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Introduction
Beyond a certain threshold average density in the High-Density H-Mode [1] the island
divertor plasma in the stellarator W7-AS undergoes partial detachment. The threshold
values, which depend upon the absorbed Neutral Beam Injection heating power are
as follows: 2.3 for 0.76 MW, 2.9 for 1.4 MW and 3.5 for 2.5 MW, where the line-
averaged density values T are in units of 102m™3 [2]. The characteristic properties of
the HDH mode - flat density profile, edge localized radiation, quasi steady state are
still retained even after the detachment except for little changes in the diamagnetic
energy and the radiated power. In the detached phase the stored diamagnetic energy
is found to be slightly less compared to the same before the transition. The radiated
power increases dramatically after the detachment. If the density is ramped up beyond
detachment the radiated power increases further following the density until the plasma
collapses radiatively thereafter. While tho probes, integrated to the target tiles, in the
detached locations show a reduction of the ion-saturation current by a factor of about
20 suggesting complete detachment, the plasma is still found to remain attached at
some other locations. So in a global sense the stable detachment is said to be partial
[2]. But when the island size is small or connection length (L.) is large the detachment
is observed to be complete but very unstable [3]. The neutral pressures monitored
by the manometer in the sub-divertor regions display a R Jem
top/bottom asymmetry with the higher values from the 40299 219 220
top divertor regions than that of the bottom [4]. The
tomographic reconstruction of the radiated power density |
from the detached pulses show that the radiation profile 4
in the triangular plane is also asymmetric (refer figure 15
in reference [5]). In the detached phase, the spectrometer
viewing tangentially to the target tiles in the top divertor §&
region manifests that the impurity radiation layer is close N
to the X-points. The spectral analysis also demonstrates
the presence of a hydrogen radiation zone dominated by re-
combination emission close to the target tiles. This paper
presents the emission from the deeply detached locations
including the volume recombination in a stable discharge.
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Spectroscopic Diagnostics

The complex nature of the magnetic islands and the island
divertor of W7-AS were really challenging for the design
of the divertor diagnostics. The interpretation of the data
from those regions, particularly the line averaged spectroscopic data are of ambiguous
nature. Nevertheless the emission zones of the W7-AS stellarator have been recorded

Figure 1: Line of sights for
the two spectroscopic systems



with a number of spectroscopy based diagnostic systems. The details can be found
in reference [6]. The viewing lines for two systems are shown in figure 1. The first
spectrometer, "Horizontal’, views the SOL region tangentially between the target tiles
# 8 and # 9 of the top divertor in the Module II. The second one, ’Overview’, views
across any desired target tile (here it is tile # 5) in the same top divertor module from
a bottom port. Both these spectrometers are fitted with two dimensional array detec-
tors which were calibrated for absolute intensities. They were used to monitor the line
radiation from impurity ions and hydrogen in the divertor region.

Impurity Radiation Characteristics 456846

In W7-AS carbon is expected to be the main Zof —— : @)
impurity, as the target tiles in the divertor él_  Dia.Energy (*10 kJ

and the baffles are made of carbon. Hence & ~Power Loss

the spectrometers are adjusted to observe the ng_

various carbon ionization stages. In the at- 88

tached HDH mode an intense carbon radia- sif 1
tion is identified close to the target tile. Dur- _1 (cH
ing the transition to detachment this radia- % at ]
tion front jumps from the location close to the <]7_ Clll 4647 A 5= ]
target towards the X-point. Figure 2 shows 02 0.4 06 08 1
the transition from the attached to the de- time /s

tached phase in a typical W7-AS discharge as  Figure 2: Characteristics during the transi-
the density (figure 2b) is ramped up. The tion from the attached to the detached phase in

.. g . a density ramp up discharge (a) Input Power
transition can be readily identified as the mo (NBI), Diamagnetic energy, Power loss (from

ment (t~0.525s) at which the stored diamag- Bolometer), (b) Line averaged density (c¢) CIIT
netic energy drops to a lower value and the radiation (4647 A) from Horizontal Spectrom-
radiated power increases suddenly (figure 2a). eter, Az is the vertical distance from the tar-
The behaviour of the carbon radiation front as 96t which is at Az=0.
recorded by the Horoizontal spectrometer
I — is shown by the intensity of the CIII (4647 A ) line in fig-
m:@ ure 2c. In the detached phase, the maximum intensity of
' that line is at Az &~ 5.5 cm from the target tile where the
X-points are expected from the adjacent islands through
the magnetic field calculations. It should be noted that
the overall intensity of the CIII radiation after the transi-
—Toamaes| tion has decreased. The Overview spectrometer viewing
3 - —— the same divertor region from the bottom port though
Channel no. at a different toroidal location (tile # 5) also shows a
, decrease in the total intensity of the CIII radiation, as
Figure 3 CIII(4647 A) from shown in figure 3. The CIII emission profile of the de-
the Overview spectrometer across X . X K K .
tile # 5 in the top divertor, Mod- tached plasma is fairly flat with slightly more intensity
ule II at three different times - from the channels observing the centre of the target plate
before, at and after the detach- and close to the inboard area. The data from the two-
ment transition dimensional camera equipped with CII filter looking at
the bottom divertor from the top port suggests that the radiation from the X-points
outside the divertor region actually increases after the detachment [3].
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Balmer Spectra and Volume Recombination
After the detachment, the emission from the region between the target tiles and the im-
purity radiation layer close to the X-point is found to be consisting mainly of hydrogen.
Since the scaling of the population of the different excited levels of hydrogen is different,
it is possible to distinguish the contributions from ionizing and recombining plasmas.
The ionizing plasma will have heavily populated low-n levels, while the recombination
will tend to excite the higher-n levels also to a significant number. The extent of the
contributions from recombining or ionizing plasma can be probed by the line ratios of
the low-n members as the ratio is very sensitive to recombining and ionizing
6 temperatures. Figure 4 shows the Hg/ H., ratio derived
- #50846 from the same pulse at different times. If the ratio is
° /_jL/\/_\/‘ less than 3 (from ADAS, reference [7]) then the emis-
sion is dominated by recombination. It can be seen
=. from figure 4 that in the detached phase the plasma
in the region Aza2 cm, immediately next to the tar-
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2 Recombination get tile, is dominated by recombination. The increase
L of the sub-divertor neutral pressure in the top-divertor
2 gt 6 region also supports the presence of the volume recom-

bination [4]. In W7-AS, the deeply detached discharges
S ‘ 7 could be maintained in quasi-steady state for many en-
recombination) from the intensities ) .
recorded by Horizontal spectrometer CY8Y confinement times. In those discharges the spec-
for three different times - before, at trometers were tuned to record the high-n Balmer lines
and after the detachment transition. in the wavelength region near the series limit around
Az, refer figure 2 3600 A. Figure 5 shows an example of such a spec-
trum, which depicts the differences in the spectral characteristics before (t=0.17s) and
after detachment (t=0.37s). It can be seen that the spectrum after detachment has de-
tectable line-to-continuum intensities for high-n members (n<12). This is indicative
of the presence of recombination and low

Figure 4: Ratio of Hz/H, (< 8=

temperature. The individual member lines 6 HORIZONTAL view F ﬂ
of the Balmer series are observed to be broad- X25251698mm

ened and the broadening is found to be in- ’;-5' -t=17s Ho
creasing for higher-n (n-principal quantum @4} “t=37s Hy
number) members. Since the Doppler broad- >

ening cannot explain the dependence of full 'g’3'

width at half maximum (FWHM) on the %2.

principal quantum number and the obtained —

widths are not expected from the Zeeman 1

effects the broadening is assumed to be due

to Stark effects. Thus the n, values are esti- 3600 3800 4000 4200 4400
mated from the FWHM of the high-n mem- Wavelength(A)

bers with the following pre-conditions - the  Figure 5: Typical example of the Balmer Spec-
line profiles are distinct with enough line- trum recorded by Horizontal spectrometer from
to-continum intensities and the FWHM is the deeply detached quasi-steady state discharges
larger than the instrumental width. Before deducing the density values from the ex-
perimental profiles, the instrument contribution has to be deconvolved. The Stark
broadened experimental profiles are expected to have Lorentian shapes. Unfortunately



the instrument profiles for the both the spectrometers recorded using a discharge lamp
in the same wavelength region are found to be asymmetric and the profiles are also
found varying for different spatial tracks on the CCD. Since the number of data points
are also very small in a given experimental line profile, the deconvolution will be er-
ror prone as it involves Fourier transforms. Nevertheless, the asymmetric instrument
profiles are approximated by two or three Gaussians which gives the freedom to gen-
erate any number of data points. These Gaussian profiles are then convoluted with a
Lorenzian profile for a variable n, value. In this way three (or four) line profiles are
fitted simultaneously to the high-n Balmer members with n=7,8,9 (and 10). The Stark
parameters for these lines are taken from the reference [8]. The intensities (i.e. areas
under the individual line profiles) are scaled to a variable temperature assuming

Saha-Boltzmann equilibrium. The background con-
tinuum is approximated by an arbitrary second order
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polynomial. The resultant sum of those Balmer mem- 3 | Horizontal view
ber lines and the continuum is fitted to the experimen- :?2 I*=ég$v S ta
tal data by the method of Least Squares by varying n, 2 —Simulated
and T, values. A result from such a fit is shown in fig- El

ure 6. The T, values for the fitting are found to be in
the small range 0.1-0.3 eV, strangely. But the 7, val-
ues estimated from the Balmer to Paschen continuum 3750 3850 3950
. . B Wavelength /A

assuming an average density of 1 x 102%m =3 are found
to be in the range 1.5-3eV. These different values re- Figure 6: Fitting of a simulated
flect the inhomogenity of the plasma in the emitting Balmer spectrum, ne =7x10*m=>
region. The Bolzmann plot is made with only high-n ¢ Te=0.35 eV
Balmer members and they are originating mainly from the recombining regions. Hence
the T, values from the Boltmann plot will contain contributions only from the recom-
bining plasma while the continuum ratio will have contributions from all other atomic
and molecular processes as well. So the differences in the T, values from the two dif-
ferent methods are not surprising. The n. values thus obtained are found to be in the
range 3-8 x102°m~3 as shown in figure 7.
The density profile shows a peak at a location close

4 55568 to the target tiles and very far away from the impu-
Horizontal view rity radiation region. The conservation of local pres-
sure along the field lines alone cannot explain these
very high densities. This density peak is possible only
when a source of energy is available locally for ioniz-
ing the neutrals. It is not very clear from where it
gets energy as the radiation layer close to the X-point
Az 2/cm would have clipped the energy of the flux crossing it.
Figure 7:  Typical density pro- One can speculate that the locale gets energy from
file (estimated from Stark broadened the increased radial transport in the form of ”plasma
high 'n” Balmer members) versus the  blobs or filaments” (’shoulder’ effects in tokamaks [9])
vertical distance Az or from the redirection of energy flow around the radi-
ation zone, probably by convective fluxes [10]. Beyond this high density region, there
prevail conditions for volume recombination which is evident from the Hg/H, ratio
close to the target tile as is shown in figure 4. Thus the target receives nearly zero flux
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in the detached regions. This volume recombination also thereby increases the neutral
pressure locally, which the sub-divertor manometers readily show [4]. With the present
understanding, one can conclude that there is no single model with which all these
observations can be explained. Hence one needs to think afresh, preferably in three
dimensional domains.

Modelling with EMC3-EIRENE Simulation

The improvement towards the realistic reproduction of the experimental results using
the EMC3-EIRENE code is still being worked out. The latest being the prediction of
the presence of a radiation belt on the inboard side, the details of which can be found
in [11]. This result explains the asymmetric power unloading of the target tiles or the
partial detachment very well. The experimental results show impurity radiation from
all X-points both inboard and outboard. The bolometer data show an asymmetric ra-
diation profile in the triangular plane. The difference in the radiation pattern [12] and
the sub-divertor neutral pressure for the normal (-B) and reversed (+B) magnetic field
directions (not shown) indicate the influential role of the E' x B drifts . Hence it is
expected that after including all the drift effects including the E x B, the simulation
might reproduce the observed radiation characteristics and the high density region in
front of the target plates. This task is still underway now.

Conclusions

The radiation characteristics of the deeply detached plasmas in the Island divertor of
Wendelstein W7-AS Stellarator has been reported here. In the detached phase, the
impurity radiation zone is identified to be located near the X-points and hydrogenic
emission between the target and the impurity radiation layer. The Hz/H, ratio from
the SOL region confirms the presence of volume recombination close to the target tiles
which plays an important role for complete detachment in the nearby target plates.
The analysis of the Balmer spectra obtained suggests that the local physics process are
dominating and mandates the importance of three dimensional modelling. While the
EMC-EIRENE modelling explains the partial detachment, it does not reproduce the
other details like the asymmetric radiation and the high density infront of the target
tiles. Further improvements on the code with all drift effects included are expected to
explain those details.
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