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Simulations have also been performed for an ITER with Be walls and C

targets:
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Left: Total deposition and erosion for Be and C for an ITER simulation. Right:

corresponding rates. The X multipliers are the time enhancement factors used for the

surfaces with respect to the basic plasma time-step.

Instead of looking at the integrated quantities, we can look at the

distribution:
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e strong dependence of the main chamber C deposition on the on the C puff
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rate is approximately constant for the lowest gas puff rate (corresponding

to a linearly growing layer)

rate tapers off for the intermediate gas puff rates
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examine the effect of differing sputtering models

compare

— no-mixed-materials model

— mixed-materials model

x deposited C with same properties as base C

x 2 X enhancement of the chemical sputtering yield of deposited carbon
x 5 x enhancement of the chemical sputtering yield of deposited carbon
x 10 X enhancement of the chemical sputtering yield of deposited

carbon

x suppression of the chemical sputtering yield by Be
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Monolayer deposition rates of the puffed C to the main chamber wall (left) and targets
(right) with varying mixed materials models applied to JET. (In the right panel, the outer
target is to the left, the private flux in the middle and the inner target on the right.)

e highest net deposition in the main chamber for
model without re-erosion (“no-mixed”)

2 x enhancement factor for erosion of re-deposited C
5 X enhancement factor for erosion of re-deposited C
10 x enhancement factor for erosion of re-deposited C

Summary

e mixed material model has been implemented in the B2 part of SOLPS

— tracks
x erosion of base material
x deposited material
x re-erosion of deposited material

— simple model for sputtering based on scaling the sputtering from “pure”
(single species) surfaces by the local concentration

— can have enhanced chemical erosion of deposited C

— can have C chemical erosion decreased in the presence of Be

simulations have been performed for

— AUG, JET, ITER

— different C walls; C walls and C gas puff ; C targets and Be walls; Be
walls and targets and C gas puffs

find:

— new time-scales are introduced

— whether 13C injected at the top of a JET simulation ends up at the
inner or outer target depends strongly on the density

— in the ITER simulation, the net C deposition rate starts at around
2 x 10?3 C atoms per second, but as deposited areas build up, this drops
to around 3 x 10%! after 70 minutes discharge time.

Caveats:

no drifts

no Monte-Carlo neutrals

walls at plasma boundary

models still need to be improved

Outlook

planned to improve the somewhat ad hoc mixed-materials sputtering
models used by use of 3d data sets based on TRIM calculations (angle,
incoming particle energy, fraction of (say) C in Be/C layer)
— comparing with recent TRIM simulations for 1:1 BeC and 1:1:1 BeCW

x likely effect small differences between present model for BeC

x larger differences for BeCW

- the presence of the heavier element enhancing the erosion of Be & C

also need surface and bulk properties
— melting temperature
vapour pressure
emissivity
heat capacity
thermal conductivity

Sputter yield for D onto 1:1 BeC Sputter yield for D onto 1:1:1 BeCW
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0.04 - Be from D onto BeCW ]
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Left: Physical sputtering yields of Be and C produced by D bombardment of a 1:1 mixture
of Be and C. The lines labelled with (*) indicates that the single species TRIM

data [ECKSTEIN, 1998] were used, and scaled by the relative fraction of the Be or C in the
mixture (% in this case). Right: Physical sputtering yields of Be, C and W produced by D
bombardment of a 1:1:1 mixture of Be, C and W. The lines labelled with (*) indicates that
the single species TRIM data [ECKSTEIN, 1998] were used, and scaled by the relative

fraction of the Be, C or W in the mixture (5 in this case).

e in the near future, the ADAS project [ADAS, | is planning to release a
bundled charge model for W
— should soon be possible to extend the C-Be calculations to C-W, Be-W
and to C-Be-W

e mixed-materials modifications should also be included in the Eirene part of
SOLPS as well
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