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Abstract

We show that the extreme six-dimensional black string admits a conformal isometry under
inversion. Duality relations between null geodesics of various brane geometries are demon-
strated, some of which have a geometrical origin through an optical metric.
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1 Introduction

The 4-dimensional extreme Reissner–Nordström metric admits a conformal isometry that
interchanges the horizon with asymptotic infinity [1]. Working in isotropic coordinates, this
conformal isometry corresponds to an inversion of the radial coordinate r. Although it is
unclear whether the symmetry has a deeper meaning at the quantum level, it has received
renewed attention [2] because of its connection to the classical instability of the solution
under perturbations of a massless scalar field [3]. The instability appears to be a general
phenomenon, having been generalized to a wider class of solutions and fields of higher spin
[4] and to higher dimensions [5].

In contrast, although it is simple to invent metrics that satisfy a conformal isometry
under inversion, examples of physical interest have rarely been identified. One known class is
4-dimensional black holes: the extreme Reissner–Nordström solution and generalizations with
a cosmological constant [6] or with two electric charges, regarded as a solution supergravity
[7]. A second example is the D3-brane of 10-dimensional type IIB supergravity [8] (see also
[9, 10]). In fact, [8] gives a family of geometries admitting an inversion conformal isometry,
but only notes explicitly these two examples. The purpose of this paper is to highlight a third
example, the dyonic extreme 6-dimensional black string [11], whose self-dual limit [12] is in
fact included in [8], and to discuss related properties of null geodesics in brane solutions.

Using a unified metric ansatz for branes, we recover these two basic examples of 4-
dimensional black holes and the D3-brane, and provide the conditions for the inversion confor-
mal isometry to hold within this ansatz. In particular, we show that if we have a non-singular
near-horizon geometry that is a direct product of an anti-de Sitter spacetime and a sphere,
then there are three possibilities: a 4-dimensional black hole, a D3-brane, or a 6-dimensional
black string.

We then further examine properties of null geodesics within these spacetimes, extend-
ing the discussion to include M2- and M5-branes. The differential equations governing null
geodesics are Newtonian central force problems whose potentials are powers of the radius,
for which dualities have been known since their study by Newton, most famously between
the Kepler problem and the simple harmonic oscillator. We exhibit dualities between the
null geodesics of different geometries, comparing with the known Bohlin–Arnold dualities of
Schwarzschild black holes in 4, 5 and 7 dimensions [13, 14, 15]. In some cases, the dualities
can be understood from an optical 2-metric [16]. We conclude with an illustration of the
inversion symmetry for a scalar wave equation.

2 Metric ansatz

We start with the metric ansatz

ds2 =

N∏

I=1

H
−d̃/(d+d̃)
I ηµν dx

µ dxν +

N∏

I=1

H
d/(d+d̃)
I (dr2 + r2 dΩ2

d̃+1
), HI = 1 +

QI

rd̃
, (2.1)

where d is the dimension of the brane worldvolume, D = d + d̃ + 2 is the total spacetime
dimension, ηµν dx

µ dxν is a d-dimensional Minkowski metric, dΩ2
d̃+1

is the round metric on

S d̃+1, and QI are constants, with µ, ν = 0, . . . , d − 1 and I = 1, . . . , N . This metric ansatz
includes many black brane solutions in supergravity, in which case the constantsQI correspond
to electric or magnetic charges for p-form fields. Special cases include: the M2-brane, for
(N, d, d̃) = (1, 3, 6); the M5-brane, for (N, d, d̃) = (1, 6, 3); and Dp-branes, for (N, d, d̃) =
(1, p+ 1, 7− p) and 0 ≤ p ≤ 6.
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It is convenient to introduce the optical metric. A static spacetime can be written in
canonical form as ds2 = −N2 dt2 + gij dx

i dxj , where N and gij depend only on the spatial
coordinates xi. It is well-known that the spatial projections of its null geodesics are geodesics
of the optical metric ds2o = N−2gij dx

i dxj . An isometry of the optical metric is equivalent to
a conformal isometry of the full spacetime metric [17], with the conformal factor determined
by the transformation of N2. In this case, the optical metric is

ds2o =

d−1∑

µ=1

(dxµ)2 +

N∏

I=1

HI (dr
2 + r2 dΩ2

d̃+1
). (2.2)

It is also useful to introduce the optical 2-metric [16]

ds22 =
N∏

I=1

HI(dr
2 + r2 dφ2), (2.3)

which is the optical metric restricted to an equatorial plane of the transverse sphere and a
fixed worldvolume point.

Let us initially assume that all charges are equal, i.e. QI = Q for I = 1, . . . , N . There is
an extreme horizon at r = 0, in some cases singular. Under the coordinate transformation

r =
Q2/d̃

r̃
, (2.4)

the optical metric takes the form

ds2o =
d−1∑

µ=1

(dxµ)2 +

(
Q

r̃d̃

)4/d̃−N

H̃N(dr̃2 + r̃2 dΩ2
d̃+1

), H̃ = 1 +
Q

r̃d̃
. (2.5)

Therefore, an isometry of the optical metric implies that Nd̃ = 4. There are three positive-
integer solutions: (N, d̃) = (1, 4), (2, 2), (4, 1).

We can further specialize by considering solutions with a non-singular AdSd+1 × S d̃+1

near-horizon geometry. The near-horizon geometry of (2.1) is

ds2 =

(
Q

rd̃

)
−Nd̃/(d+d̃)

ηµν dx
µ dxν +

(
Q

rd̃

)Nd/(d+d̃)(
dr2 + r2 dΩ2

d̃+1

)
, (2.6)

which is AdSd+1 × S d̃+1 when

Nd̃ = 4, d = d̃. (2.7)

The three solutions then correspond to: the D3-brane, for (N, d, d̃) = (1, 4, 4) [8]; the self-dual

6-dimensional dyonic string, for (N, d, d̃) = (2, 2, 2); and the 4-dimensional extreme Reissner–

Nordström black hole for (N, d, d̃) = (4, 1, 1) [1].
Further possibilities come from relaxing the assumption that all charges are equal. The 4-

dimensional extreme Reissner–Nordström black hole can be generalized to have 2 independent
electric charges, regarded as a solution of N = 4 supergravity or of STU supergravity with
pairwise equal electric charges [7]. Similarly, we can generalize the self-dual 6-dimensional
black string by taking independent electric and magnetic charges, as we now elaborate.
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3 Dyonic string

The bosonic Lagrangian of minimal N = (2, 0), 6-dimensional supergravity coupled to a
tensor multiplet is

L = R ⋆ 1− 1
2
⋆ dϕ ∧ dϕ− 1

2
⋆ H ∧H, (3.1)

where ϕ is the scalar dilaton and H = dB is the 3-form Kalb–Ramond field strength. There is
an extreme dyonic black string solution [11], with independent electric and magnetic charges.
The special case of equal electric and magnetic charges is the self-dual solution of [12]. The
Einstein frame metric is

ds2 =
−dt2 + dx2

√
HeHm

+
√

HeHm (dr2 + r2 dΩ2
3), He = 1 +

Q

r2
, Hm = 1 +

P

r2
, (3.2)

where Q > 0 and P > 0 are electric and magnetic charges respectively. The matter fields are

H =
2Q

H2
e r

3
dt ∧ dr ∧ dx+ 2P vol(S3), ϕ =

1√
2
log

(
He

Hm

)
. (3.3)

Under the coordinate transformation

r =
r20
r̃
, r0 = (QP )1/4, (3.4)

which represents inversion about the self-dual radius r0, we have

ds2 =
r20
r̃2

ds̃2, (3.5)

where ds̃2 is identical to the original metric (3.2), but with r replaced by r̃. Therefore, the
inversion (3.4) is a conformal isometry of the spacetime. In the self-dual case Q = P , the
solution falls within [8], in their notation, d = 10, p = 5, γx = 1, γr = −1.

The fixed point set of an isometry is a totally geodesic submanifold. Analogously, the
fixed point set of a conformal isometry is a photon surface, i.e. a surface such that null
geodesics initially tangent to the surface remain in the surface. It is the fixed point set of the
corresponding isometry of the optical metric. Therefore, there is a photon surface given by
the self-dual radius r = r0.

4 Null geodesics and dualities

The spherical symmetry of S3 implies that we may choose coordinates that restrict geodesics
to an equatorial plane with polar coordinates (r, φ). Using standard manipulations, the
unparameterized null geodesics satisfy

(
dr

dφ

)2

=
(r2 +Q)(r2 + P )

b2
− r2,

1

b2
=

E2 −X2

h2
, (4.1)

where E = ṫ/
√
HeHm, X = ẋ/

√
HeHm and h =

√
HeHmr

2φ̇ are constants of motion, which
determine the impact parameter b, and dots denote affine parameter derivatives. This is
invariant under the conformal isometry, as required. There is an unstable circular photon
orbit at r = r0 with b =

√
Q +

√
P and X = 0, and, more generally with X 6= 0, a helical
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orbit. There are null geodesics that asymptote to the photon surface from the outside and
inside, given respectively by

r = r0 coth

(
r0√

Q+
√
P
φ

)
, r = r0 tanh

(
r0√

Q+
√
P
φ

)
, (4.2)

and related by inversion. General solutions of (4.1) can be expressed in terms of the Weier-
strass elliptic function; see e.g. [18, 15].

More generally, the ansatz (2.1) gives

(
dr

dφ

)2

=
r4

b2

N∏

I=1

HI − r2. (4.3)

These trajectories are geodesics of the optical 2-metric (2.3). An isometry of the optical metric
obtained by taking a power of r gives an isometry of the optical 2-metric, but the converse
does not hold.

For the D3-brane, we have

(
dr

dφ

)2

=
r4 +QD3

b2
− r2. (4.4)

Comparing with (4.1), we see a correspondence, between null geodesics of the 6-dimensional
black string and the D3-brane. For example, we can identify

QD3 = Q6dP6d, b2D3 = b26d −Q6d − P6d, b6dφD3 = bD3φ6d. (4.5)

It is worth comparing the duality under inversion with the Bohlin–Arnold duality [13, 14]
of null geodesics in the 5-dimensional Schwarzschild solution [15]. One analogously derives

(
dr

dφ

)2

=
r4

b2
+ 2m− r2, (4.6)

where m is the mass of the black hole. There is a duality invariance under inversion of r, which
swaps the r4 and r0 terms. This also swaps m, the mass of the background solution, and 1/b2,
the inverse impact parameter squared of the light ray, up to numerical factors. In contrast,
the self-duality under inversion for the 6-dimensional string or D3-brane holds for a fixed
background geometry and fixed impact parameter. The duality between the 6-dimensional
string and the D3-brane mixes the background geometry and impact parameter in a more
complicated way. The Newtonian analogue is self-duality of an r−5 force law. Comparing (4.4)
and (4.6) gives a further duality between null geodesics of the D3-brane and the 5-dimensional
Schwarzschild solution:

bD3 = b5d = b, QD3 = 2m5db
2. (4.7)

Another example of Bohlin–Arnold duality is between null geodesics in 4- and 7-dimensional
Schwarzschild solutions [15]. There is a similar duality for M5- and M2-branes, whose null
geodesics respectively satisfy

(
dr

dφ

)2

=
r4

b2

(
1 +

QM5

r3

)
− r2,

(
dr

dφ

)2

=
r4

b2

(
1 +

QM2

r6

)
− r2. (4.8)
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These are related by

r3M5

QM5

=
QM2

r6M2

, 2φM5 = φM2, Q
1/6
M2bM5 = Q

1/3
M5bM2. (4.9)

We may further understand the duality through the optical 2-metrics

ds2M5, 2 = H5(dr
2 + r2 dφ2), ds2M2, 2 = H2(r

2 + r2 dφ2). (4.10)

Under the (r, φ) coordinate change (4.9), the optical 2-metrics are the same up to a multi-
plicative constant,

Q
1/3
M2ds

2
M5, 2 = 4Q

2/3
M5 ds

2
M2, 2. (4.11)

and so give the same unparameterized geodesics. A related observation about the geometries
was made in [9]. In contrast, the Bohlin–Arnold duality between null geodesics in 4- and
7-dimensional Schwarzschild solutions does not have projectively equivalent optical 2-metrics
[16]. Although the M2- and M5-branes are electromagnetic duals of each other, it is curious
that their geometries exhibit a partial duality. The Newtonian analogue is duality between
r−4 and r−7 force laws.

An examination of the optical 2-metric (2.3) for positive-integer N and d̃ shows that its

only non-trivial dualities not discussed so far are between (N, d̃) = (3, 1) and (N, d̃) = (3, 2)

and within the family (N, d̃) = (4, 1). 3-charge black holes in 5-dimensional STU supergrav-

ity have (N, d, d̃) = (3, 1, 2). 4-charge black holes in 4-dimensional STU supergravity have

(N, d, d̃) = (4, 1, 1), with instead N = 3 when one electric charge vanishes, giving a naked
singularity.

5 Scalar field

The inversion conformal isometry can be seen in the equation of a test scalar field in the
6-dimensional black string background. For illustration, we consider the conformally invari-
ant scalar wave equation (� + 1

5
R)Φ = 0, although the choice of conformal coupling is not

necessary. The Ricci scalar is

R =
(Q− P )2

(HeHm)5/2r6
. (5.1)

In the self-dual case Q = P , the constant dilaton and conformal invariance of ⋆H ∧H imply
through the field equations that R = 0. We separate variables, taking Φ = φ(r)Y (θi)e

−iωt,
where Y (θi) is a spherical harmonic on S3 satisfying ∇2Y = −ℓ(ℓ+2)Y . The radial function
φ(r) satisfies

d2φ

dr2
+

3

r

dφ

dr
+

(
ω2HeHm − ℓ(ℓ+ 2)

r2
+

R

5
√
HeHm

)
φ = 0. (5.2)

The invariance under inversion of the first two terms together follows from the well-known
Kelvin transformation on the Laplace equation in flat space. The last three terms are indi-
vidually invariant under inversion.

The minimally coupled massless scalar wave equation in the dyonic string background in-
volves the modified Mathieu equation [19], like for the D3-brane [20]. The inversion symmetry
simply corresponds to the Mathieu equation being even. It is possible that the appearance
of special functions is somehow related to the geometric simplicity or symmetry of the back-
ground geometry.
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There is a similar duality between the massless scalar wave equation in M2- and M5-brane
backgrounds that can be understood from the duality between the optical 2-metrics. However,
the restriction to an equatorial plane requires spherical symmetry, and so the duality for scalar
fields only holds for the s-wave, i.e. the ℓ = 0 partial wave, as used in [9].

6 Conclusion

We have highlighted examples of physically relevant spacetimes that admit an inversion con-
formal isometry. Dualities between null geodesics of several different black brane spacetimes
were demonstrated. There are different types of dualities, and some examples can be ex-
plained by isometries of the optical metric or an optical 2-metric. It would be interesting
if the inversion has further applications to extreme black brane instabilities or in quantum
theory.
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