied this term by the distance travelled by that group in that
cell during that visit. We then summed up each estimate for each previous visit by the group and by its
neighbouring groups per group and grid cell:

n visits .
Previous use = Z [( - grou? sze — ) x length of track during the last ViSit] .
P time passed since last visit

Although the Bwindi census 2011 identified 26 unhabituated groups (range of group sizes: 2-17) [41],
we were not able to include them in the analysis because we only had on average 3.1 location points
(range: 1-11) per group and hence could only estimate their approximate home ranges (see electronic
supplementary material, S4). During the 2011 census, home range centres of only three of the 26 groups
(group sizes: 3,9 and 17) were found in the periphery of the 2012-2013 annual home ranges of some study
groups but none in the study groups’ core areas (electronic supplementary material, S4 and figure S4a,b).
Therefore, we assume that excluding the unhabituated groups did not bias our results. Furthermore,
our variables might underestimate previous use by groups and by neighbouring groups because we
cannot assess the use of grid cells on days when we did not collect data. However, we collected data
on approximately 50% of all days during the study period for most groups (table 1; except for groups
Bw and Kak, which formed following a group fission) and therefore, we assume the overall patterns
to be representative. Because we did not have data about home range use prior to the start of the
study, we determined a point in time when sufficient data on previous use were available. Based on
visual inspection of plots showing the predictor variable plotted against date (electronic supplementary
material, S5 and figure S5a,b), we decided 1 October 2012 (five months into the study) as appropriate and
restricted analyses to data collected from that day onward.

2.2.3. Probability of choosing a particular area

For each group and each decision to move into another 500 x 500 m grid cell, we determined which of
the eight surrounding cells was entered (electronic supplementary material, figure S6) based on all-day
location data. The cell entered was assigned a one; the non-chosen cells were each assigned a zero. We
counted multiple entries into the same grid cell on the same day as one decision.
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Table 1. Annual kernel home range sizes of the Bwindi mountain gorilla study groups and per cent of area overlap of a group with all
habituated neighbouring groups. Home range sizes and overlap estimates are shown for annual home ranges (90% kernel home range)
and annual core areas (50% kernel home range). Overlap estimates range from zero (=no overlap) to 100 (=100% overlap). The number
of location data points used for annual home range and core area estimates corresponds to the number of observation days per group.
The high home range and core area overlap of the groups Busingye, Mishaya and Kahungye may be due to two group fissions during the
study period.

ENIE] exclusively per cent per cent no. location
annual kernel kernel used part overlap of overlap of data points

home range core area of corearea  annual home annual core used for annual
(km?) (km?) (km?) range analysis
Bitukura (Bi) 12.03 3.41 3n 43.45 8.62 162

2.2.4. Utilization of a chosen area

We determined the distance travelled by each group in each 500 x 500 m grid cell using all-day location
data. We used this as a proxy for the utilization of a chosen area because we could not assess the gorillas’
temporal use when following only their trails, but we assumed a positive relation between the distance
travelled and the area used. Using this proxy is justified because mountain gorillas spend about 50% of
their day feeding and spend only little time exclusively travelling to search for food [47]. Additionally,
we investigated activity patterns of one study group (Ky) using instantaneous scan sampling at 5min
intervals of the group’s activity (N =18459 scans) recorded over the study period, which further
affirmed that distance travelled is a good proxy for utilization (electronic supplementary material, S3 and
figure S3).

2.2.5. Statistical analysis: probability of choosing a particular area

To investigate which factors influenced the probability that a group would choose a particular area
(i.e. grid cell), we developed a generalized linear mixed model [48] (N =11811 observations from 10
groups) with binomial error structure (binary response variable: grid cell chosen yes/no) and logit link
function [49]. As test predictors we included (i) herbaceous food availability of the respective grid cell,
(ii) the previous use of that cell by the group, and (iii) the previous use of that cell by neighbouring
groups. We log-transformed all test predictors to achieve approximately symmetrical distributions and
then z-transformed them to a mean of zero and a standard deviation of one [50]. The inverse of the
number of surrounding grid cells was included as an offset-term (log-transformed) to control for the
varying number of surrounding cells (usually eight, but in some cases, the number varied because
some groups ranged on the edge of the park and food availability data were missing). To control for
repeated observations, we included group ID (N =10), an ID for the possible grid cells into which a
group could move (grid cell ID; N =341), an ID for the group of the surrounding grid cells, reflecting the
choices a group had (choice ID; N =1777), and an ID for the possible grid cells in which a group could
move, nested within group (group-grid cell ID; N =601). We included choice ID to account for the non-
independence of choices as each time only one of the surrounding cells can be chosen. Additionally, we
accounted for group-grid cell ID because the same groups might have had preferences for particular grid
cells and hence repeatedly moved to the same cells. To keep error I rate at the nominal level of 5%, we
included random slopes where applicable (electronic supplementary material, S7) [51,52]. We conducted
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permutations for each choice to move to another grid cell, which randomly shuffled the assigned one
from the actual chosen grid cell among all surrounding cells [53,54]. As the probability that the gorillas
would choose one of the four directly adjacent cells was higher than the probability that they would
choose a cell bordering the corner of the cell of origin (see electronic supplementary material, figure S6),
we adjusted the probabilities for a particular cell to be randomly chosen correspondingly. We could not
control for the possibility that gorillas on the edge of a grid cell may be more likely to move to the
cell adjacent to the respective edge because we could not quantify this probability. For details of model
implementation and R syntax of the fitted model, see electronic supplementary material, S7.

2.2.6. Statistical analysis: utilization of a chosen area

To investigate which factors influenced the utilization of a chosen area (i.e. grid cell;, N=3378
observations from 10 groups), we used a linear mixed model and fitted it with Gaussian error structure
and identity link [48]. As test predictors, we included (i) herbaceous food availability of the respective
grid cell, (ii) the previous use of that cell by the group, and (iii) the previous use of that cell by
neighbouring groups. All test predictors were log- and then z-transformed [50]. We included test
predictors centred to a mean of zero per group (=within-groups variation) and the mean of the predictors
per group (=between-groups variation) to account for possibly different effects of the predictors within
and between groups [55] (electronic supplementary material, S7). As random effects, we included group
ID (N =10), grid cell ID (N =266) and group-grid cell ID (N =422). We included an autocorrelation term
derived analogously to that described by Fiirtbauer et al. [56] (electronic supplementary material, S7).
We included the random slopes of the within-groups effects where applicable (electronic supplementary
material, S7) [51,52]. For details of model implementation and R syntax of the fitted model, see electronic
supplementary material, S7.

2.3. Annual home range overlap

2.3.1. Per cent overlap of annual home ranges and core areas

Applying fixed kernel density estimation [57], we calculated annual home ranges (90% kernel home
range) and core areas (50% kernel home range; following the recommendations by Borger ef al. [58]) per
group using the adehabitatHR package [59] in R [60]. This method generates utilization distributions,
which represent groups’ relative use of space [61]. The kernel density estimate is a method based on
point densities [57], but we could not assess the groups’ temporal use when following the trails, and
hence we restricted the home range and core area estimation to one location point per day per group
(first recorded location per day). Choosing the first recorded location per day gives a representative space
use estimate as gorillas only move on average 808 md~! (range: 547-1034 m) between two consecutive
night nest sites [34], which are constructed every night at a different location [41]. We used on average
198 location data points per group (range: 105-394; table 1) to estimate annual kernel home ranges
and fixed the bandwidth to 1=200 [29]. This allowed us to produce home range contours for all
groups with relatively little fragmentation. Using sensitivity analyses comparing home range sizes using
subsamples, we showed that the chosen parameter ( =200) revealed rather robust estimates (electronic
supplementary material, S8 and figure S8).

For each group, we calculated the sizes of areas shared with neighbouring groups and estimated
both: (i) the per cent of the annual home range covered by the home ranges of all other habituated
neighbouring groups; and (ii) the per cent of the annual core area covered by the core areas of all other
habituated neighbouring groups (table 1). Using the polygons forming the 50% and 90% kernel home
ranges, we determined the polygons of the shared areas. The per cent home range overlap of group i was
quantified as follows:

SH;
Per cent home range overlap: 100 x ?1,

SC:
Per cent core area overlap: 100 x Tl'
i
where SH; is the size of the area shared of the home range and SC; the size of the area shared of the core
area of group i with all other habituated neighbouring groups, H; the home range size and C; the core
area size of group i (for proportions of dyadic annual home range and core area overlap, see electronic
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Figure 2. Influence of (a) herbaceous food availability (kcal m~2, based on herb hiomass and nutritional content) and (b) previous use
by the group on the probability of choosing a particular area (i.e. a 500 x 500 m grid cell) in Bwindi gorillas. The area of the circles
indicates the fourth root of the number of observations. In (a), the largest circle corresponds to 1268 and the smallest circle corresponds
to 30 observations, whereas in (b), the largest circle corresponds to 2111 and the smallest circle corresponds to three observations. The
dashed and dotted lines indicate the fitted influence of the predictor on the response and its confidence intervals, respectively, with all
other predictor variables in the model being at their average.

supplementary material, S9 and table S9). Unhabituated groups could not be included, but we assume
that excluding them did not bias our results (see electronic supplementary material, S4).

2.3.2. Statistical analysis of annual home range and core area overlap estimates

We used a non-parametric Wilcoxon signed-ranks test [62] to compare the per cent of area overlap of the
annual home ranges with the per cent of area overlap of the annual core areas. Tests were exact [62,63]
and were calculated using the package exactRankTests [64] in R [60]. All p-values are two-tailed.
Additionally, as a post hoc test, we examined the prediction that core areas had higher herbaceous food
availability than the rest of the home ranges using a non-parametric Wilcoxon signed-ranks test [62]. To
do so, we determined herbaceous food availability of core areas and the rest of the ranges. We based
our measure of herbaceous food availability on the energy density (kcal m~2) per 500 x 500 m grid cell
(see Herbaceous food availability per grid cell) and used the polygons forming the 50% and 90% kernel home
ranges. Herbaceous energy density was calculated by summing the herbaceous energy density of all grid
cells encompassed in an area (i.e. core area and home range). As most grid cells were encompassed to
various extents in an area, the summed herbaceous energy density was weighted by the size of the
overlap of each area with each grid cell and divided by the size of an area. We used the packages
spatstat [65], splancs [66] and SDMTools [67] in R [60] for processing and analysing spatial data.

3. Results

3.1. Movement decisions

3.1.1. Probability of choosing a particular area

When investigating the factors influencing the probability that a group would choose a particular area
(i.e. the decision which of the eight surrounding cells to move to), we found a significant effect of the test
predictors as a whole (full null model comparison, permutation test: x?=19.228, d.f. =3, p =0.003). As
predicted, we found that the probability that a group chose a particular area was positively influenced
by the availability of herbaceous food of that area (figure 2a). Furthermore, areas were chosen more
frequently when the previous use of that area by the group increased (figure 2b). The previous use by
neighbouring groups did not have an apparent effect (table 2).
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Table 2. Summary of the permutation test and the mixed model results investigating the factors influencing the probability that Bwindi
mountain gorilla groups would choose a particular area (i.e. grid cell) and the utilization of a chosen area (quantified as distance travelled
per grid cell). For each model, we show the x 2 value, degrees of freedom (d.f) and the p-value of the full null model comparison. We
show the estimate (Est), standard error (s.e.) and p-value for each test and control predictor; (within) indicates the within-groups effect
and (between) indicates the between-groups effect of a predictor variable. The autocorrelation term (Autocor) represents temporal and
spatial autocorrelation. Empty cells indicate variables not included in a model. For reasons of completeness, we present the results of the
random effects in the electronic supplementary material, table $10. Mean and standard deviation of the original values of the predictor
variables are shown in the electronic supplementary material, table ST1. Significant results (p < 0.05) are indicated in bold.

response variable probability of choosing a particulararea utilization of a chosen area

full null model comparison X% =19.28,df =3,p = 0.003 % =2234,df. = 6,p = 0.001

predictor variable Est 5.e. p-value

intercept 0.072 0036 °? 5970 0032 ? :
s ava|lab|l|ty (W|th|n) ................ e vo vos v e
s ava|lab|l|ty (between) .......... woee o oen oo oo e
preV|0ususebythegroup(WIthln) .................... e oo ome s 0w
previous use by the group (between) 0354 0059 0001 | 007 0036 352 0061
prev|0ususebythene|ghbours(W|th|n) ........... e Y Y
prev|oususeby thene|ghbours(b . tween) ....... T Cone ome msss oor
o oo oo os

Not shown because of having no meaningful or a very limited interpretation.
bThere were no within-groups effects for this model.

3.1.2. Utilization of a chosen area

We found a significant effect of the test predictors as a whole on the utilization of a chosen area (likelihood
ratio test: x2=22.341, d.f. =6, p=0.001). The average utilization of areas by groups decreased as the
average use of the same areas by neighbouring groups increased (between-groups effect; figure 3). We
found a tendency for a positive effect of the previous use of an area by the group for both the within- and
the between-groups effect on the utilization of a chosen area. Food abundance did not have a clear effect
(table 2).

3.2. Annual home range and core area overlap

We found that groups shared a significantly lower percentage of their annual core area than their annual
home range with their neighbours (Wilcoxon signed-ranks test: T* =55, N =10, p =0.002; figure 4a).
The median percentage of annual home range overlap was 42.02% (range 9.68-94.79%) and the median
percentage of annual core area overlap was 4.26% (range 0-76.09%; table 1). Three groups (groups Bu, Mi
and Kabh; figure 1 and table 1) had high core area overlap. As gorilla groups that form following group
fissions may remain in the same areas as the original groups for at least 1 year [29], social factors seem
to have caused this high degree of overlap (Bu fissioned from Kah, and both Bw and Kak were the result
of a fission that might have affected Mi). Lastly, core areas were characterized by significantly higher
herbaceous food availability than the rest of the home ranges (T =6, N =10, p = 0.027; figure 4b).

4. Discussion

Our study sheds new insights into how intraspecific competition and food availability influenced space
partitioning in a non-territorial species, the mountain gorilla, on two scales: daily movement decisions
and overlap of annual home ranges and core areas. We found that core areas of neighbouring groups
were more mutually exclusive than their home ranges. Based on seven of 10 groups having core area
overlap of less than 10%, we suggest that Bwindi mountain gorillas have largely mutually exclusive core
areas. This is a novel finding for this non-territorial species, known to exhibit large intergroup home
range overlap [29,34,35]. The maintenance of such a pattern without territorial defence may result from
the gorillas’ decision to return repeatedly to areas with high food availability and to reduce using areas
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Figure 3. Influence of the between-groups effect of previous use by all habituated neighbouring groups on the utilization of a chosen area
(quantified as the distance travelled in a chosen 500 x 500 m grid cell) in Bwindi gorillas. The response variable was log-transformed.
Between-groups variation is expressed as the mean of the previous use per group. Boxes depict quartiles with the median values indicated
as horizontal lines and vertical lines show quantiles (2.5 and 97.5%). The dashed line indicates the fitted influence of the predictor on the
response, with all other predictor variables in the model being at their average. The dotted lines depict bootstrapped 95% confidence
intervals of the model.
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Figure 4. Annual home range and core area overlap of the Bwindi gorilla groups and herbaceous food availability of their core areas and
the rest of their respective home ranges. (a) Per cent overlap of annual home ranges (90% kernel home range) and core areas (50% kernel
home range). (b) Herbaceous food availability (kcal m~—2, based on herb biomass and nutritional content) of core areas (50% kernel home
range) compared to the rest of the respective home ranges. Dashed lines connect data points from the same respective group. The high
home range and core area overlap of three groups (Bu, Mi and Kah) may be due to two group fissions during the study period.

previously used by neighbours. These behavioural patterns may be due to three mechanisms (see below)
to actively avoid shared areas.
4.1. Ecological factors

Our results suggest that Bwindi gorillas returned repeatedly to areas of high food availability,
resulting in annual core areas that were of higher quality than the rest of the ranges. Similarly,
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Virunga gorillas stay relatively long per visit in areas with abundant food and return to them
often at relatively short intervals [43]. Repeatedly returning to areas of high food availability may
trigger and maintain a positive feedback loop in which animals return to areas where they can
feed on newly grown food with high nutritional quality and maintain a higher density of food
plants within their range [68-70]. Comparable to our results, Virunga gorillas and other species adapt
their movements to their foraging needs by choosing high-quality habitat types (e.g. [21,22,35,43]).
We found no effect of food availability on the utilization of a chosen area, possibly because the
differences in herbaceous food availability between the chosen high-quality areas were too small
to have an impact. Together, these results suggest that mountain gorillas do not deplete particular
areas and that they know and remember where to find good foraging areas. Future studies should
investigate gorillas’ spatial and temporal knowledge of their habitat and how this affects movement
decisions [1,71].

4.2. Intraspecific competition

Gorillas appear to actively avoid neighbouring groups on an annual and a daily scale, despite having
considerable intergroup home range overlap (table 1). Groups were less likely to use areas previously
used by neighbours and annual core areas were largely mutually exclusive. This lends further support
to the existence of competition among Bwindi gorilla groups, based on previous results showing that
monthly home range size decreases as the local gorilla population density increases [45]. However,
against our prediction, we found no significant impact of the previous use by neighbours on the
probability that a group chose an area, which suggests that groups typically do not know their
neighbours’ location.

4.3. Mechanisms to avoid shared areas

We suggest three mechanisms by which gorillas may avoid neighbours and maintain largely
mutually exclusive core areas without territorial defence: intergroup encounters, chest beats and visual
inspection of areas where other groups have foraged. On days when intergroup encounters occur,
Bwindi gorillas increase their daily travel distance [45], suggesting that groups might either leave
their core areas and then meet neighbouring groups or they retreat to their core areas following
an intergroup encounter in the shared parts of their home range (see also [72]). Gorillas may
remember the locations of these encounters and subsequently avoid those areas. Encounters between
gorilla groups seem to stimulate an avoidance response and hence may function like a spacing
mechanism and a ‘keep-out’ signal ([2], see also [73,74]), which are characteristic aspects of territorial
behaviour [2].

The non-vocal chest beat, which can be heard from a maximum distance of 500-1000m [75] (N.S.
and M.M.R. 2012, personal observation), may have evolved as an honest signal of strength and fighting
ability of males to attract females and repel competitors [76,77]. Used in both within- and between-group
communication [78], chest beating might also function as long-distance signalling to locate neighbouring
groups. Therefore, chest beats may serve as a spacing mechanism, comparable to loud calls in territorial
species (e.g. [79]). When groups are further apart from each other (greater than 1000 m), groups may use
signs of foraging to locate areas used by neighbours and avoid those.

One ultimate reason for the observed avoidance behaviour among neighbouring gorilla groups
might be male mate defence. Male gorillas may be considered as ‘hired guns’ that protect their females
and offspring [80,81]. During intergroup encounters, males herd their females away from extragroup
males and engage in aggression with those males to prevent both their mates from transferring to
other groups and infanticide of their offspring [38,81]. In Bwindi gorillas, 75% of recorded intergroup
encounters are characterized by aggression involving displays and chest beating, though only 2.5%
involve physical aggression [39]. Encounters between gorilla groups can lead to home range shifts [73],
male mortality [73,82] and female transfers [38,44]. Intergroup encounters may serve as a mechanism to
both establish and maintain exclusive areas, whereas chest beats and visual inspection may mainly serve
the maintenance of the avoidance-based spacing pattern. Between-group competition for mates, which
may result in keeping competitors out of certain areas, may also effectively function to indirectly defend
food resources within these areas ([80], see also [83,84]). Future studies should investigate whether larger
gorilla groups with a strong dominant male [85,86] have more profitable home ranges than smaller
groups [87].
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5. Conclusion

5.1. Patterns and consequences of space partitioning

Exclusive use of an area and territoriality are not the same; exclusive occupancy of an area might
be caused by mutual avoidance and not only by active defence of a territory [2]. We propose that
non-territorial species, like the mountain gorilla, use some aspects of territorial behaviour to actively
avoid neighbours and maintain a spacing pattern of exclusivity, which suggests a gradient between
territoriality and non-territoriality. Territoriality and exclusivity change with resource availability
(e.g. [17,18,88]), but the costs and benefits of territoriality may also depend on social factors (see
also [10,30,74]), such as the level of intraspecific competition for mates. For example, animals feeding
on abundant resources and having minimal intraspecific competition among neighbours may exhibit
little or no avoidance behaviour and thus may not have exclusive areas within an undefended
home range. This would place them at the extreme end of the gradient of non-territoriality. The
avoidance-based pattern of shared home ranges but largely mutually exclusive core areas in Bwindi
gorillas might be stimulated by strong intraspecific competition for mates despite abundant food
resources [36]. This would put gorillas in the middle of a gradient between territoriality and
non-territoriality.

Spacing patterns to avoid intraspecific competition with neighbours are likely to have important
consequences. Social factors, such as defence of mates, that promote exclusivity may have long-term
costs by reducing available space and lowering the carrying capacity of an ecosystem despite abundant
food resources (see also [8]). In gorillas, these social constraints may also reduce or prevent depletion
of food resources in the shared areas of the home range, thereby resulting in consistently highly abundant
food resources and hence no selective pressure to actively defend a home range [18]. Our study suggests
that non-territoriality may carry more costs than previously thought when social factors limit the use of
shared areas.
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