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ARTICLE

Model reduction by iterative error system approximation
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ABSTRACT
The analysis of a posteriori error estimates used in reduced basis meth-
ods leads to a model reduction scheme for linear time-invariant systems
involving the iterative approximation of the associated error systems.
The scheme can be used to improve reduced-order models (ROMs) with
initial poor approximation quality at a computational cost proportional
to that for computing the original ROM. We also show that the iterative
approximation scheme is applicable to parametric systems and demon-
strate its performance using illustrative examples.
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1. Introduction

Model order reduction (MOR) of dynamical systems has become a central topic in the computa-
tional sciences and engineering. In particular for linear time-invariant (LTI) systems, many MOR
methodologies have been proposed in recent years. For a survey we refer to the books [1–3] and
the recent survey paper [4]. Here, we will discuss the situation that a reduced-order LTI model has
been computed by any projection-based method, and it is desirable to improve its approximation
quality. This may be due to the fact that design specifications are not met with the original
reduced-order model (ROM), or an a posteriori error analysis shows insufficient accuracy of the
approximation. The goal is to employ the already obtained information from the ROM and an a
posteriori error analysis in order to improve the approximation quality of the ROM in a
systematic manner. Compared with the reduced basis (RB) method, which updates the ROM
iteratively, the approach proposed here is more general in that any appropriate model reduction
technique can be applied in the iteration steps, and the way the ROM is improved differs from the
RB method in several aspects. We are only aware of the approach in [5,6], which yields a
procedure similar to the one we suggest in this paper, but is derived from a different perspective.
(The relations and differences of both approaches are discussed later in this paper.)

The present paper has been inspired by the RB approach to MOR of parametrized systems [7].
In particular a careful analysis of the methodology presented in [8] leads to the developments
reported later. The essence of our approach is an iterative method which at each step is
performing MOR to the error system; as a result this error is reduced at each step of the iteration
in a targeted fashion, thus yielding good reduced-order systems. Due to the different derivation of
the method as compared to [5,6], it also becomes clear quickly that an extension to linear
parametric problems is straightforward.

The paper is structured as follows. An analysis of the a posteriori error bounds in [8] leads to
Lemma 2.1 which reveals the new structure of the error system. Consequences follow in Section 2.1
and the proposed new procedure is described in Section 3. The paper concludes with numerical
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examples illustrating the performance of the method and a generalization to parametric
systems.

1.1. Some preliminaries

Consider the single-input single-output (SISO) full-order model (FOM)

E
d
dt

x ¼ Axþ Bu; y ¼ Cx (1)

of order n (i.e. the state xðtÞ is in R
n at any time t, A;E;2 R

n�n, B;CT 2 R
n) with transfer

function HðsÞ ¼ CðsE� AÞ�1B. We construct the (SISO) ROM

Ê
d
dt

x̂ ¼ Âx̂ þ B̂u; ŷ ¼ Ĉx̂ (2)

of order k by means of a Petrov–Galerkin projection defined by V;W 2 C
n�k, i.e.

Ê ¼ W�EV; Â ¼ W�AV; B̂ ¼ W�B; Ĉ ¼ CV:

The transfer function of the ROM, thus, is ĤðsÞ ¼ ĈðsÊ� ÂÞ�1B̂.
Assume for the time being that E ¼ I, and W�V ¼ I (as in [8]). Given the FOM and ROM

defined by Equations (1) and (2), respectively, the error and residual in time domain are defined as
follows:

eðtÞ ¼ xðtÞ � Vx̂ðtÞ; (3)

rðtÞ ¼ AVx̂ðtÞ þ BuðtÞ � V
d
dt

x̂ðtÞ; (4)

Hence, the temporal evolution of the error is described by

d
dt

eðtÞ ¼ AeðtÞ þ rðtÞ: (5)

Throughout this paper, we assume that A and all reduced order matrices Â (or the associated
matrix pairs ðA;EÞ, ðÂ; ÊÞ) have all their eigenvalues in the open left half plane. This implies that
the associated linear systems are (asymptotically) stable, as well as that the constant γ1 in the
following proposition is finite.

Proposition 1.1 (A posteriori error estimate [8].) Let γ1 � supt�0 k expðAtÞ k . Then the follow-
ing bound holds:

k xðtÞ � Vx̂ðtÞ k� γ1 k eð0Þ k þ
ðt
0

k rðτÞ k dτ

2
4

3
5 ¼: ΔxðtÞ: (6)

Furthermore: k yðtÞ � ŷðtÞ k�k C k ΔxðtÞ.

Remark 1.1 Denoting the Laplace transforms of x̂; u by X̂;U, the residual in frequency domain is

RðsÞ ¼ AVX̂ðsÞ þ BUðsÞ � sVX̂ðsÞ
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¼ ðA� sIÞVX̂ðsÞ þ BUðsÞ ¼ ðA� sIÞV W�ΦðsÞV½ ��1W� þ I
� �

BUðsÞ

¼ I�ΦðsÞV W�ΦðsÞVð Þ�1W�� �
BUðsÞ;

where ΦðsÞ ¼ sI� A. This expression (with UðsÞ ¼ 1) will appear prominently in
the sequel.

1.2. Improved error estimation using the dual system

Following [8], we define the dual system on the interval ½0;T�, with fixed final time T. The dual
state will be denoted by xdu:

d
dt

xduðtÞ ¼ AduxduðtÞ where Adu ¼ �A�; xduðTÞ ¼ C�: (7)

Given the dual projection defined by Vdu, Wdu 2 C
n�k, satisfying Wdu�Vdu ¼ I, the associated

ROM is

d
dt

x̂duðtÞ ¼ Âdux̂duðtÞ where Âdu ¼ �Vdu�A�Wdu; x̂duðTÞ ¼ Vdu�C�: (8)

In this framework, the projection defined by V, W in Section 1.1 is sometimes referred to as the
primal projection. The resulting error and residual of the dual FOM and ROM are:

eduðtÞ ¼ xduðtÞ �Wdux̂du and (9)

rduðtÞ ¼ AduWdux̂duðtÞ �Wdu d
dt

x̂duðtÞ ¼ ðAduWdu �WduÂduÞx̂duðtÞ: (10)

Thus, the dual error satisfies the differential equation:

d
dt

eduðtÞ ¼ AdueduðtÞ þ rduðtÞ; where eduðTÞ ¼ ðI�WduVdu�ÞC�: (11)

Proposition 1.2 (Dual a posteriori error estimate [8].) Let γdu1 � supt2½0;T� k expð�AdutÞ k .
Then the following bound holds:

k xduðtÞ �Wdux̂duðtÞ k� γdu1 k eduðTÞ k þ
ðT
t
k rduðτÞ k dτ

" #
¼: Δdu

x ðtÞ: (12)

The next result provides an exact expression for the output error y � ŷ, where the two outputs are
defined by Equations (1) and (2), respectively. This expression involves both the primal and the
dual reduced systems. In the sequel, the inner product of the complex vectors x, y is denoted
by hx; yi ¼ x�y.

Lemma 1.1 (Output error equality [8].) The reduced output error at time T satisfies

yðTÞ � ŷðTÞ ¼ T 1 þ T 2 � T 3 þ T 4; with

T 1 ¼ heduðTÞ; eðTÞi; where eduðTÞ ¼ ðI �WduVdu�ÞC� and
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eðTÞ ¼ eATeð0Þ þ
ðT
0
eAðT�τÞrðτÞdτ;

T 2 ¼ WduX̂
duð0Þ; eð0Þ

D E
; Where X̂duðtÞ ¼ eÂ

duðt�TÞ X̂
duðTÞ|fflfflffl{zfflfflffl}
Vdu�C�

and

eð0Þ ¼ ðI� VW�Þxð0Þ;

T 3 ¼
ðT
0
hrduðtÞ; eðtÞidt; where rduðtÞ ¼ ðAduWdu �WduÂduÞx̂duðtÞand

eðtÞ ¼ eAteð0Þ þ
ðt
0
eAðt�τÞrðτÞdτ;

T 4 ¼
ðT
0
hWdu x̂duðtÞ; rðtÞidt; Where rðtÞ ¼ ðAV� VÂÞx̂ðtÞ þ ðI� VW�ÞBuðtÞ:

At this point (following [8]), the primal and dual systems are combined to define an improved
reduced system output at time T, namely:

ŷðTÞ ¼ ŷðTÞ þ T 2 þ T 4 (13)

Our goal in the sequel is to analyse this expression so as to obtain an explicit reduced-order
system and hence an explicit error system for this improved reduced system output.

2. Analysis of the improved reduced system

In order to determine the linear system behind Equation (13), we start with some consequences of
the above definitions:

ŷðTÞ ¼ CVeW
�AVTW�xð0Þ þ

ðT
0
CVeW

�AVðT�τÞW�BuðT � τÞdτ;

T 2 ¼ hWdu x̂duð0Þ; eð0Þi ¼ CVdu eðW
duÞ�AVdu T ðWduÞ�ðI� VW�Þxð0Þ:

In order to investigate the term T 4, we note that

Wdux̂duðtÞ ¼ Wdue�Â
du ðT�tÞ x̂duðTÞ ¼ WdueðV

duÞ�A�Wdu ðT�tÞ ðVduÞ�C�

Therefore, with rðtÞ ¼ ðAV� VÂÞx̂ðtÞ þ ðI� VW�ÞBuðtÞ, we get

T 4 ¼
ðT
0

WdueðV
duÞ�A�Wdu ðT�tÞ ðVduÞ�C�

h i�
ðAV� VÂÞx̂ðtÞ þ ðI� VW�ÞBuðtÞ
� �

dt

¼
ðT
0
CVdu eðW

duÞ�AVdu ðT�tÞ ðWduÞ� ðAV� VÂÞx̂ðtÞ þ ðI� VW�ÞBuðtÞ
� �

dt

106 A. C. ANTOULAS ET AL.



¼
ðT
0
CVdueðW

duÞ�AVduðT�tÞðWduÞ�ðI� VW�ÞBuðtÞdt

þ
ðT
0
CVdueðW

duÞ�AVduðT�tÞðWduÞ�ðAV� VÂÞx̂ðtÞdt:

Thus, T 2 þ T 4 represents the analytical solution to the system:

d
dt

x̂2ðtÞ ¼ A2x̂2ðtÞ þWdu�rðtÞ; ŷ2ðtÞ ¼ C2x̂2ðtÞ

with initial condition x̂2ð0Þ ¼ ðWduÞ�ðI� VW�Þxð0Þ. Here, A2 ¼ ðWduÞ�AVdu;B2 ¼ ðWduÞ�;C2 ¼
CVdu: Hence putting the equations together yields the following augmented reduced system, where the
reduced state of the primal system x̂ is redefined as x̂1:

d
dt x̂1ðtÞ ¼ A1x̂1ðtÞ þ B1uðtÞ; ŷ1ðtÞ ¼ C1x̂1ðtÞ
d
dt x̂2ðtÞ ¼ A2x̂2ðtÞ þ B2 ðAV� VA1Þx̂1ðtÞ þΠBuðtÞ½ �; ŷ2ðtÞ ¼ C2x̂2ðtÞ;

where

A1 ¼ W�AV; B1 ¼ W�B; C1 ¼ CV; Π ¼ I� VW�:

Hence,

d
dt

x̂2ðtÞ þWdu�V
d
dt

x̂1ðtÞ ¼ A2x̂2 þWdu�AVx̂1ðtÞ þWdu�BuðtÞ:

Rewriting these equations with �̂ ¼ x̂1
x̂2

� �
yields

I 0
Wdu�V I

� �
d
dt

�̂ ¼ W�AV 0
Wdu�AV Wdu�AVdu

� �
�̂ þ W�B

Wdu�B

� �
u; ŷ ¼ ½CV;CVdu� �̂:

Thus defining

V1 ¼ V; V2 ¼ Vdu; W1 ¼ W; W2 ¼ Wdu;

and re-inserting E�I, we get the following result.

Lemma 2.1 The system with output ~y as defined in (13) has the following generalized state form:

E�
d
dt

�̂ ¼ A��̂ þ B�u; ~y ¼ C��̂; �̂ð0Þ ¼ W�
� xð0Þ

Πxð0Þ

� �
;

where Π ¼ I� EVðW�EVÞ�1W�, V� ¼
V1 0
0 V2

� �
; W� ¼

W1 0
0 W2

� �
, and

E� ¼ W�
� E 0

E E

� �
V�;A� ¼ W�

� A 0
A A

� �
V�;B� ¼ W�

� B
B

� �
;C� ¼ ½C;C�V�:

From the above lemma, it follows for the error of the transfer function ~H associated to the
improved reduced system with output ~y:

MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS 107



HðsÞ � ~HðsÞ ¼ HðsÞ � ½CV1|{z}
C1

;CV2|{z}
C2

� W�
1ðsE� AÞV1

zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{Φ11ðsÞ

0
W�

2ðsE� AÞV1|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Φ21ðsÞ

W�
2ðsE� AÞV2|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Φ22ðsÞ

2
6664

3
7775
�1

W�
1B

zffl}|ffl{B1

W�
2B|ffl{zffl}
B2

2
6664

3
7775

¼ CΦ�1ðsÞB� C1Φ
�1
11 ðsÞB1 � C2Φ

�1
22 ðsÞB2 þ C2Φ

�1
22 ðsÞΦ21ðsÞΦ�1

11 ðsÞB1:

Here, ΦðsÞ ¼ sE� A.
Corollary 2.1 The transfer function of the error system is

HerrðsÞ ¼ HðsÞ � ~HðsÞ ¼ C½ΦðsÞ�1 � V2Φ22ðsÞ�1W�
2�ΦðsÞ½ΦðsÞ�1 � V1Φ11ðsÞ�1W�

1�B (14)

Time domain representation of the error system

With the augmented system Ea ¼
E 0
E E

� �
, Aa ¼

A 0
A A

� �
, Ba ¼

B
B

� �
, Ca ¼ ½C; C�, the

augmented state xaðtÞ ¼
x1ðtÞ
x2ðtÞ

� �
satisfies

Ea
d
dt

xaðtÞ ¼ AaxaðtÞ þ BauðtÞ; yðtÞ ¼ CaxaðtÞ ) yðsÞ ¼ HðsÞuðsÞ;

in other words the augmented system is a non-minimal realization of the original system
ðE;A;B;CÞ. Consider the augmented error system:

Ea
d
dt

eaðtÞ ¼ AaeaðtÞ þ raðtÞ; yerrðtÞ ¼ CaeaðtÞ; (15)

where raðtÞ is the associated augmented residual defined by

raðtÞ ¼ AaV�W
�
� xaðtÞ þ BauðtÞ � EaV�W

�
�

d
dt

xaðtÞ: (16)

Corollary 2.2 Equations (15) and (16) describe the associated error in generalized state space form.
That is, there holds: yerrðsÞ ¼ HerrðsÞuðsÞ, where HerrðsÞ is defined by (14).

2.1. Some comments and consequences

(a) The interpretation of the ROM obtained here can be done without reference to the dual. This
system namely has triangular structure (the first projection affects the second, but not vice-versa).
In addition, while the improved system output in Equation (13) is defined only for time T, here,
this restriction is lifted and ~yðtÞ in Lemma 2.1 is defined for all time.

(b) The error system (Equation (14)) factors in a product of two residues, the first coming from
the original projection and the second from the second (also referred to as dual) projection.
Specifically, the transfer function HerrðsÞ can be rewritten as

HerrðsÞ ¼ C½I� V2Φ
�1
22 ðsÞW�

2ΦðsÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼:RduðsÞ

Φ�1ðsÞ ½I�ΦV1Φ
�1
11 ðsÞW�

1�B|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼:RprðsÞ

(17)

As we have assumed SISO systems, it is straightforward to get

HerrðsÞ �j jj jRduðsÞjj2jjRprðsÞjj2=σminðΦðsÞÞ ¼: ΔðsÞ;
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where RprðsÞ is the frequency-domain expression of the residual rðtÞ of the ROM (2), and RduðsÞ is
the frequency-domain expression of the residual rduðtÞ of the reduced dual system (Equation (8)).

Essentially, the error bound ΔðsÞ decays quadratically as it is the product of the two residuals
jjRduðsÞjj2 and jjRprðsÞjj2. HerrðsÞj j is the true error, often decaying faster than quadratic, and
sometimes, it is much smaller than the product of jjRduðsÞjj2 and jjRprðsÞjj2, see Figure 7 for an
experimental illustration, where Hð2Þ

err is the error system (Equation (17)) of a parametric model.
(c) The primal and dual projections can be of different dimension k, ,, respectively; the

dimension of the ROM is then kþ ,. Notice also that the ROM above cannot be obtained by
means of an (explicit) Petrov–Galerkin projection applied to (E,A,B,C). Instead the (block
diagonal) projection defined by V�,W� , must be applied to a non-minimal realization of the

original system, namely Ea ¼
E 0
E E

� �
, Aa ¼

A 0
A A

� �
, Ba ¼

B
B

� �
, Ca ¼ ½C; C�.

(d) The error system (14) can be written as

C½Φ�1ðsÞ � V2Φ�1
22 ðsÞW�

2�ΦðsÞ ½Φ�1ðsÞ � V1Φ�1
11 ðsÞW�

1�B
¼ C½Φ�1ðsÞ � V2Φ�1

22 ðsÞW�
2� ½I�ΦðsÞV1Φ

�1
11 ðsÞW�

1�B|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Hð1Þ

w

Thus, one suggestion for making use of the above formula is
Step 1. Choose the first (primal) projection V1, W1.
Step 2. Compute the second (dual) projection V2, W2 by means of weighted reduction, where

the to-be-reduced system is CΦ�1ðsÞ and the (right) weight is Hð1Þ
w .

(e) The output of the error system (Equation (15)) describes the time-domain output error of
the improved ROM defined in Lemma 2.1. In Section 4, we plot the time-domain output errors of
the successively constructed ROMs for a parametric system in Figure 6, where the monotonic
decay of the errors can be observed.

(f) In this framework, it readily follows that three or more stages can be considered. In the case
of three stages, we project the system

E3 ¼
E 0 0
E E 0
E E E

2
4

3
5; A3 ¼

A 0 0
A A 0
A A A

2
4

3
5; B3 ¼

B
B
B

2
4

3
5; C3 ¼ ½C; C; C�;

by V ¼ blkdiag ½V1;V2;V3�, and W ¼ blkdiag ½W1;W2;W3�, to obtain

E� ¼ W�E3V�; A� ¼ W�A3V�; B� ¼ W�B3V�; C� ¼ W�C3V�:

Let also ΦiðsÞ ¼ sEi � Ai, and recall that C3½sE3 � A3��1B3 ¼ C½sI� A��1B, i.e. ðE3;A3;B3;C3Þ is
a non-minimal realization of ðC;E;A;BÞ. The transfer function of the associated error system is

Hð3Þ
errðsÞ ¼C½Φ�1ðsÞ � V3Φ�1

3 ðsÞW3�ΦðsÞ½Φ�1ðsÞ � V2Φ
�1
2 ðsÞW2�ΦðsÞ½Φ�1ðsÞ � V1Φ

�1
1 ðsÞW1�B|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Hð21Þ
w ðsÞ

:

Thus, the to-be-approximated system here is still CΦ�1ðsÞ, while the weighting function is Hð21Þ
w .

Hence, we may conclude that this method leads to model reduction by successive approximation
of the ensuing error systems.

(g) Some remarks on the related literature are in order.

(1) Some of the above considerations have been used in [9], e.g. some of the discussions in the
comments (b) and (c).

(2) In [5,6], Panzer, Wolf, and Lohmann have obtained an expression similar to Equation (14)
and its generalization to more than two stages. The motivation that led to these results,
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however, is different from the reduced-basis motivation used here. The papers above
contain an additional result which is not used here: namely the fact is used that if V is
constructed by means of a rational Krylov method based on E, A, B, then ΠAV is rank
one, and in particular it can be factored as ΠAV ¼ ðΠBÞð~CÞ, where ~C is a row vector. In
these expressions Π ¼ I� EVðW�EVÞ�1W�, and W is arbitrary.

3. The new procedure: weighted reduction of successive error systems

In the following, we give a detailed description of the iterative procedure to improve a ROM using
successive approximation of the error system. We use the following notation throughout:

ΦiðsÞ ¼ sW�
i EVi �W�

iAVi; i ¼ 1; . . . ; q:

(A) Data: given is the system (C,E,A,B) of McMillan degree n, with transfer function
HðsÞ ¼ CΦ�1ðsÞB, where ΦðsÞ ¼ sE� A.
(B) 1st step: find V1;W1 2 R

n�k1 , and construct the corresponding ROM:

Hð1Þ
redðsÞ ¼ C1Φ

�1
1 ðsÞB1; where

C1 ¼ CV1; E1 ¼ W�
1EV1; A1 ¼ W�

1AV1; B1 ¼ W�
1B:

It follows that the error system can be written as

Hð1Þ
errðsÞ ¼ HðsÞ �Hð1Þ

redðsÞ ¼ CΦ�1B� C1Φ
�1
1 B1 ¼ CΦ�1ðsÞ I�ΦðsÞV1Φ

�1
1 ðsÞW�

1

� �
B:

Introducing the projection Π1 ¼ I� EV1 W�
1EV1

� ��1
W�

1, we can eliminate ΦðsÞ as follows:

I�ΦðsÞV1Φ
�1
1 ðsÞW�

1 ¼ Π1 þΠ1AV1Φ
�1
1 ðsÞW�

1: (18)

Hence the error system above can be expressed as follows, where Hð1Þ
w ðsÞ is the weight:

Hð1Þ
errðsÞ ¼ CΦ�1ðsÞ Π1 þΠ1AV1Φ

�1
1 ðsÞW�

1

� �
B|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Hð1Þ
w ðsÞ

: (19)

(C) 2nd step: we now seek V2;W2 2 R
n�k2 , where the resulting reduced system with

V12 ¼ blkdiag ½V1; V2�; W12 ¼ blkdiag ½W1; W2�; is

Hð2Þ
redðsÞ ¼ ½C;C�V12 W�

12
Φ 0
Φ Φ

� �
V12

� ��1

W�
12

B
B

� �
:

It readily follows that the resulting error system is

Hð2Þ
errðsÞ ¼ HðsÞ �Hð2Þ

redðsÞ ¼ CΦ�1ðsÞ � CV2Φ
�1
2 ðsÞW�

2

� �
I�ΦðsÞV1Φ

�1
1 ðsÞW�

1

� �
B|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Hð1Þ
w ðsÞ

:

Consequently, the second step amounts to the approximation of CΦ�1ðsÞ, subject to the weight

Hð1Þ
w ðsÞ ¼ Π1 þΠ1AV1Φ

�1
1 ðsÞW�

1

� �
B: (20)

(Note that CΦ�1Hð1Þ
w is nothing but the first error system Hð1Þ

errðsÞ (Equation 19). Therefore,
approximation of CΦ�1ðsÞ, subject to the weight Hð1Þ

w ðsÞ, implicates that V2;W2 are obtained
from applying MOR to the error system Hð1Þ

errðsÞ.)
(D) q-th step: we seek Vq;Wq 2 R

n�kq , where the resulting reduced system with
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V1q ¼ blkdiag ½V1; � � � ;V2; Vq�;W1q ¼ blkdiag ½W1; � � � ;W2; Wq�; is

HðqÞ
redðsÞ ¼ ½C; � � � ;C;C�V1q W�

1q

Φ � � � 0 0
..
. . .

. ..
. ..

.

Φ Φ 0
Φ � � � Φ Φ

2
664

3
775V1q

2
664

3
775
�1

W�
1q

B
..
.

B
B

2
664

3
775:

It readily follows that the resulting error system is

HðqÞ
errðsÞ ¼ HðsÞ �HðqÞ

redðsÞ

¼ CΦ�1ðsÞ � CVqΦ
�1
q ðsÞW�

q

h i
I�ΦðsÞVq�1Φ

�1
q�1ðsÞW�

q�1

h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Hðq�1Þ
w ðsÞ

� � � I�ΦðsÞV1Φ
�1
1 ðsÞW�

1

� �
B|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Hð1Þ
w ðsÞ

Consequently the q-th step amounts to the approximation of CΦ�1ðsÞ, subject to the weight
Hðq�1Þ

w � � �Bð1Þ
w , the newest component of the weight being

Hðq�1Þ
w ðsÞ ¼ Πq�1 þΠq�1AVq�1Φ

�1
q�1ðsÞW�

q�1

h i
; (21)

where Πq�1 ¼ I� EVq�1 W�
q�1EVq�1

	 
�1
W�

q�1.

Remark 3.1 (Computation of Vi, Wi, i > 1) From the above procedure, we know that at each
iteration step, a pair of matrices Vi;Wi, i ¼ 1; . . . ; q, is computed, such that an updated ROM
(with error HðiÞ

errðsÞ) of the original system is obtained. We observe that

HðiÞ
errðsÞ ¼ Hði�1Þ

err ðsÞ � Ĥði�1Þ
err ðsÞ; i ¼ 2; . . . ; (22)

where Ĥði�1Þ
err ðsÞ ¼ CVi½Φ�1

i ðsÞ�W�
i B

ðiÞ
w , and BðiÞ

w ¼ Hði�1Þ
w ðsÞ � � �Hð1Þ

w ðsÞB.
Comparing Ĥði�1Þ

err ðsÞ with

Hði�1Þ
err ðsÞ ¼ C½Φ�1ðsÞ�BðiÞ

w ; (23)

it is easy to see that the matrices Vi, Wi are obtained by performing MOR to the error system
Hði�1Þ

err ðsÞ, where Ĥði�1Þ
err ðsÞ is the resulting reduced error system. After Vi, Wi are computed, they

are combined with Vj;Wj; j < i, to form V1i;W1i, so as to construct the ith updated ROM HðiÞ
redðsÞ

of the original system.
For i > 1, if the balanced truncation (BT) method is used to compute Vi;Wi, i ¼ 1; . . . ; q, it

consists of applying BT to the error system Hði�1Þ
err ðsÞ (23), i.e. the weighted system C;E;A;BðiÞ

w .
If an interpolatory method is used, such as moment-matching (MM), selection of good

interpolation points is important. At each step i > 1 of updating the ROM, the interpolation
point can be selected as the one which corresponds to the largest magnitude of Hði�1Þ

err ðsÞ. The idea
of selecting the interpolation point is analogous to the greedy algorithm of the RB method [7],
where at each iteration step, the parameter corresponding to the biggest error is selected to
compute a new basis vector, and usually a single vector is added to enrich the RB. For MM,
several vectors could be selected at once.

Remark 3.2 (Decay of the ROM error) The behaviour of HðiÞ
errðsÞ, for i � 1, depends on the

construction of the matrix pairs Wi and Vi used for the projection. From the analysis in Remark
3.1, we see that Vi;Wi are computed such that

Hði�1Þ
err 	 Ĥði�1Þ

err ðsÞ ¼ CVi½Φ�1
i ðsÞ�W�

i B
ðiÞ
w :
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Usually, it is required that Vi;Wi are computed so that the relative error of Ĥði�1Þ
err is below a

certain tolerance 2 <1, i.e.

Hði�1Þ
err � Ĥði�1Þ

err �2j jHði�1Þ
err

�� ��
From the relation in Equation (22), we get

HðiÞ
errðsÞ �2j jHði�1Þ

err

�� ��
Therefore, ifWi and Vi are computed to obtain a ROM Ĥði�1Þ

err of the error system meeting the above
accuracy requirement, the magnitude of the error system HðiÞ

errðsÞ; i > 1 should monotonically
decrease.

Remark 3.3 (Generalization to linear parametric systems.) Consider either the first-order
parametric system

EðpÞ dxdt ¼ AðpÞx þ BðpÞuðtÞ;
yðtÞ ¼ CðpÞx; (24)

or the second-order parametric system

MðpÞ d2xdt2 þ KðpÞ dxdt þ AðpÞx ¼ BðpÞuðtÞ;
yðtÞ ¼ CðpÞx; (25)

where p is a vector of parameters. E;A;M;K 2 R
n�n, B 2 R

n�nI , and C 2 R
nO�n. Using the

Laplace transformation, we get the parametric system in the frequency domain,

sEðpÞx ¼ AðpÞx þ BðpÞUðsÞ;
yðμÞ ¼ CðpÞx;

or

s2MðpÞx þ sKðpÞx þ AðpÞx ¼ BðpÞUðsÞ;
yðμÞ ¼ CðpÞx:

Either of the above equations can be generally written as

ΦðμÞx ¼ BðμÞUðμÞ;
yðμÞ ¼ CðμÞx; (26)

where μ ¼ ðp; sÞT , so that the transfer function of Equation (24) or (25)
is HðμÞ ¼ CðμÞ½ΦðμÞ��1BðμÞ.

The new procedure explored in the current section can, more or less straightforwardly, be
applied to these parametric systems by replacing ΦðsÞ with ΦðμÞ, C with CðμÞ, and B with BðμÞ.
For the second-order system in Equation (25), in addition to the block matrices of A introduced
in Section 2.1, the block matrices of M, K should also be introduced to compute the updated
ROMs as explained in the comment (c) in Section 2.1. The block structures of M.K,A are the same
as the block structures of E,A for the first-order system. In the next section, we also demonstrate
the new procedure applied to an example of a second-order parametric system.

4. Examples

We will now illustrate the above considerations by means of three examples. For the weighted
model reduction needed in the successive approximation procedure, we can use weighted
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balanced truncation (W-BT). For completeness, we sketch this method here, more details can be
found in [1].

Let (C,E,A,B,D) be a realization of the original system and (Cw, Ew, Aw, Bw ,Dw) a realization
of the weighting function.1 We define the composite system with transfer func-
tion ĤðsÞ ¼ HðsÞHwðsÞ:

Ê ¼ E 0
0 Ew

� �
; Â ¼ A BCw

0 Aw

� �
; B̂ ¼ BDw

Bw

� �
; Ĉ ¼ C; DCw½ �; D̂ ¼ DDw :

Let P be the controllability Gramian of ðÊ; Â ; B̂Þ, and Q the observability Gramian of (C,A).
Finally, let Pn be the leading n� n minor of P. With Pn ¼ U�U and Q ¼ L�L, we compute the
SVD UL� ¼ WΣV�. The projection matrices are then

W�¼Σ
�1

2
1 V�

1L and V ¼U�W1Σ
�1

2
1

Example 1. The first system has order 16 and is defined as follows:

A ¼ blkdiag
�:1 40
�40 �:1

� �
;

�:01 25
�25 �:01

� �
;

�:02 10
�10 �:02

� �
;�diagð1 : 1 : 10Þ

� �
;

B ¼ onesð16; 1Þ;C ¼ ½2; 1;�1; 3; 1;�1;�1;�2;�2; 5; 3; 1;�1;�2;�4; 1�;

The W-BT procedure described above is applied in three steps. The reduction order at each
step is 2, i.e. the three reduced systems have order 2, 4, 6. In Table 1, the H2- and the H1-norms
of the three error systems are shown, together with the norms of the sixth order BT (last row of
the table). Here, Σ is the original system, Σ2, Σ4, Σ6 are the systems obtained by successive W-BT,
and Σbal

6 is the sixth order reduced system obtained by BT (listed for comparison purposes). Recall
that BT of order 6 involves a full, as opposed to block triangular, projection and hence the
reduced system has a better fit than the one obtained by a three step-reduction where each step is
of order 2.

In this particular case, the iterative procedure is very close to BT, and furthermore the resulting
poles of the ROM,

λðA6Þ ¼

�9:9364e� 02þ 3:9999eþ 01i
�9:9364e� 02� 3:9999eþ 01i
�1:9821e� 02þ 1:0000eþ 01i
�1:9821e� 02� 1:0000eþ 01i
�1:0021e� 02þ 2:5000eþ 01i
�1:0021e� 02� 2:5000eþ 01i

2
666666664

3
777777775

are very close to the three complex poles � :1
 40i; �:01
 25i; �:02
 10i of the original
system. At each iteration, one of the peaks of the Bode plot is captured together with the
corresponding pole. Notice also the monotonicity of the decrease of the error norms as the
order of the approximants increases. The corresponding plots are shown in Figure 1.

Table 1. Example 1, error norms for reduction of 16th order system by W-BT.

H2 H1

k Σ k 1.5349e+01 4.9852e+01
k Σ� Σ2 k 1.3058e+01 4.9890e+01
k Σ� Σ4 k 4.2125e+00 7.4014e+00
k Σ� Σ6 k 9.5388e-01 1.3787e+00
k Σ� Σbal6 k 9.5371e-01 1.3790e+00
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Example 2. The second system is the well-known CD player model with McMillan degree
120 [10]. The reduction is also performed in three steps (orders of the resulting ROMs:
6; 12; 18). We apply two reduction methods for each successive step. The first is W-BT as
described earlier and the second is Rational Krylov, where the interpolation points are chosen
from the peaks of each error system. The necessity for the second method arose from the fact
that W-BT missed the second peak of the amplitude Bode plot (between 104 and 105 Hz); this
is due to the low magnitude of this part of the frequency response compared with the
magnitude of the dominant peak. Capturing the secondary peak is thus achieved at the
expense of obtaining higher error norms as shown in Table 2. There, Σ is the original system;
Σ6, Σ12, Σ18 are the systems obtained by successive W-BT or rational Krylov; and Σbal

18 is the
18th-order reduced system obtained by BT. Again, the monotonicity of the decay of these
norms holds. Finally, for comparison purposes, we add the norm of the 18th-order reduced
system obtained by BT.

The corresponding Bode plots of the FOM and ROM transfer functions as well as the resulting
error systems are shown in Figures 2 and 3.

Example 3. We study a parametric model of a plate (floor inside a building near a highway).
The parametric model is of second-order form,

M
d2x
dt2

þ pE
dx
dt

þ Ax ¼ B; y ¼ Cx;

The parameter p is the damping coefficient. The size of the original system is n ¼ 22.
We use the parametric MOR algorithm proposed in [11] to compute the ROM. From the

algorithm, a projection matrix V is computed, and the ROM is obtained by Galerkin projection as
below,

100 101 102 100 101 102
10-3

10-2

10-1

100

101

102
Original and reduced systems using weightrd BT

 original  n = 16
 reduced  k = 2
 reduced  k = 4
 reduced  k = 6

(a)

10-4

10-3

10-2

10-1

100

101

102
Error systems: reduction by W-BT

(b)

 error system  k = 4

 error system  k = 6

 error system  k = 2

Figure 1. Example 1, reduction of a 16th order system by Weighted-BT – Bode plots of FOM and ROMs (left) and the error
systems (right).

Table 2. Example 2, error norms.

Reduction of CD player by W-BT Reduction of CD player by R-Krylov

H2 H1 H2 H1

Norms Σk k 2.6367e + 02 6.8492e + 01 k Σ k 2.6367e + 02 6.8492e + 01
k Σ� Σ6 k 2.7375e + 00 8.4375e − 01 k Σ� Σ6 k 2.6464e + 02 6.7444e + 01
k Σ� Σ12 k 1.3057e + 00 1.4160e − 01 k Σ� Σ12 k 8.4270e + 00 1.9912e + 00
k Σ� Σ18 k 1.0567e + 00 7.0622e − 02 k Σ� Σ18 k 8.3346e + 00 1.9807e + 00
k Σ� Σbal18 k 5.0463e − 01 2.2918e − 02 k Σ� Σbal18 k 5.0463e − 01 2.2918e − 02
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M̂
d2x̂
dt2

þ pÊ
dx̂
dt

þ Âx̂ ¼ B̂; ŷ ¼ CVx̂;

where M̂ ¼ VTMV, Ê ¼ VTEV, Â ¼ VTAV 2 R
r�r, B̂ ¼ VTB 2 R

r�nI , Ĉ ¼ CV 2 R
nO�r, and

x̂ 2 R
r, ŷ 2 R

nO .
We have computed Hð1Þ

errðs; pÞ, Hð2Þ
errðs; pÞ, and Hð3Þ

errðs; pÞ, which are the transfer functions of the
error systems of the first, second and the third ROMs of sizes r ¼ 4; 7; 10, respectively. The ith
ROM is obtained by interpolating the i� 1st error system Hði�1Þ

err , where the interpolation point of
ðs; pÞ corresponds to the peak of Hði�1Þ

err , for i ¼ 2; 3. In Figure 4 on the left, we compare Hð1Þ
errðs; pÞ

with Hð2Þ
errðs; pÞ, and in Figure 4 on the right, we compare Hð2Þ

errðs; pÞ with Hð3Þ
errðs; pÞ, where the error

systems are plotted along the axes of frequency f and the parameter p. The figures are plotted by
randomly choosing 50 samples of f 2 ½0; 200�Hz and 10 samples of p 2 ½95300; 95310�.

From Figure 4(a), we see that the peak of Hð1Þ
err is close to f ¼ 140Hz. After interpolation of Hð1Þ

err
at the point close to f ¼ 140Hz, the error of the second ROM, i.e. the error system Hð2Þ

err , has the
lowest magnitude at that interpolation point. Similarly in the right plot of Figure 4, the peak of
Hð2Þ

err is at a point close to f ¼ 40Hz. After interpolating Hð2Þ
err at that point, the error of the third

101 102 103 104 105 101 102 103 104 105
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10-3

10-2
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100

101

102
CD player and reduced systems using weighted BT

 original  n = 120
 reduced  k = 6
 reduced  k = 12
 reduced  k = 18

(a)

10-4

10-3

10-2

10-1

100
CD player reduction by W-BT: error systems

(b)

 error system  k = 6

 error system  k = 12

 error system  k = 18

Figure 2. Example 2, reduction of a CD player model by weighted-BT – Bode plots of FOM and ROMs (left) and the error
systems (right).
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CD player and reduced systems using rational Krylov

original  n = 120
reduced  k = 6
reduced  k = 12
reduced  k = 18

(a)
101 102 103 104 105

10-10
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10-4

10-2

100

102

CD player reduction by rational Krylov: error systems

(b)

error system  k = 6

error system  k = 12

error system  k = 18

Figure 3. Example 2, reduction of a CD player model by rational Krylov–Bode plots of FOM and ROMs (left) and the error
systems (right).
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ROM, i.e. the error system Hð3Þ
err , has the lowest magnitude at the same point. It is entirely in

agreement with the theoretical analysis in Remark 3.1. The maximal H1-norm of the error
systems over the parameter sample space p is given in Table 3.

In Figure 5, we plot the magnitudes of the transfer functions of the original system Σ, and those
of the first ROM Σr¼4, and the second ROM Σr¼7 at 500 random samples of frequency and the
parameter p. The second ROM is already indistinguishable from the original model.

In addition, we plot the error behaviour of the ROMs in the time domain in Figure 6. The plots
clearly describe the behaviour of the output error according to the time evolution as well as the
parameter variation.

In Figure 7, the norms of the two residuals jjRdujj2 and jjRprjj2, as well as the magnitude of Hð2Þ
err

are plotted, where Hð2Þ
err

�� �� is indeed smaller than the product of jjRdujj2 and jjRprjj2, as implied by
the error bound discussed in the comment (b) in Section 2.1.

Figure 4. Example 3, the error systems Hð1Þerr , H
ð2Þ
err and Hð3Þerr .

Table 3. Example 3, H1-norm of the error systems.

Σ� Σr¼4j jj j Σ� Σr¼7j jj j Σ� Σr¼10j jj j
max
p

H1 0.1027 0.0013 0.0012
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Figure 5. Example 3, the transfer functions of Σ, Σr¼4, Σr¼7.
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5. Conclusions

We have discussed an iterative procedure to improve a ROM of a LTI or parametric system
computed by an arbitrary method. The procedure is based on successively reducing the error
systems associated with the current reduced systems. The formulas used are derived by analysing
known a posteriori error estimates used in RB methods. The iterative process uses either weighted
BT or rational Krylov methods to reduce the error systems, represented as weighted transfer
functions. Numerical examples illustrate the performance of the suggested procedure.

Note

1. If the weight is the product of two transfer functions defined by means of (Ci;Ei;Ai;Bi;Di); i = 1; 2, then

Ew ¼ E1 0
0 E2

� �
; Aw ¼ A1 B1C2

0 A2

� �
; Bw ¼ B1D2

B2

� �
; Cw ¼ C1; D1C2

� �
; Dw ¼ D1D2:
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