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Trends
Advances in neuroimaging technolo-
gies and analytics have enabled the
discovery of gradients in microstruc-
ture, connectivity, gene expression,
and function in the human cerebral
cortex.

The notion that functional processing
hierarchies are confined to sensorimo-
tor systems is challenged by recent
descriptions of global hierarchies,
extending throughout transmodal
association areas.

An innovative line of research has
uncovered a cortical hierarchy in the
temporal domain that accounts for
spatially distributed functional
specialization.
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Recent advances in mapping cortical areas in the human brain provide a basis
for investigating the significance of their spatial arrangement. Here we describe
a dominant gradient in cortical features that spans between sensorimotor and
transmodal areas. We propose that this gradient constitutes a core organizing
axis of the human cerebral cortex, and describe an intrinsic coordinate system
on its basis. Studying the cortex with respect to these intrinsic dimensions can
inform our understanding of how the spectrum of cortical function emerges
from structural constraints.

The Significance of Cortical Location
For more than a century, neuroscientists have studied the cerebral cortex by delineating
individual cortical areas (see Glossary) and mapping their function [1]. This agenda has
substantially advanced in recent years, as automated parcellation methods improve and data
sets of unprecedented size and quality become available [2–4]. Nevertheless, our understand-
ing of how the complex structure of the cerebral cortex emerges and gives rise to its elaborate
functions remains fragmentary. To complement the description of individual cortical areas, we
propose an inquiry into the significance of their spatial arrangement, asking the basic question:
Why are cortical areas located where they are?

Early formulations of this question date to theories from classical neuroanatomy [1,5–7]. They
state that the spatial layout of cortical areas is not arbitrary, but a consequence of develop-
mental mechanisms, shaped through evolutionary selection. The location of an area among its
neighbors thus provides insight into its microstructural characteristics [6], its connections to
other parts of the brain [7], and eventually its position in global processing hierarchies [8].
Consider, for example, the well-researched visual system of the macaque monkey [9,10]. Along
the visual hierarchy, low-level visual features are increasingly abstracted and integrated with
information from other systems. Traditionally, areas are ordered based on their degree of
microstructural differentiation, and the classification of their connections as feedforward or
feedback [11]. The framework we advocate emphasizes that an area’s position in the visual
processing hierarchy – and thus many of its microstructural and connectional features – is
strongly related to its distance from the primary visual area [12,13].

More generally, we propose that the spatial arrangement of areas along a global gradient between
sensorimotor and transmodal regions is a key feature of human cortical organization. A
gradient is an axis of variance in cortical features, along which areas fall in a spatially continuous
order. Areas that resemble each other with respect to the feature of interest occupy similar
positions along the gradient. As we will point out, there is a strong relationship between the
similarity of two areas – that is, their relative position along the gradient – and their relative position
along the cortical surface. This important role of cortical location prompts a new perspective in
which we try to understand the cerebral cortex with respect to its own, intrinsic dimensions.
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Glossary
Cortical area: the definition of what
constitutes a cortical area is a
subject of ongoing debates [2,4].
Most commonly, a cortical area is
delineated from neighboring parts of
the cortex based on a characteristic
cytoarchitecture or
myeloarchitecture, connectivity
profile, and response to particular
stimuli.
Cytoarchitecture: the description of
cortical and subcortical organization
according to the size and shape of
cell bodies and their distribution in
horizontal layers of the cortical sheet
(e.g., [60]).
Differentiation: cortical areas vary in
terms of how clearly the six major
cortical layers and their sublayers
can be discerned, in their emphasis
on infragranular or supragranular
layers, and their overall myelin
content. Highly differentiated areas
generally show a clear laminar
structure, emphasis on supragranular
layers, and high myelin content.
Intrinsic geometry: properties of a
surface that can be measured
without reference to another space,
for example, the distance along a
surface between two points.
Myeloarchitecture: the description
of cortical and subcortical
organization according to the density
of myelinated fibers and their
Toward this goal, we will first review converging findings on cortical microstructure, connec-
tivity, and gene expression, which point to a dominant sensorimotor-to-transmodal gradient of
cortical organization. Next, we will explain how this gradient can help us understand how the
spectrum of cognitive functions arises from cortical structure. Finally, we will propose a
gradient-based intrinsic coordinate system of the human cerebral cortex.

A Sensorimotor-to-Transmodal Gradient of Cortical Organization
As will be outlined in the following section, there is now comprehensive evidence for a global
gradient in human cortical organization, which spans between primary sensorimotor and
transmodal regions, and is reflected in cortical microstructure, connectivity, and gene expres-
sion. While these cortical features have previously been used to delineate discrete areas, the
concept of an overarching gradient does not discount the existence of such areas, but moves
their respective spatial relationships into focus.

Cortical Microstructure
The theory of cortical gradients is rooted in classical neuroanatomy (e.g., [1,5–7]). In these
studies, histological sections of postmortem brains are examined for the distribution of cells
(cytoarchitecture) or myelinated fibers (myeloarchitecture) in horizontal layers of the cortical
sheet. While this labor-intensive approach provides a detailed account of cortical microstruc-
ture, the resulting descriptions typically remain qualitative and observer dependent (but see
[14]). A more recent line of research takes a simplified view of cortical microstructure by
reducing it to a single quantity: the number of neurons within a unit of surface area [15–18].
These studies have demonstrated a rostrocaudal gradient in neuron number in the cortices of a
broad range of mammalian species, including several rodents, marsupials, and non-human
primates. Neuron numbers are generally high in caudal portions of the cortex, such as the
occipital lobe, and gradually decrease toward more rostral regions. This rostrocaudal organi-
zation in neuron number aligns with known neurodevelopmental gradients in the mammalian
cortex and has been suggested to arise from the temporal sequence of neurogenesis
[16,19,20] (Box 1).
distribution in radial bundles and
horizontal layers in the cortical sheet
(e.g., [1]).
Neurogenesis: the process by
which new neurons develop from
neural stem cells to subsequently
populate different regions of the
brain.
Parcellation: division of the cortex
or subcortical structures into typically
discrete areas or networks on the
basis of differences, for example, in
microstructural features, connectivity,
or functional properties (e.g., [3]).
Resting-state functional
connectivity: brain activity is
measured in the absence of explicit
task demands and functional
connectivity is inferred from the
temporal correlation of low-frequency
fluctuations across brain regions.
Seed region: region with reference
to which a particular measure, for
example, connectivity, is calculated.
Sensorimotor areas: collective term
for areas that respond to sensory

Box 1. Neurodevelopmental Gradients

It has been suggested that the spatial distribution of cortical features in the adult brain is established by neurodevelop-
mental gradients. The rostrocaudal gradient in neuron number can be related to timing differences in neurogenesis,
which begins uniformly across the cortex, but terminates earlier in rostral regions. In the macaque monkey, neurogen-
esis ends about 20 days earlier in the rostral pole than in the most caudal regions [61]. Caudal regions thus undergo a
higher number of cell cycles, which accounts for the higher number of neurons in these areas. In rostral regions, more
time can in turn be devoted to the growth of large neurons that form many connections [62]. The rostrocaudal gradient
therefore signifies a shift in computational capacity, from a high number of processing units in caudal regions to a lower
number of highly connected units in rostral regions [16]. The gradient is more pronounced in larger cortices [17,20],
which have longer developmental schedules, leading to more pronounced differences in neurogenesis termination
across areas [19]. In the human cortex a rostrocaudal difference of up to 70 days has been predicted [20].

However, the microstructural gradient in the human cortex appears to not simply be steeper, but to deviate from the
rostrocaudal distribution. Cortical development is less understood in humans compared with other mammals and the
deviation in the adult cortex could be rooted in spatially more complex developmental gradients. This hypothesis is in line
with the observation that gene expression patterns in the human cortex also diverge from the rostrocaudal organization
described for other mammals [42]. For example, transmodal regions of the DMN, although located at distant points of
the rostrocaudal axis, have similar gene expression patterns. These regions also show protracted developmental
expansion and maturation in humans [63]. While much remains to be learned about neurodevelopmental gradients in
the human cerebral cortex, such research can help to integrate observations across different cortical features and
establish an informed developmental basis for the proposed intrinsic coordinate system.

22 Trends in Cognitive Sciences, January 2018, Vol. 22, No. 1



input in a single modality (visual,
auditory, or somatosensory) as well
as motor areas.
Spatial receptive fields: the region
of sensory space in which a stimulus
will modify the response of a
particular neuron.
Supragranular: the superficial
aspect of the cortical sheet (layer I–
III), which is located external to the
internal granular layer (IV).
Temporal receptive windows: the
time window in which a newly
arriving stimulus will modify
processing of previously presented
information.
Transmodal areas: cortical areas
whose activity is not specific to a
single modality of sensory input or
motor output.
In some areas neuron numbers deviate from what would be anticipated given their location
along the rostrocaudal gradient. For example, elevated neuron numbers have been reported in
rostrolateral regions mapping to putative primary somatosensory cortex in multiple species
[15,16,18]. Such observations raise the question of whether regular spatial patterns beyond the
rostrocaudal gradient can be identified in cortical microstructure. In particular when considering
the human cortex, a simple rostrocaudal gradient appears insufficient to explain its micro-
structural organization.

There is little quantitative data on the distribution of neuron numbers in the human cortex.
However, recent advances in high-resolution and quantitative MRI [21,22] together with
improved processing tools (e.g., [23,24]) facilitate noninvasive assessment of microstructural
features in the human brain. MRI only provides indirect measures of microstructural compo-
nents, and its spatial resolution is still low compared with histological methods. However, MRI
does not require slicing of the brain tissue and thus is ideally suited to capture global gradients in
three-dimensional space.

MRI studies of the human cerebral cortex have provided evidence for a microstructural
gradient that is anchored in sensorimotor regions and radiates toward higher-order areas in
the parietal, temporal, and prefrontal cortex. For example, MRI measures that are sensitive
to intracortical myelin have revealed a pattern of high myelin content in primary sensori-
motor regions, which systematically decreases toward transmodal areas in parietal, tem-
poral, and particularly prefrontal cortex [3,25–28] (Figure 1A). A similar spatial distribution
has been described for MRI-based measures of cortical thickness [12] and myelinated
thickness [29]. Cortical thickness coarsely tracks changes in cytoarchitecture [30] and
myelin content [25], and can be viewed as a pragmatic surrogate for cortical microstructure
[12].

Thus, a rostrocaudal gradient explains much of the spatial variation of cortical microstructure in
the mammalian cortex. However, microstructural features in the human cortex depart from the
simple rostrocaudal distribution and reveal a spatially more complex sensorimotor-to-trans-
modal gradient.

Macroscale Connectivity
While cortical microstructure is mostly used to describe local properties of individual areas,
studies investigating cortical connections focus on the relationship between areas. Connec-
tivity analyses have often taken the form of dividing the cortex into discrete networks of strongly
interconnected areas, but recent studies have demonstrated continuous spatial patterns of
connectivity in the human cerebral cortex [31–37]. These studies simplify the complex con-
nectivity matrix – representing how each cortical area is connected to every other area – to a
small set of connectivity gradients.

One method of simplification is to select a seed region and quantify its connectivity to every
other cortical location. When selecting seeds in the different primary sensorimotor areas,
gradients of decreasing connectivity strength from each of these seeds converge in multimodal
integration areas, such as the anterior cingulate cortex and the occipitotemporal junction, and
finally reach transmodal regions of the default mode network (DMN) in the medial prefrontal,
posterior cingulate, and temporal cortex [31,32].

In a more data-driven approach, connectivity gradients can be obtained by identifying the
main axes of variance in the connectivity matrix [33–37] (Box 2). Each of these axes
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Figure 1. A Sensorimotor-to-Trans-
modal Gradient Based on MRI Data
of the Human Cerebral Cortex. A
basic sensorimotor-to-transmodal orga-
nization is apparent in different cortical
features in the human cerebral cortex
as assessed with MRI. (A) Intracortical
myelin increases along the sensorimo-
tor-to-transmodal gradient (regions with
low signal quality are masked) [25]. (B)
The main variance in functional connec-
tivity patterns spans between primary
sensorimotor areas and transmodal
regions of the DMN. The connectivity gra-
dient does not have a unit, but it is
strongly related to a spectrum of con-
crete-to-abstract cognitive domains
[35]. (C) The map shows a superposition
of the first three semantic category-pro-
cessing gradients. The largest axis of var-
iation separates perceptual and physical
categories in sensorimotor areas from
more abstract concepts in transmodal
regions [46]. (D) The length of events that
are represented in a given area, here
extracted from movie-watching data, var-
ies from short events in sensory areas to
long events in transmodal regions (only
patterns with high between-subject con-
sistency are shown, for example, soma-
tosensory regions did not respond
consistently to auditory–visual input) [53].
represents a gradient, along which cortical locations are ordered according to their similarity
in connections to the rest of the cortex. In line with the gradients emerging from primary
sensorimotor seeds, the main axis of variance in human resting-state functional connec-
tivity data is captured by a principal gradient that spans from primary sensorimotor areas to
the transmodal peaks of the DMN [35] (Figure 1B). A corresponding gradient was found in the
macaque monkey cortex based on anatomical connectivity data from tract-tracing studies
[35].
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Box 2. Extracting Gradients from High-Dimensional Cortical Data

In the analysis of some cortical features more than one value is assigned to each cortical location. Examples are
connectivity data, functional coactivation, gene or receptor expression, depth-resolved microstructure, and in particular
multimodal data sets combining several of these features [3,4]. To extract intelligible information from such high-
dimensional data, methods for dimensionality reduction are required.

One common approach is to group cortical locations into larger parcels based on feature similarity. This approach is
efficient but typically imposes hard cut-offs between and homogeneity within parcels. By treating parcels as discrete,
independent entities the resulting representations fail to capture more gradual changes and overarching spatial
relationships [64].

Gradient approaches instead find the main axes of variance in the data through decomposition or embedding
techniques. The original dimensions of the data are replaced by a set of new dimensions, chosen so that most of
the variance in the data is captured by just a few of these dimensions. This can drastically reduce the number of
dimensions that are required to represent the data, with few assumptions on its internal organization. Often, the new
dimensions are inherently ordered, so that the first dimension explains most of the variance in the data (it is sometimes
called dominant), the second dimension explains the second most variance, and so on.

Each cortical location can now be described by a set of values reflecting where it falls along the new dimensions. Each
dimension is a continuous representation of one aspect of cortical organization, in other words, a large-scale cortical
gradient. A set of gradients derived from the same data represents superimposed aspects of cortical organization,
which often cannot be captured in a single dimension or a discrete parcellation. Sometimes these different aspects are
straightforward to interpret. For example, decomposition of primary visual cortex functional connectivity yields two
dominant gradients, each reflecting a different aspect of retinotopic organization – eccentricity and polar angle [37].
Other times, the spatial distribution of different superimposed gradients is less obviously related to known anatomical or
functional properties and their interpretation can be more challenging [25].
This principal connectivity gradient is closely related to the intrinsic geometry of the cortex.
When considering the distance along the cortical surface, locations in the transmodal cortex,
corresponding to one extreme end of the gradient, are maximally distant from unimodal
sensorimotor regions at the other end of the gradient [35]. This spatial relationship is
confirmed across the human and macaque monkey [35,38] as well as mouse cortex [38],
revealing the crucial role of area’s spatial location for cortico-cortical connectivity patterns. In
addition, the spatial layout of the principal gradient aligns with the human microstructural
gradient described in the previous section. A direct comparison of the principal gradient of
functional connectivity and intracortical myelin content revealed a systematic spatial relation-
ship [25]. Global connectivity patterns thus reveal a sensorimotor-to-transmodal gradient that
is strongly related to a gradient in local microstructural features and the intrinsic geometry of
the cortex.

Gene Expression
During brain development, molecular gradients constitute important cues and constraints for
the emergence of different structures by influencing local patterns of gene expression. While
differential gene expression is most pronounced during prenatal development [39] and
between subcortical structures [40], substantial spatial variation has also been described
within the adult human cerebral cortex [40–43].

Similar to connectivity data, much of the variation in gene expression patterns across cortical
areas can be captured in a small set of spatial gradients (Box 2). A dominant gradient of gene
expression patterns was found to separate primary visual, somatomotor, and auditory areas on
one end from transmodal temporal and frontal areas on the other [40]. This gradient is strongly
related to spatial distance; in other words, regions that are close in space tend to have similar
gene expression patterns.
Trends in Cognitive Sciences, January 2018, Vol. 22, No. 1 25



In addition, gene expression similarity is related to connectivity [41]. Despite the basic relation-
ship between spatial proximity and gene expression similarity, even distant regions can
resemble each other in their gene expression patterns if they share long-range connections.
This is particularly true for a set of genes enriched in the supragranular layers of the human
cortex, from which most cortical connections emerge [42,43]. Expression of these genes differs
for example between sensorimotor networks and the DMN, while even distant DMN regions
show similar expression patterns. Regions in the dorsal attention network, which are spatially
interspersed between sensorimotor and DMN regions, show intermediary expression patterns
between those two extremes [42].

Similar to microstructure and connectivity, much of the spatial variation in gene expression
patterns in the human cerebral cortex thus occurs along a gradient between sensorimotor and
transmodal regions. Gene expression similarity between cortical locations is related to at least
two factors: their spatial proximity and the existence of long-range connections between them.

Functional Processing Hierarchies
The spatial arrangement of human cortical areas in a sensorimotor-to-transmodal gradient is
reflected in microstructure, connectivity, and gene expression. What are the implications of this
structural gradient for understanding cortical function? We propose that this order provides a
structural scaffold from which functional processing hierarchies emerge.

While processing hierarchies are typically described in sensorimotor systems (e.g., [9,10]), they
have been proposed to extend to transmodal association areas [8,44,45]. In support of this
view, spatial gradients of functional integration ranging from unimodal to transmodal areas have
recently been described in the human cortex [35,46]. A study mapping semantic category
processing revealed a set of superimposed semantic gradients, which smoothly vary across
the entire cortex [46]. The principal semantic gradient spans from concrete perceptual and
quantitative descriptions, mapping to sensorimotor areas, to abstract category representations
related to emotions and social interactions in transmodal regions (Figure 1C).

Similarly, the principal gradient of functional connectivity tracks a functional hierarchy from
primary sensory processing to higher-order functions such as social cognition [35]. As
described before, the transmodal peaks of this processing hierarchy in regions of the DMN
are maximally distant from landmarks in primary cortical areas. It is an intriguing hypothesis that
this spatial separation from regions governed by direct perception and action enables the DMN
to perform its commonly ascribed functions relating to information integration and abstraction
[35,47].

A Temporal Hierarchy Links Structural Gradients and Functional
Specialization
The spatial distribution of global functional processing hierarchies overlaps with large-scale
spatial trends in microstructure, connectivity, and gene expression. However, this observation
alone does not explain how distributed cortical functions emerge from structural gradients. A
potential link is a processing hierarchy in the temporal domain, which emerges from micro-
structural features and long-range connections, and gives rise to distributed functional
specialization.

A recent line of research introduced the concept of temporal receptive windows – in analogy
to spatial receptive fields – reflecting the time window in which previously presented
information can affect the processing of a newly arriving stimulus [48–53]. The length of
26 Trends in Cognitive Sciences, January 2018, Vol. 22, No. 1



temporal receptive fields was found to vary hierarchically from primary sensory areas, tracking
fast changes of a scene on the order of milliseconds to seconds, to transmodal association
areas, which encode slowly changing states of the world, complex concepts and situations,
and integrate information across seconds, minutes, or longer (Figure 1D). The temporal
integration hierarchy is related to a gradient in intrinsic dynamics. Areas with longer temporal
receptive fields show slower resting-state fluctuations in human electrocorticography [51] and
functional MRI data [54], as well as in single neuron spike trains in the macaque monkey [55].

The cortical spectrum of intrinsic dynamics, and thus the temporal integration hierarchy,
naturally emerges from spatial gradients in simple microstructural features and long-range
connectivity. This was recently demonstrated in a computational model of the macaque
monkey cortex, which combines a local gradient in spine density with a realistic pattern of
long-range connections between areas [56]. When a brief stimulus or white noise (representing
intrinsic activity) is input to the primary visual or somatosensory areas of this model, a hierarchy
of processing timescales emerges: the response is propagated through the network and
increasingly integrated over time, so that brief transient activity is observed in early sensory
areas, while higher level multimodal and transmodal regions show slow, persistent responses.

Crucially, the temporal hierarchy no longer aligns with empirical findings when the connection
patterns are scrambled. The authors conclude that the presence of long-range connections
allows for distant regions to influence each other’s dynamics [56]. This accounts for cases such
as the frontal eye field, which is low in the microstructural hierarchy, but displays comparably
slow intrinsic dynamics due to its strong connectivity to a set of high-level association areas.

An Intrinsic Coordinate System of the Cerebral Cortex
A picture thus emerges of an organizing gradient from sensorimotor to transmodal regions,
establishing an axis along which all areas of the cerebral cortex can be situated. We propose
that this gradient constitutes the core dimension of an intrinsic coordinate system of the
human cerebral cortex. Our approach is inspired by the concept of a natural coordinate
system of the vertebrate central nervous system (CNS) [57]. Instead of using Cartesian
coordinates, the natural coordinate system describes CNS organization along three built-
in dimensions: the curved long axis of the neural tube and two limiting curved planes. These
organizing axes manifest themselves during CNS development through the orientation of
blood vessels and fibers, and the migratory paths of neurons. While simple rostrocaudal
patterns in the cerebral cortex align with the long axis of the vertebrate CNS natural
coordinate system, we have presented evidence that the core axis of the human cerebral
cortex deviates from such rostrocaudal organization. We thus borrow from the basic idea of
the natural coordinate system – to use a structure’s intrinsic, naturally occurring axes for
describing its organization – and apply it to the specific case of the human cerebral cortex.
This approach diverges from the common practice in human neuroimaging, to describe
cortical locations with respect to their precise position in space. While such spatial coor-
dinates are often arbitrarily imposed by the measurement technique, intrinsically defined
coordinates have the potential to indicate the relative position of a cortical location along
functional hierarchies and gradients of structural features, thus reflecting the underlying
organization of the cortex itself.

We use the term ‘intrinsic coordinate system’, rather than ‘natural coordinate system’, to
differentiate our proposition from the original concept by Nieuwenhuys and Puelles [57]. While
the natural coordinate system is directly deduced from detailed knowledge about CNS
development, the gradients discussed here are inferred from various, often indirect, measures
Trends in Cognitive Sciences, January 2018, Vol. 22, No. 1 27



of cortical organization in the adult brain, and retrospectively associated with developmental
processes. We do not wish to imply that the intrinsic coordinate system of the cerebral cortex is
categorically different from the natural coordinate system of the CNS. By contrast, we assume
that eventually, the developmental processes that establish cortical gradients will be uncovered
and facilitate an integration between both coordinate systems.

The core axis of the intrinsic coordinate system we propose is the sensorimotor-to-transmodal
spatial gradient. This axis reflects a functional spectrum ranging from direct perception and
action to integration and abstraction of information. However, it does not account for the
functional specialization of different sensory modalities: visual, auditory, somatosensory, and
motor regions are all grouped together. While we have focused on the sensorimotor-to-
transmodal gradient throughout this article, there is substantial evidence for an additional axis
in various cortical features that differentiates between the sensorimotor modalities. A second-
ary gradient of connectivity in the human and macaque monkey cortex separates visual regions
at one end of the gradient from somatomotor and auditory regions at the opposite end [35]. A
similar organization has been observed for a secondary gene expression gradient [40]. Recent
approaches to MRI-based cortical microstructure, that take into account the laminar architec-
ture of the cortical sheet, also reveal additional differentiation between modalities. For example,
the distribution of MRI-based myelin across the cortical depth differs between visual and
somatomotor regions [58], in line with well-established histological findings [1]. Finally, it has
been proposed that a second dimension in the functional domain distinguishes hierarchies
originating from different sensory modalities, which are dynamically selected based on the
current input [56]. In line with previous models of cortical organization [8], the distinction
between sensorimotor modalities offers an additional axis of differentiation that can be incor-
porated into the intrinsic coordinate system of the human cerebral cortex.

One of the challenges is how to construct the intrinsic coordinate system concretely. Rather
than preferencing one specific cortical feature over another, we propose to take advantage of
the observation that the distribution of various cortical features is strongly linked to the intrinsic
geometry of the cortex. As illustrated in Figure 2, the first dimension of the intrinsic coordinate
system can be constructed from the spatial distance along the cortical surface from transmodal
regions to primary areas. In the second dimension, each cortical location is described by its
relative distance from morphological landmarks in primary sensorimotor areas. It is thus
possible to establish a coordinate system based on the intrinsic geometry of the cortex that
accommodates gradients in multiple structural and functional features. The proposed coordi-
nate system is only an initial working model, and the number and exact configuration of its
dimensions remain to be resolved. However, this model provides the foundation to explore both
consistency and variation across features and individuals, in the quest of an organizational
template of the human cerebral cortex.

A distance-based intrinsic coordinate system constitutes a novel research agenda with diverse
applications and new methodological and conceptual challenges (see Outstanding Questions).
The intrinsic coordinate system provides a common space to integrate observations across
time points, measurement modalities, subjects, and even across species. Pioneering studies
have shown that aligning functionally equivalent areas based on individual connectivity gra-
dients [33,34] or functional gradients [59] improves matching accuracy compared with mor-
phological alignment alone. Describing cortical features in terms of large-scale gradients also
makes way for novel analytic approaches. For example, spatial statistics have been used to
compare superimposed aspects of connectivity, represented by individual gradients, across
sessions or subjects [37]. In addition, as basic cortical gradients appear to be conserved across
28 Trends in Cognitive Sciences, January 2018, Vol. 22, No. 1
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Figure 2. Example of an Intrinsic Coordinate System. We propose an intrinsic coordinate system based on the
distance along the cortex. Each data point in the intrinsic coordinate space (left) represents a location on the cortical
surface (right). (A) Data points are colored according to the first intrinsic dimension. This dimension is given by the distance
along the cortical surface between sensorimotor and transmodal regions, represented in a color spectrum from red to blue.
In other words, the minimum distance of a cortical location from any of the red transmodal seed regions determines its
position along the first intrinsic dimension. In the abstract representation (left), this dimension is represented by concentric
circles of increasing size. When displayed on the cortical surface (right) it largely aligns with the feature maps in Figure 1. (B)
Data points are colored according to the second intrinsic dimension, which differentiates between the different sensory
modalities. The position of a cortical location along this dimension is given by its relative distance along the cortex from
three morphological landmarks in primary areas. Each cortical location is assigned an RGB value composed of its proximity
to each of these landmarks (calcarine sulcus = red, transverse sulcus = green, central sulcus = blue). That means, the
closer a cortical location is to the calcarine sulcus, the higher its R value, and so on. The second dimension is captured by
the distance along the arc of the abstract representation of the intrinsic coordinate space (left). s., sulcus.
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Outstanding Questions
Beyond the cerebral cortex, are other
brain structures such as the cerebel-
lum or the basal ganglia organized
along corresponding large-scale gra-
dients? If so, how do gradients in dif-
ferent structures relate to each other,
and can they be unified into a single
coordinate system?

What is the best way to align gradients
across individuals? When decompos-
ing data from individual subjects,
matching the gradients is not trivial.
How do we distinguish meaningful
interindividual variation from noise?

How many meaningful superimposed
gradients constitute the intrinsic coor-
dinate system?
species [18,35], the intrinsic coordinate system provides a new approach for comparing
phylogenetic variation in cortical features. A research agenda based on the idea of an intrinsic
coordinate system of the human cerebral cortex thus reinforces the integrations of findings
across systems, modalities, and species and their interpretation in the context of cortical
development.

Concluding Remarks and Future Perspectives
The spatial arrangement of cortical areas is not arbitrary. An area’s position along a core
gradient between sensorimotor and transmodal areas reflects its microstructural and genetic
features, its connectivity profile, and functional role. Recognizing this relationship introduces a
new perspective in which cortical organization is described with respect to its intrinsic dimen-
sions. It takes us beyond the localization of functions to areas and networks, toward an
understanding of how the spectrum of cognitive capacities emerges from the spatial arrange-
ment of structural features. Uncovering the neurodevelopmental basis of these intrinsic
dimensions, and exploring their convergence and variation across species, has the potential
to demystify the emergence of uniquely human cognitive functions.
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