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Abstract
Limitations of mapping land surface properties and their conversion into climate model boundary conditions are major
sources of uncertainty in climate simulations. In this paper, the range of the largest possible uncertainty in satellite-derived
land cover (LC) map is estimated and its impact on climate simulations is quantified with the Earth System Model of the
Max-Planck Institute for Meteorology utilizing prescribed sea surface temperature and sea ice. Two types of uncertainty
in the LC map are addressed: (i) uncertainty due to classification algorithm of spectral reflectance into LC classes, and
(ii) uncertainty due to conversion of LC classes into the climate model vegetation distribution. For forest cover, each of
them is about the same order of magnitude as the uncertainty range in recent observations (∼± 700 Mha). Superposing
two sources of uncertainty results in LC maps that feature the range of vegetation deviation that is about the same order
of magnitude as the recent (since year 1700) forest loss due to agriculture (forest cover uncertainty range ∼± 1700 Mha).
These uncertainties in vegetation distribution lead to noticeable variations in near-surface climate variables, local, regional,
and global climate forcing. Temperature does not show significant uncertainty in global mean, but rather exhibits regional
deviations with an opposite response to LC uncertainty that compensate each other in the global mean (e.g., albedo
feedback controls temperature in boreal North America resulting in cooling (warming) with decrease (increase) of vegetation
while evaporative cooling controls temperature in South America and sub-Saharan Africa resulting in cooling (warming)
with increase (decrease) of vegetation). Large-scale circulation is also affected by the LC uncertainty, and consequently
precipitation pattern as well. It is demonstrated that precipitation uncertainty in the monsoonal regions are about the same
order of magnitude as in previous studies with idealized perturbations of vegetation. These findings indicate that the range of
uncertainty in satellite-derived vegetation maps for climate models is about the same order of magnitude as the uncertainty
in recent observations of forest cover or as the forest lost due to agriculture. Consequently, climate simulations have a similar
range of uncertainty in variables representing near-surface climate as the observed climate change due to land use. Hence,
more accurate methods are needed for mapping and converting LC properties into model vegetation in order to increase
reliability of climate model simulations.

1 Introduction

Uncertainty is an inherent feature of complex systems
(such as climate). This is also true for numerical models
used to study and understand a response and sensitivity of
the climate system. Uncertainties in climate system model
may originate from various sources such as natural climate
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variability, different techniques to discretize dynamics, and
physics (i.e., parameterization of sub-grid scale effects), or
uncertainty in the prescribed boundary conditions (e.g., land
surface characteristics at the land–atmosphere interface,
or greenhouse gas and aerosol concentrations, especially
if future scenarios are considered). These uncertainties
are mostly due to the lack of empirical investigations
or limitations of observational techniques, and they can
also lead to insufficient understanding of climate processes
and controversial interpretations of climate research (Curry
2011; IPCC 2014; Maslin 2013). Understanding them is
crucial for the reliability of climate models to simulate
present day climate as well as to determine the range of
possible climate states in future projections. Therefore, it is
of paramount importance to improve our understanding of
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processes that contribute to uncertainty in the climate model
results.

One of the key sources of uncertainty in numerical
simulations of carbon, energy, and momentum exchange
between land and atmosphere is the uncertainty in the
observed land surface properties. Either land surface
properties in climate models are prescribed with static maps
of vegetation or they can change in dynamic interaction
with other components of the respective climate model. In
both cases, the initial vegetation distribution in the model is
usually derived from remote sensing products supplemented
with ground observations—global land cover (LC) maps.
LC represents different properties of the Earth’s surface
and controls water and energy exchange, photosynthesis
rates, nutrient levels, and surface roughness at the land–
atmosphere interface (Sellers et al. 1997). It is identified as
one of the essential climate variables needed to understand
changes in carbon cycle and climate change (Feddema et al.
2005).

Numerous studies within the recent decade focused on
the quantification of the impact of LC change on climate
(see Mahmood et al. (2014) and references therein for
a comprehensive review). There is a growing body of
evidence that vegetation, especially tree cover, has an
impact on terrestrial water cycle, energy balance (e.g., see
Alkama and Cescatti (2016) and Duveiller et al. (2018)),
and carbon cycle (e.g., see Achard et al. (2014) for
the estimate of carbon losses due to changes in forest
cover in tropics). However, understanding the impact of
LC change on climate remains controversial and is still
work in progress (e.g., for the effect of LC change on
precipitation, see Bonan (2008), Ellison et al. (2012),
Mahmood et al. (2014), and Sheil and Murdiyarso (2009)).
At the core of the controversy lies the uncertainty in
the observation of climate parameters and their internal
variability, as well as uncertainty in the remote sensing–
derived LC maps. Comparing several global LC maps,
Congalton et al. (2014) found that the main reasons for
uncertainties and inconsistencies are due to (1) different
data acquisition methods (i.e., missions and sensors), (2)
different map production methodologies, and (3) different
classification schemes. All these factors contributed to
the estimate that the total accuracy of the LC maps is
below 70%.

Considering uncertainty in climate parameters such as
precipitation, a recent study by Herold et al. (2016)
highlights limitations in our ability to characterize not only
modeled daily precipitation intensities but even observed
precipitation intensities. Furthermore, it is demonstrated
that the level of uncertainty in modeled precipitation is
about the same order of magnitude as the uncertainty seen
in observations (Herold et al. 2016, 2017; Endo et al. 2017).
Shortcomings in LC and climate parameter observations

result not only in the large uncertainties, but also the global
LC change occurring in concert with climate change hinders
progress in the attempt to understand and disentangle the
impact on the climate system of both LC change as well
as uncertainty in observation. Land use–land cover (LULC)
change impacts in climate simulations from phase 5 of
the Coupled Model Intercomparison Project (CMIP5) have
been examined by Kumar et al. (2013). They found for the
twentieth century climate simulations that all 15 climate
models show a net increase in summer surface albedo,
11 out of 15 models show a net decrease in summer
evapotranspiration, and 8 out of 15 models show a net
increase in summer temperature over North America and
Eurasia LULC change regions.

Closely related to the uncertainties in LC and their
impact on climate change are uncertainties in ecosystem
functioning. The impact of LC uncertainties on terrestrial
carbon fluxes has been investigated by Quaife et al.
(2008). They found that the main uncertainty in carbon
flux calculations are due to incorrect conversion of LC
classes into model vegetation (plant functional types—
PFTs) and information loss due to aggregation of high-
resolution LC data to coarser resolution used in numerical
models, as well as limited accuracy of the LC map due to
difficulties in discriminating some vegetation types from
satellite data. These resulted in a 254 gC m−2 year−1

range of uncertainty for gross primary production (GPP)
averaged over Great Britain. Vegetation GPP is also the
largest terrestrial sink of atmospheric CO2 and, hence,
the vegetation distribution comprises the largest source of
uncertainty in GPP estimates. In particular, the coverage
rate (%) of forests was usually overestimated in previous
calculations of GPP so that the global forest gross carbon
dioxide uptake was overestimated as well by 5.12 ±
0.23 Pg C year−1 (Ma et al. 2015). Evaluating components
of the global carbon cycle by the CMIP5 models, Anav et al.
(2015) reported a general overestimation of photosynthesis
and leaf area index and, therefore, an overestimated
terrestrial carbon uptake for most of the models. Le Quéré
et al. (2016) in their annual report of the global carbon
budget for the last decade (2006–2015) estimated an annual
uncertainty due to land-use change in carbon emission of
about ± 0.5 Pg C year−1, while the uncertainty of terrestrial
carbon uptake is ± 0.9 Pg C year−1.

Regardless of a clear impact of LULC change (e.g.,
urbanization, adoption of agriculture, irrigation, deforesta-
tion, and afforestation), to date, very little research has been
done to investigate the range of uncertainty in observed LC
and its impact on the near-surface climate. Recently, Hart-
ley et al. (2017) have investigated the range of uncertainty of
a newly published satellite-derived LC map and its impact
on energy balance and hydrological and carbon cycle, in
three land surface models (LSM). They showed that the
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uncertainty related to the LC observation and its conversion
into LSMs’ vegetation is a key source of model uncertainty.
The range of uncertainty for key model state variables indi-
cating energy, water, and carbon cycle is comparable to the
spread between models.

In this study, while we refer to our earlier work (Hartley
et al. 2017), the focus is different. New aspects of LC
uncertainty in comparison with observation have been
pinpointed. Furthermore, the impact of LC uncertainty
on the near-surface climate is investigated with the Earth
System Model of the Max Planck Institute for Meteorology
(MPI-ESM) using prescribed sea surface temperature and
sea ice.

The LC data, as well as the conversion method
of LC to vegetation for climate modeling, and MPI-
ESM are described in Section 2. The range of LC
uncertainty is considered and its impact on climate
variables related to terrestrial water cycle (precipitation
and evapotranspiration), energy budget (albedo and 2m
temperatures), circulation (wind and pressure) patterns, and
terrestrial carbon cycle (GPP) is examined in Section 3.
Discussion and our conclusions are drawn in the final
section.

2 Data andmethods

Earth System Models (ESMs) are tools to study the
complex interactions between major components of the
climate system (i.e., atmosphere, hydrosphere, cryosphere,
biosphere, and land surface) driven by solar radiation (see
Flato (2011) for a comprehensive overview of ESMs). The
aim of ESMs is to simulate the climate state of our world by
solving equations representing physical and biogeochemical
processes in the discrete numerical space. To solve these
equations, various datasets representing initial and boundary
conditions are needed. Recently in the frame of European
Space Agency (ESA) Climate Change Initiative (CCI), a
new global LC map representing conditions of the Earth’s
surface has been published (Defourny et al. 2014). This
LC map can be used to derive vegetation distribution
for climate modeling. The algorithm for conversion of
satellite-derived surface reflectance into LC dataset is
described by Defourny et al. (2014) and its application for
LSMs modeling is described by Hartley et al. (2017).
The conversion of LC into PFTs used in climate models
is described in Poulter et al. (2011) and Poulter et al.
(2015). The estimate of the maximum plausible uncertainty
range of LC observation is described by Hartley et al.
(2017). In Section 2.1, the ESA-CCI-LC map is briefly
described, followed by description of the cross-walking
(CW) procedure (Section 2.2) that is a method to convert
LC classes into PFTs, in particular for JSBACH. In

Section 2.3, the land surface component—JSBACH3.1—
and the atmospheric component—ECHAM6.3 of MPI-
ESM1.2—are briefly described, followed by the experiment
setup in Section 2.4.

2.1 ESA-CCI land cover data

The ESA-CCI-LC product (version 1.4 available at
http://maps.elie.ucl.ac.be/CCI/viewer/) is derived combin-
ing remotely sensed surface reflectance and ground-truth
observations at 300-m resolution (Defourny et al. 2014).
The reference map examined in this study is the LC map
for the epoch 2010, which is an average LC map based on
the satellite data acquisition during the period 2008–2012.
For each grid box at 300-m resolution, an estimate of con-
fidence that the LC class is identified correctly is provided.
This confidence can be also interpreted as a source of uncer-
tainty (see Hartley et al. 2017, for details). To validate the
data, Defourny et al. (2016) compared the CCI LC product
for the 2010 epoch with the certain and homogeneous points
of the GlobCover 2009 (Arino et al. 2012) validation dataset
and showed overall accuracy of 73.2%. However, accuracy
may differ regionally as shown, e.g., by Yang et al. (2017),
who found an accuracy 71.98% for China.

The LC product complies with the United Nations Land
Cover Classification Scheme (UNLCCS, Di Gregorio and
Jansen 2005) and it is not directly suitable for climate
modeling. Therefore, ESA-CCI-LC categorical classes need
to be converted to model-specific vegetation representation.
The vegetation distribution in ESMs is commonly described
by PFTs. That is the classification system used to simplify
the vegetation representation and group plants according to
their biophysical characteristics. The conversion method of
LC classes into PFTs is also called a cross-walking (CW)
procedure. Within the ESA-CCI-LC project, also annual
maps of continuous land cover changes at 300-m resolution
were released from 1992 to 2015. The comparison of global
areas of forest, cropland, and grassland conducted by Li
et al. (2018) showed some differences of ESA-CCI-derived
PFTs in comparison to other datasets, but ESA-CCI-LC
proved to be useful for modeling studies.

2.2 Cross-walking procedure

In the frame of the ESA-CCI-LC project, a user tool and
a reference cross-walking (CW) table were released to
support the conversion of LC classes into PFTs. However,
due to the different design and processes implemented in
various climate models, differences occur in the treatment of
artificial, water, ice, bare, or vegetated surfaces. Therefore,
expert knowledge and additional datasets are needed to
take into account associated climate model processes and
the required input information for their computations. In
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particular, for the vegetation delineation due to climate
zones and photosynthetic pathways, auxiliary datasets are
needed to adapt ESA-CCI-LC for the use in climate
models. For that purpose, an updated world map of the
Köppen-Geiger (KG) climate classification adopted from
Peel et al. (2007) is used. The photosynthetic pathway,
i.e., the C4 vegetation percentage, is taken from the
International Satellite Land Surface Climatology Project
(ISLSCP) Initiative II (Still et al. 2009) data.

The JSBACH land surface scheme can be set to
distinguish various number of PFTs. However, in this
study, 12 PFTs are used that were defined in the frame
of CMIP5 experiments: tropical evergreen tree, tropical
deciduous tree, extra-tropical evergreen tree, extra-tropical
deciduous tree, raingreen shrub, deciduous shrub, C3 grass,
C4 grass, C3 pasture, C4 pasture, C3 crop, and C4 crop.
Shrubs’ distributions derived from ESA-CCI-LC largely
differ from the PFT distribution used in CMIP5 studies (not
shown). This points out that mapping shrubs based only
on spectral reflectance still remains a challenge (Hellesen
and Matikainen 2013). However, this type of uncertainty
depending on how many types of vegetation are present in
the model is rather out of the scope of this paper and might
be a subject for future studies. Therefore, we focus on major
vegetation types (forest, shrubland, grassland (including
savannas), and croplands) as obtained from ESA-CCI-LC
and converted to the JSBACH PFTs. Figure 1 shows PFT
distributions aggregated into major vegetation types used in
JSBACH derived from ESA-CCI-LC.

2.3 MPI-ESM

MPI-ESM couples the atmospheric, ocean, and land surface
processes through the exchange of energy, momentum,
water, carbon, and other trace gasses. In this study, the
atmosphere and land components of MPI-ESM 1.2 are
utilized that consist of the atmospheric general circulation
model ECHAM6.3 (Stevens et al. 2013) and its land
surface scheme JSBACH 3.1 (Raddatz et al. 2007; Brovkin
et al. 2009). Both models have undergone several further
developments since the version (ECHAM6.1/JSBACH 2.0)
used for the CMIP5 experiments (Taylor et al. 2012).
Several bug fixes in the ECHAM physical parameterizations
led to energy conservation in the total parameterized
physics and a re-calibration of the cloud processes resulted
in a medium-range climate sensitivity of about 3 K.
JSBACH 3.1 comprises several bug fixes, a new soil
carbon model (Goll et al. 2015) and a five-layer soil
hydrology scheme (Hagemann and Stacke 2014) replaced
the previous bucket scheme. These five layers correspond
directly to the structure used for soil temperatures and
they are defined with increasing thickness (0.065, 0.254,
0.913, 2.902, and 5.7 m) down to a lower boundary at
almost 10-m depth. Vegetation is represented by several
PFTs in each model grid cell using a tiling approach.
Here, the bare soil area fraction of a grid cell is
defined implicitly as a residuum from all vegetation cover
fractions, i.e., 1 − ∑

fi , where
∑

fi is the sum of
area fractions of all PFTs. Various aspects of vegetation

Fig. 1 Area fraction of major
vegetation types in JSBACH
derived from ESA-CCI LC.
Forest consists of tropical and
extra-tropical evergreen trees,
and tropical and extra-tropical
deciduous trees. Shrubland
comprises deciduous and
raingreen shrub phenotypes.
Grassland is diversified
according to grass
photosynthetic pathways (C3
and C4). Cropland includes
crops and pasture, which are
also divided into C3 and C4
depending on their
photosynthesis processes
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dynamics are simulated on a broad range of temporal
scales, including photosynthesis/stomatal conductance, leaf
phenology, carbon allocation and decomposition, and the
redistribution of PFTs and deserts (Brovkin et al. 2009).

2.4 Experimental setup

In this study, five ECHAM6.3/JSBACH3.1 simulations
were conducted at T63 horizontal resolution (∼1.85◦ or
∼200 km) with 47 vertical layers in the atmosphere.
They were forced by observed sea surface temperature
(SST) and sea ice from the AMIP2 (Atmospheric Model
Intercomparison Project 2) dataset during 1979–2009
(Taylor et al. 2000). 1979 is regarded as spin-up, so that
only the period 1980–2009 is considered for the analyses.
Five simulations have been performed with five different
PFT maps as defined by Hartley et al. (2017). Except
reference map (refLC refCW), two maps that account
for LC classification algorithm uncertainty are derived:
one that minimizes vegetation (minLC refCW) and the
other that maximizes vegetation (maxLC refCW). Two
additional maps that either minimize (minLC minCW)
or maximize (maxLC maxCW) vegetation due to CW
procedure uncertainty are superimposed on maps that
minimize (minLC refCW) and maximize (maxLC refCW)
vegetation due to LC classification algorithm uncertainty.
In that way with five maps, we cover the largest plausible,
though not necessarily realistic, range of vegetation
uncertainty. The maps are derived following the same
procedure as in Hartley et al. (2017). The only difference is
resolution. Offline experiments in the previous study have
been conducted at 2◦ resolution, which slightly differs from
the T63 spectral resolution utilized in the present study.
However, since we follow the same procedure, we also keep
the same nomenclature as in the previous study (Table 1).

3 Results

The present study focuses on two sources of uncertainty:
(i) algorithm (Defourny et al. 2014) of converting surface
reflectance into LC classes (LC mapping), and (ii) CW
procedure into PFT. The range of uncertainties in PFTs map
derived from ESA-CCI-LC map is quantified and compared

with the range of uncertainty in forest cover observations
and recent LULC change (Section 3.1). Furthermore,
the impact of PFT uncertainty on MPI-ESM simulated
land surface fluxes and near-surface climate is calculated
(Section 3.2).

3.1 The range of PFT uncertainty

Table 2 sums the amount of the area (in Mha) covered with
major vegetation types, global, and for four latitudinal zones
(40 N–70 N, 10 N–40 N, 20 S–10 N, 60 S–20 S) classi-
fied by Hartley et al. (2017) as the latitudinal zones with
distinctive vegetation uncertainties. Comparing these areas
(Table 2 for the globe) with the area of historical LC change
estimated in the literature, it turns out that the range of
uncertainty is about the same order of magnitude as the his-
torical LC change. Ramankutty and Foley (1999) estimated
that approximately 1200 Mha of trees have been removed
globally since 1700 up to 1992. In the simulations that min-
imize vegetation cover, there is 721 Mha (minLC refCW)
and 1740 Mha (minLC minCW) less trees than in the ref-
erence experiment (refLC refCW). In the simulations that
maximize vegetation, there is 633 Mha (maxLC refCW)
and 1229 Mha (maxLC maxCW) more trees than in the
reference simulation. According to ESA-CCI-LC data for
epoch 2010 used as reference LC, the area currently under
farming is 2365 Mha, while Ramankutty and Foley (1999)
estimated that there was 1800 Mha under farming in the year
1992. Here, it is also interesting to note the non-uniform
distribution of farming area in our experiments, so that
minLC refCW simulation has the largest farming area of
2635 Mha, while maxLC minCW has the smallest farming
area (1709 Mha).

The range of uncertainty for forest distribution can
be compared with other datasets. According to Forest
Resources Assessment (FRA) reports (Keenan et al.
2015, Table 11), global forest area, for example, in the
year 2000 ranges from 3870 (FRA 2000) to 4056 Mha
(FRA 2015). Therefore, the quality of data used in various
FRA surveys resulted with 186-Mha area of global forest
uncertainty. Based on satellite data, Hansen et al. (2010)
estimated global forest area of 3269 Mha, while in a later
study Hansen et al. (2013) have estimated 4145 Mha. The
difference between these two studies is 876 Mha, which

Table 1 Experiment names and
description Experiment Amount of vegetation used in experiment

minLC minCW Vegetation is minimized with respect to LC mapping and CW procedure.

minLC refCW Vegetation is minimized with respect to LC mapping only.

mefLC refCW Reference vegetation from ESA-CCI LC epoch 2010 (see Section 2.1)

maxLC refCW Vegetation is maximized with respect to LC mapping only.

maxLC maxCW Vegetation is maximized with respect to LC mapping and CW procedure.
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Table 2 Area in Mha, global, and for four latitudinal zones, covered with various major vegetation types for the reference and four uncertainty
experiments. Grassland includes also savannas. Note that these are the largest plausible variations of vegetation, but likely not realistic. In brackets,
deviations from the reference setup (refLC refCW) are given in percentage

minLC minCW minLC refCW refLC refCW maxLC refCW maxLC maxCW

Global

Forest (Mha) 1535 (−53) 2554 (−22) 3275 3908 (19) 5137 (57)

Shrubland (Mha) 1280 (−19) 1380 (−12) 1576 1867 (18) 1528 (−3)

Grassland (Mha) 2827 (44) 2070 (5) 1964 2286 (16) 2254 (15)

Cropland (Mha) 1904 (−19) 2635 (11) 2365 1760 (−26) 1709 (−28)

40 N–70 N

Forest (Mha) 573 (−57) 1083 (−19) 1332 1624 (22) 2326 (75)

Shrubland (Mha) 433 (−3) 444 (−1) 447 504 (13) 199 (−55)

Grassland (Mha) 1263 (62) 844 (8) 781 911 (17) 724 (−7)

Cropland (Mha) 460 (−41) 690 (−12) 784 623 (−20) 613 (−22)

10 N–40 N

Forest (Mha) 148 (−69) 276 (−43) 484 656 (36) 875 (81)

Shrubland (Mha) 273 (−26) 329 (−11) 372 451 (21) 428 (15)

Grassland (Mha) 632 (24) 555 (9) 510 566 (11) 629 (23)

Cropland (Mha) 717 (−17) 947 (10) 861 688 (−20) 667 (−22)

10 N–20 S

Forest (Mha) 743 (−41) 1038 (−18) 1266 1403 (11) 1653 (31)

Shrubland (Mha) 407 (−18) 417 (−16) 498 579 (16) 516 (4)

Grassland (Mha) 606 (74) 384 (11) 347 393 (13) 386 (11)

Cropland (Mha) 554 (10) 754 (50) 504 279 (−45) 264 (−48)

20 S–60 S

Forest (Mha) 72 (−59) 141 (−20) 177 208 (18) 264 (49)

Shrubland (Mha) 144 (−41) 173 (−29) 243 320 (32) 372 (53)

Grassland (Mha) 297 (2) 265 (−9) 292 371 (27) 468 (61)

Cropland (Mha) 174 (−20) 244 (13) 216 169 (−22) 164 (−24)

is about the same order of magnitude as the uncertainty
due to LC mapping or CW procedure in our study. In
addition, the most recent studies seem to be more accurate
than earlier studies, i.e., forest cover estimates from FRA
2015 are considered to be more accurate than estimates
from FRA 2000 and estimates from Hansen et al. (2013)
are considered to be more accurate than estimates from
Hansen et al. (2010). Especially for the latter, this is due to
the use of better input data (e.g., finer resolution imagery),
improved methods, and different definition. Also Gross
et al. (2017) report more accurate results for more recent
estimates from finer resolution imagery. But comparing
estimates from different studies does not necessarily provide
reliable information about the reduced uncertainty of the
most recent estimates. Another example to illustrate this
point is the “discovery” of 400 Mha of forests in the
drylands (Bastin et al. 2017). These “missing” forests are
mainly (or largely) open forest (i.e., between 10 and 50%
tree cover) which are considered as forests by Bastin et al.
(2017) (FAO definition) but should not be considered as

forests for climate simulations (predominance of shrub and
grass cover).

Table 2 also shows vegetation variations due to
uncertainty across the latitudinal zones. For example, the
largest relative increase of forest area (81%) appears in
10 N–40 N zone for maxLC maxCW, while the largest
relative decrease (69%) appears for the minLC minCW case
in the same zone. However, the largest absolute variation
occurs in the 40 N–70 N zone.

Figure 2 identifies regions where the variations in
JSBACH PFT distribution occur due to the uncertainty in
LC mapping algorithm (minLC refCW and maxLC refCW)
and CW procedure (minLC minCW and maxLC maxCW).
As already noted by Hartley et al. (2017), these variations
are more pronounced for CW uncertainty than for LC
mapping uncertainty. For extra-tropical evergreen trees,
the largest variation in geospatial distribution of PFTs
occur in Northern North America and Canada, Scandinavia,
Northern Russia (from Baltic to Ural), and Southeastern
China. For the extra-tropical deciduous trees, the largest
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Fig. 2 Area deviations from the
reference (refLC refCW)
simulation of major vegetation
types for the four uncertainty
experiments. Contours are
showing absolute area changes
of 10%; dashed lines indicate
negative values, and full lines
indicate positive values
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variation due to uncertainty is located in Northern Russia
ranging from the West Siberian Plain to the Bering Strait, in
Zambezi river basin and in the South American Pampas. The
most notable variation in the distribution of tropical trees is
in Amazon and Congo River basins.

Other notable variation appears for shrubs and herba-
ceous types. For example, maxLC maxCW is characterized
by the decrease in shrubs from approximately 40 N to 70 N
latitude (Table 2 and Fig. 2), as well as along the northwest-
ern border of Parana River basin in South America and in
the area between the Indochina peninsula and the Yangtze
River basin. This experiment is also characterized by the
increase of shrubs especially along the southern and eastern
coast of Australia and in some parts of sub-Saharan Africa
(see green line on the shrubland panel in Fig. 2).

The global increase in the grassland area in comparison
to reference case (refLC refCW), in particular of the C3
type, characterizes all experiments. However, the most
notable increase is for minLC minCW that minimizes
vegetation due to CW uncertainty (see Table 2 and red line
on the grassland panel in Fig. 2).

The largest variations in croplands are in the sub-
Saharan area, between 10 N and 50 N over the Eurasian
continent, along the eastern coast of South America, in
Central America and to the north of the Gulf of Mexico.
Crops have a productivity comparable to trees, but albedo
and transpiration properties are similar like grasses. Thus,
variations in crops are expected to have a nonlinear feedback
across the five experiments. Therefore, note that the largest
increase in crops appears in minLC refCW (cf. Cropland

panels in Figs. 1 and 2 and Table 2), in particular on the
southern hemisphere (SH).

3.2 MPI-ESM response to the PFT uncertainty

The impact of the LC uncertainty and the range of the
MPI-ESM response of annual mean climate are summarized
in Fig. 3 and Tables 3 and 4. Table 3 shows comparison
of JSBACH offline and MPI-ESM data with observations.
Though, albedo in JSBACH and MPI-ESM shows some
differences in interannual variability (Fig. 3), the range of
uncertainty is the same for both of them and amounts 0.024
(ranging from 0.304 to 0.280 in JSBACH and from 0.298
to 0.274 in MPI-ESM, see Table 3). GPP shows larger
interannual variability in MPI-ESM simulation (Fig. 3), but
uncertainty is larger for JSBACH simulations ranging from
135.917 to 173.253 Pg C year−1, while for MPI-ESM, GPP
ranges from 134.990 to 167.492 Pg C year−1. ET shows
larger uncertainty and interannual variability for MPI-ESM
simulation. However, this is not due to coupling of surface
and atmospheric processes, but due to model deficiency in
the JSBACH offline version used in previous study that is
resolved in a coupled setup within MPI-ESM used in the
present study.

Comparing the values for evapotranspiration in MPI-
ESM simulation (Table 3, ranging from 72748 to
77017 km3, i.e., ∼± 2000 km3 from the reference) with the
estimated decrease in terrestrial evapotranspiration due to
deforestation (Sterling et al. 2012, ∼3500 km3), it turns out
that the range of uncertainty for certain variables is about
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Fig. 3 MPI-ESM and JSBACH
response of annual mean climate
variables over land to the PFT
uncertainty expressed by
normalized scores of annual
means for GPP, ET, Albedo, and
total precipitation (TP) and 2m
temperature (T2M) for MPI-
ESM (filled rhombi) and offline
JSBACH simulations (empty
style rhombi). Overlaid boxplot
shows 0.05, 0.10, 0.25, 0.5,
0.75, 0.90, and 0.95 percentiles

the same order of magnitude as the estimated LULC cli-
mate change. Figure 3 shows normalized scores for annual
means of various climate variables for the five experiments
conducted with MPI-ESM and JSBACH offline, where the
latter was taken from Hartley et al. (2017). Similar as
Figure 6 in Hartley et al. (2017), the normalized scores for
MPI-ESM simulations convey the same message as offline
simulations. Albedo is the most impacted, equally affected
by LC and CW uncertainty. It decreases with an increase in
vegetation. The differences in albedo between the JSBACH
offline and MPI-ESM simulations are due to differences in
the prescribed WFDEI precipitation and MPI-ESM simu-
lated precipitation which result in different snow cover in
both types of simulations.

The response of GPP to the PFT uncertainty is similar
for both setups, except that MPI-ESM simulations show
stronger interannual variability. In both cases, GPP is much
strongly affected by the CW uncertainty than by the LC
mapping uncertainty. This is probably because the biggest
variation in tree cover occurs for this uncertainty and trees

are the largest primary producers. However, minimizing
vegetation due to LC mapping uncertainty (minLC refCW)
shows a similar anomaly as in Hartley et al. (2017), i.e., it
shows an increase of GPP with a reduction of vegetation.
This is probably due to the largest area (2635 Mha)
covered by crops in this experiment and crops have larger
productivity than grasses.

In the previous version of JSBACH-offline used in
Hartley et al. (2017), ET did not show much variation due to
PFT uncertainty. This bug was specific to the offline version
of JSBACH, but is not included in coupled setup so that
the ET behavior is improved in the MPI-ESM simulations
presented in this study, where ET linearly increases with
increasing vegetation. As total precipitation (TP) over land
and 2m air temperature (T2M) over land are prescribed in
the offline simulations, they are not analyzed for JSBACH
simulations but only for the MPI-ESM simulations. Here,
TP increases linearly with the increase of vegetation, while
T2M does not show a systematic dependence on vegetation
globally, but rather regionally.

Table 3 Annual means for selected JSBACH and MPI-ESM variables over land for the period 1980–2009. Observations are taken from the
following sources: albedo is calculated from GlobAlbedo (Muller 2013; He et al. 2014), GPP is taken from various sources in literature summarized
in Anav et al. (2015), review of ET estimates is provided by Zhang et al. (2016), and terrestrial precipitation is obtained from Trenberth et al.
(2007)

Variable minLC minCW minLC refCW refLC refCW maxLC refCW maxLC maxCW Observation

JSB MPI-ESM JSB MPI-ESM JSB MPI-ESM JSB MPI-ESM JSB MPI-ESM

Alb (/) 0.304 0.298 0.299 0.291 0.294 0.287 0.289 0.282 0.280 0.274 0.248

GPP (Pg C year−1) 135.917 134.990 156.418 152.024 155.677 151.409 160.240 155.778 173.253 167.492 119–175

ET (103 km3 year−1) 60.043 72.748 60.128 74.205 60.096 75.078 60.268 76.290 60.740 77.017 63–73

TP (103 km3 year−1) – 103.925 – 105.615 – 106.636 – 107.943 – 108.738 107–113

T2m (◦C) – 9.931 – 9.838 – 9.842 – 9.882 – 9.855 8.5
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Table 4 Deviations of uncertainty experiments (δ minLC minCW, δ minLC refCW, δ maxLC refCW, δ maxLC maxCW) from the reference
experiment (refLC refCW), for the key surface climate parameters—global and for four latitudinal zones. Compare with vegetation uncertainty
in the Table 2

Global δ minLC minCW δ minLC refCW refLC refCW δ maxLC refCW δ maxLC maxCW

Alb (/) 0.011 0.004 0.287 −0.005 −0.013

GPP (Pg C yr−1) −16.419 0.615 151.410 4.369 16.084

ET (103 km3 year−1) −2.329 −0.873 75.078 1.213 1.939

TP (103 km3 year−1) −2.711 −1.022 106.637 1.306 2.102

T2m (◦C) 0.088 −0.004 9.842 0.040 0.014

40N-70N minLC minCW minLC refCW refLC refCW maxLC refCW maxLC maxCW

Alb (/) 0.026 0.009 0.258 −0.012 −0.035

GPP (Pg C year−1) −5.042 −1.617 34.827 2.940 6.637

ET (103 km3 year−1) −0.926 −0.241 18.885 0.466 0.995

TP (103 km3year−1) −0.496 −0.134 31.034 0.419 0.782

T2m (◦C) 0.024 −0.050 2.321 0.208 0.118

10N-40N minLC minCW minLC refCW refLC refCW maxLC refCW maxLC maxCW

Alb (/) 0.002 0.002 0.249 −0.002 −0.003

GPP (Pg C year−1) −3.754 0.498 35.105 1.334 3.570

ET (103 km3 year−1) −0.288 −0.000 17.774 0.325 0.328

TP (103 km3 year−1) −0.438 −0.133 23.344 0.265 0.158

T2m (◦C) 0.060 0.027 21.080 −0.007 0.019

10N-20S minLC minCW minLC refCW refLC refCW maxLC refCW maxLC maxCW

Alb (/) 0.008 0.006 0.160 −0.003 −0.006

GPP (Pg C year−1) −4.935 2.392 67.533 −0.476 3.910

ET (103 km3 year−1) −0.777 −0.342 31.213 0.445 0.678

TP (103 km3 year−1) −1.473 −0.450 40.345 0.645 1.302

T2m (◦C) 0.162 0.032 24.428 −0.062 −0.100

20S-60S minLC minCW minLC refCW refLC refCW maxLC refCW maxLC maxCW

Alb (/) 0.000 0.001 0.174 0.000 0.000

GPP (Pg C year−1) −2.614 −0.606 13.744 0.531 1.914

ET (103 km3 year−1) −0.331 −0.290 6.931 −0.022 −0.063

TP (103 km3 year−1) −0.340 −0.336 8.541 −0.065 −0.120

T2m (◦C) 0.149 0.119 19.702 0.044 0.005

Table 4 shows global and regional (four latitudinal zones)
uncertainty of five key surface climate variables in MPI-
ESM. For example, global uncertainty in GPP is estimated
to be ∼± 16 Pg C year−1. The largest zonal uncertainty
from −5 to 6.6 Pg C year−1 occurs in the 40 N–70 N
Table (4) zone. This is also the zone featuring the largest
variation in the tree distribution (from 573 to 2326 Mha,
Table 2), also affecting albedo uncertainty to range from
−0.035 to 0.026. Evapotranspiration uncertainty (in 40 N–
70 N zone) ranges from ∼−926 to 995 km3 year−1

or from ∼−20 to 21 mm year−1. All these parameters
depend largely on the uncertainty in vegetation distribution,
i.e., their stomatal conductance and reflective properties.
Largest uncertainty in precipitation (ranging from −1473 to
1302 km3 year−1 or from ∼ −51 to 45 mm year−1) and 2m

temperature (ranging from ∼ −0.1 to 0.2 K ) are estimated
in the 20 S–10 N zone.

The box plots on Fig. 3, overlaid over annual mean
scores, provide an interesting insight in the distribution
of frequencies and how the simulated climate is affected
by uncertainty in vegetation. For example, the median
amount of precipitation for minLC minCW lies just below
the 5th percentile for maxLC maxCW, i.e., the median
amount of precipitation for the minLC minCW experiment
equals the precipitation of a very dry year in the
maxLC maxCW experiment. For ET, this difference is even
more pronounced, leading to the conclusion that a median
year for the minLC minCW experiment would be a dry
year in the reference (refLC refCW) simulation, and an
extremely dry in maxLC maxCW. Positive extremes show
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Fig. 4 Boreal winter (DJF)
mean sea level pressure and
10-m wind deviations from the
reference simulation
(refLC refCW) for the four
uncertainty experiments
(minLC minCW,
minLC refCW, maxLC refCW,
and maxLC maxCW)
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a similar behavior. The median amount of precipitation
for maxLC maxCW lies above the 95th percentile of
minLC minCW, i.e., it has a similar amount of precipitation
as the wettest year in minLC minCW.

This redistribution of precipitation pattern indicates that
PFT uncertainty has a considerable impact on large-scale
phenomena, such as NAO and ENSO, and their regional
implications such as monsoons and weather regimes
simulated by an ESM. While studying offline LSMs,
Hartley et al. (2017) could only consider land surface
variables. In the present study, with MPI-ESM, we can also
investigate the impact of LC uncertainties on atmospheric
variables.

Figure 4 shows boreal winter (December, January,
February—DJF) deviations of mean sea level pressure
and 10-m winds from the reference experiment for the
uncertainty experiments. Those experiments that either
minimize or maximize vegetation due to CW uncertainty
(minLC minCW, and maxLC maxCW) show a clear impact
on the mid-latitude westerlies in northern hemisphere (NH)
during DJF. In the minLC minCW experiment, westerlies
are strengthening while in the maxLC maxCW experiment
they are weakening. Experiments that either minimize
(minLC refCW) or maximize (maxLC refCW) vegetation
due to LC uncertainty both contribute to the formation of
blocking like features, the former above the Atlantic Ocean
to the north of the Great Britain, and the latter above the
Central Europe. Both of them seem to have impact on
increasing the Azores and Siberian high and deepening
the Icelandic depression during the boreal winter. This
results in intensified westerlies over the Atlantic Ocean. It

is more pronounced for maxLC refCW. These deviations
in circulation pattern can be explained by an increase
of surface roughness with an increase of vegetation. In
addition, there are variations in the atmospheric water vapor
distribution that impact the atmospheric pressure patterns
and, hence, the circulation.

Figure 5 shows the related deviations in circulation
during the boreal summer (June, July, August—JJA). On
the NH, only minLC minCW shows some amplification of
westerlies over the Eurasian mid-latitudes while the other
simulations show negligible variation in wind speed for
that area. The SH also features perturbations in circulation
pattern during both seasons (Figs. 4 and 5). It is interesting
to note the strengthening of the high-pressure field to
the south of the African continent during the JJA season,
in particular for minLC minCW and minLC refCW. This
high-pressure field brings moist oceanic air to the Indian
subcontinent and it may intensify the Indian monsoon.
Hence, this demonstrates that vegetation uncertainties
have a noticeable impact on the large-scale atmospheric
circulation.

The complex pattern of seasonal (DJF and JJA) variations
in 2m temperature due to vegetation uncertainty as well
as variations in albedo and evapotranspiration are shown
in Figs. 6 and 7. Variations in temperature depend on
several factors such as vegetation type, snow cover, and
solar insolation related to geographic latitude. During the
winter (DJF, Fig. 6), variations in NH temperature are
controlled by albedo feedback and advection (Figs. 4 and 6).
Variations in SH 2m temperature during winter, in particular
for cases with increased vegetation (maxLC maxCW



Characterizing uncertainties in the ESA-CCI land cover map of the epoch 2010 and their impacts on MPI-ESM...

Fig. 5 Boreal summer (JJA)
mean sea level pressure and
10-m wind deviations from the
reference simulation
(refLC refCW) for the four
uncertainty experiments
(minLC minCW,
minLC refCW, maxLC refCW,
and maxLC maxCW)
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and maxLC refCW), are predominantly controlled by
evaporative cooling. Experiments that decrease vegetation
(minLC minCW and minLC refCW) show impact of
albedo feedback and evaporative cooling on temperature.
During the summer (JJA, Fig. 7), evaporative cooling
takes a predominant control over 2m temperature changes,
especially over North America. The albedo feedback seems
to be more important for the cases that minimize vegetation
(minLC minCW and minLC refCW).

The impact of vegetation uncertainty on annual mean
T2M and TP over land is shown in Figs. 8 and 9,
respectively. Statistical significance of the annual mean
(T2M and TP) deviations from refLC refCW has been
tested with a T test and with a simple standard deviation
test. The latter is performed as following. Model internal
variability is defined as the standard deviation of five-
member ensemble performed by de Vrese and Hagemann
(2016). The model setup is identical, but the simulations

Fig. 6 Boreal winter (DJF)
mean 2m temperature
differences from the reference
simulation (refLC refCW) for
the four uncertainty experiments
(Table 1). Overlaid contours
show changes in albedo (green,
−0.01 dashed line and 0.01 full
line) and evapotranspiration
(magenta, −5-mm/month
dashed line and 5-mm/month
full line)

minLC_minCW minLC_refCW

0

80S

60S

40S

20S

0

20N

40N

60N

80N

maxLC_refCW

160W 120W 80W 40W 0 40E 80E 120E 160E

maxLC_maxCW

160W 120W 80W 40W 0 40E 80E 120E 160E

80S

60S

40S

20S

0

20N

40N

60N

80N

Albedo (-0.01, 0.01) ET (-5, 5) mm/month

-10 -1 -0.75 -0.5 -0.25 -0.1 0.1 0.25 0.5 0.75 1 10

DJF 2m temperature (K)



G. Georgievski, S. Hagemann

Fig. 7 Boreal summer (JJA)
mean 2m temperature
differences from the reference
simulation (refLCrefCW) for the
four uncertainty experiments
(Table 1). Overlaid contours
showing changes in albedo
(green, −0.01 dashed line and
0.01 full line) and
evapotranspiration (magenta,
−5-mm/month dashed line and
5-mm/month full line)
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were started using slightly differing initial conditions. In
that way, defined model internal variability is compared
with the deviations of uncertainty experiments from the
reference simulation. Grid points where the deviations
of uncertainty experiments are larger than two standard
deviations (internal variability) of the ensemble roughly
coincide with the grid points showing 95% significance
level according to T test. Therefore, only the former
are indicated on Figs. 8 and 9. Figure 8 shows the net

annual impact of seasonal variations in albedo feedback,
evaporative cooling, and other factors related to PFT
uncertainty, on the 2m temperature. Boreal latitudes
of North America and in particular Canada exhibit
cooling with decrease of vegetation (minLC minCW and
minLC refCW) and warming with increase of vegetation
(maxLC maxCW and maxLC refCW) indicating albedo
feedback control over temperature. On the other hand,
South America and sub-Saharan Africa exhibit the opposite

Fig. 8 Annual 2m temperature
deviations from the reference
simulation for the four
uncertainty experiments (Table
1). Hatches indicate deviations
that are larger than 2 standard
deviation of 5 member ensemble
internal variability
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Fig. 9 Annual total land
precipitation deviations from the
refLC refCW simulation for the
four uncertainty experiments
(Table 1). Hatches indicate
deviations that are larger than 2
standard deviation of 5 member
ensemble internal variability.
Monsoon regions (NAM—North
American, SAM—South
American, NAF—North
African, SAF—South African,
SAS—South Asian, EAS—East
Asian, and AUS—Australian)
are indicated as defined by
Devaraju et al. (2015) following
approach of Wang and Ding
(2006)
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signal, i.e., warming with decrease of vegetation and
cooling with increase of vegetation in particular related
to CW uncertainty (minLC minCW and maxLC maxCW).
Therefore, this indicate evaporative cooling as dominant
control over the 2m temperature for South America and sub-
Saharan Africa. The Eurasian continent shows interference
of both effects and the largest changes in temperature due
to PFT uncertainty. The most significant warming with
increasing vegetation occurs along the northeastern coast
of the Eurasian continent. Seasonal variations (Figs. 6
and 7) can be even stronger. During the boreal spring
(March, April, May—MAM), maxLC maxCW shows a
local warming up to 3 K along the northeastern coast of
the Eurasian continent and the northwestern part of North
America.

The most significant impact on precipitation (Fig. 9)
appears due to CW (minLC minCW and maxLC maxCW)
uncertainty. The major variations in precipitation occur in
the Amazon, Congo, and Indonesian rainforest, but also
in North America and Central Eurasia. The feedback is
positive, i.e., less vegetation–less precipitation and vice
versa. Figure 9 also shows monsoon rain domains as
defined by Devaraju et al. (2015) following Wang and Ding
(2006). Seasonal and annual mean variations of terrestrial
precipitation in monsoon regions are shown in Fig. 10
The largest relative deviation of precipitation (∼± 14%) is
about the same order of magnitude as in Devaraju et al.
(2015), though they do not occur in the same regions.
The South African domain shows ∼14% increase during
the JJA season and the Australian region exhibit ∼14%
decrease of precipitation during MAM season. Except for

the East Asian boreal winter (DJF) monsoon, all other NH
DJF monsoons (North American, North African, and South
Asian) intensify with decrease of vegetation, similarly as
the SH DJF monsoons (Australian, South American, and
South African). During austral winter (JJA), the weakening
of precipitation with decrease in vegetation is a dominant
feature. However, NH monsoons are not so strongly
affected as the SH monsoons by the decrease of vegetation.
Experiments that maximize vegetation predominantly show
intensification of DJF monsoonal precipitation, while
impact on JJA monsoons is negligible.

4 Discussion and conclusions

In this study, the impact of LC uncertainty on climate
simulations with MPI-ESM has been investigated. To our
knowledge, this is the first study to estimate the impact
of uncertainty in vegetation distribution based on satellite-
derived LC map on ESM-simulated climate. Implications of
uncertainty for remote sensing of LC have been discussed
in detail by Hartley et al. (2017). Thus, in order to
understand the significance of our results, we discuss
them in the context of earth observations and modeling
studies. Though the range of uncertainty (Hartley et al.
2017) derived from the ESA remote sensing data and the
conversion into PFT might seem exaggerated, this is the
largest possible range of uncertainty resulting from the
superposition of these two sources of uncertainty. Each
of them results in a range of vegetation coverage that is
about the same order of magnitude as the uncertainty in
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Fig. 10 Precipitation deviations
in monsoon regions (shown on
Fig. 9) as an effect of vegetation
distribution uncertainty.
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available forest observation (Keenan et al. 2015; Hansen
et al. 2010; Hansen et al. 2013). Superposing two sources of
uncertainty (minLC minCW and maxLC maxCW) shows
that the absolute value of the estimated range of vegetation
differences to the reference in either direction is about the
same order of magnitude as the observed forest loss due
to agriculture since 1700 to 1992 (Ramankutty and Foley
1999). Therefore, perturbations of vegetation in our study
are relevant for both constraining uncertainty in present
day climate simulations and understanding recent climate
change due to land use and to investigate possible effects of
deforestation or afforestation. Propositions for constraining
uncertainty from remote sensing perspective (LC mapping)
and earth system modeling (CW procedure) have been
discussed in depth by Hartley et al. (2017) and there is
currently work in progress addressing improvements of the
CW procedure. Satellite-derived PFT uncertainty is about
the same order of magnitude as the observed LULC change.
Therefore, simulated climate variation for some variables is
about the same order of magnitude as the observed climate
change due to land use.

From the modeling perspective, our results both confirm
previous studies exploring vegetation–atmosphere interac-
tion and widen our understanding of the corresponding cli-
mate uncertainty. Our experiments concur well with Bonan
(2008) (indicating that tropical forests mitigate warm-
ing through evaporative cooling, but the low albedo of
boreal forests is a positive climate forcing). Thus, further
expand the idea that annual mean temperature of boreal
North America is controlled by albedo feedback, while

the annual mean temperature of South America and sub-
Saharan Africa is controlled by evaporative cooling (Figs. 6,
7, and 8).

Our results considering variations in large-scale circula-
tion and precipitation due to vegetation uncertainty have a
number of similarities with previous studies exploring the
impact of idealized modification of vegetation on simulated
climate. For example see Swann et al. (2011) for idealized
afforestation of mid-latitudes and Devaraju et al. (2015)
for deforestation experiments. Both studies showed that
changes in forest cover are capable of driving changes in
large-scale circulation and precipitation. The precipitation
variations depend on the location of vegetation variations,
both Devaraju et al. (2015) and Swann et al. (2011) used
idealized cases of deforestation and afforestation, respec-
tively, while the range of our vegetation distribution is
derived from uncertainty of LC observation and conversion
into PFTs. Therefore, it constrains uncertainty of climate
response to plausible range of model error in monsoonal
precipitation estimate. However, our study does not enable
us to determine the plausible range of shifts in the Intertrop-
ical Convergence Zone (ITCZ), since the ocean component
is not thermodynamically interactive with the atmosphere in
our model, but sea ice and SST are prescribed for all simula-
tions. Nevertheless, prescribing SST and sea-ice conditions
allows us to isolate solely the effect of vegetation varia-
tion on terrestrial near-surface climate by excluding impact
of ocean thermodynamic. The impact of LC uncertainty in
a fully coupled atmosphere–land–ocean system might be a
subject of a follow-up study.
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In summary, our analysis demonstrate that the largest
plausible range of uncertainty in ESM vegetation map
converted from satellite-derived LC product is about the
same order of magnitude as forest loss due to agriculture in
the past ∼ 300 years. Consequently, the range of uncertainty
in near-surface climate is about the same order of magnitude
as the observed climate change due to deforestation.
Though this range of largest possible uncertainty in
vegetation distribution is very likely exaggerated at the
global level, it might be relevant for certain regions of
the world with higher relative uncertainty (e.g., complex
and heterogeneous areas, such as the mix of shrub cover,
savannas, and croplands in sub-Saharan Africa, are much
more difficult to map than homogeneous areas such as
the Sahara). Therefore, more accurate methods of LC
classification and their conversion into PFT are needed in
order to increase reliability of climate model simulations
and projections.
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