Supplementary Information

Insight into the molecular recognition mechanism of

the coactivator NCoA1 by STAT6

Luigi Russo^{1,3}, Karin Giller¹, Edith Pfitzner^{2,4}, Christian Griesinger¹ and Stefan Becker^{1*}

¹Department for NMR based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany,

²Friedrich-Schiller-University Jena, Institute of Biochemistry and Biophysics, Philosophenweg 12, 07743 Jena, Germany.

³Present address: Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy.

⁴Present address: University of Kassel, Mönchebergstraße 19, 34109 Kassel, Germany

^{*}Corresponding author: sabe@nmr.mpibpc.mpg.de

Table SI 1a. 1 H, 13 C α and 13 C β chemical shifts of the unbound STAT6 $^{783-814}$.

	H^N	αН	$oldsymbol{eta}$ H	others	N	Cα	Сβ
Gly ⁷⁸³							
Thr ⁷⁸⁴						62.12	69.65
Trp^{785}	8.30	4.68	3.30,3.19		124.30	57.32	29.70
Ile ⁷⁸⁶	7.91	3.98	1.68	γCH2 1.33,1.01 γCH3 0.85 δCH3 0.77	123.72	61.17	38.79
Gly ⁷⁸⁷	7.55	3.67			111.59	45.16	
Glu ⁷⁸⁸	8.08	4.20	1.94, 1.83	γCH2 2.26,2.14	120.02	56.62	30.65
Asp^{789}	8.34	4.48	2.61, 2.50	•	120.90	54.35	41.10
Ile ⁷⁹⁰	7.76	4.00	1.66	γCH2 1.19,1.06γCH3 0.76 δCH3 0.64	119.47	60.90	38.79
Phe ⁷⁹¹ Pro ⁷⁹²	8.12	4.74	3.10,2.86		124.47	55.24	42.15
Pro ⁷⁹³						62.92	31.89
Leu ⁷⁹⁴	8.18	4.20	1.56	γH1.49 δCH3 0.94,0.81	122.05	55.22	42.30
Leu ⁷⁹⁵	8.13	4.43	1.62	γH1.49 δCH3 0.94,0.85	125.37	55.83	41.95
Pro ⁷⁹⁶				•			
Pro ⁷⁹⁷						63.40	31.87
Thr ⁷⁹⁸	8.15	4.12	4.07	γCH3 1.20	113.39	61.97	69.98
Glu ⁷⁹⁹	8.42	4.20	1.97, 1.89	γCH2 2.27,2.17	122.54	57.11	30.18
Gln^{800}	8.26	4.19	2.00, 1.94	γCH2 2.35,2.25	120.66	56.64	29.64
Asp^{801}	8.29	4.49	2.04, 1.89	γCH2 2.76,2.58	121.48	54.36	40.93
Leu ⁸⁰²	8.34	4.22	1.76	γH1.64 δCH3 0.93,0.78	123.66	56.43	41.87
Thr^{803}	8.17	4.14	4.06	γCH3 1.24	113.48	64.11	69.20
Lys ⁸⁰⁴	7.79	4.18	1.87, 1.78	γCH2 1.42, 1.32 δCH21.69 εCH22.95	121.91	57.03	32.64
Leu ⁸⁰⁵	7.80	4.16	1.60	γH1.54 δCH3 0.92, 0.78	121.25	55.61	42.21
Leu ⁸⁰⁶	7.96	4.26	1.62	γH1.56 δCH3 0.91, 0.78	121.62	55.16	41.82
Leu ⁸⁰⁷	7.98	4.27	1.64	γH1.52 δCH3 0.93, 0.80	121.96	55.96	42.40
Glu ⁸⁰⁸	8.21	4.19	2.03, 1.92	γCH2 2.32, 2.18	120.80	57.01	30.19
Gly ⁸⁰⁹	8.35	3.92	•		109.76	45.49	
Gln ⁸¹⁰	8.17	4.31	2.06, 1.94	γCH2 2.39, 2.24	119.39	55.85	29.50
Gly ⁸¹¹	8.40	3.93	•		109.77	45.20	
Glu ⁸¹²	8.31	4.30	1.98, 189	γCH2 2.26, 2.20	120.59	56.67	30.35
Ser ⁸¹³	8.36	4.41	3.88		116.76	58.34	64.07
Gly ⁸¹⁴	7.98	3.75			117.00	46.18	

Table SI 1b. $^3J(H_N,H_{\circ})$ couplings of the unbound and bound with reference values for the random coil conformation 17 STAT6 $^{783-814}$.

Residue	³ J(H _N ,H _α) Free	³ J(H _N ,H _a) Bound	³ J(H _N ,H _a) reference coil ¹⁷
Gly ⁷⁸³			
Thr ⁷⁸⁴			
Trp ⁷⁸⁵	6.84	5.59	6.5
Ile ⁷⁸⁶	7.34	7.16	7.2
Gly^{787}			
Glu ⁷⁸⁸	6.04	4.45	6.2
Asp^{789}	6.30	4.15	6.6
Ile ⁷⁹⁰	7.00	4.42	7.2
Phe ⁷⁹¹	6.59	5.34	7.1
Pro ⁷⁹²			
Pro ⁷⁹³			
Leu ⁷⁹⁴	7.14	5.76	6.6
Leu ⁷⁹⁵	6.44	6.00	6.6
Pro ⁷⁹⁶			
Pro ⁷⁹⁷			
Thr ⁷⁹⁸	7.20	6.99	7.5
Glu ⁷⁹⁹	5.86	4.35	6.2
Gln^{800}	5.99	4.14	6.3
Asp^{801}	6.01	4.30	6.6
Leu ⁸⁰²	5.98	3.80	6.6
Thr ⁸⁰³	6.30	3.36	7.5
Lys ⁸⁰⁴	6.03	3.96	6.6
Leu ⁸⁰⁵	6.02	3.59	6.6
Leu ⁸⁰⁶	6.17	4.48	6.6
Leu ⁸⁰⁷	6.20	4.47	6.6
Glu ⁸⁰⁸	5.91	4.63	6.2
Gly^{809}			
Gln ⁸¹⁰	6.67	6.52	6.3
Gly ⁸¹¹			
Glu ⁸¹²	7.00	6.37	6.2
Ser ⁸¹³	6.88	6.82	6.6
Gly ⁸¹⁴			

Table SI 2. X-ray data collection statistics.

Data statistics	NCoA1 PAS-B + STAT6 (783-814)-peptide				
Wavelength	0.7 Å				
Beamline	SLS-PX2				
Detector	PILATUS 6M				
Space group	P6 ₂				
а	61.63 Å				
b	61.63 Å				
С	73.28 Å				
Resolution ^a	2.51 Å (2.61-2.51 Å)				
Reflections measured	112,455				
Unique reflections	5,471				
Redundancy	20.51 (19.95)				
Completeness(%)	99.8 (98.3)				
Mean $I/\sigma(I)$	30.26 (6.1)				
$R_{\text{rim}} (\%)^{\text{b}}$	2.6 (13.1)				

^aValues in parentheses are outer-resolution shells.

 ${}^{b}R_{rim} = \sum_{hkl} \left[N / (N-1) \right]^{1/2} \sum_{i} \left| I_{i}(hkl) - \left\langle I(hkl) \right\rangle \right| / \sum_{hkl} \sum_{i} I_{i}(hkl)$, where N is the redundancy and $I_{i}(hkl)$ is the ith observation of reflection hkl and $\langle I(hkl) \rangle$ is the weighted average intensity for all observations i of reflection hkl.

Table SI 3. X-ray structure refinement statistics NCoA1 PAS-B in complex with the ${\rm STAT6}^{783-814}$ peptide.

R-factor ^a	18.35%
R_{free}^{b}	23.55%
Root mean square deviati	ons
from ideal geometry	
Bond lengths	0.016 Å
Bond angles	1.95°
No. of protein residues	118
No. of water residues	8
Ramachandran plot (%)	
Favoured	98.18
Allowed	0.91
Outliers	0.91

 $^{^{}a}R = \sum_{hkl} ||F_{obs}|| - |F_{calc}|| / \sum_{hkl} |F_{obs}|$, where F_{obs} and F_{calc} are the observed and calculated structure factors, respectively.

 $^{{}^{}b}R_{free}$ was determined using 5% of the data 1 .

Table SI 4. NMR structural statistics of the NCoA1²⁵⁷⁻³⁸⁵/ STAT6⁷⁸³⁻⁸¹⁴ complex.

NMR constraints	
Distance constraints	
Total NOE	1510
Intraresidue	505
Interresidue	1005
Sequential $(i-j =1)$	381
Medium range ($ i-j < 4$)	251
Long range $(i-j > 5)$	280
Intermolecular	93
Hydrogen bonds	40
Total TALOS+ dihedral angle restraints	182
Residual dipolar couplings (¹ H- ¹⁵ N)	72
Structure Statistics	, 2
Violations (mean and SD)	
Distance constraints (Å)	0.029 ± 0.006
Dihedral angle constraints (°)	0.405 ± 0.031
Max. distance constraint violation (Å)	0.045
Max. dihedral angle violation (°)	1.3
RDCs Q-factor	
Alignment tensor 1	0.16 ± 0.01
Alignment tensor 2	0.09 ± 0.03
Rms deviations from idealized covalent geometry	
Bond lengths (Å)	0.001
Bond angles (°)	0.2
Coordinate precision	
RMSD from mean structure ^b (Å)	
All backbone atoms	0.485
All heavy atoms	1.310
Ramachandran plot statistics ^c (%)	
Most favored regions	90.8
Additional allowed regions	9.2
Generously allowed regions	0
Disallowed regions	0

The 20 conformes with the lowest energies were selected for statistical analysis.

^aQ-factor= RMS (D^{calc} - D^{obs})/RMS D^{obs}, where D^{calc} and D^{obs} are calculated and observed RDC values, respectively. The alignment tensor 1 and 2 are related to the NcoA1 PAS-B domain and the STAT6⁷⁸³⁻⁸¹⁴ peptide in the complex, respectively.

^bOnly the region 260-367 of the NcoA1 PAS-B domain was used for rmsd calculations. The flexible residues 305, 351-354 were excluded from the analysis

^cBased on PROCHECK-NMR analysis.

Table SI 5. Residual dipolar couplings measured on the unbound STAT6 peptide.

Residue	¹ D _{NH} RDCs
	(Hz)
Gly ⁷⁸³	
Thr ⁷⁸⁴	
Trp ⁷⁸⁵	
Ile ⁷⁸⁶	
Gly^{787}	-3.13
Glu ⁷⁸⁸	-0.24
Asp^{789}	-0.95
Ile ⁷⁹⁰	
Phe ⁷⁹¹	-9.76
Pro ⁷⁹²	
Pro ⁷⁹³	
Leu ⁷⁹⁴	-8.22
Leu ⁷⁹⁵	-9.03
Pro ⁷⁹⁶	
Pro ⁷⁹⁷	
Thr ⁷⁹⁸	-6.35
Glu ⁷⁹⁹	5.06
Gln^{800}	7.70
Asp^{801}	7.03
Leu ⁸⁰²	6.85
Thr ⁸⁰³	7.45
Lys^{804}	8.74
Leu ⁸⁰⁵	5.43
Leu ⁸⁰⁶	5.90
Leu ⁸⁰⁷	7.11
Glu^{808}	
Gly^{809}	4.07
Gln ⁸¹⁰	0.89
Gly^{811}	-0.71
Glu^{812}	-0.26
Ser ⁸¹³	-0.77
Gly ⁸¹⁴	

Table SI 6. Alignment tensor parameters related to the fitting of the RDCs of the NCoA1²⁵⁷⁻³⁸⁵ (bound), STAT6⁷⁸³⁻⁸¹⁴(bound) and STAT6⁷⁸³⁻⁸¹⁴(free) onto the NMR structure of the NCoA1²⁵⁷⁻³⁸⁵/ STAT6⁷⁸³⁻⁸¹⁴ complex.

	NCoA1 ²⁵⁷⁻³⁸⁵	STAT6 ⁷⁸³⁻⁸¹⁴	STAT6 ⁷⁸³⁻⁸¹⁴	STAT6 ⁷⁸³⁻⁸¹⁴
	(Bound) ^a	(Bound) ^b	(Bound) ^c	(Free) ^d
$A_{\rm a}(10^{-4})$	-16.8	-16.8	-13.5	-4.9
$A_{\rm r} (10^{-4})$	-6.9	-6.9	-8.7	-2.4
α (°)	184	184	201	186
β (°)	159	159	157	81
γ (°)	211	211	227	281
Q factor	0.14	0.23	0.17	0.32
NSP ^e	1	1	0.99	0.22

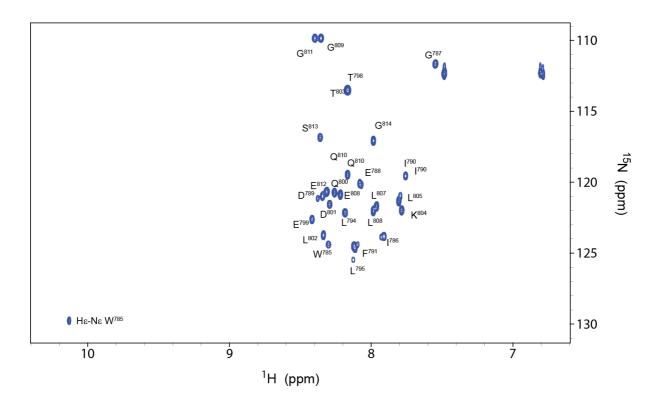
^aTensor eigenvalues resulting from the fit of experimental RDCs measured from NCoA1²⁵⁷⁻ in complex with STAT6⁷⁸³⁻⁸¹⁴ to the NMR structure reported in this manuscript.

^bFitting of the RDCs measured for the bound STAT6⁷⁸³⁻⁸¹⁴ to the NMR structure of the complex by using the alignment tensor parameters obtained by the analysis of the RDCs of NCoA1²⁵⁷⁻³⁸⁵ in the bound form against the NMR structure.

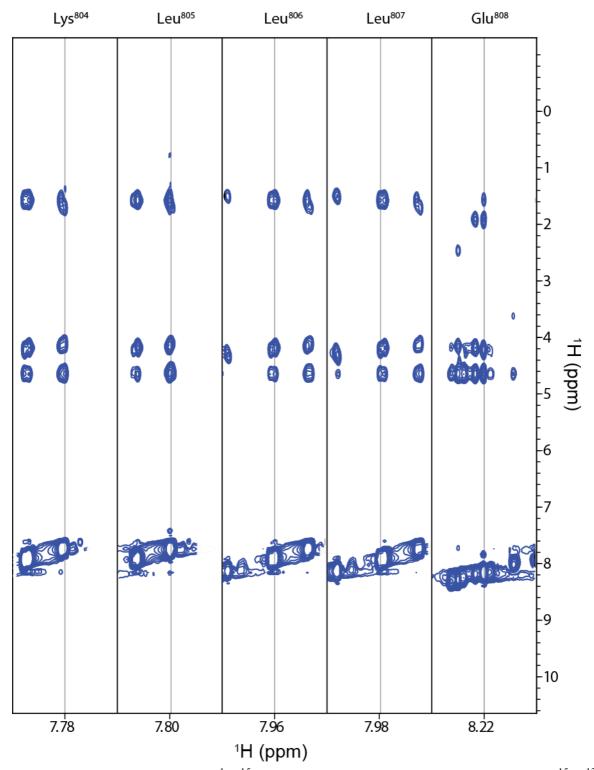
^cTensor eigenvalues resulting from the fit of experimental RDCs measured from the STAT6⁷⁸³⁻⁸¹⁴ in complex with NCoA1²⁵⁷⁻³⁸⁵ to the NMR structure.

description with record to the First State of the First State of the First State of the First State of the STAT6 resor eigenvalues resulting from the fit of experimental RDCs measured from the free STAT6 resolvent to the NMR structure of the NCoA1 resolvent relative to the NCoA1 resolv

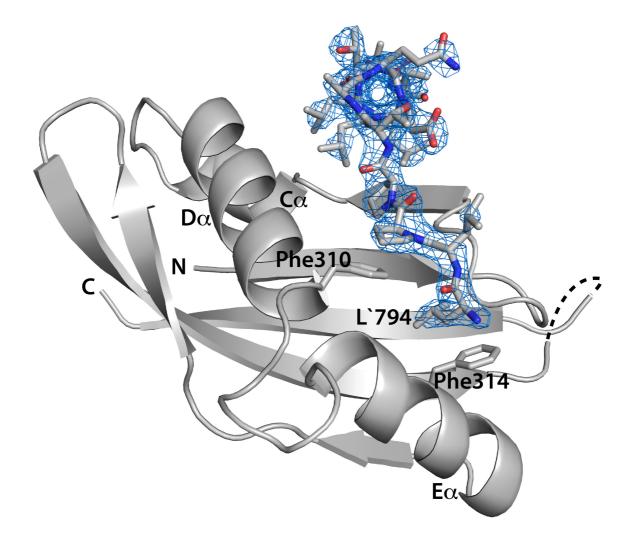
Table SI 7. Alignment tensor parameters related to the fitting of the RDCs measured for STAT6⁷⁸³⁻⁸¹⁴ free onto the structural models (SM1,SM2,SM3,SM4) obtained from the NMR structure of the complex by rotating the α 1 helix by 30° about Z, -Z (SM1, SM2) and Y,-Y (SM3, SM4) respectively. Z and Y are perpendicular to the axis (X) of the α 2 of the peptide (see figure SI 5). The values related to the NMR structure are also reported.

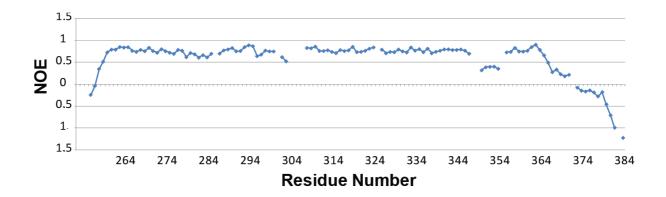

	SM1	SM2	SM3	SM4	NMR ^a
$A_{\rm a}(10^{-4})$	-5.0	-5.3	-4.7	-4.1	-4.9
$A_{\rm r}(10^{-4})$	-1.8	-2.0	-2.1	-2.4	-2.4
α (°)	203	184	193	193	186
β (°)	87	84	89	73	81
γ (°)	254	257	248	256	281
Q factor	0.39	0.36	0.41	0.54	0.32

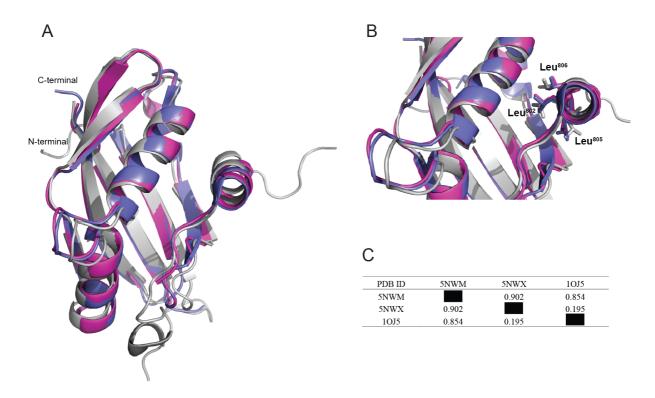
Tensor eigenvalues resulting from the fit of experimental RDCs measured from the free STAT6⁷⁸³⁻⁸¹⁴ to the structural models (SM1, SM2, SM3, SM4) and to the NMR structure of the complex.

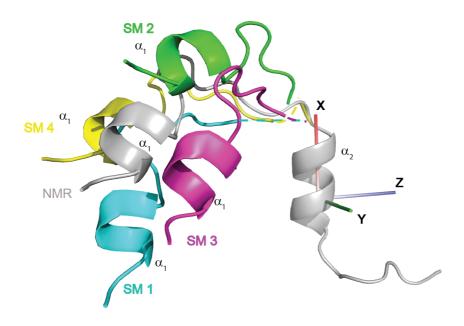

Protein crystallization, structure solution and refinement

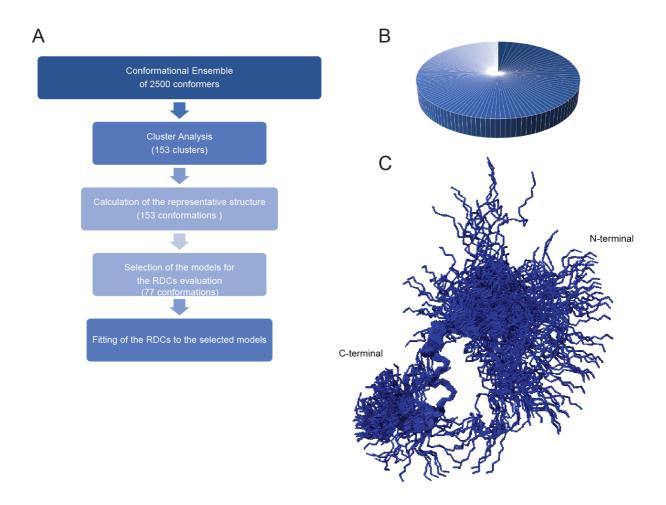
For crystallization of the NCoA-1 PAS-B (257-385)/ STAT6 (783-814) complex the sample was concentrated to 20 mg/ml. Crystals grew at 293 K during one week from 200 nl drops composed of equal volumes of protein solution and mother liquor consisting of 0.2 M sodium acetate, 0.1 M sodium cacodylate, pH 6.5, 30 % (w/v) polyethylene glycol 8000 (condition 28 of Crystal Screen I (Hampton Research). For cryoprotection crystals were soaked for 1 minute in the mother liquor supplemented with 5 % polyethylene glycol 400 and flash-cooled in liquid nitrogen. Data collection was performed at SLS Villigen, Switzerland (beamline

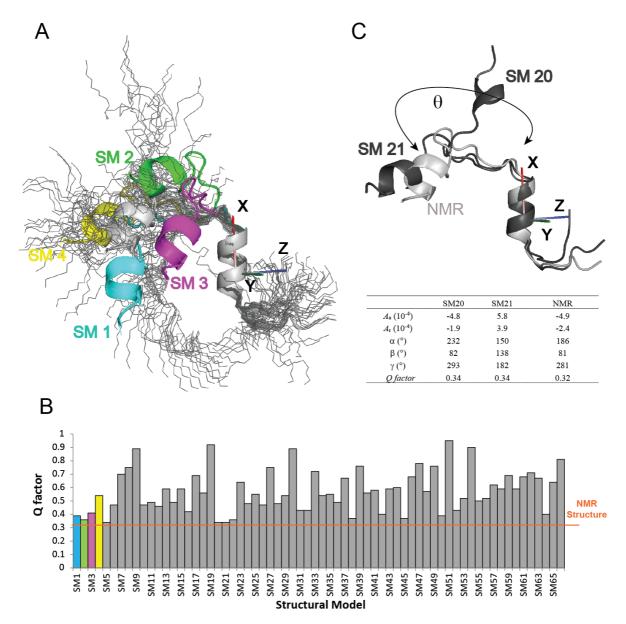

PXII, Pilatus 6M detector². Data were processed with XDS³ and scaled with SADABS (Bruker AXS, Madison, Wisconsin, USA). Spacegroup determination and statistical analysis was performed with XPREP (Bruker AXS, Madison, Wisconsin, USA). Data statistics are reported in supplemental Table SI 2. The structure was solved by molecular replacement with PHASER⁴ using the structure of the NCoA-1 PAS-B domain with a shorter STAT 6 peptide (Protein Data Bank entry 1OJ5)⁵. Refinement was performed with Refmac⁶ alternating with manual model building in Coot⁷. Refinement statistics are given in supplemental Table SI 3.


Figure SI 1. The ¹H, ¹⁵N heteronuclear single-quantum coherence (HSQC) spectrum of ¹⁵N-¹³C STAT6⁷⁸³⁻⁸¹⁴ in the free form.


Figure SI 2. Strips from the 3D ¹H, ¹⁵N NOESY-HSQC experiment measured on the ¹⁵N-¹³C-labeled STAT6⁷⁸³⁻⁸¹⁴. The strips are related to the residues Lys804, Leu805, Leu806, Leu807 and Glu808 located in the region containing the LXXLL motif.


Figure SI 3. Structure of the NCoA1 PAS-B domain in complex with the STAT6 peptide comprising residues 794 - 808. View along the axis of the helix in the STAT6 peptide. The helices of the PAS-B domain are labelled according to⁵. The STAT6 peptide is shown as sticks in the $2mF_o$ -DF_c electron density map. The PAS-B domain is shown as a cartoon. Phe³⁰⁰ and Phe³¹⁴ are depicted as sticks. They are the major constituents of the hydrophobic pocket where Leu⁷⁹⁴ of STAT6 is binding.


Figure SI 4. ¹⁵N-[¹H] heteronuclear NOE values of the NCoA1 PAS-B domain.


Figure SI 5. (A) Comparison of the NMR structure of the NCoA1²⁵⁷⁻³⁸⁵/ STAT6⁷⁸³⁻⁸¹⁴ complex PDB ID 5NWM (light grey) with both x-ray structures PDB IDs 5NWX (light magenta), 1OJ5 (light violet) after superposition on the backbone atoms of the NCoA1 residues 260-365. **(B)** Close-up views of the region Glu⁷⁹⁹ - Glu⁸⁰⁸ of STAT6. The side chains of the STAT6 residues Leu⁸⁰², Leu⁸⁰⁵ and Leu⁸⁰⁶ are shown as sticks. (C) The root mean square distributions for the backbone heavy atoms of the residues NCoA1 260-365 (RMSD) (Å) between the analyzed structures (PDB IDs 5NWX, 5NWX, 1OJ5).

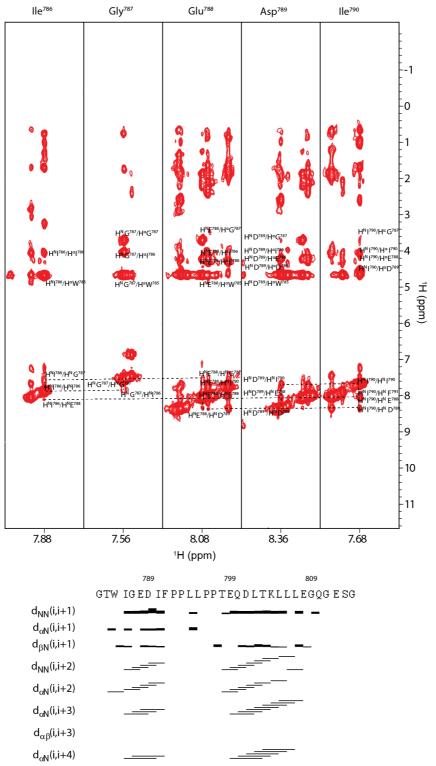

Figure SI 6. Comparison of the structural models SM1 (cyan), SM2 (light green), SM3 (magenta) and SM4 (yellow) obtained from the NMR structure (light grey) of the complex by rotating 30° the $\alpha1$ about Y,-Y and Z, -Z axis perpendicular to the axis of the $\alpha2$ of the peptide.

Figure SI 7. (A) Flow-chart of the protocol applied to generate the pool of random conformations for the evaluation of the RDCs measured on the STAT6⁷⁸³⁻⁸¹⁴ free. (B) Cluster analysis of the conformational ensemble. (C) Superposition of the 153 representative models determined for each cluster that were successively selected, as reported in the materials and methods, in 77 conformations for the RDCs evaluation.

Figure SI 8. (A) Superposition of the structural models used for the evaluation of the RDCs measured for STAT6⁷⁸³⁻⁸¹⁴ free. (B) Comparison of Q factors of the RDCs fitting for the selected structures. The Q factor values for the structural models SM1 (cyana), (light green), SM3 (magenta) and SM4 (yellow) are also reported. The 15 random conformers for which the Q factor is ≥ 1.0 are not included in the plot. The Q factor related to the STAT6⁷⁸³⁻⁸¹⁴ bound conformation (NMR structure) is depicted in orange.(C) Comparison of the structural models SM20 and SM21 with the NMR structure. The θ angle between the first and the second α-helix of the STAT6 peptide is illustrated. Tensor eigenvalues resulting from the fit of experimental RDCs measured from the free STAT6⁷⁸³⁻⁸¹⁴ to the structural models (SM20, SM21) and to the NMR structure of the complex are also reported.

Figure SI 9. NOEs evaluation of STAT6⁷⁸³⁻⁸¹⁴ in complex with the PAS-B domain. *(Upper)* Strips from the 3D ¹H,¹⁵N NOESY-HSQC experiment measured on the ¹⁵N-¹³C-labeled STAT6⁷⁸³⁻⁸¹⁴ in complex with the PAS-B domain. The strips are related to the residues Ile⁷⁸⁶, Gly⁷⁸⁷, Glu⁷⁸⁸, Asp⁷⁸⁹ and Ile⁷⁹⁰ located in the N terminal region of the peptide and the sequential NOEs are reported. *(Lower)* Summary of the main short and medium range NOEs observed for the STAT6⁷⁸³⁻⁸¹⁴ in complex with the PAS-B domain.

References

- Brunger, A. T. Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. *Nature* **355**, 472-475 (1992).
- 2 Broennimann, C. et al. The PILATUS 1M detector. J Synchrotron Radiat 13, 120-130 (2006).
- 3 Kabsch, W. Xds. Acta Crystallogr D Biol Crystallogr 66, 125-132 (2010).
- 4 McCoy, A. J. Solving structures of protein complexes by molecular replacement with Phaser. *Acta Crystallogr D Biol Crystallogr* **63**, 32-41 (2007).
- Razeto, A. *et al.* Structure of the NCoA-1/SRC-1 PAS-B domain bound to the LXXLL motif of the STAT6 transactivation domain. *J Mol Biol* **336**, 319-329 (2004).
- 6 Murshudov, G. N. *et al.* REFMAC5 for the refinement of macromolecular crystal structures. *Acta Crystallogr D Biol Crystallogr* **67**, 355-367 (2011).
- Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. *Acta Crystallogr D Biol Crystallogr* **66**, 486-501 (2010).