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Oriented Molecules

It is often the case that the electrons that 
bind atoms into molecules are unevenly 
(anisotropically) distributed over the 
molecular frame. Think of a diatomic 
molecule such as hydrogen fluoride, HF. 
Because fluorine has a greater affinity 
(attraction) for electrons than hydrogen, the 
electron distribution is biased, with more 
(negative) electron charge concentrated 
on the fluorine atom than on the hydrogen 
atom. This makes the molecule polar, lending 
it a so-called permanent electric dipole 
moment (see Fig. 1). This dipole moment 

is fixed along the molecular axis that runs 
through the nuclei of the two atoms. 

Since an electric dipole moment can be 
acted upon by an electric field (like a magnet 
can be acted upon by a magnetic field), 
the permanent, molecule-fixed electric 
dipole moment can be used as a lever to 
manipulate the molecular axis through its 
interaction with an external electric field. In 
the absence of the electric field, the dipole 
moment and thus the molecular axis is free 
to rotate in space (see Fig. 1a). When the 
electric field is turned on, the dipole moment 
is acted upon by the field proportionately to 

THE EXACTING TASK OF 
BRINGING MOLECULES  
TO ATTENTION
Molecules are relentlessly dynamic – vibrating, cartwheeling, and zig-
zagging in a restless hustle. In order to study molecular properties and 
interactions, their motions must be tamed to a certain degree. In  
particular, the ability to make molecules face in a specific direction –  
to align or orient their axis – is sought in many diverse research areas. 
Bretislav Friedrich and his team at the Fritz Haber Institute, together  
with collaborators at Harvard, Purdue, Universität Regensburg, and the 
Freie Universität Berlin, have devised ways to coerce molecules into 
alignment and orientation. At the same time, they found exact solutions 
to the Schrödinger equation for particular strengths of the interactions 
between molecules and the electromagnetic fields that cause the aligning 
and orienting.
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the dipole’s magnitude, μ, the strength of the 
electric field, ε, and the cosine of the angle 
θ between the two. As a result, the energy of 
the electric dipole interaction becomes Vµ 
= − µ ε cosθ. Had the molecule rotated with 
kinetic energy T prior to switching on the 
field, its total energy in the field would then 
be E = T + Vµ. If the total energy is to remain 
constant throughout the rotation of the 
molecule – as it should – the kinetic energy has 
to become dependent on the angle θ as well. 
As a result, the rotation in the field proceeds 
nonuniformly, but still covers the full range of 
360° (see Fig. 1b). 

The case of interest occurs when the 
permanent electric dipole interaction Vµ is 
cranked up so high that from some angle θ0 
on it exceeds the total energy E (see Fig. 1c). 
Then the kinetic energy is only nonzero (i.e., 
the molecular axis still moves) over an angular 
range that is less than 360°. This motion 
is called libration – an angular oscillation 
between the turning points at θ0 defined by 
the intersection of E and Vµ, where the kinetic 
energy winds down to zero. One can see that in 
effect the molecular axis has become oriented 
along the direction of the electric field. 

Since the to and fro motion is analogous to 
that of the pendulum (also defined by a cosine 
potential, between the bob’s suspension 
and the gravitational field), the orientation 
achieved in this way is termed pendular 
orientation. We note that the kinetic energy 

Figure 1
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'Analytic – or exact – 
solutions are the gems  

of physics: beautiful 
and rare, furnishing an 
unrivalled insight into 

a problem’s nature. It is 
a part of the culture of 
physics to seek them.’

Figure 2

T of the molecule’s rotation does not only depend on the amount of 
initial angular momentum (i.e., how fast it rotates) but also on the 
molecule’s mass distribution, as captured by the quantity called the 
rotational constant, B. By dividing the permanent dipole interaction 
Vµ by the rotational constant we end up with a quantity Vµ/B that is 
independent of any particular (diatomic) molecule, as it contains all 
the molecule-specific parameters on which its motion – with a given 
angular momentum – in the electric field depends. We write Vµ/B = −η 
cosθ, where η = µ ε/B is a dimensionless parameter – just a number – 
that fully characterises the strength of the orienting permanent dipole 
interaction of a polar molecule with an external electric field. One 
can immediately see that the orienting interaction will be strong for 
molecules with a large permanent dipole and low rotational constant 
(the latter possessed, roughly speaking, by heavy molecules). Not all 
molecules offer such properties, and therefore, pendular orientation is 
not as versatile as one would wish.

Molecules in Alignment

A dipole moment can be also induced in a molecule – whether polar or 
non-polar – by an external electric field. The induced dipole moment 
depends on the molecule’s polarisability, which is a measure of how 
tightly the molecule’s electrons are bound. The induced dipole moment 
can be then acted upon by the very electric field that has induced it. If 
the polarisability is uneven (anisotropic) over the molecular frame, the 
induced dipole moment is again molecule-fixed and can be used as a 
lever to manipulate the rotation of the molecule. 

Because of the ‘double action’ of the electric field (inducing a dipole 
moment and then acting on it), the induced dipole interaction is 
proportional to its square as well as to the square of the cosine of 
the angle θ between the molecular axis and the direction of the field. 
It is also proportional to the polarisability anisotropy, ∆α, which, 
for the example of a linear molecule, is the difference between the 
polarisability parallel αII and perpendicular α  to the molecular axis. 
Unlike the permanent body-fixed electric dipole moment, a single-
headed arrow, the polarisability anisotropy is a double-headed arrow, 
since it does not distinguish, in our example, between the H and F 
atoms (see Fig. 1). Hence the induced dipole interaction can only 
align the molecular axis. It is given by Vα = − ∆α ε2 cos2θ or, divided by 
the rotational constant of the molecule, Vα/B = −ζ cos2θ, with ζ = ∆α 
ε2/B. Thus, the strength of the induced dipole, aligning interaction is 
universally characterised by the dimensionless parameter ζ, a number. 

In order to make the alignment parameter (and hence the alignment 
attained) sizeable for typical molecules (say ζ > 10), the electric field 
strength has to be raised to values that are too high to be attained in 
static electric fields (made by a high-voltage capacitor). Instead, the 
electric field of an intense electromagnetic wave produced by a laser 
has to be used. Such an optical field of intensity, I, gives rise to an 
electric field εopt = (2IcЄ0)1/2, where c is the speed of light and Є0 the 
vacuum permitivity. For instance, an optical field of an intensity of 1012 
W/cm2 produces an electric field εopt= 19,410 kV/cm, whereas a realistic 
maximum value of an electrostatic field is only about 100 kV/cm (i.e., 
about 200 times less). The requisite high optical intensities can only be 
achieved with pulsed lasers; however, the duration of the laser pulse 
can easily exceed the rotational period (h/2B, with h Planck’s constant), 
in which case the optical field during the pulse behaves as if it were 
static at any moment.
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Enter Quantum Mechanics

The above description of the dynamics of 
a polar and/or polarisable molecule in an 
electric field draws on classical mechanics, 
as given, for example, by Newton’s laws of 
motion. However, a molecule is a quantum-
mechanical object that obeys the laws of 
quantum mechanics, as encapsulated, for 
example, in the Schrödinger equation. As 
famously pointed out by Paul Dirac, ‘The 
underlying physical laws necessary for 
the mathematical theory of ... the whole 
of Chemistry [molecular science] are thus 
completely known, and the difficulty lies 
only in the fact that application of these laws 
leads to equations [Schrödinger’s equation] 
that are too complex to be solved.’ 
There are a handful of problems in molecular 
science for which Schrödinger’s equation can 
be solved (one speaks of an analytic or exact 
solution – which is just a closed-form formula 
that consists of elementary functions such 
as powers, trigonometric functions, etc.), 
such as the harmonic oscillator (a model of 
molecular vibration) or the hydrogen atom (a 
model of atomic shell structure). However, for 
the vast majority of problems, Schrödinger’s 
equation can only be solved numerically, 
and moreover, usually after being simplified. 
The quantum pendulum problem (involving 
a molecule subject to a permanent and/
or induced dipole interaction with an 
external electric field) belongs in the latter 
category – and can in general only be solved 
numerically (with arbitrary accuracy). These 

numerical solutions provide the energies 
as well as the wavefunctions of the various 
states that the molecule can have at given 
values of the parameters η and ζ (see Fig. 2). 

A Versatile Recipe to Orient Molecules

As noted above, pendular orientation is 
only applicable to molecules with special 
properties. Therefore, a more general 
approach to orienting molecules was sought 
– and found – by Friedrich and his colleagues, 
using a technique based on the combination 
of a static electric field with a non-resonant 
optical field. The orientation occurs for 
any polar molecule, as only an anisotropic 
polarisability, along with a permanent dipole 
moment, is required. This is always available 
in polar molecules. Thus, for a great number 
of molecules in their rotational ground state, 
a static electric field can convert alignment 
by a laser into a strong orientation that 
projects up to 90% of the body-fixed dipole 
moment on the direction of the static field. 
Friedrich’s ‘combined fields’ technique has 
been used in applications ranging from 
molecular imaging to surface science. 

The strong orienting effect of the combined 
fields arises from the coupling of the 
members of the doublets generated by the 
induced-dipole interaction (the so-called 
tunnelling doublets, shown in Fig. 2b) by the 
permanent dipole interaction (shown in Fig. 
2a). Fig. 2c shows the combined interaction 
along with the corresponding energy levels. 

One can see that adding the permanent 
dipole interaction makes the combined 
interaction asymmetric and draws the 
nearly degenerate (of nearly same energy) 
tunnelling doublets apart. Such a marked 
change in the energy of a given quantum 
state with the permanent dipole interaction 
is an unequivocal indication that the state 
in question has become highly oriented.  We 
note that the combined fields effect is much 
more than the sum of its parts. This finding 
will be revisited below. 

Analytic Solutions to Schrödinger’s 
Equation for Molecules in Combined Fields

But what about any analytic solutions to 
the Schrödinger equation for a molecule 
in combined fields? ‘Analytic – or exact – 
solutions are the gems of physics: beautiful 
and rare, furnishing an unrivalled insight into 
a problem’s nature,’ says Friedrich. ‘It is a part 
of the culture of physics to seek them.’ 

The scarcity of analytic solutions to problems 
arising in quantum mechanics has not only 
spurred the development of techniques to 
find their numerical solutions instead, but 
has also impelled attempts to search for a 
type of analytic solution that only obtains for 
a subspace of the parameters that specify 
a given quantum mechanical problem. So, 
for instance, while the harmonic oscillator 
problem is analytically solvable for all values 
of the parameter on which it depends (the 
reduced force constant), the quantum 
pendulum one is not. Rather, the pendulum 
problem is only conditionally solvable, that 
is, its closed-form solutions only exist if the 
problem’s interaction parameters satisfy 
a particular set of conditions. These are 
the orienting and aligning parameters that 
determine the interaction of a polar and 
polarisable molecule with an electric field 
(or a combination of an electrostatic with an 
optical field). Moreover, the analytic solutions 
only exist for finitely many states.

But how do we find the analytic solutions 
and the conditions under which they obtain?

Enter Supersymmetry

Supersymmetry was introduced as a 
presumed spacetime symmetry (relating 
fermionic and bosonic degrees of freedom) 
in search for physics beyond the so-
called Standard Model of particle physics. 
Supersymmetry may not be corroborated by 
experiment any time soon – in fact, indirect 
evidence from the Large Hadron Collider 
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suggests that supersymmetry between fermions and bosons does 
not exist. However, this has no bearing whatsoever on the so-called 
supersymmetric quantum mechanics (SUSY QM). 

SUSY QM was worked out in 1981 by Edward Witten as a model, 
with the goal of studying the structure and properties of the original 
spacetime SUSY. SUSY QM soon acquired a life of its own, which 
reached an early climax in 1983, when Lev Gendenshtein established 
a connection between SUSY as it arises in SUSY QM and analytic 
solvability. He showed that all known analytically solvable problems in 
quantum mechanics exhibit SUSY – and an additional property, called 
shape invariance, which is defined with the help of SUSY. 

In what follows, we’ll use the word supersymmetry or SUSY exclusively 
for supersymmetric quantum mechanics, which has meanwhile 
become well-ensconced within mathematical physics.

Supersymmetry, shown schematically in Fig. 3, is a relationship 
between two so called superpartner potentials, V1 (green) and V2 
(red), both derivable from the same superpotential, W, and with states 
intertwined by the operator A. Now how do we solve the quantum 
pendulum problem with the help of SUSY? First, we make an Ansatz 
for the superpotential. That’s the difficult part, like in integration by 
substitution. Once we have a viable Ansatz, such as W = α cotθ + ß sinθ, 
the rest is easy. Then we set the pendulum’s interaction potential equal 
to either V1 or V2, make use of the corresponding Ricatti equation, V2,1 = 
W2 ± dW/dθ + γ, and determine the constants α, ß, and γ. From there we 
get the energy, E0, and the corresponding wavefunction, ψ0. However, 
since ß locks η and ζ to one another, we end up with a restriction on 
the ratio of the interaction parameters for which the analytic solutions 
obtain, namely ζ = η2/4k2, where k = 1,2,3, … is an integer. 

So far, Friedrich and his collaborators found a number of analytic 
solutions and identified conditions under which they obtain for both 
the full-fledged three-dimensional – spherical – pendulum (8 solutions) 

and the two-dimensional – planar – pendulum (40 solutions). 
Interestingly, no solutions were found for either a pure permanent 
dipole (ζ = 0) or induced dipole interaction (η = 0).

In the course of their work, the researchers also investigated the 
dependence of the energy of the quantum pendulum on the interaction 
parameters η and ζ for its various quantum states. These energy 
surfaces (energy as a function of the two parameters η and ζ) were 
found to exhibit numerous intersections (see Fig. 4). Unsurprisingly, 
given that the tunneling splitting at fixed ζ increases with η, the upper 
member of the lower tunneling doublet is bound to meet the lower 
member of the upper tunneling doublet at some point. This then 
results in the observed pattern of intersections (all of them are so-
called avoided intersections). 

At this point, the researchers asked themselves whether the loci of the 
intersections (where the energy surfaces intersect) can be expressed 
analytically – and found that the answer is yes: the avoided crossings 
occur along parabolae given by the formula ζ = η2/4k2, with k = 1,2,3, … 
an integer. But they had found this very formula already before: it is the 
condition for analytic solvability of the quantum pendulum problem! 
This is how the researchers realised that analytic solvability and the 
topology of the energy surfaces are closely connected. But what does 
exact solvability have to do with the topology of the energy surfaces? 
That’s the one million-dollar question that the team is trying to answer 
in their ongoing work. A clue as to the origin of the magic connection 
comes from the structure of the matrix representation of the quantum 
pendulum problem. 

Prospects

By also studying the two-dimensional planar pendulum, Friedrich 
and his team were inspired to find additional solutions to the three-
dimensional pendulum problem. ‘The planar case is quite instructive 
and in fact much of what we did on the full-fledged three-dimensional 
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pendulum we first practiced on the planar one,’ he says. Equipped 
with many more analytic solutions in 2D, this search will continue. 
‘Moreover, the planar pendulum is related to an analytically solvable 
double-well problem.’ The ‘double-well’ is another example of a 
quantum mechanical problem, which is also only conditionally 
analytically solvable. It involves two potential energy minima (or wells), 
which are separated by a barrier. 

He goes on to say that, ‘there are other potentials that occur in 
molecular quantum mechanics, such as the anharmonic oscillator, that 
we are set to explore as well.’ An anharmonic oscillator (which, unlike 
a harmonic oscillator, has energy levels that are not equidistant) can 
model nuances of molecular vibration as well as other problems. As 
Friedrich says, ‘in fact, the quantum pendulum is a sort of anharmonic 
oscillator’, so he is looking to use his previous solutions to the quantum 
pendulum to explore the anharmonic oscillator in more depth.

A greater goal of all of this work is to clarify what SUSY and exact 
analytic solutions have to do with the energy surface topology 
described earlier. And last but not least, there’s the supersymmetric 
Wentzel-Kramers-Brillouin (WKB) approximation that is of interest 
wherever WKB is of interest. WKB SUSY has already proved its worth 
explaining how the analytic form of the pendular ground state 
wavefunction comes about at an integer value of the topological index, 
thereby providing another clue as to the magic connection between 
analytic solvability and energy surface topology.  

So, what are analytic solutions good for? In the first place, they can be 
used to evaluate, in analytic form, the characteristics of the strongly 
oriented and aligned molecular states that they pertain to.  So apart 
from being beautiful and rare, these analytic solutions are also 
practical, for they allow to reverse-engineer the quantum problem 
and find the values of the parameters required for creating quantum 
states with preordained characteristics. The analytic solutions can also 

be used as benchmarks to check numerical calculations. Last but not 
least, the analytic solutions provide an insight into the workings of the 
quantum pendulum – or the Stark effect, in the case of a molecular 
realisation of the pendulum.

Figure 4
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