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Previous work suggests that key factors for replicability, a necessary feature for theory building, include statis-
tical power and appropriate research planning. These factors are examined by analyzing a collection of 12
standardized meta-analyses on language development between birth and 5 years. With a median effect size of
Cohen’s d = .45 and typical sample size of 18 participants, most research is underpowered (range = 6%–99%;
median = 44%); and calculating power based on seminal publications is not a suitable strategy. Method choice
can be improved, as shown in analyses on exclusion rates and effect size as a function of method. The article
ends with a discussion on how to increase replicability in both language acquisition studies specifically and
developmental research more generally.

Empirical research is built on a never-ending con-
versation between theory and data, between expec-
tations and observations. Theories lead to new
research questions and new data in turn lead to

refined theories. This process crucially relies on
access to reliable empirical data. Unfortunately,
investigators of the scientific process have noted
that the assessment of the value of empirical data
points can be biased by concerns about publishabil-
ity (Nosek, Spies, & Motyl, 2012), which often
depends on the observation of statistically signifi-
cant and theoretically surprising outcomes (Sterling,
Rosenbaum, & Weinkam, 1995). Aiming for
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publishability has been suggested to lead to prac-
tices that undermine the quality and reliability of
data (Ioannidis, 2005; Smaldino & McElreath, 2016).
According to some, inappropriate research and
reporting practices may be to blame for the surpris-
ingly high proportion of nonreplicable findings in
psychology (Simmons, Nelson, & Simonsohn, 2011).

Replicability is crucial across domains; but devel-
opmental research may be particularly vulnerable to
unreliable findings: Collecting data from children is
time consuming, and thus, sample sizes are often
small, studies are underpowered, and replications
are rare. Small sample sizes, and the ensuing lack of
power, are a major risk factor for low replicability
(e.g., Button et al., 2013). Meta-analysis—the set of
statistical tools for aggregating quantitative results
across studies—can be a potent tool for addressing
issues of replicability. Because no single study is
definitive, examining conclusions across studies will
facilitate more robust decision making about the
strength of the research literature. In addition, meta-
analytic tools can help identify and address issues in
replicability by helping to assess weaknesses and
allow future studies to be planned more effectively
through prospective power analysis. Specifically, a
meta-analysis can reveal the average effect size, sam-
ple size, and resulting statistical power of a systemat-
ically assembled set of studies where a specific
phenomenon has been studied with a variety of
methods, stimuli, and samples. Because each meta-
analysis typically addresses a single phenomenon—
the underlying construct that is supposed to elicit
specific responses in laboratory studies—it is difficult
to draw general conclusions. To this end, we make
use of MetaLab, a publicly available database of 12
standardized meta-analyses of language acquisition.
MetaLab is a dynamic, continuously growing data-
base. At the time of writing, the available meta-ana-
lyses cover a variety of behavioral and neuroimaging
methods (11 in total) and participant ages (from new-
borns to 5-year-olds).

Since all meta-analyses currently in MetaLab
address specific phenomena within language acquisi-
tion, our empirical analyses are adjusted to the meth-
ods typically used in this subfield of developmental
research. Nonetheless, our analyses and recommen-
dations are relevant beyond the scope of language
acquisition research. Crucially, we investigate key
study design choices that will be relevant to develop-
mental research at large: sample size (and the ensu-
ing statistical power when effect size is held
constant) and method (i.e., paradigms used to tap
into the same phenomenon). Furthermore, since our
work comprises open data and scripts, accompanied

by extensive educational materials, and we use open
source software (specifically R; R Core Team, 2016),
our approach can easily be extended to other
domains of child development research. We strongly
encourage fellow researchers to build similar collec-
tions of meta-analyses describing and quantifying
phenomena in their respective subdomain.

The Meta-analyses in MetaLab

Before laying out the key concerns for replicabil-
ity that are more broadly relevant, it may be useful
to give a brief overview of our data set: Each
included meta-analysis focuses on one specific phe-
nomenon, and collectively they cover a wide range
of linguistic levels, from phonetics (e.g., native
vowel discrimination; Tsuji & Cristia, 2014) to prag-
matics (e.g., pointing and vocabulary; Colonnesi,
Stams, Koster, & Noom, 2010) and a range of
designs and methods. All but one meta-analyses
aggregate studies on the strength of processing of a
particular experimentally manipulated stimulus
contrast. The one exception is a meta-analysis con-
taining correlations between toddlers’ pointing and
vocabulary size measured concurrently (Colonnesi
et al., 2010). Depending on the meta-analysis and
thus phenomenon in question, studies either bear
on knowledge acquired outside the lab to tap into
continued real-life acquisition processes, or are
based on laboratory-based training, typically to iso-
late a proposed learning mechanism. Examples of
the former are native and nonnative vowel discrimi-
nation (Tsuji & Cristia, 2014) and online recognition
of known words (Frank, Lewis, & MacDonald,
2016); the latter is exemplified by learning sound
categories and sound sequences in the lab after
short exposure to artificial mini-languages (Cristia,
2018). The dependent variable in all these studies is
based on continuous response data, such as looking
time, either measured within participants in reaction
to two conditions or across participant groups
receiving different exposures.

Children in our data are aged 0–5 years. In our
analyses, we take into account participant age for
both practical and theoretical reasons. On the practi-
cal side, we expect an effect of infant age based on
three aspects of child development research. First,
younger infants may be more difficult to recruit and
test, thereby increasing measurement noise and lead-
ing to smaller effect sizes in younger, compared with
older, cohorts. Second, tasks and designs might vary
as a function of participant age. This factor does not
allow us to make a precise prediction with respect to
age trends, but does encourage an investigation of
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research practices and effect sizes as a function of
age. Third, even if our tests are conceptually associ-
ated to early language acquisition, childhood is a
time of rapid cognitive development of various cog-
nitive skills ranging from selective attention to work-
ing memory (Lerner, Liben, & Mueller, 2015), which
could impact laboratory performance and would be
reflected in the strength, and even direction, of an
effect (e.g., Hunter & Ames, 1988).

From a theoretical standpoint, the phenomena tar-
geted by the meta-analyses currently in MetaLab are
expected to show changes with age. In general, this
change is in a positive direction: Younger participants
should show smaller effects than older ones because
they are not yet as experienced with, and proficient
in, their native language, and thus, we expect them to
improve in most linguistic skills, such as native vowel
discrimination, word form recognition, and word to
meaning mapping. The one exception in our collec-
tion is nonnative vowel discrimination, an ability that
should and does decrease as infants tune into their
native language (Tsuji & Cristia, 2014). For a number
of phenomena, theoretical predictions are not
straightforward (e.g., a preference for infant- over
adult-directed speech is thought to increase in the
first few months as children accumulate experience
with this affective register, but could have been pre-
dicted to eventually decrease due to novelty prefer-
ences; Hunter & Ames, 1988).

In sum, the set of meta-analyses we use covers a
wide range of phenomena and methods, increasing
the likelihood that our conclusions are not specific
to language acquisition. Moreover, key concerns for
replicability, as laid out in the next section, are
likely to apply and take effect across subdisciplines
of developmental research. We return to the gener-
alizability of our findings in the discussion.

Key Concerns for Replicable Research in Developmental
Science

Statistical Power

In this section, we review potential hindrances to
developmental research being robust and repro-
ducible, and briefly describe how we assess current
practices in terms of sampling decisions and result-
ing power. All of these descriptions are by necessity
brief; for extended discussions, we provide refer-
ences to suitable readings.

In the null-hypothesis significance testing frame-
work, statistical power refers to the probability of
detecting an effect and correctly rejecting the null
hypothesis if an effect is indeed present in a

population. Power is dependent on the underlying
effect size and the sample size. Of course, low
power is problematic because it increases the likeli-
hood of Type-II errors (i.e., failure to find a signifi-
cant result when there is an effect present in the
population). It has become increasingly clear, how-
ever, that low power can also increase the fre-
quency of Type-I errors (false positives), as the
effects reported in such cases will be overestimating
the true effect (Button et al., 2013; see also Ioanni-
dis, 2005; Simmons et al., 2011). This fact makes
appropriate planning for future research more diffi-
cult, as sample sizes will be too small, increasing
the likelihood of null results due to insensitive
research designs rather than the absence of the
underlying effect. In addition, this issue is a serious
hindrance to work building on seminal studies,
including replications and extensions.

Underpowered studies pose an additional and
very serious problem for developmental researchers
who interpret significant findings as indicating that
a skill is “present” and nonsignificant findings as a
sign that it is “absent.” In fact, even in the most rig-
orous study design and execution, null results will
occur regularly. Consider a series of studies with
80% power (a number typically deemed sufficient),
where every fifth result will be a false negative, that
means it will not reflect that there is a true effect
present in the population. This observation was
recently demonstrated by Oakes (2017) by using
data from a high-powered looking time study.

To investigate current practices in our sample,
we compute typical power per phenomenon, based
on meta-analytic effect sizes and typical sample size
(Button et al., 2013). The logic of this analysis is as
follows: Although we cannot know the exact power
of any given experiment (because we do not know
the true underlying effect), the meta-analytic effect
size represents our best guess; thus, the median
power for a phenomenon is the power of the med-
ian sample size with the meta-analytic effect size.
We next explore which effect sizes would be detect-
able with the sample sizes typically tested in lan-
guage acquisition research. We additionally
investigate how researchers might determine sam-
ple sizes using a different heuristic, namely follow-
ing the largest effect size reported in the first article
on a given phenomenon.

Method Choice

Improving procedures in developmental research
can be considered both an economical and ethical
necessity, because developmental populations are
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difficult to recruit and test. A further complication
is that a nonnegligible proportion are excluded
because they fail to comply, finish the study, or
conform to other data quality criteria the researcher
sets (e.g., a minimum looking time during test tri-
als). For this reason, developmentalists often
“tweak” paradigms and develop new ones with the
aim of obtaining a clearer signal and/or control the
exclusion rate. Emerging technologies, such as eye-
tracking and tablets, have consequently been
eagerly adopted (Frank, Sugarman, Horowitz,
Lewis, & Yurovsky, 2016; Gredeb€ack, Johnson, &
von Hofsten, 2009).

It remains an open question to what extent the
different methods within developmental research
lead to comparable results. Some may be more
robust, but it is difficult to extract such information
based on comparisons of individual studies that use
different materials and test various age groups (cf.
the large-scale experimental approach by ManyBa-
bies Collaborative, 2017). Aggregating over results
via meta-analytic tools allows us to assess to what
extent methods differ in their associated exclusion
rate and to extract general patterns of higher or
lower noise via the comparison of effect sizes since
the latter are directly affected by the variance of the
measurement.

Questionable Research Practices

Undisclosed flexibility during data collection and
analysis is a problem independent of the availabil-
ity of various methods to conduct developmental
studies. One salient example is flexible stopping
rules, where the decision to stop or continue testing
depends on the result of a statistical test. Though
this practice might seem innocuous and geared
toward “bringing out” an effect the researcher
believes is real, it increases the likelihood of obtain-
ing a “significant” outcome well beyond the
expected 5%, effectively rendering p values and the
notion of statistical significance meaningless (Ioan-
nidis, 2005; Simmons et al., 2011).

It is typically not possible to assess whether
undisclosed flexibility during data collection (or
analysis) led to a false positive in a given report.
However, we can measure “symptoms” in a whole
literature. We focus in this article on flexibility in
stopping data collection, a practice that was found
to be present, but not predominant, in infancy
research in a recent anonymous survey (Eason,
Hamlin, & Sommerville, 2017). Since our data span
over 44 years (publication dates range from 1973 to
2017), it might be the case that recent discussions of

best practices have improved lab procedures, but
older reports could still have applied this seemingly
innocuous practice of adding participants to “bring
out” the effect of interest.

Summary of Research Goals

We will use a collection of meta-analyses in lan-
guage acquisition to describe the current state of
this field in terms of effect sizes, sample sizes, and,
relatedly, statistical power. We take into account
the fact that the meta-analyses bear on diverse phe-
nomena, studied in different age groups and with a
variety of methods and sample sizes, and that com-
binations of these factors will likely affect both
effect size and exclusion rates. While we consider
the conceptual structure imposed by the fact that
the meta-analyses bear on language acquisition, our
overarching goal is to exemplify how these analyses
can be carried out to describe any subfield of devel-
opmental research and to give concrete recommen-
dations and tools to increase replicability within the
developmental sciences.

Method

All scripts used in this article, and information how
to obtain the source data from MetaLab, are shared
on Open Science Framework at https://osf.io/
uhv3d/.

Data

The data presented and analyzed here are part
of a standardized collection of meta-analyses (Meta-
Lab) and are freely available via the companion
website at http://metalab.stanford.edu. Currently,
MetaLab contains 12 meta-analyses, where core
parts of each meta-analysis are standardized to
allow for the computation of common effect size
estimates and for analyses that span across different
phenomena. These standardized variables include
study descriptors (such as citation and peer review
status), participant characteristics (including mean
age and native language), methodological informa-
tion (e.g., what dependent variable was measured),
and information necessary to compute effect sizes
(number of participants, if available means and
standard deviations of the dependent measure,
otherwise test statistics of the key hypothesis test,
such as t values or F scores).

Meta-analyses were contributed to MetaLab
directly (n = 10), or they were extracted from
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previously published meta-analyses related to lan-
guage development (n = 2; Colonnesi et al., 2010;
Dunst, Gorman, & Hamby, 2012). In the former case,
the meta-analysis authors attempted to document as
much detail as possible for each entered experiment
(note that an article can contain many experiments,
as shown in Table 1), as recommended for repro-
ducible and dynamic meta-analyses (Tsuji, Berg-
mann, & Cristia, 2014). Detailed descriptions of all
phenomena covered by MetaLab, including which
articles and other sources have been considered, can
be found at http://metalab.stanford.edu.

Statistical Approach

As a dependent measure, we report Cohen’s d, a
standardized effect size based on sample means
and their variance. Effect size was calculated when
possible from means and standard deviations across
designs with the appropriate formulae (Dunlap,
Cortina, Vaslow, & Burke, 1996; Lipsey & Wilson,
2001; Morris & DeShon, 2002; Viechtbauer, 2010).
When these data were not available, we computed
effect sizes based on the test statistics used to assess
the main hypothesis, more precisely t values or F
scores. We also computed effect size variance,
which allowed us to weigh each effect size when
aggregating across studies. The variance is mainly
determined by the number of participants; intu-
itively, effect sizes based on larger samples will be
assigned more weight. Note that for research
designs testing the same participants in two condi-
tions (e.g., measuring reactions of the same infants
to infant- and adult-directed speech), correlations
between those two measures are needed to estimate

the effect size variance. This measure is usually not
reported, despite being necessary for effect size cal-
culation (note: publishing guidelines require the
reporting of correlations; American Psychological
Association, 2001). Some correlations could be
obtained through direct contact with the original
authors (see Bergmann & Cristia, 2016). The
remaining ones were imputed. We report details of
effect size calculation in the Supporting Information
and make available all scripts used in this article.
Excluded as outliers were effect sizes more than
three standard deviations away from the median
effect size within each meta-analysis (n = 12).

Meta-Analytic Model

Meta-analytic effect sizes were estimated using
random-effect models where effect sizes were
weighted by their inverse variance. We further used
a multilevel approach, which takes into account not
only the effect sizes and variance of single studies
but also that effect sizes from the same article will
be based on more similar studies than effect sizes
from different articles (Konstantopoulos, 2011).
When analyzing data from multiple meta-analyses,
we nested article within meta-analysis to account
for the fact that studies within meta-analyses will
be more similar to each other. We relied on the
implementation in the R (R Core Team, 2016) pack-
age metafor (Viechtbauer, 2010).

Power Calculation

We calculated typical power using the pwr pack-
age (Champely, 2015) based on the meta-analytical

Table 1
Descriptions of the Meta-analyses

Meta-analysis Age Sample size N effect sizes N articles Effect size (SE) Power

Gaze following 14 (3–24) 23 (12–63) 32 11 1.08 (0.16) 0.95
Infant-directed speech preference 4 (0–9) 20 (10–60) 48 16 0.73 (0.13) 0.61
Concept-label advantage 12 (4–18) 13 (9–32) 48 15 0.45 (0.08) 0.20
Mutual exclusivity 24 (15–60) 16 (8–72) 58 19 0.81 (0.14) 0.61
Online word recognition 18 (15–30) 25 (16–95) 14 6 1.24 (0.26) 0.99
Phonotactic learning 11 (4–16) 18 (8–40) 47 15 0.12 (0.07) 0.06
Pointing and vocabulary 22 (9–34) 24.5 (6–50) 12 12 0.98 (0.18) 0.92
Sound symbolism 8 (4–38) 20 (11–40) 44 11 0.22 (0.11) 0.10
Statistical sound learning 8 (2–11) 15.5 (5–34) 19 11 0.29 (0.14) 0.12
Native vowel discrimination 7 (0–30) 12 (6–50) 112 29 0.69 (0.09) 0.37
Nonnative vowel discrimination 8 (2–18) 16 (8–30) 46 14 0.79 (0.24) 0.58
Word segmentation 8 (6–25) 20 (4–64) 284 68 0.16 (0.03) 0.08

Note. Age is reported in months, sample size is based on the median in a given meta-analysis, effect size is reported as meta-analytic
weighted Cohen’s d, and average power is computed based on meta-analytic effect size estimate Cohen’s d and median sample size.

2000 Bergmann et al.
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effect size and the median number of participants
within each meta-analysis. For targeted analyses of
the power of seminal articles, we extracted the lar-
gest effect size and used this value for power calcu-
lation, taking in both cases the median number of
participants in a meta-analysis into account (for a
similar approach, see Button et al., 2013).

Results

Sample Size and Statistical Power

Table 1 provides a summary of typical sample
sizes and effect sizes per meta-analysis. We remind
the reader that recommendations are for power to
be above 80%, which means that four of five stud-
ies show a significant outcome for an effect truly
present in the population.

As could be expected, sample sizes are small
across all meta-analyses, with the overall median
in our data being 18 infants for paired observa-
tions (i.e., 36 participants in total in a between-
participant design). Effect sizes predominantly fall
into ranges of small to medium effects, as defined
by Cohen (1988). The overall median effect size
of all data analyzed here is Cohen’s d = .45. As a
result of those two factors, studies are typically
severely underpowered. Assuming a paired t test
(within-participant designs are the most frequent
in the present data), observed power is at 44%
(for independent samples, observed power is at
26%).

With the observed sample size, it is possible to
detect an effect in 80% of all studies when
Cohen’s d = .70; in other words, this sample size
would be appropriate when investigating a med-
ium to large effect. When comparing two inde-
pendent groups, the effect size that would be
detectable with a sample size of 18 participants
per group increases to Cohen’s d = .96, a large
effect that is rarely observed as meta-analytic
effect size in the present collection of develop-
mental meta-analyses.

Inversely, to detect the typical effect of Cohen’s
d = .45 with 80% power, studies would have to
test 40 participants in a paired design; 22 more
than are included on average. For a between-par-
ticipant design, a study with 80% power would
require testing 78 infants per group, over four
times the typical sample size we encounter here.
This disparity between observed and necessary
sample size varies greatly across meta-analyses,
leading to drastic differences in observed power
to detect the main effect. While studies on

phonotactic learning and word segmentation are
typically dramatically underpowered (with
observed power being under 10%), studies on
pointing and vocabulary, gaze following, and
online word recognition are very well powered
(92%, 95%, and 99%, respectively).

We find no strong linear link between-participant
age and sample size on the level of meta-analyses
(Table 1). However, effect sizes and consequently
power increase with median participant age. Most
saliently, the only three meta-analyses with power
over 80%, pointing and vocabulary, gaze following,
and online word recognition typically test partici-
pants older than 1 year.

Seminal Articles as Basis for Sample Size Planning

As Table 1 shows, experimenters only rarely
include a sufficient number of participants to
observe a given effect—assuming the meta-analytic
estimate is accurate. It might, however, be possible
that power has been determined based on a seminal
article to be replicated and expanded. Initial reports
tend to overestimate effect sizes (Jennions & Møller,
2002), possibly explaining the lack of observed
power in the subsequent literature.

For each meta-analysis, we extracted the oldest
article and the largest effect size reported therein
and re-calculated power accordingly, using the
median sample size of the same meta-analysis (see
Table 2). The largest effect size per article was cho-
sen because many seminal studies contain at least
one null result in a control condition that delineates
the limitations of a given phenomenon (e.g., that
older children succeed at a task that their younger
peers fail). Thus, it is unlikely that the researchers
following up on that work aim for the median or
mean effect size.

In some cases, such as native and nonnative
vowel discrimination, as shown in Table 2, sample
size choices are in line with the oldest report. The
difference in power, noted in the last column, can
be substantial, with native vowel discrimination
and phonotactic learning being the two most salient
examples. Here, sample sizes match well with the
oldest report and studies would be appropriately
powered if this estimate were representative of the
true effect. In four meta-analyses, neither the semi-
nal article nor meta-analytic effect size seem to be a
useful basis for sample size decisions. Since these
numbers are based on the largest effect of a seminal
article, all power estimations (but also differences in
meta-analytic effect sizes) would be smaller, mean-
ing that sample sizes are less appropriate than
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implied by the column denoting power based on
the seminal article in Table 2.

Method Choice

Exclusion Rates Across Methods

In most of the analyzed meta-analyses, multiple
methods were used to tap into the phenomenon in
question. Choosing a robust method can help
increase power, because more precise measure-
ments lead to larger effect sizes due to reduced
measurement variance and, thus, require fewer par-
ticipants to be tested to conduct appropriately pow-
ered studies. However, the number of participants
relates to the final sample and not how many par-
ticipants had to be invited into the lab. We, thus,
first quantify whether methods differ in their typi-
cal exclusion rate, as economic considerations might
drive method choice. To this end, we consider all
methods which have more than 10 associated effect
sizes and for which information on the number of
excluded participants was reported and entered in
the meta-analyses. We note that this is exclusion
rate, rather than fussout or dropout rates, because
it represents the number excluded considering all
criteria, including data quality criteria such as a
minimum looking time. We chose this variable for
practical reasons, as overall exclusion rates are
more frequently reported than the number of par-
ticipants who did not complete the experiment. The
following analyses cover 6 (of 11) methods and 224
(of 761) effect sizes.

The results of a linear mixed effects model pre-
dicting exclusion rate by method and mean partici-
pant age (while controlling for the different

underlying effect sizes per meta-analysis) are sum-
marized in Table 3 and visualized in Figure 1. The
results show significant variation across methods
and a tendency toward higher exclusion rates for
older participants, with some interaction with
method.

Effect Sizes as a Function of Method

We built a meta-analytic model with Cohen’s d
as the dependent variable, and method and mean
age centered as independent variables, which we
allowed to interact. The model includes the vari-
ance of d for sampling variance, and a nested ran-
dom effect of article (inner random effect) within
meta-analysis (outer random effect). We limited this
analysis to the same methods that we investigated
in the section on exclusion rates to be able to
observe possible links between effect size and
exclusion rate in methods. The model results in
Table 4 (visualized in Figure 2) show significant
variation in effect sizes across methods, age, and
some interaction of method and age.

Questionable Research Practices

In the final set of analyses, we assess the relation
between absolute observed effect sizes in single
studies and the associated sample size. The ratio-
nale behind this analysis is simple: The smaller the
effect size in a particular study (bear in mind that
we assume that experiments sample from a distri-
bution around the population effect), the larger the
sample needed for a significant p value. If sample
size decisions are made before data collection and
all results are published, we expect no relation

Table 2
For Each Meta-analysis, Largest Effect Size Cohen’s d and Derived Power Based on the Seminal Article Along With the Difference Between Power
Based on Meta-analytic and Seminal Article Effect Size

Meta-analysis Effect size (seminal) Effect size (overall) Sample size Power (seminal) Difference

Statistical sound learning �0.24 0.29 15.5 0.10 �0.02
Word segmentation 0.56 0.16 20 0.40 0.33
Mutual exclusivity 0.70 0.81 16 0.48 �0.13
Concept-label advantage 0.86 0.45 13 0.56 0.36
Pointing and vocabulary 0.65 0.98 24 0.61 �0.31
Nonnative vowel discrimination 1.02 0.79 16 0.80 0.22
Phonotactic learning 0.98 0.12 18 0.81 0.75
Sound symbolism 0.95 0.22 20 0.84 0.73
Online word recognition 0.89 1.24 25 0.87 �0.12
Gaze following 1.29 1.08 23 0.99 0.04
Native vowel discrimination 1.87 0.69 12 0.99 0.63
IDS preference 2.39 0.73 20 1.00 0.39

2002 Bergmann et al.



between observed effect size and sample size. If, on
the contrary, authors continue to add infants to
achieve significance (Begg & Mazumdar, 1994),
there should be a negative correlation between sam-
ple size and effect size.

We illustrate the link between effect size and
sample size, separated by meta-analysis, in Fig-
ure 3. The statistical test results for each meta-ana-
lysis can be found in Table 5. Four meta-analyses
show a significant negative relation between sample
size and effect size, consistent with bias; two of
them assess infants’ ability to discriminate vowels,

one bears on word segmentation, and one tests
whether children use mutual exclusivity during
word learning. The last case might be driven by a
single high-powered study with an atypical devel-
opmental range (Frank, Lewis, et al., 2016). We fur-
ther observe an unexpected positive correlation
between sample size and observed effect size in the
meta-analysis on infant-directed speech (IDS) pref-
erence, which we discuss in the following.

Discussion

In this article, we made use of a collection of 12
standardized meta-analyses to assess typical effect
sizes, sample size, power, and methodological
choices that are currently common in research on
language development. With a median effect size of
Cohen’s d = .45 and a typical sample size of 18 par-
ticipants per cell, observed power is only 44%.

The lack of power is particularly salient for phe-
nomena typically tested on younger children,
because sample sizes and effect sizes are both small
(the one exception for research topics tested mainly
with participants younger than 1 year is nonnative
vowel discrimination, which can be attributed to a
large meta-analytic effect size estimate rather than
larger samples). Phenomena studied among older
children tended to yield larger effects, and here
some studies turn out to be high powered (e.g.,
online word recognition). Both observations are first
indicators that effect size estimates might not be

Table 3
Linear Mixed Effects Model Predicting Exclusion Rate by Method and
Participant Age While Accounting for the Specific Phenomenon, Cen-
tral Fixation Is the Baseline Method

Est. SE Est. t p

Intercept 31.170 4.481 6.96 < .001
CondHT 31.064 5.727 5.42 < .001
FC �26.383 9.372 �2.82 .005
HPP �2.132 4.770 �0.45 .655
LwL �6.433 5.394 �1.19 .233
SA 21.345 4.129 5.17 < .001
Age 0.409 0.438 0.93 .350
CondHT 9 Age 2.888 1.160 2.49 .013
FC 9 Age �0.207 0.645 �0.32 .749
HPP 9 Age 0.975 0.717 1.36 .174
LwL 9 Age �0.548 0.796 �0.69 .491
SA 9 Age �0.251 0.903 �0.28 .781

Note. CondHT = conditioned headturn; FC = forced choice;
HPP = headturn preference procedure; LwL = looking while lis-
tening; SA = stimulus alternation.
Bold values indicate significant p-values below the alpha thresh-
old of .05.

Figure 1. Exclusion rate in percent by different methods.
CF = central fixation; CondHT = conditioned headturn;
FC = forced choice; HPP = headturn preference procedure;
LwL = looking while listening; SA = stimulus alternation. Each
point indicates a single study.

Table 4
Meta-analytic Regression Predicting Effect Size Cohen’s d With Partic-
ipant Age and Method (Central Fixation Is Baseline Method)

Est. [CI] SE z p

Intercept 0.285 [0.005, 0.566] 0.143 2.00 .046
Age 0.014 [�0.002, 0.026] 0.006 2.25 .024
CondHT 1.284 [0.627, 1.94] 0.335 3.83 < .001
FC 0.109 [�0.261, 0.48] 0.189 0.58 .563
HPP 0.125 [�0.043, 0.293] 0.086 1.46 .144
LwL 0.498 [0.071, 0.925] 0.218 2.29 .022
SA �0.141 [�0.506, 0.224] 0.186 �0.76 .449
Age 9 CondHT 0.107 [�0.003, 0.217] 0.056 1.91 .056
Age 9 FC 0.044 [0.028, 0.059] 0.008 5.51 < .001
Age 9 HPP 0.006 [�0.013, 0.024] 0.010 0.60 .546
Age 9 LwL 0.019 [�0.002, 0.041] 0.011 1.80 .071
Age 9 SA �0.005 [�0.057, 0.047] 0.027 �0.02 .845

Note. CondHT = conditioned headturn; FC = forced choice;
HPP = headturn preference procedure; LwL = looking while lis-
tening; SA = stimulus alternation.
Bold values indicate significant p-values below the alpha thresh-
old of .05.
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considered when determining sample size, as
power of 99% would suggest the sample was
unnecessarily large for the effect under study
(Table 1). However, it is possible that, in addition
to testing a main effect (such as whether children
recognize a given word online), these high-powered
studies also investigated interactions (i.e., factors
modulating this ability). As a consequence, studies
might be powered appropriately since an interac-
tion effect will be more difficult to detect than a
main effect. The possibility that follow-up studies
are looking for moderators and thus test interaction
effects means that the 44% average power observed
earlier would be an overestimate.

We next investigated the possibility that
researchers base their sample size on the highest

effect size reported in the seminal article of their
research topic. We find that even under this
assumption, the surveyed research would largely
be underpowered. Moreover, this strategy would
likely not provide sufficient power with respect to
meta-analytic effect sizes, as early explorations will
tend to overestimate effect sizes (Jennions & Møller,
2002). In short, studies are habitually underpow-
ered because sample sizes typically remain close to
what can be called a “field standard” of 15–20 par-
ticipants (see Table 1 in this article and Oakes,
2017).

Conducting studies with sample sizes based on
“field standards” is highly problematic for several
reasons. First, many studies will not yield signifi-
cant outcomes despite the presence of a real, but
small effect. Researchers might, thus, be inclined to
conclude that an ability is absent in a population
(see in the following section for an in-depth discus-
sion of this topic), or they may refrain from pub-
lishing their data altogether. If an underpowered
study is published because the outcome is signifi-
cant, this study will overestimate the size of the
underlying effect, thereby adding biased results to
the available literature (and thus further biasing
any meta-analytic effect size estimate; Sterling et al.,
1995; Yarkoni, 2009), as well as reinforcing the prac-
tice of sampling too few participants. At worst, this
practice can lead to the perpetuation of a false
hypothesis (e.g., albeit from nondevelopmental
research, consider the meta-analysis of romantic
priming by Shanks et al., 2015).

We investigated the possibility that researchers
selectively add participants to obtain a significant
result through the relation between observed effect
size and sample size. We observed that in four

Figure 2. Effect size by different methods. CF = central fixation;
CondHT = conditioned headturn; FC = forced choice;
HPP = headturn preference procedure; LwL = looking while lis-
tening; SA = stimulus alternation. Each point indicates a single
study.

Figure 3. For every meta-analysis observed, effect size per study plotted against sample size. Each point indicates a single study.
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meta-analyses effect sizes were significantly nega-
tively correlated with sample sizes, which might be
an indication of questionable research practices. At
the same time we found a (numerically) positive
correlation in the meta-analysis on infant-directed
speech preference, an unexpected result as it means
that larger sample sizes tend to be found in experi-
ments with larger effects. One possible reason for
the latter result might be specific to this data set:
perhaps, older infants are both easier to test and
have greater preferences for infant-directed speech.

For the four observed negative correlations, alter-
native explanations to questionable research prac-
tices are possible: As soon as researchers are aware
that they are measuring a more subtle effect and
adjust sample sizes accordingly, we expect to
observe this negative correlation. Consider, for
example, vowel discrimination, which can be stud-
ied with very distinct vowel pairs such as in “bit”
and “but,” or with subtler contrasts like in “bat”
and “bet.” In fact, in the presence of consequent
and accurate a priori power calculations, a negative
correlation between sample size and effect size
must be observed. However, our previous analyses
indicate that power is not considered when making
sample size decisions.

Concrete Recommendations for Developmental Scientists

In this section, we move from a description of
current practices to suggestions aimed at improving
the reproducibility of developmental research. We
generalize to developmental studies at large
because there is reason to believe that other

subdomains in the study of infant and child devel-
opment may be subject to the same issues we out-
lined in the introduction.

Calculate Power Prospectively

We found that most studies testing infants and
toddlers are severely underpowered, even when
aiming to detect only a main effect. Interactions will
show smaller effect sizes and, thus, will be even
harder to detect. Further, power varies greatly
across phenomena, which is mainly due to differ-
ences in effect sizes. Sample sizes are not adjusted
accordingly, but remain close to the typical sample
size of 18.

Our first recommendation is, thus, to assess in
advance how many participants would be needed
to detect a minimal effect size of interest (for a
more detailed discussion and practical recommen-
dations, see Lakens & Evers, 2014). Note that we
based our power estimations on whole meta-ana-
lyses, an analysis approach most suitable to making
general statements about a research field at large. It
might, however, be the case that specific studies
might want to base their power estimates on a sub-
set of effect sizes to match age group and method.
Both factors can, as we showed in our results, influ-
ence the to-be-expected effect size. To facilitate such
analyses, all meta-analyses are shared on MetaLab
along with the available details about procedure
and measurements (see also Tsuji et al., 2014).

In lines of research where no meta-analytic effect
size estimate is available—either because it is a
novel phenomenon being investigated or simply
due to the absence of meta-analyses—we recom-
mend considering typical effect sizes for the
method used and the age group being tested. This
article is a first step toward establishing such mea-
sures, but more efforts and investigations are
needed for robust estimates (Cristia, Seidl, Singh, &
Houston, 2016).

Carefully Consider Method Choice

One way to increase power is the use of more sen-
sitive measurements; and we do find striking differ-
ences between methods. On the practical side,
exclusion rates varied a great deal (with medians
between 5.9% and 45%). Interestingly, the methods
with somewhat lower exclusion rates (central fixa-
tion and headturn preference procedure) are among
the most frequent ones in our data. The proportion
of participants that can be retained might, thus,
inform researchers’ choice. This observation points

Table 5
Nonparametric Correlations Between Sample Sizes and Effect Sizes for
Each Meta-analysis

Meta-analysis Kendall’s s p

Phonotactic learning �.21 .052
Statistical sound learning �.06 .724
Gaze following .09 .512
IDS preference .01 .921
Concept-label advantage �.06 .590
Mutual exclusivity �.21 .024
Native vowel discrimination �.28 < .001
Nonnative vowel discrimination �.23 .032
Pointing and vocabulary �.15 .491
Sound symbolism �.04 .698
Online word recognition �.13 .539
Word segmentation �.10 .023

Note. A significant value indicates bias.
Bold values indicate significant p-values below the alpha thresh-
old of .05.
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to the previously mentioned limitations regarding
the participant pool, as more participants will have
to be tested to arrive at the same final sample size.
High exclusion rates can also be offset by high effect
sizes; as can be seen when comparing conditioned
headturn in Figures 1 and 2, while exclusion rates
are around 30%–50%, effect sizes are above 1. The
second method with high exclusion rates, stimulus
alternation, in contrast, does not fall into this pattern
of high exclusion rates coinciding with high effect
sizes. A possible interpretation of this finding is that
some methods, which have higher exclusion rates,
generate higher effect sizes due to decreased noise
(e.g., by excluding participants who are not on task).
However, there is an important caveat: Studies with
fewer participants (due to higher exclusion rates) are
imprecise, and thus, it is more likely that significant
results overestimate the underlying effect.

Nevertheless, when possible, it seems important
to consider the paradigm being used, and possibly
use a more sensitive way of measuring infants’
capabilities. One reason that researchers do not
appear to choose the most robust methods might
again be due to a lack of consideration of meta-ana-
lytic effect size estimates, which in turn might be
(partially) due to a lack of information on (how to
interpret) effect size estimates and lack of experi-
ence using them for study planning (Mills-Smith,
Spangler, Panneton, & Fritz, 2015). We, thus, rec-
ommend to change this practice and take into
account the possibility that different methods’ sensi-
tivity is reflected in effect size. Efforts to estimate
the impact of method choice experimentally
through large-scale replications will likely be infor-
mative in this quest (Frank et al., 2017).

Report All Data

A possible reason for prospective power calcula-
tions and meta-analyses being rare lies in the avail-
ability of data in published reports. Despite
longstanding recommendations to move beyond the
persistent focus on p values (such as American Psy-
chological Association, 2001), a shift toward effect
sizes or even the reporting of them has not (yet)
been widely adopted (Mills-Smith et al., 2015).

In addition, in cases where effect sizes are not
mentioned, current reporting standards make it diffi-
cult—at times even impossible—to derive effect sizes
from the published literature. For example, for
within-participant measures, it is necessary to report
the correlation between repeated measures associ-
ated with the paired conditions (most commonly a
treatment and control condition). However, this

correlation is habitually not reported and has to be
obtained via direct contact with study authors (see
Bergmann & Cristia, 2016) or estimated (as described
in Black & Bergmann, 2017). In addition, reporting
(as well as analysis) of results is generally highly
variable, with raw means and standard deviations
not being available for all articles.

We suggest reporting the following information,
in line with current guidelines: means and standard
deviations of dependent measures being statistically
analyzed (for within-participant designs with two
dependent variables, correlations between the two
should be added), test statistic, exact p value (when
computed), and effect sizes (e.g., Cohen’s d as used
in the present article) where possible. Such a stan-
dard not only follows extant guidelines, but also
creates coherence across articles and reports, thus
improving clarity (Mills-Smith et al., 2015). A step
further would be the supplementary sharing of all
anonymized results on the participant level, thus
allowing for the computations necessary for meta-
analyses, and opening the door for other types of
cumulative analyses.

Increase the Use and Availability of Meta-Analyses

Conducting a meta-analysis is a laborious pro-
cess, particularly according to common practice
where only a few people do the work, with little
support tools and educational materials available.
The workload associated with conducting a meta-
analysis may, thus, appear (and perhaps even be)
much larger than that associated with a publication
containing original data or with a qualitative
review, making meta-analyses less attractive than
the latter two for individuals. Moreover, the bene-
fits of meta-analyses for the field, for instance, the
possibility of conducting power analyses, are often
neither evident nor accessible to individual
researchers, as the data are not shared and tradi-
tional meta-analyses remain static after publication,
aging quickly as new results emerge (Tsuji et al.,
2014).

To support the improvement of current prac-
tices, we propose making meta-analyses available
in the form of ready-to-use online tools, dynamic
reports, and as raw data. These different levels
allow researchers with varying interests and exper-
tise to make the best use of the extant records on
language development, including study planning,
by choosing robust methods and appropriate sam-
ple sizes. An additional advantage of using meta-
analysis when interpreting single results is that
researchers can easily check whether their result
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falls within the expected range of outcomes for
their research question—indicating whether or not
a potential moderator influenced the result.

Meta-analyses can also be useful for theory
building. Indeed, aggregating over many data
points allows us to trace the emergence of abilities
over time, as well as quantify their growth, and
identify possible developmental trajectories. A
demonstration is given in the work by Tsuji and
Cristia (2014), where mainstream descriptions of
development for native and nonnative vowel dis-
crimination could be confirmed. Contrastingly,
Bergmann and Cristia (2016) showed that word
segmentation from native speech does not follow
the typically assumed developmental trajectory (for
a recent discussion of both meta-analyses, see Berg-
mann, Tsuji, & Cristia, 2017). As a consequence,
meta-analytic investigations lead to more refined,
or even reconsidered, theoretical accounts of child
development, bolstered with a better estimate of
the timeline for phenomena of interest (see also
Lewis et al., 2017).

Use Cumulative Evidence to Decide Whether Skills Are
“Absent” or Not

Developmental researchers often interpret both
significant and nonsignificant findings, particularly
to establish a timeline tracing when skills emerge.
This approach is problematic for multiple reasons,
as we mentioned in the Introduction. Disentangling
whether a nonsignificant finding indicates the
absence of a skill, random measurement noise, or
the lack of experimental power to detect this skill
reliably and with statistical support is in fact impos-
sible based on p values. Further, we want to cau-
tion researchers against interpreting the difference
between significant and nonsignificant findings
without statistically assessing it first (Nieuwenhuis,
Forstmann, & Wagenmakers, 2011). As mentioned,
meta-analyses provide a more principled way for
assessing statistically whether age explains signifi-
cant proportions of the variance in observed effects.
Moreover, this technique can also help with cases
where the absence of an effect is incorrectly inferred
from a string of nonsignificant, potentially under-
powered, studies, as recently demonstrated by
Vadillo, Konstantinidis, and Shanks (2016). In their
study, the authors pooled null results that had been
taken as evidence for an absent effect, and demon-
strated the meta-analytic effect size estimate was
Cohen’s d = .3 (an effect that happens to be larger
than that found in some meta-analyses included
here).

Future Directions

The present analyses can be expanded and
improved in a number of ways. First, this collection
of meta-analyses does not represent an exhaustive
survey of phenomena in language acquisition,
let alone developmental research. Particularly, topics
typically investigated in younger children are over-
represented. Future analyses of a possible relation
between age, effect size, and sample size would,
thus, benefit from a larger sample of meta-analyses.
A second potential impediment to generalizing from
the presented findings to developmental research at
large is the fact that we focused on language acqui-
sition research. As there is no a priori reason to
expect that sample sizes and effect sizes are particu-
larly low in this subdomain of developmental
science, and because most methods are used across
fields, we expect that the results and recommenda-
tions are relevant to researchers working in other
domains. However, to be able to make such claims
with more certainty, standardized collections of
meta-analyses on phenomena in different subdo-
mains of developmental research are needed. We
strongly encourage such endeavors and have made
all materials openly available and provided substan-
tial documentation to expand this approach beyond
language acquisition studies.

Conclusion

We have showcased the use of standardized collec-
tions of meta-analyses for the diagnosis of (poten-
tial) issues in developmental research, using early
language acquisition as a case study. Our results
point to an overall lack of consideration of meta-
analytic effect size in study planning, leading to
habitually underpowered studies. In addition,
method choice and participant age modulate effect
size; we here provide first indicators of the impor-
tance of both factors in study design. To improve
the replicability of developmental research, and as
a consequence the empirical basis on which theories
of development are built, we strongly recommend
an increased use of effect sizes and meta-analytic
tools, including prospective power calculations.
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