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Abstract
Background/Aims: Spaceflight impacts on the function of the thyroid gland in vivo. In vitro 
normal and malignant thyrocytes assemble in part to multicellular spheroids (MCS) after 
exposure to the random positioning machine (RPM), while a number of cells remain adherent 
(AD). We aim to elucidate possible differences between AD and MCS cells compared to 
1g-controls of normal human thyroid cells. Methods: Cells of the human follicular epithelial 
thyroid cell line Nthy-ori 3-1 were incubated for up to 72 h on the RPM. Afterwards, they were 
investigated by phase-contrast microscopy, quantitative real-time PCR and by determination 
of cytokines released in their supernatants. Results: A significant up-regulation of IL6, IL8 and 
CCL2 gene expression was found after a 4h RPM-exposure, when the whole population was 
still growing adherently. MCS and AD cells were detected after 24 h on the RPM. At this time, 
a significantly reduced gene expression in MCS compared to 1g-controls was visible for IL6, 
IL8, FN1, ITGB1, LAMA1, CCL2, and TLN1. After a 72 h RPM-exposure, IL-6, IL-8, and TIMP-1 
secretion rates were increased significantly. Conclusion: Normal thyrocytes form MCS within 
24 h. Cytokines seem to be involved in the initiation of MCS formation via focal adhesion 
proteins.

Introduction

Long-term space missions are a challenge for the health of crewmembers. There are 
reports about various health concerns such as dysfunctions of the musculoskeletal and 
cardiovascular system, a down-regulation of the immune system, and visual problems [1-
3]. In space, the thyroid gland in vivo revealed a variety of changes such as follicles with 
E. Warnke and J. Pietsch contributed equally to this manuscript.

http://dx.doi.org/10.1159%2F000480368


Cell Physiol Biochem 2017;43:257-270
DOI: 10.1159/000480368
Published online: August 30, 2017 258
Warnke et al.: Thyroid Cells on the Random Positioning Machine

Cellular Physiology 
and Biochemistry

Cellular Physiology 
and Biochemistry

© 2017 The Author(s). Published by S. Karger AG, Basel
www.karger.com/cpb

larger thyrocytes and increases in cAMP, thyrotropin-receptors (TSHR), and caveolin-1 [4, 
5]. On the cellular level, it is known that both real (r-µg) and simulated microgravity (s-
µg) influence growth behaviour, gene expression pattern, protein synthesis and secretion 
in thyroid cancer cells [6-11]. In addition, thyroid hormone production is decreased, while 
a TSHR up-regulation was detected in follicular thyroid cancer cells after exposure for 24 h 
to a random positioning machine (RPM) [12] - a device designed to simulate microgravity 
conditions [13, 14]. As thyroid hormones produced by the thyroid gland are influencing the 
function of nearly every cell and organ of the human body [15, 16], thyroid cells cultured 
under microgravity justify a thorough investigation. Therefore, the research was extended 
to normal thyrocytes. 

Culturing normal thyroid cells in a rotary cell culture system (RCCS), three-dimensional 
(3D) cell aggregates resembling thyroid follicles were observed exhibiting the ability to 
produce thyroglobulin [17]. Rat FRTL-5 thyroid cells were investigated in r-µg during a 
TEXUS rocket flight. The cells did not respond to thyrotropin (TSH) treatment and exhibited 
an irregular shape with condensed chromatin, shedding of the TSHR in the supernatant, and 
elevated protein levels of sphingomyelin-synthase and Bax [18]. Mice exposed to hypergravity 
treatment revealed up-regulation of the TSHR and caveolin-1 as well as a down-regulation of 
STAT3 without changes in cAMP [19]. 

Earlier experiments have shown that human thyroid cancer cells exhibit changes in the 
secretion of growth factors and cytokines, as well as alterations in the factors involved in 3D 
growth, in the cytoskeleton, and in the extracellular matrix composition when cultured in a 
an RPM [10, 20, 21]. Furthermore, human thyroid cells may exhibit two phenotypes in s-µg 
either in the form of multicellular spheroids (MCS) or as adherent monolayer (AD) cells [20, 
21]. 

For the present study, the human follicular epithelial thyroid cell line Nthy-ori 3-1 was 
exposed for 4 h, 24 h and 72 h to the RPM. MCS and AD cells were investigated in comparison 
to static 1g-controls. For this purpose, phase-contrast images were taken to monitor 
expected changes in the morphology of the thyrocytes. Furthermore, quantitative real-time 
PCR (qPCR) and multi-analyte profiling (MAP) analyses were performed. The chosen genes 
and cytokines were detected previously to have changed in cells of this cell line in s-µg after 
RPM-exposure of 7 and 14 days [21]. The principal aim of these experiments was to close the 
knowledge gap concerning the impact of microgravity on the behaviour of normal thyroid 
cells exposed for a short time to s-µg generated by an RPM. 

Materials and Methods

Culture of Nthy-ori 3-1 cells
The Nthy-ori 3-1 cell line (Sigma-Aldrich, Munich, Germany) is a primary human thyroid follicular 

epithelial cell line. The immortalised cell line exhibits thyroid specific functions, such as iodide-trapping 
and thyroglobulin synthesis and reveals no signs of tumorigenesis, when transplanted into nude mice [22]. 

The Nthy-ori 3-1 cells were cultured under standard cell culture conditions (37°C and 5% CO2). The 
cells grew in RPMI 1640 medium (Life Technologies, Naerum, Denmark), supplemented with 1 % penicillin/
streptomycin (Life Technologies) and 10 % (v/v) fetal calf serum (FCS) (Biochrom, Berlin, Germany). The 
cells were cultured in T25 cm2 vented cell culture flasks (Sarstedt, Newton, USA) for one day prior to RPM-
exposure. Each flask was seeded with 1 × 106 cells. The culture flasks were filled completely with medium 
without any air bubbles. The flasks (n = 60 per time point) were assigned randomly to use as static controls 
(1g; n = 30) or as RPM-samples (n = 30). The 1g-controls were positioned next to the RPM in the same 
incubator. Supernatants and cells were harvested after 4 h, 24 h or 72 h according to the protocol. 

Random positioning machine (RPM)
The Desktop RPM manufactured by Airbus Defense & Space (ADS, Leyden, The Netherlands) was used 

for the simulation of microgravity [23]. The device was stored in an incubator at 37°C and 5 % CO2, operated 
in real random direction mode at 60 degrees/s and equipped with T25 flasks. The flasks were fixed to the 
ground plate, giving a maximum distance of 7.5 cm from the centre of rotation. 
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After the experimental run, cells and supernatants were harvested according to the protocol. The 
supernatants were collected and centrifuged at 4°C and 3000 rpm. Samples of 1.5 mL were transferred 
from the supernatants to 2 mL Eppendorf tubes (Eppendorf, Wesseling-Berzdorf, Germany) and frozen at 
-80°C for MAP analyses. The pellet resulting from centrifugation contained the MCS. After removal of the 
supernatant, the MCS pellets were snap frozen in liquid nitrogen. AD cells were washed twice with PBS on 
ice, scraped off the bottom surface and transferred into a tube. After a centrifugation for 10 min at 3000 rpm 
and 4°C, the supernatant was discarded. The pellets were resuspended in 1 mL PBS and again centrifuged 
for 10 min at 3000 rpm and 4°C. The remaining supernatant was discarded carefully and the pellets with AD 
cells snap frozen in liquid nitrogen. Finally, the cells were stored at -80°C.

Phase-contrast microscopy
Phase-contrast microscopy was performed for visual observation of the cellular morphology, using the 

Leica Microscope (Leica Microsystems CMS GmbH, Germany). Pictures of RPM and control samples were 
taken after 4 h and 24 h (Fig. 1).

Cytokine measurements by multianalyte profiling (MAP) technology
Cytokines and proteins released into the supernatant were analysed by the company Myriad RBM (Austin, 
Texas, USA). The MAP analysis was performed using the Human CytokineMAP A and the KidneyMAP® as 
described previously [24-29]. Supernatants were taken after 4 h, 24 h and 72 h from 1g- and RPM-samples 
(n = 9-10; each group) and stored at -80°C until shipment to Myriad RBM. 

RNA isolation and quantitative real-time PCR (qPCR)
RNA isolation was performed using the RNeasy Mini Kit (Qiagen, Hilden, Germany), with an additional 

Fig. 1. Phase-contrast microscopy images of Nthy-ori 3-1 cells under 1g-conditions and after 24 h and 72 h 
of exposure to the RPM. Human thyrocytes of the cell line Nthy-ori 3-1 were exposed to the RPM for up to 72  
h. Compared to 1g-controls (A), which showed only cells growing as adherent monolayers, cells exposed to 
s-µg generated by the RPM showed no morphological differences after 4 h (data not shown), but started to 
detach and form 3D aggregates after a 24 h RPM-exposure (B). The MCS increased in number and size over 
time (72 h), while adherent cells decreased (C).

Table 1. Primers used for quantitative real-time 
PCR. All sequences are given in 5’-3’ direction

DNase digestion step (Qiagen) in order to eliminate 
residual DNA contaminations. Subsequently, the 
amount of RNA was quantified via a Photometer 
Ultrospec2010 (Amersham Biosciences, Freiburg, 
Germany). The first strand cDNA synthesis kit 
(Thermo Fisher Scientific, Waltham, US) was used 
for reverse transcription. qPCR was performed 
using the 7500 Real-Time PCR System (Applied 
Biosystems, Darmstadt, Germany) according to 
routine protocols [30-32]. cDNA-selective-primers 
were synthesized by TIB Molbiol (Berlin, Germany) 
and are listed in Table 1. The primers were designed 
using Primer Express (Applied Biosystems, 
Darmstadt, Germany) to have a Tm of ∼ 60°C and 
to span exon-exon boundaries. All samples were 
measured in triplicate. For normalization, 18S rRNA 
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was used as a housekeeping gene. The comparative CT (∆∆CT) method was used for relative quantification of 
transcription levels and 1g was defined as 100 % for reference.

Western blot analyses
Whole cell lysates were used for Western blotting following routine protocols for gel electrophoresis 

and trans-blotting, as described earlier [31, 33]. Equal amounts of 10 µL lysate containing 2 µg/µL protein 
were loaded on precast TGX stain-free gels (Bio-Rad, Munich, Germany). Transturbo blot PVDF membranes 
(Bio-Rad) were used for blotting. Each Western blot contained 5 samples for each group: 4 h 1g, 4 h RPM-AD 
cells, 24 h 1g, 24 h RPM AD cells and 24 h RPM MCS. 

The following primary antibodies were used at a dilution of 1:1000: fibronectin (F3648), laminin 
(L9393) and talin (T3287) (all Sigma-Aldrich) and vascular endothelial growth factor (VEGFA; ab46154, 
Abcam, Cambridge, United Kingdom). The corresponding secondary antibodies were used at a dilution of 
1:3000: HRP-linked anti-mouse IgG (#7076) and anti-rabbit IgG (#7074, both Cell Signaling Technology, 
Massachusetts, USA). The analysis was performed in ChemiDoc XRS+ (Bio-Rad), and the densitometric 
quantification was performed using ImageLab (BioRad).

Pathway Studio analysis
The commercially available Pathway Studio v.11 (Elsevier Research Solutions, Amsterdam, The 

Netherlands) was applied for the investigation of mutual regulation networks. For the analysis, SwissProt 
numbers of the investigated proteins were entered and networks built by the software based on relationships 
and processes from the literature, PubMed, databases and experimental data [9, 10, 33].

Statistical evaluation
Statistical evaluation was performed with SPSS 15.0 (SPSS, Inc., Chicago, IL, USA) using the Mann-

Whitney-U-Test. All data are presented as mean ± standard deviation (SD) values and differences between 
groups were considered significant at p < 0.05.

Results

Multicellular spheroid (MCS) formation
Subconfluent monolayers of the human follicular epithelial thyroid cell line Nthy-ori 3-1 

were exposed to the RPM or to 1g-control conditions. Both groups were located in parallel 
in the same incubator. After 4 h, the cells of both RPM and 1g-controls groups showed solely 
adherent growth. MCS formation occurred within 24 h on the RPM (Fig. 1) while cells of 
the 1g-controls continued to grow as a 2D cell monolayer attached to the bottom of the 
culture flask. In RPM cultures, the mixture of AD cells and MCS remained for up to 72 h of 
RPM-exposure, although the number of AD cells appeared to decrease slightly. The two cell 
populations could be harvested separately from the RPM-samples according to the method 
described above. 

Cytokine release of Nthy-ori 3-1 cells after RPM-exposure
Concentrations of selected cytokines within the various culture supernatants were 

determined by MAP analysis in order to estimate the secretion activities of the cells (Human 
CytokineMAP A and Human KidneyMAP®, carried out by Myriad RBM). Table 2 shows all of 
the cytokines of these two MAPs, which could be detected.

Interleukin 6 (IL-6; IL6), interleukin 8 (IL-8; CXCL8), cystatin-c (CST3), tissue inhibitor 
of metalloproteinase (TIMP-1; TIMP1) and VEGF (VEGF) could be detected after 4 h, whereas 
monocyte chemoattractant protein (MCP-1; CCL2) could only be detected after 24 h and 72 
h and interleukin 7 (IL-7; IL7) could only be detected after 72 h and even then only in the 
RPM-samples. 

Although these cytokines have been identified, only five of them revealed significant 
differences between 1g and the respective RPM sample. Cystatin-c (CST3) and tissue inhibitor 
of metalloproteinase-1 (TIMP1) were reduced significantly in s-µg compared to 1g after 4 h. 
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Fig. 2. Quantitative real-time PCR (qPCR) was used to determine the gene expression. The gene expression 
levels of IL6 (A), CXCL8 (B), CCL2 (C), FN1 (D), LAMA1 (E), ITGB1 (F), and TLN1 (G) were measured after 4 
h, 24 h and 72 h RPM-exposure and in corresponding 1g-controls. All values were expressed relative to the 
value for 4 h of 1g, which was set to 100 % and all other values are expressed relative to this value. 1g – static 
control; RPM – random positioning machine; AD – adherent cells; MCS – multicellular spheroids; n = 5-6; 
* - p<0.05.

Table 2. Cytokines released 
by Nthy-ori 3-1 cells after a 4 
h-, 24 h- and 72 h-RPM-expo-
sure, detected by Multi-An-
alyte Profiling using human 
CytokineMAP A® and human 
KidneyMAP®

After 24 h RPM-exposure, no significant changes could be observed. However, after 72 h, IL-6 
(IL6), IL-8 (CXCL8) as well as TIMP-1 (TIMP1) were elevated significantly in s-µg compared 
to 1g-controls.

http://dx.doi.org/10.1159%2F000480368


Cell Physiol Biochem 2017;43:257-270
DOI: 10.1159/000480368
Published online: August 30, 2017 262
Warnke et al.: Thyroid Cells on the Random Positioning Machine

Cellular Physiology 
and Biochemistry

Cellular Physiology 
and Biochemistry

© 2017 The Author(s). Published by S. Karger AG, Basel
www.karger.com/cpb

Altered gene expression in Nthy-ori 3-1 cells exposed to the RPM
Changes in the mRNA expression levels of IL6, CXCL8 and CCL2 were investigated by 

qPCR (Fig. 2A-C). This revealed a significant increase between 1g- control cells and RPM-
AD cells that had been exposed for 4 h. However, these increases in gene expression were 
already equalized after 24 h. Interestingly, the gene expression was decreased significantly 
after 24 h in RPM-MCS samples compared to 1g-controls as well as RPM-AD samples. For IL6 
and CXCL8 no significant alterations were detectable after RPM-exposure for 72 h. CCL2 gene 
expression was only reduced significantly compared to RPM-AD samples, but not compared 
to 1g-controls.

Furthermore, we focused on the genes coding for fibronectin (FN1), laminin (LAMA1), 
β1-integrin (ITGB1), and talin (TLN1), as these are involved in focal adhesion processes. 
Only ITGB1 showed a significantly increased gene expression in RPM-AD samples compared 
to 1g-controls after 4 h (Fig. 2F). The other three genes revealed no significant changes at 
this time point (Fig. 2D, E and G). However, 24 h of RPM exposure triggered a significantly 
elevated expression in FN1 in RPM-AD samples compared to 1g-controls and MCS, while 
TLN1, ITGB1 and LAMA1 were up-regulated significantly in RPM-AD samples compared to 
RPM-MCS samples only, but were expressed similarly in 1g-control samples. After RPM-
exposure for 72 h, only a significant increase in RPM-AD samples compared to 1g controls 
could be detected for FN1 expression level (Fig. 2D). 

Content of selected proteins after RPM-exposure
After focusing on gene expression changes, we studied the ECM and cell adhesion 

molecules laminin, fibronectin and talin-1 (Fig. 3A, B, and D). The amount of laminin was 
similar in cells exposed for 4 h to the RPM, but increased after 24 h. There was no significant 
difference in the laminin protein content after a 24 h-exposure (Fig. 3A). Also, the fibronectin 
accumulation was approximately equal in samples incubated for 4 h. After 24 h, both, the 
RPM-AD cells and the RPM-MCS cells exhibited increased amounts of fibronectin (Fig. 3B). 
Talin-1, which links integrins to the actin cytoskeleton has been shown to be increased 
slightly in MCS compared to 1g and AD cells after RPM-exposure for 24 h. VEGF was released 
into the supernatant and was unaltered in 1g-control cells of thyrocytes cultured for 4 h on 
the RPM, while RPM-AD cells that had been exposed for 24 h exhibited a lower VEGF content. 
There was no difference in VEGF content between MCS and 1g-control cells (Fig. 3C).

Fig. 3. Content of cell adhesion proteins, VEGF and talin. Nthy-ori 3-1 cells were harvested after 4 h and 24 
h of exposure to the RPM or as corresponding 1g-controls. The protein contents of laminin (A), fibronectin 
(B), VEGF (C) and talin (D) were detected by Western blot analyses. Static 1g-control (1g); random position-
ing machine (RPM); adherent cells (AD); multicellular spheroids (MCS); n =5; * p < 0.05 vs. 1g-control.
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Pathway Analyses
Searching related information via Pathway Studio, proteins of differentially expressed 

genes and proteins detected in the supernatant of Nthy-ori 3-1 cells were investigated with 
respect to their cellular localization and their interaction on the protein level (Fig. 4) as well 
as in regard to their mutual influence on the genetic level (Fig. 5). The cohort of proteins 
analysed includes the extracellular proteins laminin A1 and fibronectin, the membrane 
proteins integrin-b1 and talin-1. These four proteins can bind to each other as shown by the 
solid lines in Fig. 4 [34, 35]. Their stability is enhanced by a direct interaction with TIMP1 
[36] and via an indirect positive action by IL-8 [37]. IL-7 and VEGF also have an influence 
on the ITGB1, LAMA1, FN1, TLN1 complex [38-40], while IL-6, MCP-1 and cystatin c do not 
appear to make contact with this complex. 

On the gene level LAMA1 is isolated from the genes of the other soluble and membrane-
bound proteins investigated (Fig. 5). Like VEGFA, IL-6 and MCP-1 have positive regulatory 
effects on the genes of ITGB1 and FN1 [41-45]. IL-8 can up-regulate FN1 expression [46]. 
CXCL8 and CCL2 genes are also up-regulated by VEGF and IL-6 [47, 48], while TLN1 is down-
regulated by IL-6 and IL-8 [49]. In addition, cystatin c affects turnover of fibronectin [50] and 
IL-7 regulates the expression of CCL2 and CXCL8 [51]. 

Fig. 4. Mutual interaction and lo-
calization of the 11 investigated 
proteins. Interaction and localiza-
tion of cytokines observed in cell 
culture supernatants (Table 2) 
and of proteins whose genes were 
sensitive to exposure to the RPM 
(Fig. 2). Solid lines indicate bind-
ing, solid arrows show directed 
interaction, dashed arrows show 
influence. + signs point to an activ-
ity enhancing effect. The interac-
tion network was built up using 
Pathway Studio v.11.

Fig. 5. Mutual interac-
tion of selected genes at 
the gene expression level. 
Selected genes, whose up- 
or down-regulation were 
analysed by qPCR after 
RPM-exposure as shown 
in Fig. 2 together with the 
genes of the proteins se-
creted into the superna-
tant as shown in Table 2. 
The arrows indicate influ-
ence. Arrows with + sign 
indicate up-regulation, 
while lines with crossbars 
at the end show down-
regulation. The interac-
tion network was built 
up using Pathway Studio 
v.11.
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Discussion

In this study, we investigated the morphological and molecular biological changes of 
normal human thyrocytes (Nthy-ori 3-1 cell line) exposed for 4 h, 24 h and 72 h to a an 
RPM. The objective of this project was to monitor changes occurring during short-term 
RPM-exposure in normal human thyrocytes with respect to the influence of soluble factors 
on proteins involved in focal adhesion. These findings might help to further understand 
the observed impact of microgravity on the formation of 3D aggregates of normal human 
thyrocytes and other cells [4, 5].

MCS formation
One part of the RPM-exposed normal human thyroid cells of the Nthy-ori 3-1 cell line 

formed MCS, while the other part continued to grow adherently. The MCS became visible 
after 24 h. This observation broadens the observation made by Kopp et al., who investigated 
MCS after 7 and 14 days [21]. This early 3D growth is in agreement with the formation of 
cancer MCS by the thyroid cancer cells lines ML-1, FTC-133 and RO82-W-1 [12, 21, 28, 49]. 
Like the thyroid cancer cells FTC-133, the normal Nthy-ori 3-1 cells required a lag time of 
several hours of RPM-exposure, before some of the cells started to detach from the bottom 
of the culture flask and to assemble to 3D aggregates [28], while others remained adherent. 
Hence, regarding the morphological changes triggered by s-µg, a striking difference between 
normal and cancer cells could not be detected.

Genes and proteins altered by RPM-exposure
Investigating cytokines, we found an influence of s-µg on IL-6 (IL6) and IL-8 (CXCL8) at 

gene and protein secretion levels (Table 2, Fig. 2). The cytokines IL-6 and IL-8 are involved 
in angiogenesis and progression in different cancer types [52-54]. On the RPM, their genes 
were up-regulated significantly after 4 h in RPM-AD cells. However, after 24 h both were 
un-regulated again in RPM-AD cells, but were down-regulated significantly in MCS cells (Fig. 
2). During the next 48 h a slight tendency of up-regulation in AD as well as MCS cells was 
observed although this was not significant (Fig. 2A, B). In parallel, the secretion of IL-6 and 
IL-8 into the supernatant did not reveal any alteration due to s-µg until 72 h when both 
proteins were up-regulated significantly in RPM-exposed cells (Table 2).

IL-6 and IL-8 play a key role in angiogenesis and 3D growth in cancer [55, 56]. IL-6 
induces the production of VEGF [57] and a similar function is assumed for IL-8 (Fig. 5). 
When secreted by U937 cells IL-8 induces the fibronectin expression by inflammatory breast 
cancer cells (SUM149 cell line) via interaction with IL-8 specific receptors and stimulation of 
the PI3K/Akt signalling pathway [46].

IL-6 and IL-8 influence the formation and growth of MCS established under 1g-conditions 
[49, 58]. Recently, we demonstrated their direct impact using the liquid-overlay technique 
[49]. The cytokines IL-6 and IL-8 are strong regulators controlling FN1 and ITGB1 expression 
(Fig. 5). Furthermore, both cytokines were increased significantly in space samples of human 
thyroid cancer FTC-133 cells cultured in r-µg conditions for 12 days on the International 
Space Station compared with 1g-controls [9]. However, in this case no MCS formation could 
be observed whereas during another spaceflight on which FTC-133 cells were grown for 10 
days in µg and MCS were formed, no differences between ground and space samples could 
be observed for IL-6 and only a slight decrease was observed for IL-8 [7]. How these findings 
can be explained regarding the role of IL-6 and IL-8 in 3D growth has to be elucidated in 
future space experiments. 

An important finding was the detection of IL-7 in the supernatant after RPM-exposure 
for 72 h (Table 2). Interestingly, control samples did not secrete IL-7. IL-7 is considered a 
powerful pro-inflammatory cytokine, which can induce tumorigenesis [59]. A variety of cells, 
for example intestinal epithelial cells, keratinocytes, hepatic tissue, endothelial cells, smooth 
muscle cells, fibroblasts, thyroid cancer cells and others, have proven to produce IL-7 [21, 60]. 
IL-6 interacts with IL-7 and vice versa (Fig. 5). Together they have a regulatory influence on 
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cell-cell adhesion of melanocytes [61], but no data exist concerning the interaction between 
IL-6 and IL-7 for normal thyroid cells. In our experiments the cells secreted IL-7 only after 
72 h on the RPM, while the corresponding 1g-control cells did not secrete this cytokine at all. 
However, it could be shown that Nthy-ori 3-1 cells secrete IL-7 after 7 days when cultured 
under normal 1g-conditons and on the RPM [21]. 

In addition, IL-7 can influence ECM production and decrease fibronectin expression. 
This was shown in human subconjunctival fibroblasts [62]. In our experiments the FN1 gene 
expression was elevated in Nthy-ori 3-1 AD cells after RPM-exposure for 24 h compared with 
1g-control cells, while the FN1 mRNA was down-regulated in MCS cells (Fig. 2A). After a 72 h 
RPM-exposure, the FN1 expression was still down-regulated in Nthy-ori 3-1 MCS compared 
to AD cells. This finding was paralleled by the secretion of IL-7 by the RPM-mounted thyroid 
cells after 72 h and might demonstrate a regulatory interaction of IL-7 with fibronectin (Fig. 
4). In addition, these data suggest that the cytokine IL-7 might be a very likely key candidate 
involved in regulating MCS formation [21]. 

Integrins are transmembrane α- and β-subunit forming receptors for distinct ECM 
proteins, such as fibronectin, or laminin [63]. They mediate the cell adhesion to ECM 
components supporting adhesion of cells grown on two-dimensional surfaces and within 
three-dimensional matrices [64]. Although integrins consist of α- and β-subunit, incorporated 
β1-integrin seems to play a special role increasing cell migration and invasion, and decreasing 
sensitivity to anti-cancer drug in triple-negative breast cancer [65]. Overexpression of β1-
integrin has been demonstrated to improve the activities and functions of several benign 
cell types [66]. For example, r-µg during a parabolic flight induced β1-integrin expression in 
human chondrocytes [67]. 

The role that laminin plays in MCS formation remains to be elucidated. However, it is a 
fact that laminins interact with several integrin isoforms and are involved in migration and 
development [35, 68]. Moreover, since the gene expression of LAMA1 was down-regulated 
in MCS cells, an impact of this gene or protein seems to be very likely. Interestingly, laminin 
A1 was not detected in a recent proteome study, which revealed more than 5000 proteins of 
thyroid cancer cells [69]. Therefore, the presence of laminin A1 could be a sign of normal cell 
differentiation as was shown for human mesenchymal stem cells [70].

Talin (TLN1) is found in high concentrations in focal adhesions and links integrins to 
the actin cytoskeleton [71]. Due to its direct interaction with β1-integrin (Fig. 4), we analysed 
the gene expression of TLN1. In Nthy-ori 3-1 cells, the TLN1 mRNA was found to be down-
regulated significantly in MCS after RPM-exposure for 24 h, but without differences to 
normal gravity after 4 and 72 h. It has been shown that TLN1 is involved in RPM-dependent 
thyroid carcinoma MCS formation [8]. Regarding the findings described above, the TLN1 
gene expression might point to the time frame in which the detachment and subsequent 
formation of MCS occurs.

VEGF was detectable in Nthy-ori 3-1 cells and the secretion of VEGF increased over time 
in the supernatant (Table 2). No difference between 1g-controls and RPM-samples could 
be observed up until 72 h. VEGF plays an important role in neoangiogenesis, proliferation 
and migration, mainly of endothelial cells but also of various other cells types [72-74]. 
VEGF seems to be affected considerably in thyroid cancer cells exposed to s-µg [72, 75]. 
Furthermore, there might be a delayed response in Nthy-ori 3-1 cells, when exposed to s-µg. 
It could be shown that VEGF secretion was decreased after RPM-exposure for 7d [21]. 

The secretion of TIMP-1 was significantly lower after 4 h in RPM-samples compared 
with 1g-controls, whereas a 1.32-fold elevated amount of TIMP-1 was measured after 72 h in 
the supernatant of RPM-samples. TIMPs inhibit metalloproteinases, which in turn are widely 
known to degrade the ECM and thus participate in remodelling the shape and composition 
of cell aggregates and tissues [76, 77]. An overexpression of TIMP-1 was also implicated in 
several cancer types and correlated with a less-positive outcome for a patient after treatment 
[76]. A decreased expression of TIMP-1 seems to facilitate the detachment of the thyroid 
Nthy-ori 3-1 cells from the bottom of cell culture flasks in the early hours of RPM-exposure 
(Table 2) due to a failure to stabilize integrin-b1 activity [36]. The later increase might be a 
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facilitator of cell-cell contacts during the rearrangement of the focal adhesion complex for 
3D cell aggregate formation [69]. A similar influence could be observed in endothelial cells. 
Even after 7 d and 14 d of RPM-exposure, the amount of TIMP-1 was reduced significantly 
in s-µg [24]. These data indicate the involvement of TIMP-1 in 3D formation of MCS, which 
contain a high amount of ECM proteins. 

Cystatin-c is secreted as an extracellular polypeptide and functions biologically as a 
protease inhibitor. Dysregulated cystatin-c levels are implicated in various clinical diseases 
[78]. The secretion of cystatin-c was decreased significantly after 4 h of RPM-exposure. 
Later on, no differences between the different groups were evident. As cystatin-c was down-
regulated together with TIMP-1 a general inhibition of ECM degradation seems to be a result 
of microgravity. Further experiments should be conducted to verify this hypothesis.

MCP-1 is a key member of the large family of chemokines which regulate mainly 
cell trafficking. MCP-1 itself is associated with regulating migration and infiltration of 
monocytes/macrophages [79]. Many experiments were conducted focusing on MCP-1 and 
its involvement in various diseases like hypertension, inflammatory or neuronal diseases 
and cancer. A high or constitutive expression level of CCL2 is often observed [80-82]. The 
human thyroid Nthy-ori 3-1 cells secrete MCP-1 after 24 h in a continually increasing amount 
of MCP-1 although no differences could be observed between normal gravity and s-µg. These 
findings are in accordance with the earlier results regarding MCP-1 in the supernatant of 
Nthy-ori 3-1 cells cultivated on the RPM for 7 d [21]. Whether this expression has an impact 
on the signal transduction or if the MCP-1 specific receptor CCR2 [83] is even expressed, 
remains to be elucidated.

Conclusion

The normal human thyroid cell line Nthy-ori 3-1 was shown to form MCS as early as 24 
h after RPM-exposure. The secretion of several cytokines in connection with focal adhesion 
proteins paint a picture of entangled and positively or negatively interacting proteins which 
might strengthen the onset of the MCS formation. Further analyses will have to be performed 
to elucidate in more detail how these cytokines exert their effect. Though MCS formation is 
induced by exposing cells to an RPM, which is comparable to their behaviour in r-µg, our 
results indicate what might happen during a spaceflight. However, they have to be verified 
under this condition.
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