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1. Introduction. Local Alfven resonance (AR) in the case of straight steady magnetic field 0B
r

was intensively studied since Dolgopolov and Stepanov (1965), Uberoi (1972), Chen and

Hasegawa (1974), Tataronis and Grossman (1973) etc. mainly due to application of this

phenomenon to efficient plasma production and heating in fusion devices. In the cold

approach, fields of RF waves are known to have infinite disruptions within AR region. Even

weak effects (thermal motion of particles, finite inertia of electrons, weak nonlinearity and

dissipation) can significantly affect on the conversion of these waves into small scale

oscillations and provide for their efficacious absorption in this region. Singular behaviour of

the radial wave electric field is shown in figures 1-3 with dashed lines.

AR is known to displace to plasma periphery while plasma density grows. This leads

to undesirable plasma periphery heating, enhancement of plasma – wall interaction and

further plasma contamination. Complex three-dimensional inhomogeneity of resonance

regions and small scale of converted waves make a solution of the problem about conversion

and absorption of RF waves in stellarators even with the help of PC very complicated so far.

These reasons stimulate and justify attempts of an analytic solution of such problem.

Confining magnetic field of stellarators is characterised by a helical inhomogeneity.

We restrict our consideration to the following representation of the confining magnetic field
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Designations here are commonly used (see, e.g., Girka et al (2003)), δ= ( ) drdk1 h
)l(

s ∈ .

2. Derivation of the basic equation. We consider here the electromagnetic waves with a

frequency ceωω << , ωpe in the low-β plasma. In this plasma, the equilibrium density n(r,ϑ,z)

can be introduced as a function of a single variable that is the magnetic surface, n(r,ϑ, z) =

n(r0), where

            ( ) ( ) ( )2
00 lcosB/5.0rr δΟθαδ +−= .                                                    (2)

The assumption of small current in helical winding (δ<<1) allows us to write down the

expressions for the components ε1,2 of the dielectric permittivity tensor of the low-temperature

plasma in the form of Fourier series with keeping the terms of the first order in δ only:
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where ( ) ( )0
2,1

1
2,1 ~ δεε , ε1,2

(0) are zero-order terms and ε1,2
(1) are the first-order corrections.

Electron inertia is known to be negligibly weak for Alfven and fast magnetosonic

branches of MHD oscillations. That is why the longitudinal component of the wave electric

field is equal to zero everywhere in the plasma: ( )≡0B,E
rr

E3=(B0rEr+B0ϑEϑ+B0zEz) →0. This

relation between the components of the RF electric field enables us to simplify the set of

Maxwell equations. Following Dolgopolov and Stepanov (1965) and others we utilize also the

approach of «narrow slab».

Judging by the symmetry of the problem we are looking for the solution of Maxwell

equations in the following form,
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The representation (4) corresponds to the wave envelope that contains fundamental harmonic

and two the nearest satellite harmonics. The expansions in Fourier series for the remaining

components of the magnetic and electric fields of the wave are similar to (4).

Let’s substitute expressions (4) for the wave fields and (3) for the components ε1,2 into

Maxwell equations and single out terms ∝exp{i[kzz+mθ - ω t]} and ∝exp{i[(kzm ks)z+(m±l)θ -

ω t]}. Since the equation for the radial component of electric field is the most convenient for

studying the structure of AR then we show here only the following closed set of the three

equations for the amplitudes of the fundamental and satellite harmonics that is derived from

Maxwell equations,

( )[ ]AERrNNN rzz −−− )0(2)0(
1 /2 ιε ϑ

)1(
r

)1(
12

)0(
r

2

2

22

E5.0
dr

Ed

2

c +++ ε
ω
δ

dr

dE

2

kc )1(
r

2
s

2 +
−

ω
δ

( )
dr

dE
kk

c )1(
r

sz2

2 +
++ δ

ω
)1()1(

1

)1(

2

2

5.0
2

−
−

+− r
rs E

dr

dEkc ε
ω

δ ( ) 0
)1(

2

2

=−−
−

dr

dE
kk

c r
szδ

ω
,    (5)

( ) ( ) )1(
r

2
sz

)0(
r

sz2

2

ENN
dr

dE
kk2

2

c ±++ mmδ
ω

)1(2
2

)1(2

2

22

2
±

±
−− rz

r EN
dr

Edc

ω
δ

0
4

)1(

2

22

=+
dr

dEc r

�

ω
δ

. (6)

The combination ( ) ( ) ( )( )000
2 zBNEi ϑϑε + A≡  in the left hand side of (5) appears to vary slowly in

the vicinity of AR, although both fields ( )0
ϑE  and ( )0

zB  have a logarithmic singularity within

the AR region in the cold approach. That is why it is natural to consider this combination as



the constant that is in fact associated with a pumping wave driven by an antenna. Effect of the

helical inhomogeneity of the confining magnetic field on the amplitude of the main harmonic

outside the AR region is found only in the second approximation in the respect to the small

parameter δ. Amplitudes of the satellite harmonics are less than that of the main harmonic

outside the AR region, by the order of magnitude (see, e.g., Girka and Kovtun (2000)
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3. AR fine structure. The set of equations (5), (6) consists of three differential equations of

the second order. This set can be written down as the equation of the sixth order for the

amplitude Er
(0) of the main harmonic. Analysis of the relation between the order of smallness

and the order of the corresponding derivative allows us to simplify this sixth order equation

with the accuracy of the order of ~δ 2/5 as follows:
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If radial plasma density profile is linear one within the AR region, then the analytical

solution of (8) can be obtained by the Laplace method in the following form:
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Here 
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Ar
drda ε  is characteristic radial scale at which plasma density varies within

the AR region. This solution satisfies the following boundary conditions: it is finite one; it

describes the conversion of electromagnetic wave into the small scale wave which brings the

energy away from the AR region; it damps under the account for a weak dissipation in ε1
(0).

Characteristic value of the amplitude Er
(0) of the fundamental harmonic of the radial

component of the wave electric field within AR region can be evaluated from (9) and (10) by

the order of magnitude as follows,
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We can evaluate the characteristic value of ( )1±
rE , ( )2±

rE … within the AR region by the

order of magnitude using the eq. (8) as follows,
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Analysis of (12) indicates that although the amplitudes ( )1±
rE  of satellite harmonics grow

within AR region even more rapidly than the amplitude ( )0
rE  of the fundamental harmonic -

the amplitudes ( )1±
rE  remain less than ( )0

rE  within AR region. Comparison of the values (7)

and (12) shows that the difference in order of magnitude between ( )0
rE  and ( )1±

rE  is not so

pronounced within AR region as outside of it.

Studying the structure of the coefficients in eq. (8) and expression (10) for k1 one can

easily find out that the basic equation (8) becomes meaningless in the case ks=±2kz. This

condition is treated as follows: axial wave lenght of the fundamental harmonic of the wave is

twice as large as the pitch length. Plasma Alfven heating in this resonant case, in which both

fundamental harmonic of the wave envelope coupled due to plasma helical inhomogeneity

have their AR in the same place, was studied by Girka et al (2003) earlier.

4. On the applicability of the obtained results. Account for electron inertia, ion Larmor

radius and collisions in (8) can be easily carried out by the aid of the following replacement:
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Figure 1: AR structure under account for the collisions (solid line).

The term (iε1
(c)) accounts for the collisions between plasma particles (see Akhiezer,   Lapshin

and Stepanov (1976)). AR structure under account for the collisions only is shown with solid

line in the fig. 1. Effect of the collisions on the AR structure is usually weaker than that of

finite ion Larmor radius ρLi in fusion devices. That is why the amplitude of the fundamental

harmonic of the wave electric field (Er
(0)~Aω/(Nz

2νab)) is shown as the largest and the width of

AR (∆rcoll~ a*νab/ω) – as the narrowest as compared with the fig. 2 and 3. Here νab is the

frequency of collisions between the particles of species a and b.

The quantity of the factor εT in (13) accounts for ρLi (see Akhiezer et al (1975)). The

finite electron inertia is also taken into account in (13) via the ε3 component of the

permittivity tensor. AR structure governed by the effect of ρLi and finite electron inertia is
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shown with solid line in the fig. 2. Effect of these two phenomena on the AR structure is

assumed to be larger than that of the collisions. That is why the amplitude of the fundamental

harmonic of the wave electric field (Er
(0)~(A/Nz

2)(a*/ρLi)
2/3) is less one and the width of AR

(∆rT~ a*(ρLi/a
*)2/3) – is the wider one as compared with the fig. 1.

Figure 2: AR structure under account for the effect of ρLi and finite electron inertia (solid line).

Analyzing the basic eq. (8) with account for the replacement (13) one can find that effect of

0B
r

 weak helical inhomogeneity on the AR structure is more significant than those of finite

ion Larmor radius ρLi and electron inertia if the following inequality is valid,

δ 12/5>>(ρLi/a)2(kzksa
*2)6/5.                                                     (14)

Figure 3. AR structure under account for the helical plasma inhomogenoity (solid line).

Obtained condition can be fulfilled in the peripheral plasma where the helical inhomogeneity

of 0B
r

 is the most pronounced and plasma is colder than in the core. The condition (14) can be

also treated as follows. Radial deviation r-rA of the magnetic surface (2) from the cylinder

with average radius is greater than that characteristic width (ρLi
2a*)1/3 of AR region that is

well known for the case of the straight magnetic field.

Behaviour of the amplitude of the main harmonic of the radial electric field of the

wave is shown in the fig. 3. with the solid line under the condition (14), in which the

influence of the plasma helical nonuniformity on the AR structure is the most pronounced as

compared with that of collisions, ρLi and finite electron inertia. That is why the amplitude of

the fundamental harmonic of the wave electric field is shown as the smallest one and the
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width of AR – as the widest one as compared with the fig. 1 and 2.

5. RF power absorption. The power absorbed by a unit length of the plasma torus in the

vicinity of the AR region consists of the work done by the field of the fundamental harmonic

over the radial RF currents, { }∫= rdrEjP rrr π2Re5.0 *  and the work done over the axial RF

currents, { }∫= rdrEjP zzz π2Re5.0 * . Analytical expressions for Pr,z ,
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coincide with those in the case when AR structure is determined by finite ρLi or finite electron

inertia at least by the order of magnitude.

6. Conclusions. Distribution of electromagnetic fields within AR region is determined and

analysed under the condition (14) that means that the helical inhomogeneity of the confining

magnetic field is dominant as compared with effect of electron inertia or finite ion Larmor

radius. Characteristic width of AR region is greater in this case than in the straight magnetic

field under the same other conditions. Then the evaluation of the AR width that is well-

known for the case when AR structure is governed by the finite ion Larmor radius would be

replaced by that derived here,
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2
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Characteristic value (12) of the amplitudes of the fundamental harmonic of the radial electric

field of the electromagnetic wave is less than that in the case of straight magnetic field under

the condition (14).

Amplitudes of satellite harmonics grow when coming to the AR region more rapidly

than amplitudes of fundamental harmonics (see (12)). That is why discontinuity of the

solutions to Maxwel equations for electromagnetic waves fields known to take place in the

cold approach in the straight magnetic field is removed in the helical magnetic field.
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