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Abstract 

Previous work suggests key factors for replicability, a necessary feature for theory 

building, include statistical power and appropriate research planning. These factors are 

examined by analyzing a collection of 12 standardized meta-analyses on language 

development between birth and 5 years. With a median effect size of Cohen's d = 0.45 and 

typical sample size of 18 participants, most research is underpowered (range: 6%-99%; 

median 44%); and calculating power based on seminal publications is not a suitable strategy. 

Method choice can be improved, as shown in analyses on exclusion rates and effect size as a 

function of method. The article ends with a discussion on how to increase replicability in both 

language acquisition studies specifically and developmental research more generally. 
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Promoting replicability in developmental research through meta-analyses: Insights from 

language acquisition research 

Empirical research is built on a never-ending conversation between theory and data, 

between expectations and observations. Theories lead to new research questions and new data 

in turn lead to refined theories. This process crucially relies on access to reliable empirical 

data. Unfortunately, investigators of the scientific process have noted that the assessment of 

the value of empirical data points can be biased by concerns about publishability (Nosek, 

Spies, & Motyl, 2012), which often depends on the observation of statistically significant and 

theoretically surprising outcomes (Sterling, Rosenbaum, & Weinkam, 1995). Aiming for 

publishability has been suggested to lead to practices that undermine the quality and reliability 

of data (Ioannidis, 2005; Smaldino & McElreath, 2016). According to some, inappropriate 

research and reporting practices may be to blame for the surprisingly high proportion of non-

replicable findings in psychology (Simmons, Nelson, & Simonsohn, 2011).  

Replicability is crucial across domains; but developmental research may be particularly 

vulnerable to unreliable findings: Collecting data from children is time-consuming, and thus 

sample sizes are often small, studies are underpowered, and replications are rare. Small 

sample sizes, and the ensuing lack of power, are a major risk factor for low replicability (e.g., 

Button et al., 2013). Meta-analysis – the set of statistical tools for aggregating quantitative 

results across studies – can be a potent tool for addressing issues of replicability. Because no 

single study is definitive, examining conclusions across studies will facilitate more robust 

decision-making about the strength of the research literature. In addition, meta-analytic tools 

can help identify and address issues in replicability by helping to assess weaknesses and allow 

future studies to be planned more effectively through prospective power analysis. 

Specifically, a meta-analysis can reveal the average effect size, sample size, and resulting 

statistical power of a systematically assembled set of studies where a specific phenomenon 
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has been studied with a variety of methods, stimuli, and samples. Because each meta-analysis 

typically addresses a single phenomenon – the underlying construct that is supposed to elicit 

specific responses in laboratory studies – it is difficult to draw general conclusions. To this 

end, we make use of MetaLab, a publicly available database of 12 standardized meta-analyses 

of language acquisition. MetaLab is a dynamic, continuously growing database. At the time of 

writing, the available meta-analyses cover a variety of behavioral and neuroimaging methods 

(11 in total) and participant ages (from newborns to 5-year-olds).  

Since all meta-analyses in MetaLab address specific phenomena within language 

acquisition, our empirical analyses are adjusted to the methods typically used in this subfield 

of developmental research. Nonetheless, our analyses and recommendations are relevant 

beyond the scope of language acquisition research. Crucially, we investigate key study design 

choices that will be relevant to developmental research at large: sample size (and the ensuing 

statistical power when effect size is held constant) and method (i.e., paradigms used to tap 

into the same phenomenon). Furthermore, since our work is comprised of open data and 

scripts, accompanied by extensive educational materials, and we use open source software 

(specifically R; R Core Team, 2016), our approach can easily be extended to other domains of 

child development research. We strongly encourage fellow researchers to build similar 

collections of meta-analyses describing and quantifying phenomena in their respective sub-

domain. 

The meta-analyses in MetaLab 

Before laying out the key concerns for replicability that are more broadly relevant, it 

may be useful to give a brief overview of our dataset: Each included meta-analysis focuses on 

one specific phenomenon, and collectively they cover a wide range of linguistic levels, from 

phonetics (e.g., native vowel discrimination; Tsuji & Cristia, 2014) to pragmatics (e.g., 
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pointing and vocabulary; Colonnesi, Stams, Koster, & Noom, 2010) and a range of designs 

and methods. All but one meta-analysis aggregate experimental studies on the strength of 

processing of a particular experimentally-manipulated stimulus contrast. The one exception is 

a meta-analysis containing correlations between toddlers’ pointing and vocabulary size 

measured concurrently (Colonnesi, Stams, Koster, & Noom, 2010). Depending on the meta-

analysis and thus phenomenon in question, studies either bear on knowledge acquired outside 

the lab to tap into continued real-life acquisition processes, or are based on laboratory-based 

training, typically to isolate a proposed learning mechanism. Examples of the former are 

native and non-native vowel discrimination (Tsuji & Cristia, 2014) and online recognition of 

known words (Frank, Lewis, & MacDonald, 2016); the latter is exemplified by learning sound 

categories and sound sequences in the lab after short exposure to artificial mini-languages 

(Cristia, 2017). The dependent variable in all these studies is based on continuous response 

data, such as looking time; either measured within participants in reaction to two conditions or 

across participant groups receiving different exposures. 

Children in our data are aged 0-5 years. In our analyses, we take into account participant 

age for both practical and theoretical reasons. On the practical side, we expect an effect of 

infant age based on three aspects of child development research. Firstly, younger infants may 

be more difficult to recruit and test, thereby increasing measurement noise and leading to 

smaller effect sizes in younger, compared to older, cohorts. Secondly, tasks and designs might 

vary as a function of participant age. This factor does not allow us to make a precise 

prediction with respect to age trends, but does encourage an investigation of research 

practices and effect sizes as a function of age. Thirdly, even if our tests are conceptually 

associated to early language acquisition, childhood is a time of rapid cognitive development 

of various cognitive skills ranging from selective attention to working memory (Lerner, 
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Liben, & Mueller, 2015), which could impact laboratory performance and would be reflected 

in the strength, and even direction, of an effect (e.g., Hunter & Ames, 1988).  

From a theoretical standpoint, the phenomena targeted by the meta-analyses currently in 

MetaLab are expected to show changes with age. In general, this change is in a positive 

direction: Younger participants should show smaller effects than older ones because they are 

not yet as experienced with, and proficient in, their native language, and thus we expect them 

to improve in most linguistic skills, such as native vowel discrimination, word form 

recognition, and word to meaning mapping. The one exception in our collection is non-native 

vowel discrimination, an ability that should and does decrease as infants tune into their native 

language (Tsuji & Cristia, 2014). For a number of phenomena theoretical predictions are not 

straightforward (e.g., a preference for infant- over adult-directed speech is thought to increase 

in the first few months as children accumulate experience with this affective register, but 

could have been predicted to eventually decrease due to novelty preferences; Hunter & Ames, 

1988).  

In sum, the set of meta-analysis we use covers a wide range of phenomena and methods, 

increasing the likelihood that our conclusions are not specific to language acquisition. 

Moreover, key concerns for replicability, as laid out in the next section, are likely to apply and 

take effect across sub-disciplines of developmental research. We return to the generalizability 

of our findings in the discussion.  

Key concerns for replicable research in developmental science 

Statistical power 

In this section we review potential hindrances to developmental research being robust 

and reproducible, and briefly describe how we assess current practices in terms of sampling 
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decisions and resulting power. All of these descriptions are by necessity brief; for extended 

discussions we provide references to suitable readings. 

In the null-hypothesis significance testing framework, statistical power refers to the 

probability of detecting an effect and correctly rejecting the null hypothesis if an effect is 

indeed present in a population. Power is dependent on the underlying effect size and the 

sample size. Of course, low power is problematic because it increases the likelihood of type-II 

errors (i.e., failure to find a significant result when there is an effect present in the 

population). It has become increasingly clear, however, that low power can also increase the 

frequency of type-I errors (false positives), as the effects reported in such cases will be 

overestimating the true effect (Button et al., 2013; see also Ioannidis, 2005; Simmons et al., 

2011). This fact makes appropriate planning for future research more difficult, as sample sizes 

will be too small, increasing the likelihood of null results due to insensitive research designs 

rather than the absence of the underlying effect. In addition, this issue is a serious hindrance 

to work building on seminal studies, including replications and extensions. 

Underpowered studies pose an additional and very serious problem for developmental 

researchers that interpret significant findings as indicating that a skill is "present" and 

nonsignificant findings as a sign that it is "absent". In fact, even in the most rigorous study 

design and execution, null results will occur regularly. Consider a series of studies with 80% 

power (a number typically deemed sufficient), where every fifth result will be a false 

negative, that means it will not reflect that there is a true effect present in the population. This 

observation was recently demonstrated by Oakes (2017) by using data from a high-powered 

looking time study. 

To investigate current practices in our sample, we compute typical power per 

phenomenon, based on meta-analytic effect sizes and typical sample size (Button et al., 2013). 



REPLICABLE DEVELOPMENTAL RESEARCH 

7 
 

The logic of this analysis is as follows: Although we cannot know the exact power of any 

given experiment (because we do not know the true underlying effect), the meta-analytic 

effect size represents our best guess; thus, the median power for a phenomenon is the power 

of the median sample size with the meta-analytic effect size. We next explore which effect 

sizes would be detectable with the sample sizes typically tested in language acquisition 

research. We additionally investigate how researchers might determine sample sizes using a 

different heuristic, namely following the largest effect size reported in the first paper on a 

given phenomenon. 

Method choice 

Improving procedures in developmental research can be considered both an economical 

and ethical necessity, because developmental populations are difficult to recruit and test. A 

further complication is that a non-negligible proportion are excluded because they fail to 

comply, finish the study, or conform to other data quality criteria the researcher sets (e.g., a 

minimum looking time during test trials). For this reason, developmentalists often "tweak" 

paradigms and develop new ones with the aim of obtaining a clearer signal and/or control the 

exclusion rate. Emerging technologies, such as eye-tracking and tablets, have consequently 

been eagerly adopted (Frank, Sugarman, Horowitz, Lewis, & Yurovsky, 2016; Gredebäck, 

Johnson, & von Hofsten, 2009).  

It remains an open question to what extent the different methods within developmental 

research lead to comparable results. Some may be more robust, but it is difficult to extract 

such information based on comparisons of individual studies that use different materials and 

test various age groups (cf. the large-scale experimental approach by ManyBabies 

Collaborative, 2017). Aggregating over results via meta-analytic tools allows us to assess to 

what extent methods differ in their associated exclusion rate as well as to extract general 
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patterns of higher or lower noise via the comparison of effect sizes since the latter are directly 

affected by the variance of the measurement. 

Questionable research practices 

Undisclosed flexibility during data collection and analysis is a problem independent of 

the availability of various methods to conduct developmental studies. One salient example is 

flexible stopping rules, where the decision to stop or continue testing depends on the result of 

a statistical test. Though this practice might seem innocuous and geared towards "bringing 

out" an effect the researcher believes is real, it increases the likelihood of obtaining a 

"significant" outcome well beyond the expected 5%, effectively rendering p values and the 

notion of statistical significance meaningless (Ioannidis, 2005; Simmons et al., 2011). 

It is typically not possible to assess whether undisclosed flexibility during data 

collection (or analysis) led to a false positive in a given report. However, we can measure 

"symptoms" in a whole literature. We focus in this paper on flexibility in stopping data 

collection, a practice that was found to be present, but not predominant, in infancy research in 

a recent anonymous survey (Eason, Hamlin, & Sommerville, 2017). Since our data span over 

44 years (publication dates range from 1973 to 2017), it might be the case that recent 

discussions of best practices have improved lab procedures, but older reports could still have 

applied this seemingly innocuous practice of adding participants to "bring out" the effect of 

interest. 

Summary of research goals 

We will use a collection of meta-analyses in language acquisition to describe the current 

state of this field in terms of effect sizes, sample sizes, and, relatedly, statistical power. We 

take into account the fact that the meta-analyses bear on diverse phenomena, studied in 

different age groups and with a variety of methods and sample sizes, and that combinations of 
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these factors will likely affect both effect size and exclusion rates. While we consider the 

conceptual structure imposed by the fact that the meta-analyses bear on language acquisition, 

our overarching goal is to exemplify how these analyses can be carried out to describe any 

subfield of developmental research and to give concrete recommendations and tools to 

increase replicability within the developmental sciences. 

Methods 

All scripts used in this paper, and information how to obtain the source data from 

MetaLab, are shared on Open Science Framework at https://osf.io/uhv3d/.  

Data 

The data presented and analyzed here are part of a standardized collection of meta-

analyses (MetaLab), and are freely available via the companion website at 

http://metalab.stanford.edu. Currently, MetaLab contains 12 meta-analyses, where core parts 

of each meta-analysis are standardized to allow for the computation of common effect size 

estimates and for analyses that span across different phenomena. These standardized variables 

include study descriptors (such as citation and peer review status), participant characteristics 

(including mean age and native language), methodological information (e.g., what dependent 

variable was measured), and information necessary to compute effect sizes (number of 

participants, if available means and standard deviations of the dependent measure, otherwise 

test statistics of the key hypothesis test, such as t values or F scores). 

Meta-analyses were contributed to MetaLab directly (n=10) or they were extracted from 

previously published meta-analyses related to language development (n=2; Colonnesi, Stams, 

Koster, & Noom, 2010; Dunst et al., 2012). In the former case, the meta-analysis authors 

attempted to document as much detail as possible for each entered experiment (note that a 

http://metalab.stanford.edu/
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paper can contain many experiments, as shown in Table 1), as recommended for reproducible 

and dynamic meta-analyses (Tsuji, Bergmann, & Cristia, 2014). Detailed descriptions of all 

phenomena covered by MetaLab, including which papers and other sources have been 

considered, can be found at http://metalab.stanford.edu. 

Statistical approach 

As a dependent measure, we report Cohen's d, a standardized effect size based on 

sample means and their variance. Effect size was calculated when possible from means and 

standard deviations across designs with the appropriate formulae (Dunlap, Cortina, Vaslow, & 

Burke, 1996; Lipsey & Wilson, 2001; Morris & DeShon, 2002; Viechtbauer, 2010). When 

these data were not available, we computed effect size based on the test statistics used to 

assess the main hypothesis, more precisely t values or F scores. We also computed effect size 

variance, which allowed us to weigh each effect sizes when aggregating across studies. The 

variance is mainly determined by the number of participants; intuitively, effect sizes based on 

larger samples will be assigned more weight. Note that for research designs testing the same 

participants in two conditions (for example measuring reactions of the same infants to infant- 

and adult-directed speech), correlations between those two measures are needed to estimate 

the effect size variance. This measure is usually not reported, despite being necessary for 

effect size calculation (note: publishing guidelines require the reporting of correlations; 

American Psychological Association, 2001). Some correlations could be obtained through 

direct contact with the original authors (see e.g., Bergmann & Cristia, 2016). The remaining 

ones were imputed. We report details of effect size calculation in the supplementary materials 

and make available all scripts used in the present paper. Excluded as outliers were effect sizes 

more than three standard deviations away from the median effect size within each meta-

analysis (n=12). 

http://metalab.stanford.edu/
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Meta-analytic model 

Meta-analytic effect sizes were estimated using random-effect models where effect sizes 

were weighted by their inverse variance. We further used a multilevel approach, which takes 

into account not only the effect sizes and variance of single studies, but also that effect sizes 

from the same paper will be based on more similar studies than effect sizes from different 

papers (Konstantopoulos, 2011). When analyzing data from multiple meta-analyses, we 

nested paper within meta-analysis to account for the fact that studies within meta-analyses 

will be more similar to each other. We relied on the implementation in the R (R Core Team, 

2016) package metafor (Viechtbauer, 2010). 

Power calculation 

We calculated typical power using the pwr package (Champely, 2015) based on the 

meta-analytical effect size and the median number of participants within each meta-analysis. 

For targeted analyses of the power of seminal papers, we extracted the largest effect size and 

used this value for power calculation, taking in both cases the median number of participants 

in a meta-analysis into account (for a similar approach see e.g., Button et al., 2013). 

Results 

Sample size and statistical power 

Table 1 provides a summary of typical sample sizes and effect sizes per meta-analysis. 

We remind the reader that recommendations are for power to be above 80%, which means 

that four out of five studies show a significant outcome for an effect truly present in the 

population. 

-Insert Table 1 about here- 
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As could be expected, sample sizes are small across all meta-analyses, with the overall 

median in our data being 18 infants or paired observations (i.e. 36 participants in total in a 

between-participant design). Effect sizes predominantly fall into ranges of small to medium 

effects, as defined by Cohen (Cohen, 1988). The overall median effect size of all data 

analyzed here is Cohen's d = 0.45. As a result of those two factors, studies are typically 

severely under-powered. Assuming a paired t-test (within-participant designs are the most 

frequent in the present data), observed power is at 44% (for independent samples, observed 

power is at 26%). 

With the observed sample size, it is possible to detect an effect in 80% of all studies 

when Cohen's d = 0.70; in other words, this sample size would be appropriate when 

investigating a medium to large effect. When comparing two independent groups, the effect 

size that would be detectable with a sample size of 18 participants per group increases to 

Cohen's d = 0.96, a large effect that is rarely observed as meta-analytic effect size in the 

present collection of developmental meta-analyses. 

Inversely, to detect the typical effect of Cohen's d = 0.45 with 80% power, studies 

would have to test 40 participants in a paired design; 22 more than are included on average. 

For a between-participant design, a study with 80% power would require testing 78 infants 

per group, over four times the typical sample size we encounter here. This disparity between 

observed and necessary sample size varies greatly across meta-analyses, leading to drastic 

differences in observed power to detect the main effect. While studies on phonotactic learning 

and word segmentation are typically dramatically underpowered (with observed power being 

under 10%), studies on pointing and vocabulary, gaze following, and online word recognition 

are very well powered (92%, 95%, and 99%, respectively). 
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We find no strong linear link between participant age and sample size on the level of 

meta-analyses (Table 1). However, effect sizes and consequently power increase with median 

participant age. Most saliently, the only three meta-analyses with power over 80%, pointing 

and vocabulary, gaze following, and online word recognition, typically test participants older 

than one year.  

Seminal papers as basis for sample size planning 

As Table 1 shows, experimenters only rarely include a sufficient number of participants 

to observe a given effect – assuming the meta-analytic estimate is accurate. It might, however, 

be possible, that power has been determined based on a seminal paper to be replicated and 

expanded. Initial reports tend to overestimate effect sizes (Jennions & Møller, 2002), possibly 

explaining the lack of observed power in the subsequent literature. 

For each meta-analysis, we extracted the oldest paper and the largest effect size reported 

therein and re-calculated power accordingly, using the median sample size of the same meta-

analysis (see Table 2). The largest effect size per paper was chosen because many seminal 

studies contain at least one null result in a control condition that delineates the limitations of a 

given phenomenon (for example that older children succeed at a task that their younger peers 

fail). Thus, it is unlikely that the researchers following up on that work aim for the median or 

mean effect size.  

In some cases, such as native and non-native vowel discrimination, as shown in Table 2, 

sample size choices match well with the oldest report. The difference in power, noted in the 

last column, can be substantial, with native vowel discrimination and phonotactic learning 

being the two most salient examples. Here, sample sizes match well with the oldest report and 

studies would be appropriately powered if this estimate were representative of the true effect. 

In four meta-analyses neither the seminal paper nor meta-analytic effect size seem to be a 

useful basis for sample size decisions. Since these numbers are based on the largest effect of a 
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seminal paper, all power estimations (but also differences in meta-analytic effect sizes) would 

be smaller, meaning that sample sizes are less appropriate than implied by the column 

denoting power based on the seminal paper in Table 2. 

-Insert Table 2 about here- 

Method choice 

Exclusion rates across methods 

In most of the analyzed meta-analyses, multiple methods were used to tap into the 

phenomenon in question. Choosing a robust method can help increase power, because more 

precise measurements lead to larger effect sizes due to reduced measurement variance and 

thus require fewer participants to be tested to conduct appropriately-powered studies. 

However, the number of participants relates to the final sample and not how many participants 

had to be invited into the lab. We thus first quantify whether methods differ in their typical 

exclusion rate, as economic considerations might drive method choice. To this end we 

consider all methods which have more than 10 associated effect sizes and for which 

information on the number of excluded participants was reported and entered in the meta-

analyses. We note that this is exclusion rate, rather than fussout or dropout rates, because it 

represents the number excluded considering all criteria, including data quality criteria such as 

a minimum looking time. We chose this variable for practical reasons, as overall exclusion 

rates are more frequently reported than the number of participants who did not complete the 

experiment. The following analyses cover 6 (out of 11) methods and 224 (out of 761) effect 

sizes.  

The results of a linear mixed effects model predicting exclusion rate by method and 

mean participant age (while controlling for the different underlying effect sizes per meta-

analysis) are summarized in Table 3 and visualized in Figure 1. The results show significant 
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variation across methods, and a tendency toward higher exclusion rates for older participants, 

with some interaction with method. 

-Insert Table 3 about here- 

-Insert Figure 1 about here- 

Effect sizes as a function of method 

We built a meta-analytic model with Cohen's d as the dependent variable, and method 

and mean age centered as independent variables, which we allowed to interact. The model 

includes the variance of d for sampling variance, and a nested random effect of paper (inner 

random effect) within meta-analysis (outer random effect). We limited this analysis to the 

same methods that we investigated in the section on exclusion rates to be able to observe 

possible links between effect size and exclusion rate in methods. The model results in Table 4 

show significant variation in effect sizes across methods, age, and some interaction of method 

and age. 

-Insert Table 4 about here- 

-Insert Figure 2 about here- 

Questionable research practices 

In the final set of analyses, we assess the relation between absolute observed effect sizes 

in single studies and the associated sample size. The rationale behind this analysis is simple: 

The smaller the effect size in a particular study (bear in mind that we assume that experiments 

sample from a distribution around the population effect), the larger the sample needed for a 

significant p value. If sample size decisions are made before data collection and all results are 

published, we expect no relation between observed effect size and sample size. If, on the 
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contrary, authors continue to add infants to achieve significance (Begg & Mazumdar, 1994), 

there should be a negative correlation between sample size and effect size. 

-Insert Figure 3 about here- 

We illustrate the link between effect size and sample size, separated by meta-analysis, 

in Figure 3. The statistical test results for each meta-analysis can be found in Table 5. Four 

meta-analyses show a significant negative relation between sample size and effect size, 

consistent with bias; two of them assess infants' ability to discriminate vowels, one bears on 

word segmentation, and one tests whether children use mutual exclusivity during word 

learning. The last case might be driven by a single high-powered study with an atypical 

developmental range (Frank, Lewis, & MacDonald, 2016). We further observe an unexpected 

positive correlation between sample size and observed effect size in the meta-analysis on 

infant directed speech preference, which we discuss below. 

-Insert table 5 about here- 

Discussion 

In this paper, we made use of a collection of 12 standardized meta-analyses to assess 

typical effect sizes, sample size, power, and methodological choices that are currently 

common in research on language development. With a median effect size of Cohen's d = 0.45 

and a typical sample size of 18 participants per cell, observed power is only 44%. 

The lack of power is particularly salient for phenomena typically tested on younger 

children, because sample sizes and effect sizes are both small (the one exception for research 

topics tested mainly with participants younger than one year is non-native vowel 

discrimination, which can be attributed to a large meta-analytic effect size estimate rather than 

larger samples). Phenomena studied among older children tended to yield larger effects, and 
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here some studies turn out to be high-powered (e.g., online word recognition). Both 

observations are first indicators that effect size estimates might not be considered when 

determining sample size, as power of 99% would suggest the sample was unnecessarily large 

for the effect under study (see Table 1). However, it is possible that, in addition to testing a 

main effect (such as whether children recognize a given word online) these high-powered 

studies also investigated interactions (i.e., factors modulating this ability). As a consequence, 

studies might be powered appropriately since an interaction effect will be more difficult to 

detect than a main effect. The possibility that follow-up studies are looking for moderators 

and thus test interaction effects means that the 44% average power observed above would be 

an overestimate. 

We next investigated the possibility that researchers base their sample size on the 

highest effect size reported in the seminal paper of their research topic. We find that even 

under this assumption, the surveyed research would largely be underpowered. Moreover, this 

strategy would likely not provide sufficient power with respect to meta-analytic effect sizes, 

as early explorations will tend to overestimate effect sizes (Jennions & Møller, 2002). In 

short, studies are habitually underpowered because sample sizes typically remain close to 

what can be called a "field standard" of 15 to 20 participants (see Table 1 in this paper and 

Oakes, 2017). 

Conducting studies with sample sizes based on "field standards" is highly problematic 

for several reasons. First, many studies will not yield significant outcomes despite the 

presence of a real, but small effect. Researchers might thus be inclined to conclude that an 

ability is absent in a population (see below for an in-depth discussion of this topic), or they 

may refrain from publishing their data altogether. If an underpowered study is published 

because the outcome is significant, this study will overestimate the size of the underlying 

effect, thereby adding biased results to the available literature (and thus further biasing any 
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meta-analytic effect size estimate; Sterling et al., 1995; Yarkoni, 2009), as well as reinforcing 

the practice of sampling too few participants. At worst, this practice can lead to the 

perpetuation of a false hypothesis (for an example, albeit from non-developmental research, 

consider the meta-analysis of romantic priming by Shanks et al., 2015). 

We investigated the possibility that researchers selectively add participants to obtain a 

significant result through the relation between observed effect size and sample size. We 

observed that in four meta-analyses effect sizes were significantly negatively correlated with 

sample sizes, which might be an indication of questionable research practices. At the same 

time we found a (numerically) positive correlation in the meta-analysis on infant-directed 

speech preference, an unexpected result as it means that larger sample sizes tend to be found 

in experiments with larger effects. One possible reason for the latter result might be specific 

to this dataset: perhaps older infants are both easier to test and have greater preferences for 

infant-directed speech.  

For the four observed negative correlations, alternative explanations to questionable 

research practices are possible: As soon as researchers are aware that they are measuring a 

more subtle effect and adjust sample sizes accordingly, we expect to observe this negative 

correlation. Consider for example vowel discrimination, which can be studied with very 

distinct vowel-pairs such as in "bit" and "but", or with subtler contrasts like in "bat" and "bet". 

In fact, in the presence of consequent and accurate a priori power calculations, a negative 

correlation between sample size and effect size must be observed. However, our previous 

analyses indicate that power is not considered when making sample size decisions. 

Concrete recommendations for developmental scientists 

In this section, we move from a description of current practices to suggestions aimed at 

improving the reproducibility of developmental research. We generalize to developmental 



REPLICABLE DEVELOPMENTAL RESEARCH 

19 
 

studies at large because there is reason to believe that other sub-domains in the study of infant 

and child development may be subject to the same issues we outlined in the introduction. 

1. Calculate power prospectively 

We found that most studies testing infants and toddlers are severely underpowered, even 

when aiming to detect only a main effect. Interactions will show smaller effect sizes and thus 

will be even harder to detect. Further, power varies greatly across phenomena, which is 

mainly due to differences in effect sizes. Sample sizes are not adjusted accordingly, but 

remain close to the typical sample size of 18. 

Our first recommendation is thus to assess in advance how many participants would be 

needed to detect a minimal effect size of interest (for a more detailed discussion and practical 

recommendations see Lakens & Evers, 2014). Note that we based our power estimations on 

whole meta-analyses, an analysis approach most suitable to making general statements about 

a research field at large. It might, however, be the case that specific studies might want to 

base their power estimates on a subset of effect sizes to match age group and method. Both 

factors can, as we showed in our results, influence the to-be-expected effect size. To facilitate 

such analyses, all meta-analyses are shared on MetaLab along with the available details about 

procedure and measurements (see also Tsuji et al., 2014). 

In lines of research where no meta-analytic effect size estimate is available – either 

because it is a novel phenomenon being investigated or simply due to the absence of meta-

analyses – we recommend considering typical effect sizes for the method used and the age 

group being tested. This paper is a first step towards establishing such measures, but more 

efforts and investigations are needed for robust estimates (Cristia, Seidl, Singh, & Houston, 

2016). 
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2. Carefully consider method choice 

One way to increase power is the use of more sensitive measurements; and we do find 

striking differences between methods. On the practical side, exclusion rates varied a great deal 

(with medians between 5.9% and 45%). Interestingly, the methods with somewhat lower 

exclusion rates (central fixation and headturn preference procedure) are among the most 

frequent ones in our data. The proportion of participants that can be retained might thus 

inform researchers' choice. This observation points to the previously mentioned limitations 

regarding the participant pool, as more participants will have to be tested to arrive at the same 

final sample size. High exclusion rates can also be offset by high effect sizes; as can be seen 

when comparing conditioned headturn in Figures 1 and 2, while exclusion rates are around 

30-50%, effect sizes are above 1. The second method with high exclusion rates, stimulus 

alternation, in contrast, does not fall into this pattern of high exclusion rates coinciding with 

high effect sizes. A possible interpretation of this finding is that some methods, which have 

higher exclusion rates, generate higher effect sizes due to decreased noise (e.g., by excluding 

participants who are not on task). However, there is an important caveat: Studies with fewer 

participants (thanks to higher exclusion rates) are imprecise, and thus it is more likely that 

significant results overestimate the underlying effect.  

Nevertheless, when possible, it seems important to consider the paradigm being used, 

and possibly use a more sensitive way of measuring infants' capabilities. One reason that 

researchers do not appear to choose the most robust methods might again be due to a lack of 

consideration of meta-analytic effect size estimates, which in turn might be (partially) due to a 

lack of information on (how to interpret) effect size estimates and lack of experience using 

them for study planning (Mills-Smith, Spangler, Panneton, & Fritz, 2015). We thus 

recommend to change this practice and take into account the possibility that different 

methods’ sensitivity is reflected in effect size. Efforts to estimate the impact of method choice 



REPLICABLE DEVELOPMENTAL RESEARCH 

21 
 

experimentally through large-scale replications will likely be informative in this quest (Frank 

et al., 2017). 

3. Report all data 

A possible reason for prospective power calculations and meta-analyses being rare lies 

in the availability of data in published reports. Despite longstanding recommendations to 

move beyond the persistent focus on p values (such as American Psychological Association, 

2001), a shift towards effect sizes or even the reporting of them has not (yet) been widely 

adopted (Mills-Smith et al., 2015). 

In addition, in cases where effect sizes are not mentioned, current reporting standards 

make it difficult – at times even impossible – to derive effect sizes from the published 

literature. For example, for within-participant measures it is necessary to report the correlation 

between repeated measures associated to the paired conditions (most commonly a treatment 

and control condition). However, this correlation is habitually not reported and has to be 

obtained via direct contact with study authors (see for example Bergmann & Cristia, 2016) or 

estimated (as described in Black & Bergmann, 2017). In addition, reporting (as well as 

analysis) of results is generally highly variable, with raw means and standard deviations not 

being available for all papers. 

We suggest reporting the following information, in line with current guidelines: means 

and standard deviations of dependent measures being statistically analyzed (for within-

participant designs with two dependent variables, correlations between the two should be 

added), test statistic, exact p value (when computed), and effect sizes (for example Cohen's d 

as used in the present paper) where possible. Such a standard not only follows extant 

guidelines, but also creates coherence across papers and reports, thus improving clarity 

(Mills-Smith et al., 2015). A step further would be the supplementary sharing of all 
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anonymized results on the participant level, thus allowing for the computations necessary for 

meta-analyses, and opening the door for other types of cumulative analyses. 

4. Increase the use and availability of meta-analyses 

Conducting a meta-analysis is a laborious process, particularly according to common 

practice where only a few people do the work, with little support tools and educational 

materials available. The workload associated with conducting a meta-analysis may thus 

appear (and perhaps even be) much larger than that associated with a publication containing 

original data or with a qualitative review, making meta-analyses less attractive than the latter 

two for individuals. Moreover, the benefits of meta-analyses for the field, for instance the 

possibility of conducting power analyses, are often neither evident nor accessible to individual 

researchers, as the data are not shared and traditional meta-analyses remain static after 

publication, aging quickly as new results emerge (Tsuji et al., 2014). 

To support the improvement of current practices, we propose making meta-analyses 

available in the form of ready-to-use online tools, dynamic reports, and as raw data. These 

different levels allow researchers with varying interests and expertise to make the best use of 

the extant records on language development, including study planning, by choosing robust 

methods and appropriate sample sizes. An additional advantage of using meta-analysis when 

interpreting single results is that researchers can easily check whether their result falls within 

the expected range of outcomes for their research question – indicating whether or not a 

potential moderator influenced the result.  

Meta-analyses can also be useful for theory building. Indeed, aggregating over many 

data points allows us to trace the emergence of abilities over time, as well as quantify their 

growth, and identify possible developmental trajectories. A demonstration is given in the 

work of Tsuji and Cristia (2014), where mainstream descriptions of development for native 
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and non-native vowel discrimination could be confirmed. Contrastingly, Bergmann & Cristia 

(2016) showed that word segmentation from native speech does not follow the typically 

assumed developmental trajectory (for a recent discussion of both meta-analyses see 

Bergmann, Tsuji, & Cristia, 2017). As a consequence, meta-analytic investigations lead to 

more refined, or even reconsidered, theoretical accounts of child development, bolstered with 

a better estimate of the timeline for phenomena of interest (see also Lewis, et al, 2016). 

5. Use cumulative evidence to decide whether skills are "absent" or not  

Developmental researchers often interpret both significant and nonsignificant findings, 

particularly to establish a timeline tracing when skills emerge. This approach is problematic 

for multiple reasons, as we mentioned in the Introduction. Disentangling whether a 

nonsignificant finding indicates the absence of a skill, random measurement noise, or the lack 

of experimental power to detect this skill reliably and with statistical support, is in fact 

impossible based on p values. Further, we want to caution researchers against interpreting the 

difference between significant and nonsignificant findings without statistically assessing it 

first (Nieuwenhuis, Forstmann, & Wagenmakers, 2011). As mentioned, meta-analyses 

provide a more principled way for assessing statistically whether age explains significant 

proportions of the variance in observed effects. Moreover, this technique can also help with 

cases where the absence of an effect is incorrectly inferred from a string of nonsignificant, 

potentially underpowered, studies, as recently demonstrated by Vadillo, Konstantinidis, and 

Shanks (2016). In their study, the authors pooled null results that had been taken as evidence 

for an absent effect, and demonstrated the meta-analytic effect size estimate was Cohen's d = 

.3 (an effect that happens to be larger than that found in some meta-analyses included here).  
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Future directions 

The present analyses can be expanded and improved in a number of ways. First, this 

collection of meta-analyses does not represent an exhaustive survey of phenomena in 

language acquisition, let alone developmental research. Particularly, topics typically 

investigated in younger children are over-represented. Future analyses of a possible relation 

between age, effect size, and sample size would thus benefit from a larger sample of meta-

analyses. A second potential impediment to generalizing from the presented findings to 

developmental research at large is the fact that we focused on language acquisition research. 

As there is no a priori reason to expect that sample sizes and effect sizes are particularly low 

in this sub-domain of developmental science, and because most methods are used across 

fields, we expect that the results and recommendations are relevant to researchers working in 

other domains. However, to be able to make such claims with more certainty, standardized 

collections of meta-analyses on phenomena in different sub-domains of developmental 

research are needed. We strongly encourage such endeavours, and have made all materials 

openly available and provided substantial documentation to expand this approach beyond 

language acquisition studies.  

Conclusion 

We have showcased the use of standardized collections of meta-analyses for the 

diagnosis of (potential) issues in developmental research, using early language acquisition as 

a case study. Our results point to an overall lack of consideration of meta-analytic effect size 

in study planning, leading to habitually under-powered studies. In addition, method choice 

and participant age modulate effect size; we here provide first indicators of the importance of 

both factors in study design. To improve the replicability of developmental research, and as a 

consequence the empirical basis on which theories of development are built, we strongly 
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recommend an increased use of effect sizes and meta-analytic tools, including prospective 

power calculations.  
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Tables 

 

Table 1. Descriptions of the meta-analyses. Age is reported in months, sample size is based on 
the median in a given meta-analysis, effect size is reported as meta-analytic weighted median 
Cohen's d, and average power is computed based on meta-analytic effect size estimate 
Cohen's d and median sample size. 
 

Meta-Analysis Age 
Sample 

Size 
N Effect 

Sizes 
N 

Papers 
Effect Size 

(SE) Power 
Gaze following 14 (3-24) 23 (12-63) 32 11 1.08 (0.16) 0.95 
IDS preference 4 (0-9) 20 (10-60) 48 16 0.73 (0.13) 0.61 
Concept-label 
advantage 

12 (4-18) 13 (9-32) 48 15 0.45 (0.08) 0.20 

Mutual exclusivity 24 (15-60) 16 (8-72) 58 19 0.81 (0.14) 0.61 
Online word 
recognition 

18 (15-30) 25 (16-95) 14 6 1.24 (0.26) 0.99 

Phonotactic 
learning 

11 (4-16) 18 (8-40) 47 15 0.12 (0.07) 0.06 

Pointing and 
vocabulary 

22 (9-34) 24.5 (6-50) 12 12 0.98 (0.18) 0.92 

Sound symbolism 8 (4-38) 20 (11-40) 44 11 0.22 (0.11) 0.10 
Statistical sound 
learning 

8 (2-11) 15.5 (5-34) 19 11 0.29 (0.14) 0.12 

Native vowel 
discrimination 

7 (0-30) 12 (6-50) 112 29 0.69 (0.09) 0.37 

Non-native vowel 
discrimination 

8 (2-18) 16 (8-30) 46 14 0.79 (0.24) 0.58 

Word segmentation 8 (6-25) 20 (4-64) 284 68 0.16 (0.03) 0.08 
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Table 2. For each meta-analysis, largest effect size Cohen's d and derived power based on the 
seminal paper, along with the difference between power based on meta-analytic and seminal 
paper effect size. 
 
Meta-Analysis Effect Size 

(Seminal) 
Effect Size 

(Overall) 
Sample 

Size 
Power 

(Seminal) 
Difference 

Statistical sound 
learning 

-0.24  0.29 15.5 0.10 -0.02 

Word 
segmentation 

0.56 0.16 20 0.40 0.33 

Mutual 
exclusivity 

0.70 0.81 16 0.48 -0.13 

Concept-label 
advantage 

0.86 0.45 13 0.56 0.36 

Pointing and 
vocabulary 

0.65 0.98 24 0.61 -0.31 

Non-native vowel 
discrimination 

1.02 0.79 16 0.80 0.22 
 

Phonotactic 
learning 

0.98 0.12 18 0.81 0.75 

Sound symbolism 0.95 0.22 20 0.84 0.73 
Online word 
recognition 

0.89 1.24 25 0.87 -0.12 
 

Gaze following 1.29 1.08 23 0.99 0.04 
Native vowel 
discrimination 

1.87 0.69 12 0.99 0.63 

IDS preference 2.39 0.73 20 1.00 0.39 
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Table 3. Linear mixed effects model predicting exclusion rate by method and participant age 
while accounting for the specific phenomenon, central fixation is the baseline method. 
CondHT = conditioned headturn, FC = forced choice, HPP = headturn preference 
procedure, LwL = looking while listening, SA = stimulus alternation. 

 
Est. SE Est t 

 
p 

Intercept 31.170 4.481 6.96 <.001 
CondHT 31.064 5.727 5.42 <.001 
FC -26.383 9.372 -2.82 .005 
HPP -2.132 4.770 -0.45 .655 
LwL -6.433 5.394 -1.19 .233 
SA 21.345 4.129 5.17 <.001 
Age 0.409 0.438 0.93 .350 
CondHT*Age 2.888 1.160 2.49 .013 
FC*Age -0.207 0.645 -0.32 .749 
HPP*Age 0.975 0.717 1.36 .174 
LwL*Age -0.548 0.796 -0.69 .491 
SA*Age -0.251 0.903 -0.28 .781 
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Table 4. Meta-analytic regression predicting effect size Cohen's d with participant age and 
method (central fixation is baseline method). CondHT = conditioned headturn, FC = forced 
choice, HPP = headturn preference procedure, LwL = looking while listening, SA = stimulus 
alternation. 

 
Est. (CI) SE z p 

Intercept 0.285 [0.005,0.566] 0.143 2.00 .046 
Age 0.014 [-0.002,0.026] 0.006 2.25 .024 
CondHT 1.284 [0.627,1.94] 0.335 3.83 <.001 
FC 0.109 [-0.261,0.48] 0.189 0.58 .563 
HPP 0.125 [-0.043,0.293] 0.086 1.46 .144 
LwL 0.498 [0.071,0.925] 0.218 2.29 .022 
SA -0.141 [-0.506,0.224] 0.186 -0.76 .449 
Age*CondHT 0.107 [-0.003,0.217] 0.056 1.91 .056 
Age*FC 0.044 [0.028,0.059] 0.008 5.51 <.001 
Age*HPP 0.006 [-0.013,0.024] 0.010 0.60 .546 
Age*LwL 0.019 [-0.002,0.041] 0.011 1.80 .071 
Age*SA -0.005 [-0.057,0.047] 0.027 -0.02 .845 
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Table 5. Non-parametric correlations between sample sizes and effect sizes for each meta-
analysis. A significant value indicates bias. 
 
Meta-analysis Kendall's Tau p 
Phonotactic learning -0.21 .052 
Statistical sound learning -0.06 .724 
Gaze following 0.09 .512 
IDS preference 0.01 .921 
Concept-label advantage -0.06 .590 
Mutual exclusivity -0.21 .024 
Native vowel discrim. -0.28 <.001 
Non-native vowel discrim. -0.23 .032 
Pointing and vocabulary -0.15 .491 
Sound symbolism -0.04 .698 
Online word recognition -0.13 .539 
Word segmentation -0.10 .023 
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Figures 
 

 

 
Figure 1. Exclusion rate in percent by different methods. CF = central fixation, CondHT = 
conditioned headturn, FC = forced choice, HPP = headturn preference procedure, LwL = 
looking while listening, SA = stimulus alternation. Each point indicates a single study. 
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Figure 2. Effect size by different methods. CF = central fixation, CondHT = conditioned 
headturn, FC = forced choice, HPP = headturn preference procedure, LwL = looking while 
listening, SA = stimulus alternation. Each point indicates a single study. 
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Figure 3. For every meta-analysis observed effect size per study plotted against sample size. 
Each point indicates a single study. 
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