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Introduction

• Modelling of the interaction between the edge plasma and plasma facing

components (PFCs) has tended to place more emphasis on either the

plasma or the PFCs

– Either the PFCs are essentially assumed not to change with time and

the plasma evolution is studied

– Or the plasma is assumed to remain static and the detailed interaction

of the plasma and the PFCs are examined, with no back-reaction on the

plasma taken into consideration

• B2 component of the SOLPS package of

codes [Schneider et al., 2006](and

references therein) has been recently

extended [Coster et al., 2005,Warrier

et al., 2003,Coster et al., 2006] to

include

– a treatment for thermal fluxes in the

wall components

– improved treatment of chemical and

other sputtering processes

– ability to model mixed-materials
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(time-independent) thermal model
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outer target plate of AUG exposed

to an Ohmic plasma. The

backplate temperature was

assumed to be 300K.

• mixed materials models applied to AUG,

JET & ITER

• scenarios examined

– single C species, base and deposited C

– two isotopes of C

∗ wall and targets made from different

isotopes

∗ wall and targets from one isotope, gas

puff from another

– Be and C

∗ wall from Be, targets from C

∗ Be walls and targets, C gas puff
From left to right, AUG, JET and

ITER.

Mixed-material surface physics

• deposited material is

tracked by the code, and a

0D time-dependent

problem is solved at each

position where the plasma

interacts with a surface

(as described in [Coster

et al., 2006])

• layer thickness is tracked,

together with its

composition (fraction of

Be, C, etc.)
• then used to determine

the fraction of sputtered

material arising from the

layer (Be, C, etc.) and

from the base material (Be

or C)

• model multiplies the rate

from the basic sputtering

processes (ignoring the

presence of the mixed

materials) by a factor

giving the fractional

presence of the individual

materials in the mix

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.001  0.01  0.1  1  10  100  1000

f: 
fr

ac
tio

n 
of

 s
pu

tte
rin

g 
yi

el
d

monolayers of species 1, species 2 is one tenth 1

mixed material sputtering model

f0(x,1)
f1(x,1)
f2(x,1)

Model for sputtering from mixed materials. For each

deposited species, i, the number of mono-layers, li, is

calculated. Then the fraction of deposited material

exposed for sputtering is fi = l
β
i

α+
P

i l
β
i

. The

contribution from the base material is then

f0 = 1−
∑

i fi. α is taken as 1 for these cases and

reflects how quickly the base material disappears

from the calculation. β reflects how quickly

deposited material hides the base material; here

values of 1 have been used. For the graph species

two has one tenth the mono-layers of species one.

• further augmented by allowing for an

enhancement factor for the chemical

erosion of deposited C, and/or for a

suppression of chemical erosion dependent

on the local concentration of Be

• fBe(x, a, b, c) = 1− c
2(tanh(x−a

b )− tanh(−a
b ))

• a = 0.2, b = 0.05 and c = 0.9
• chosen to give a maximum suppression of

90% with a transition at about 20% Be

fraction
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be_fac(x,a,b,c)=1-c/2*(tanh((x-a)/b)-tanh((0-a)/b))

be_fac(x,0.2,0.05,0.9)

Suppression factor used to lower

the chemical sputtering of C as a

function of the Be fraction.

Results

• two coordinates used for the surfaces

– linear counting of surfaces starting from

the intersection of the outer SOL with

the inner target

– accumulated area of these surfaces

AUG JET ITER

pos A.A. pos A.A. pos A.A.

SOL 1 1 0.00 1 0.00 1 0.00

SOL 2 96 40.32 96 135.09 74 695.33

OUTER 2 97 40.36 97 135.29 75 697.46

OUTER 1 132 45.51 120 141.10 102 725.25

PF 2 133 45.55 121 141.18 103 725.68

PF 1 180 49.55 168 149.40 126 787.34

INNER 1 181 49.58 169 149.47 127 787.63

INNER 2 216 52.73 192 154.85 154 805.11

A.A. = Accumulated area
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Convention for “surface”

coordinates.

C

• simplest variant is to use only one species of C, but to track the deposited

C and allow it to be eroded

• provides a strong test of the coding since — if the deposited C is assumed

to erode like the original C — then the plasma result should be unchanged

• verified (see [Coster et al., 2006]).

C-C

• next, more complicated variant, is to to distinguish two species of C

– can be used to distinguish in the plasma eroded from various surfaces

by, say, making the target from 12C and the walls from 13C

– explore 13C gas puffs in a 12C machine — closer to the experiment

12C targets, 13C walls

AUG

• simulation based on an AUG Ohmic pulse for 12C targets and 13C walls

– with and without mixed materials modelling

– with no, only 12C, only 13C and both 12C and 13C chemical sputtering
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Deposition rates of 12C and 13C (top and bottom) to the main chamber wall (left) and

targets (right) for an AUG simulation with varying sputtering models. (In the right panel, the

outer target is to the left, the private flux in the middle and the inner target on the right.)

C walls, C gas puff

JET

• As seen previously in simulations of 13C gas puff on JET [Coster et al., 2005]

– strong dependence on density is seen in the deposition patterns at the

targets

• gas puff simulations with

– 3 gas-puff positions

– 3 densities

• examine deposition along main chamber wall and along targets

• at the lowest density, injection at the top of the machine arrives

predominantly at the outer target

• at the highest density it arrives predominantly at the inner target

• note also the increased localisation near the injection point of the

redeposition at higher densities

• Mixed materials model switched off

• Small, non perturbative gas-puffs

Main Chamber Outer PF Inner
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Deposition rates to the main chamber wall (left) and targets (right) of 13C arising from a
13C gas puff at three different densities (separatrix electron densities of 1× 1019, 1.5× 1019

and 2× 1019m−3, top to bottom) for JET simulation with gas inlets close to the inner

X-point, the top of the machine, and the outer X-point. (In the right panel, the outer target

is to the left, the private flux in the middle and the inner target on the right.)

C-Be

• ITER design currently foresees a mix of 3 materials to be used

– C targets

– W baffles

– Be walls

• at the moment, modelling with SOLPS of W is problematic

– too many charge states

– forthcoming development of a bundled charge state model

• can simulate some of the effects by limiting the calculations to Be and C

• Again, a number of scenarios can be explored

– Be walls with a C target

– C walls and a Be target

– Be walls and target with a C gas puff

Be walls, C target

AUG

• simulations with Be walls and C targets for AUG

– new, very long, time-scales were sometimes observed

– fortunately effects seem localised
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Looking at the outer target:

Erosion rate C Deposition rate C Deposition rate Be
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ITER

Simulations have also been performed for an ITER with Be walls and C

targets:

Erosion Be Erosion rate
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Left: Total deposition and erosion for Be and C for an ITER simulation. Right:

corresponding rates. The X multipliers are the time enhancement factors used for the

surfaces with respect to the basic plasma time-step.

Instead of looking at the integrated quantities, we can look at the

distribution:
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Be monolayer deposition rate
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Be walls and target, C gas puff

JET

• strong dependence of the main chamber C deposition on the on the C puff

rate
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• rate is approximately constant for the lowest gas puff rate (corresponding

to a linearly growing layer)

• rate tapers off for the intermediate gas puff rates
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• examine the effect of differing sputtering models

• compare

– no-mixed-materials model

– mixed-materials model

∗ deposited C with same properties as base C

∗ 2 × enhancement of the chemical sputtering yield of deposited carbon

∗ 5 × enhancement of the chemical sputtering yield of deposited carbon

∗ 10 × enhancement of the chemical sputtering yield of deposited

carbon

∗ suppression of the chemical sputtering yield by Be
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Monolayer deposition rates of the puffed C to the main chamber wall (left) and targets

(right) with varying mixed materials models applied to JET. (In the right panel, the outer

target is to the left, the private flux in the middle and the inner target on the right.)

• highest net deposition in the main chamber for

– model without re-erosion (“no-mixed”)

– Be suppressed erosion

– “standard” model

– 2 × enhancement factor for erosion of re-deposited C

– 5 × enhancement factor for erosion of re-deposited C

– 10 × enhancement factor for erosion of re-deposited C

Summary

• mixed material model has been implemented in the B2 part of SOLPS

– tracks

∗ erosion of base material

∗ deposited material

∗ re-erosion of deposited material

– simple model for sputtering based on scaling the sputtering from “pure”

(single species) surfaces by the local concentration

– can have enhanced chemical erosion of deposited C

– can have C chemical erosion decreased in the presence of Be

• simulations have been performed for

– AUG, JET, ITER

– different C walls; C walls and C gas puff ; C targets and Be walls; Be

walls and targets and C gas puffs

• find:

– new time-scales are introduced

– whether 13C injected at the top of a JET simulation ends up at the

inner or outer target depends strongly on the density

– in the ITER simulation, the net C deposition rate starts at around

2× 1023 C atoms per second, but as deposited areas build up, this drops

to around 3× 1021 after 70 minutes discharge time.

• Caveats:
– no drifts

– no Monte-Carlo neutrals

– walls at plasma boundary

– models still need to be improved

Outlook

• planned to improve the somewhat ad hoc mixed-materials sputtering

models used by use of 3d data sets based on TRIM calculations (angle,

incoming particle energy, fraction of (say) C in Be/C layer)

– comparing with recent TRIM simulations for 1:1 BeC and 1:1:1 BeCW

∗ likely effect small differences between present model for BeC

∗ larger differences for BeCW

· the presence of the heavier element enhancing the erosion of Be & C

• also need surface and bulk properties

– melting temperature

– vapour pressure

– emissivity

– heat capacity

– thermal conductivity

– ...
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Left: Physical sputtering yields of Be and C produced by D bombardment of a 1:1 mixture

of Be and C. The lines labelled with (*) indicates that the single species TRIM

data [Eckstein, 1998] were used, and scaled by the relative fraction of the Be or C in the

mixture (1
2 in this case). Right: Physical sputtering yields of Be, C and W produced by D

bombardment of a 1:1:1 mixture of Be, C and W. The lines labelled with (*) indicates that

the single species TRIM data [Eckstein, 1998] were used, and scaled by the relative

fraction of the Be, C or W in the mixture (1
3 in this case).

• in the near future, the ADAS project [ADAS, ] is planning to release a

bundled charge model for W

– should soon be possible to extend the C-Be calculations to C-W, Be-W

and to C-Be-W

• mixed-materials modifications should also be included in the Eirene part of

SOLPS as well
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