## Supplement to

## Black and brown carbon over central Amazonia: Long-term aerosol measurements at the ATTO site

Jorge Saturno<sup>1</sup>, Bruna A. Holanda<sup>1</sup>, Christopher Pöhlker<sup>1</sup>, Florian Ditas<sup>1</sup>, Qiaoqiao Wang<sup>1,2</sup>, Daniel Moran-Zuloaga<sup>1</sup>, Joel Brito<sup>3,4</sup>, Samara Carbone<sup>3,5</sup>, Yafang Cheng<sup>1</sup>, Xuguang Chi<sup>6</sup>, Jeannine Ditas<sup>1,2</sup>, Thorsten Hoffmann<sup>7</sup>, Isabella Hrabe de Angelis<sup>1</sup>, Tobias Könemann<sup>1</sup>, Jošt V. Lavrič<sup>8</sup>, Nan Ma<sup>1,2</sup>, Jing Ming<sup>1</sup>, Hauke Paulsen<sup>9</sup>, Mira L. Pöhlker<sup>1</sup>, Luciana V. Rizzo<sup>10</sup>, Patrick Schlag<sup>3</sup>, Hang Su<sup>1</sup>, David Walter<sup>1</sup>, Stefan Wolff<sup>1</sup>, Yuxuan Zhang<sup>1</sup>, Paulo Artaxo<sup>3</sup>, Ulrich Pöschl<sup>1</sup>, and Meinrat O. Andreae<sup>1,11</sup>

<sup>1</sup>Biogeochemistry & Multiphase Chemistry Departments, Max Planck Institute for Chemistry, P. O. Box 3060, 55020 Mainz, Germany.

<sup>2</sup>Jinan University Institute for Environmental and Climate Research, Guangzhou, China.

<sup>3</sup>Department of Applied Physics, Institute of Physics, University of São Paulo (USP), Rua do Matão, Travessa R, 187, CEP 05508-900, São Paulo, SP, Brazil.

<sup>4</sup>Laboratory for Meteorological Physics, Université Clermont Auvergne, Clermont-Ferrand, France.

<sup>5</sup>Institute of Agrarian Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.

<sup>6</sup>Institute for Climate and Global Change Research & School of Atmospheric Sciences, Nanjing University, Nanjing, 210093, China.

<sup>7</sup>Department of Chemistry, Johannes Gutenberg University, Mainz, Germany.

<sup>8</sup>Department of Biogeochemical Systems, Max Planck Institute for Biogeochemistry, 07701 Jena, Germany.

<sup>9</sup>Institute of General Botany, Johannes Gutenberg University, Mainz, Germany.

<sup>10</sup>Departamento de Ciencias Ambientais, Universidade Federal de Sao Paulo, Diadema, SP, Brasil.

<sup>11</sup>Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92098, USA.

*Correspondence to*: Jorge Saturno (j.saturno@mpic.de) and Christopher Pöhlker (c.pohlker@mpic.de)

This file includes:

Tables S1 to S2. Figures S1 to S6. 
 Table S1. Aerosol sampling conditions and locations at the ATTO site.

| Time period            | Location         | Inlet tube<br>dimensions                         | Approx.<br>flow rate<br>(L min <sup>-1</sup> ) | Drying system                                            | 1 μm<br>cyclone cut<br>for BC (y/n) |
|------------------------|------------------|--------------------------------------------------|------------------------------------------------|----------------------------------------------------------|-------------------------------------|
| Mar 2012 –<br>Sep 2012 | Mast *           | 60 m height<br>17 mm (0.685 ")<br>inner diameter | 13                                             | Diffusion dryers                                         | n                                   |
| Sep 2012 –<br>Dec 2013 | Walk-up tower ** | 60 m height<br>17 mm (0.685 ")<br>inner diameter | 13                                             | Diffusion dryers                                         | n                                   |
| Dec 2013 –<br>May 2014 | Mast *           | 60 m height<br>24 mm (0.935 ")<br>inner diameter | 18                                             | Diffusion dryers                                         | n                                   |
| May 2014 –<br>Jan 2015 | Mast *           | 60 m height<br>24 mm (0.935 ")<br>inner diameter | 30                                             | Diffusion dryers                                         | У                                   |
| Jan 2015 –<br>present  | Mast *           | 60 m height<br>24 mm (0.935 ")<br>inner diameter | 30                                             | Automatic<br>regenerating<br>adsorption<br>aerosol dryer | у                                   |

\* S 02° 08.602'; W 59° 00.033', 130 m a.s.l. \*\* S 02° 08.647'; W 58° 59.992', 130 m a.s.l.



**Figure S1.** Precipitation anomalies calculated from the Tropical Rainfall Measurement Mission (TRMM) observations along the BT tracks in the ROI ATTO area (top) (see Fig. 1), and Oceanic Niño Index (ONI) (bottom) time series from 1998 to 2016.



**Figure S2.** HYPSLIT backward trajectory footprint of the ZF2 site (01 Jan 2014 to 31 Dec 2015) calculated every hour with a starting height of 1000 m. Adapted from Pöhlker et al. (2017).



**Figure S3.** Nephelometer, MAAP, Aethalometer, and SP2 (+ split detector) measurement periods at the ATTO site.









**Figure S5.** Results of Mie model calculations for pure BC, using a log-normal size distribution with mean = BC geometric mean diameter (GMD), and a standard deviation of 1.45, and internally mixed BC using the core-shell model for monodisperse BC cores with a coating's refractive index of 1.55 - 0.001i. The horizontal dashed lines show the boundaries of the inter-quartile range.

**Table S2.** Relative overestimation of the BrC contribution to light absorption at 370 nm obtained from Mie model calculations by considering different BC core size ranges and different refractive indices of the coating material. The parameters used in this study are shown in bold letters.

| BC core size range<br>[nm] | Refractive index of the coating material | Relative overestimation of BrC contribution to $\sigma_{370}$ (%) |
|----------------------------|------------------------------------------|-------------------------------------------------------------------|
| 100 – 275                  | 1.55 - 0i                                | 0                                                                 |
| 100 – 275                  | 1.55 - 0.001i                            | 0                                                                 |
| 100 – 275                  | 1.55 - 0.1i                              | 33                                                                |
| 100 – 275                  | 1.55 - 0.2i                              | 46                                                                |
| 80 – 275                   | 1.55 - 0i                                | 18                                                                |
| 80 – 275                   | 1.55 - 0.001i                            | 18                                                                |
| 80 – 275                   | 1.55 - 0.1i                              | 44                                                                |
| 80 – 275                   | 1.55 - 0.2i                              | 56                                                                |



**Figure S6.** Light absorption coefficient at 637 nm ( $\sigma_{ap 637}$ ) vs. rBC mass concentration (30-min averaged data) corresponding to the wet and the dry seasons, in green and gray, respectively. The slopes of the SMA fits correspond to the BC mass absorption cross-section at 637 nm ( $\alpha_{abs 637}$ ), inter-quartile ranges are indicated in brackets.