
	 1	

Kinetics of relativistic runaway electrons 
	
B. N. Breizman1 and P. B. Aleynikov2 

 
1) Institute for Fusion Studies, The University of Texas, Austin, Texas, 78712 USA 
2) Max-Planck-Institut fur Plasmaphysik, Greifswald, Germany 
 
e-mail: breizman@mail.utexas.edu 
 
Abstract  
This overview covers recent developments in the theory of runaway electrons in tokamaks. Its main purpose is 
to outline the intuitive basis for first-principle advancements in runaway electron physics. The overview 
highlights the following physics aspects of the runaway evolution: (1) survival and acceleration of initially hot 
electrons during thermal quench, (2) effect of magnetic perturbations on runaway confinement, (3) 
multiplication of the runaways via knock-on collisions with the bulk electrons, (4) slow decay of the runaway 
current, and (5) runaway-driven micro-instabilities. The scope of the reported studies is governed by the need 
to understand the behavior of runaway electrons as an essential physics element of the disruption events in 
ITER in order to develop an effective runaway mitigation scheme. 
 
1.  Introduction 
 
Runaway electrons are known to be of serious concern with regard to safe operation of 
large-scale tokamaks in general and ITER in particular. These electrons can multiply 
exponentially when the loop voltage rises above the runaway avalanche threshold and they 
can quickly replace a large part of the bulk electron current [1], [2]. As explained in Ref. [3] 
the total number of e-folds during runaway avalanche can be estimated as I / IA lnΛ( ) , 
where I  is the plasma current, lnΛ  is the Coulomb logarithm, and IA  is the critical Alfven 
current, 

 IA =
mc3

e
{cgs} = 4πmc

µ0e
{SI} ≈17kA  . (1) 

  
The I / IA  ratio is in a several hundred range for large tokamaks, which apparently makes an 
ITER-size tokamak susceptible to runaway avalanches, because even a modest (smaller than 
I / IA lnΛ( ) ) number of e-folds in a seed current may already transfer the plasma current to 
relativistic carriers. The characteristically large ratio of I / IA  also indicates that the energy 
of the poloidal magnetic field within the plasma is greater than the total energy of the 
current-carrying electrons. In other words, creation of the relativistic carriers requires only a 
small fraction of the initial poloidal field energy. The tokamak can thus be viewed as an 
inductive storage device. The stored energy of the poloidal magnetic field ensures a long-
lasting power supply for the runaways after saturation of the avalanche. This feature 
separates the time-scale of the runaway production from the time-scale of the runaway 
current decay. 
 
Several theoretical groups internationally are currently focused on runaway studies. The 
recent progress includes a first-principle description for the primary runaway electron 
production during the thermal quench, estimates of the runaway losses through partially 
destroyed magnetic flux surfaces, an improved description of fast electron collisions with 
heavy impurities within a Thomas-Fermi model for screening, a rigorous kinetic theory for 
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relativistic runaways in the electric field that is close to the avalanche threshold, refined 
evaluation of the critical field for avalanche onset with a systematic description of knock-on 
collisions and radiative losses, demonstration of phase-space attractor that supports a peaked 
distribution function of the runaways, a model for current damping  in a self-sustained 
regime of marginal criticality for the runaways, and reassessment of thresholds for the 
runaway-driven micro-instabilities. These new theoretical findings add substantially to the 
material reviewed recently in Ref. [4]. Some of them are directly relevant to current 
experiments on DIII-D, ASDEX-U, and JET. They also provide an important input for ITER 
disruption modeling and runaway mitigation strategy. Yet, we will here refrain from popular 
temptation to rush into conclusions and recommendations about experiments. We 
deliberately limit this overview to theoretical models themselves and leave it for future work 
to review the ongoing experiments and assess their results in a coherent way from the theory 
and experiment standpoints together.  
 
 
2.  Critical role of bulk electron cooling 
 
The runaway avalanche during plasma disruption is commonly assumed to be triggered by 
thermal quench. Insufficient present understanding of the thermal quench mechanism is a 
major obstacle for complete predictive modeling of the runaway behavior.  Rapid cooling of 
bulk electrons during thermal quench could result from fast penetration of impurities into 
the plasma core or from large electron heat flux to the wall along the stochastic magnetic 
field lines. This ambiguity needs to be resolved because it translates into large uncertainty in 
the bulk plasma conductivity, which makes it difficult to predict evolution of the inductive 
electric field. Given the lack of conclusive thermal quench theory, one may actually use the 
readily available electron temperature data from the present machines as an input for 
conceivable extrapolations to ITER. Although this semi-empirical option apparently requires 
additional assumptions and does not resolve fundamental physics challenges, it may still be 
acceptable pragmatically. From the pure theory standpoint, a possible simplified approach is 
to consider an extreme case in which the bulk plasma is so cold and resistive that the entire 
current is carried by the runaway electrons. However, the bulk electron current can actually 
be significant and needs to be calculated systematically rather than simply ignored.  The 
underlying reason is that the inductive electric field causes ohmic heating of the bulk 
electrons, and the electrons can remain cold only in the presence of some powerful cooling 
mechanism not just prior to the runaway build-up but also during the build-up. The 
challenge is to develop a consistent theoretical model for such anomalous cooling of the 
bulk electrons. 
 
Destruction of magnetic surfaces has long been identified theoretically [5] as a very 
powerful energy loss mechanism via electron channel when the spatial scales and the level 
of magnetic fluctuations are sufficient to break the surfaces globally rather than at just a few 
radial locations with the resonant rational values of the safety factor.  Simulations of 
existing experiments with nonlinear MHD codes NIMROD [6], [7] and JOREK [8] show 
that initially unstable long wavelength modes can eventually randomize magnetic surfaces 
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within a large part of the plasma volume or even globally. The magnetic field then looses its 
perfectly nested structure due to presumably random radial walk of every field line.   
Consequently, the electrons can carry a large radial heat flux in their fast motion along the 
perturbed field. The magnetic fluctuations of interest tend to be nearly static on the electron 
transit time-scale, and the resulting heat diffusion coefficient should then be proportional to 

the electron thermal speed and scale as δB( )2  with the perturbation level. There has been an 
extensive work aimed at modeling and deeper understanding of the field stochastization and 
its consequences [9], [10], [11], [12], [13], [14].  One of the noteworthy outcomes is that the 
contribution of the very short wavelengths perturbations to transport is relatively small as a 
result of averaging along the guiding center orbit or full gyro-orbit. This is especially 
relevant to higher energy particles (and hence to runaways) that have larger Larmor radii 
and larger orbit excursions from the equilibrium flux surfaces. Their diffusion coefficient 
should therefore decrease with energy. The rollover in the energy dependence of the 
diffusion coefficient is apparently linked to characteristic spatial scale of the perturbations. 
Depending on input parameters (such as spatial mode choice and mode amplitudes), one 
finds either global stochasticity or coexistence of stochastic areas and magnetic islands 
within the plasma, which is instructive for understanding experimental data, but still not 
sufficient for conclusive first principle predictions of electron heat transport or radial losses 
of the runaway electrons even when the codes simulate saturated regimes of plasma 
instabilities rather than just assess sensitivity to pre-specified perturbations. Also, the 
experimental studies are not yet ready to tell conclusively whether magnetic perturbations in 
the plasma core should be viewed as the dominant mechanism of electron heat transport and 
thermal quench [15]. The big outstanding question is whether the core or the edge controls 
the overall electron heat flux as well as subsequent confinement of the runaway electrons. 
As for the core itself, the test particle studies of stochastic transport still leave a difficult 
open question of how to describe the tearing-type magnetic perturbations and the resulting 
electron kinetics self-consistently [16]. The co-existence of destroyed magnetic surfaces and 
magnetic islands and the plausible significance of runaway electrons for the island dynamics 
is a part of this problem [17]. 
 
The impurity-based cooling mechanism appears to be more controllable experimentally than 
the stochastic transport. It is now the prevailing candidate for disruption mitigation via 
massive gas injection or pellet injection, although controllable delivery of impurities is still a 
challenging issue [18], [19]. The main concern about massive gas injection is that ionization 
of the gas at the plasma edge deters rapid gas delivery to the plasma core. This tends to 
change the initially favorable plasma current profile to an unstable one. Pellet injection or 
shattered pellet injection offer a shorter penetration time, but their implementation still 
requires better understanding of the ablation process and of the potentially harmful lack of 
toroidal symmetry in the resulting density profile. Equilibration of the impurities within the 
magnetic surface may require a substantial time in the case of localized injection (as seen, 
for example, from NIMROD simulations [20]). This aspect is essential for realistic modeling 
of the thermal quench. A uniform density model will underestimate the line radiation and 
thereby the electron cooling rate during density equilibration.  Also, ambipolar expansion of 
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the impurity cloud along the magnetic field can act as a cooling mechanism for the electrons 
with their energy being transferred to the ions. 
	
3.		Collisions	and	radiation	
	
3.1.	Scattering	rate		
	
Scattering of the fast electrons in fully ionized plasmas with high-Z ions is known to be 
predominantly due to electron-ion collisions, because of the large factor Z 2  in the Coulomb 
collision cross section.  This suggests that heavy impurities can play the dominant role in 
fast electron scattering even when such impurities are neutral or only partially ionized as 
they are in post-thermal quench plasmas. Calculation of the corresponding scattering rate 
needs to take into account partial shielding of the impurity nuclei by the bound electrons. 
This quantum-mechanical problem has recently been solved in Ref. [21] based on the 
Thomas-Fermi model for impurity ions, which confirms the importance of the high-Z factor 
and provides a more systematic and accurate derivation of the collision frequency than the 
previous estimates in Ref. [22]. The effect of the bound electrons on elastic collisions can 
actually be reasonably characterized by a potential that represents the Coulomb potential of 
the nucleus with an account of electron shielding: 
  

 Φ = e Z0 − Z
r

exp −r / r1( ) + e Z
r
exp −r / r2( )  . (2) 

 
In this expression, Z0  is the charge of the nucleus, Z < Z0  is the charge of the ion, and r1  
and r2  are the shielding radii for the bound electrons and free electrons, respectively.  
Similar to collisions in fully ionized plasmas, the dominant contribution to the collision 
operator of interest comes from the small-angle collisions. To find the corresponding 
collision frequency νel , we follow a standard procedure and first calculate the scattering 
angle for a particular collision as  

 Δθ = e
pu

udt
−∞

∞

∫
∂Φ
∂r r= ρ2+u2t2

 , (3) 

where ρ  is the impact parameter and u  the electron velocity. We then relate νel  to the total 
rate of pitch-angle spreading of the initially cold electron beam due to collisions with 
various impact parameters per unit time:  

 

νel =
πna
2

Δθ( )2 uρ dρ∫  . (4) 

The logarithmically diverging integral in this expression need to be truncated at the lower 
limit by choosing  ρmin∼ " / p . We retain only the “large logarithm” terms in Eq. (4) and 
take into account that r1  is much smaller than r2 . These simplifications reduce Eq. (4) to  

 νel ≈
2πnae

4

p2u
Z 2 ln r2 / r1( ) + Z02 ln r1

2ρmin

⎛
⎝⎜

⎞
⎠⎟
+ 2 Z0 − Z( )Z ln2⎡

⎣
⎢

⎤

⎦
⎥  . (5) 
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The shielding radii r1  and r2  in this expression are the Thomas-Fermi radius, 

 
r1 = !

2 / me2Z0
1/3( ) , and the Debye radius. Expression (5) is consistent with Ref.[21], but it 

differs parametrically from Eq. (26) of Ref. [22] in which ρmin in the large logarithm 

ln r1 / 2ρmin( )  appears to be the distance where the potential energy is comparable to the 
kinetic energy, whereas quantum limitation ( ρmin∼ " / p ) is actually more restrictive and 

gives a somewhat lower collision frequency as a result.  The logarithmic factor ln r2 / r1( ) in 

Eq. (5) is roughly the Coulomb logarithm and it is typically greater than ln r1 / 2ρmin( ) , but 

the large Z0
2  factor can easily be decisive for how to choose the correct “effective charge” 

for impurity ions.  
 
3.2. Stopping power 
 
Energy losses (stopping power) of the runaway electrons are largely due to collisions with 
the low-energy bulk electrons. The bulk contains free electrons and bound electrons residing 
in partially ionized impurities. The resulting rate of energy loss can be reasonably 
approximated as  

 
 

dE
dt

= − 4πe
4

mu
nfree lnΛ free + nbound lnΛbound⎡⎣ ⎤⎦ , (6) 

where nfree   and  nbound   are the concentrations of the free and the bound electrons, and 

lnΛ free  and lnΛbound  are logarithmic factors  with lnΛ free  being the Coulomb logarithm 

whose value for relativistic electrons is  roughly 18.  Equation (6) combines the stopping 
power in fully ionized plasma with a simplified expression for the Bethe-Bloch stopping 
power. The logarithmic factor for the bound electrons is smaller than lnΛ free , because the 

characteristic cut-off impact parameter in this case is determined by the average ionization 
potential I  and is of the order of  !c / I , as opposed to c /ω p  for the free electrons.  We 

thus observe that  

 
 
lnΛ free − lnΛbound ≈ ln

I
!ω p

. (7) 

The right-hand side of Eq. (7) is typically around 9, which reconciles Eq.  (6) with the 
following practical estimate adopted in Ref. [3]: 

 
 

dE
dt

= − 4πe
4

mu
lnΛ free n free +

1
2
nbound

⎛
⎝⎜

⎞
⎠⎟ .

 (8) 

Reference [21] discusses applicability and accuracy of this expression in more detail.  
 
3.3. Synchrotron radiation  
 
If scattered in pitch-angle θ , relativistic runaway electrons can lose considerable energy via 
synchrotron emission. In the absence of an external magnetic field, the electric field can 
accelerate runaway electrons until they reach the pair-production energy range, but in 
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magnetically confined plasmas the runaway energies are limited, rather, by synchrotron 
losses that accompany pitch-angle scattering. This energy loss mechanism is particularly 
significant in the presence of high-Z impurities and it tends to be more important than 
bremsstrahlung for the ITER-relevant magnetic fields and densities [23]. Besides, this 
mechanism is more pertinent to large devices like ITER than to smaller machines in which 
radial transport may exceed synchrotron losses.  Plasma is optically thin with respect to the 
synchrotron emission, so that the rate of energy loss per particle is [24]   

 
 

dE
dt

= − 2e
4B2

3m4c7
p2c2 sin2θ

.
  (9) 

Measurement of this emission is a valuable runaway diagnostic technique. 
Even a small initial pitch-angle of 3 /γ  would already allow the relativistic electron to 

radiate half of its energy.  The corresponding stopping power is  dE / dx = −2e2ω c
2 / c2   

and its ratio to the Coulomb collision stopping power is 2ω c
2 / ω p

2 lnΛ( ) , a quantity that is on 

the order of unity for ITER parameters. This estimate shows that synchrotron losses can 
easily exceed the Coulomb collision losses if there is an efficient pitch-angle scattering 
mechanism for the runaways. Such scattering can be due to  (1) high-Z impurities [25] and 
(2) micro-instabilities driven by the runaways.  
 
Radiation reaction from synchrotron emission enters the kinetic equation for runaway 
electrons as a non-Hamiltonian friction force. The corresponding term in the kinetic 
equation must preserve the number of particles and can therefore be written as a divergence 
of flux vector in momentum space. The flux is apparently proportional to the local value of 
the distribution function, and the two ( p - and θ -) components of this vector have to convey 
that the radiating particles preserve their parallel velocities and that the energy loss rate for a 
particle in uniform magnetic field is given by Eq. (9). 
These conditions immediately determine both component of the flux and thereby the 
radiation reaction term in the kinetic equation [26]  
 

 

∂F
∂t

= 2e
4B2

3m3c5
∂
∂p

p m2c2 + p2

mc
sin2θF + mc

psinθ
∂
∂θ

pcosθ sin2θ
m2c2 + p2

F
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 (10) 

(we herein imply that the distribution function F  includes the 2π p2  factor, so that the 

particle density is Fdpsinθ dθ∫ ). 

 
3.4. Knock-on collisions 
 
The anticipated avalanche-type production (exponentiation) of runaway electrons involves 
knock-on collisions of the existing runaways with the essentially immobile bulk plasma 
electrons including those bound in partially ionized impurities. In contrast to small-angle 
collisions,  the knock-on collisions produce rather energetic secondary electrons.. This 
aspect makes the knock-on collisions less sensitive to electron binding energies except for 
the deepest bound electrons whose number is however relatively small for, say, Ar or Ne. It 
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is therefore appropriate to treat all bulk electrons as free ones..The cross-section for knock-
on collisions is then given by the Møeller scattering formula [27] : 

 dσ
dγ

= 2πre
2

γ 0
2 −1

γ 0 −1( )2 γ 02
γ −1( )2 γ 0 −γ( )2

− 2γ 0
2 + 2γ 0 −1

γ −1( ) γ 0 −γ( ) +1
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ ,

  (11) 

where re  is the classical electron radius and γ 0  and γ are  relativistic factor of the primary 
and the secondary electron respectively. The knock-on collisions introduce a source term in 
the kinetic equation for the runaway electrons and can give rise to an avalanche when the 
after-collision energies of both electrons fall in the runaway range. This source term is 
apparently proportional to the total number of the target electrons (free and bound).   In Ref. 
[3], a simplified expression for the source (in the limit of γ 0 →∞ ) was used to calculate the 
avalanche growth rate. This approximation is justified when the driving electric field is 
much greater than the avalanche onset threshold [28] but it does not apply to the near-
threshold case that requires more accurate description of the source [29]. The results of 
Monte Carlo modeling of the avalanche with a generalized knock-on source have been 
reported in Ref. [30]. Numerical implementation of such source within a continuous 
formalism is currently in progress [31].  
 
4. Timeline and stages of runaway evolution 
 
4.1. Anticipated sequence of events 
	
Guided	by	ITER	specifications	and	disruption	phenomenology	in	prior	experiments,	we	
consider	a	reference	scenario	 in	which	the	plasma	current,	runaway	electron	current	
and	the	wall	current	evolve	as	shown	in	Fig.	1.			
	

 
FIG. 1. Anticipated	 evolution	 of	 the	 plasma	 thermal	 energy	 (orange),	 total	 plasma	 current	
(red),	 runaway	 electron	 current	 (green)	 and	 the	 wall	 current	 (blue)	 in	 ITER.	 At	 20ms	 the	
density	 of	 the	 background	 plasma	 increases	 to	 facilitate	 mitigation	 of	 the	 runaway	 electron	
current.  

 
This figure presents three distinct and commonly expected phases of a disruption event in 
ITER: (1) primary (or “seed”) runaway electron generation during thermal quench within a 
few (less than ten) milliseconds, (2) fast rise of the runaway population and the runaway 
current via avalanche mechanism with a simultaneous drop of the ohmic current within 
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10ms, and (3) saturation of the runaway avalanche and subsequent slow decay of the current 
after 10 ms. In what follows, we overview theoretical understanding of these three phases. 
	
4.2. Runaway seed generation during thermal quench 
	
Two main mechanisms were recognized in the past as the runaway electron seed providers: 
(a) the diffusive leak of electrons from the maxwellian tail into the runaway regime under 
the influence of the driving electric field (``Dreicer generation'') [32], [33], [34] and (b) 
survival of the ``hot-tail'' during thermal quench [28], [35], [36], [37], [38], [39]. The latter 
mechanism is most likely to prevail in ITER. This mechanism depends critically on the 
difference between the cooling rates of the hot-tail electrons and the bulk electrons that 
determine the Spitzer conductivity. The idealized picture of the hot tail scenario also implies 
that magnetic perturbations do not affect the lifetime of the hot electrons. 

 

 
 

 
 
 
FIG. 2. Snapshots of the evolving 
distribution function (a) and its 
isotropic part (b). Panel (c) shows 
the density of the energetic 
electrons (dashed curve), their 
mean kinetic energy (dotted curve), 
and the inductive electric field 
(solid curve).  The colors in (a) and 
(b) correspond to 0ms (green), 
0.3ms (blue) and 1.5ms (red). The 
contours in panel (a) mark 0.9, 
0.8 ... 0.2 of the distribution 
function maximum. Some 
intermediate profiles of the pitch-
angle-averaged distribution (b) are 
shown in gray. The red and blue 
vertical strokes in (b) mark the 
instantaneous entrance energies to 
the runaway regime.	
 

 

 
 

 
 
A systematic description of electron kinetics during impurity dominated thermal quench was 
recently developed in Ref. [40]. A 2D Fokker-Planck equation for the hot electrons and a 
power balance equation for the bulk plasma are solved self-consistently, with impurity 
radiation as the dominant energy loss mechanism. The model addresses scenario in which 
large amount of impurities is injected to trigger thermal quench and terminate the plasma. 
The behavior of the hot electron population in the limit of abundant impurities is shown in 
Fig. 2. The nearly isotropic initial distribution (green contours) transforms into a beam-like 
distribution (red contours). The electric field rises until the hot electrons reach an order-of-
unity anisotropy and thereby enter the runaway regime. Due to the restrictively low 
conductivity of the bulk plasma, runaway electrons carry the entire pre-quench current after 
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the thermal quench. This case represents a prompt conversion regime in which the runaway 
electron energies after the quench are in the sub-MeV range. Such runaways can be rather 
difficult to track with existing diagnostics. 
 
The situation changes with the reduction of the impurity content. Figure 3 presents the 
runaway seed densities and energies for a range of initial plasma parameters, including those 
of interest for ITER. 
 

 

 
 

FIG. 3. Contour plot of the post-thermal-quench runaway electron density normalized to j0 / ec , 
where j0 = 1MA /m2  (solid contours). Color-coded is the mean kinetic energy Wkin  of the runaways. 
T0  is the initial plasma temperature. The plasma density is 1020m−3 . 

 
We find that the seed density is a non-monotonic function of the pre-quench temperature 
and that the seed current tends to be restrictively low in plasmas with high pre-
quench temperatures, which is likely to cause non-monotonic runaway electron profiles in 
ITER and future high-temperature tokamaks. We also conclude that non-uniformity of the 
plasma creates a possibility for the post-quench current to be carried by two distinct 
runaway populations (a sub-MeV and an ultra-relativistic), which appears to be consistent 
with the DIII-D observations [41]. 
 
4.3. Fast avalanche 
 
The presumably weak seed runaway current in ITER indicates that the post-quench electric 
field will be sufficiently strong to produce a rapidly growing runaway avalanche. This 
electric field will also characterize the resistive decay of the bulk plasma current.  The 
avalanche growth rate found in Ref. [3] for the limiting case of very strong field leads to a 
simple set of circuit equations for the runaway current Ire  and the total current I within the 
plasma (see Ref.[42]), 

 
		
∂I
∂s

= −(I − Ire ),	
1
Ire

∂Ire
∂s

≈
li

lnΛ Z +5
I − Ire( ) ,  (12) 

where both currents are normalized to the Alfvén current, the time variable s  is in the units 
of the ohmic current decay time, and li  (an order of unity quantity) is the internal inductance 
of the plasma column. This simple model implies that the resistive decay of the wall current 
is negligibly slow, so that the wall is effectively a perfect conductor.  
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Equations (12) have a straightforward first integral, 

 
		
ln Ire(∞)+

li
Λ Z +5

Ire(∞)=
li

Λ Z +5
I(0)+ ln Ire(0),   (13) 

that links the runaway current produced by the fast avalanche to the initial total current and 
the seed current. It is noteworthy that the dependence on the seed current is relatively week 
(logarithmic) and that the final runaway current is insensitive to the bulk plasma resistivity. 
	
4.4. Avalanche threshold and current decay 
 
When the fast avalanche replaces a significant part (if not the most) of the bulk electron 
current, the inductive electric field has to decrease considerably from its very high post-
thermal-quench values. This calls for special attention to the near-threshold behavior of the 
avalanche discussed in Ref. [29]. Besides, there are strong experimental indications [43], 
[44] that the threshold electric field is actually greater than the critical field needed to 
overcome the collisional friction for ultra-relativistic electrons. 
The rates of the small-angle and knock-on collisions differ by the large Coulomb logarithm. 
Because of this difference, the avalanche time scale at modest electric fields is relatively 
slow compared to the small-angle collisional processes. This separation of time scales 
suggests a two-step approach to the problem. The first is to ignore the knock-on collisions 
and study the behavior of pre-existing runaways. The second is to use their distribution 
function to find the avalanche growth or damping rate. To skip the discussion of secondary 
geometric factors, we consider a spatially uniform plasma with a uniform magnetic field.  
The runaway energies in this case are limited by synchrotron radiation in partnership with 
pitch-angle scattering, as first shown in Ref. [45] and then emphasized in Refs. [46], 
[47] .The pre-existing runaways are described by the following normalized kinetic equation 
(see, for example, Ref. [29]): 

 

∂F
∂t

+ ∂
∂p

E cosθ −1− 1
p2

−
p p2 +1sin2θ

τ rad

⎛

⎝
⎜

⎞

⎠
⎟ F =

1
sinθ

∂
∂θ
sinθ E sinθ

p
F + (Z +1)

2
p2 +1
p3

∂
∂θ

F + 1
τ rad

cosθ sinθ
p2 +1

F
⎛

⎝
⎜

⎞

⎠
⎟

 , (14) 

where the particle momentum p  is normalized tomc  , the electric field in normalized to the 
Connor-Hastie field Ec , and the times are normalized to  mc / eEc . In fully ionized plasmas, 
Z  is the ion charge, whereas in cold post-disruption plasmas Z  should be adjusted for 
impurity ions and atomic nuclei as described in Section 3.1. Also, the expression for Ec  
needs to take into account collisions with the bound electrons in accordance with Section 3.2. 
In the case of stationary electric field, Eq. (14) has no explicit time dependence, which 
means that the distribution function should asymptotically achieve a steady profile with an 
exponentially decreasing total number of particles. This decrease is entirely due to the 
electron leak into the cold bulk, because a leak towards infinitely high energies is precluded 
by synchrotron losses. An example of the asymptotic profile is shown in Fig. 4. 
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FIG. 4. Contour plot of the slowly decaying self-
similar solution of Eq. (17) for E=4, Z=10, and 
τ rad =5.5. The normalized distribution function 
has a steady profile peaked around W=6 MeV. 

FIG. 5. Steep growth of the fast electron 
lifetime with the electric field. The plot is for 
Z=10, and τ rad =5.5.  The corresponding 
threshold field is marked green.  

 
It is noteworthy that the runaways exhibit a distinctively peaked rather than monotonic 
energy distribution, which was reported first in Ref. [30] and then independently in Refs. 
[48], [49].This peaking is very likely to facilitate excitation of kinetic instabilities.  
 
In the absence of knock-on collisions, the lifetime of the fast electron population depends on 
E , Z  and τ rad  as the eigenvalue of Eq. (14). This lifetime increases steeply with the electric 
field (see Fig. 5) when the field exceeds the threshold for runaway sustainment defined by 
Eq. (8) of Ref. [29] as 

 E0 = 1+
2 Z +1( ) / τ rad
1+ 8 Z +1( )2 /τ rad6

 (15) 

(in units of the Connor-Hastie field Ec  ). The runaway electron population can then multiply 
via knock-on collisions faster than the electrons leak into the bulk. Reference [29] provides a 
rigorous theory for the avalanche onset in the limit of negligible leak. The threshold is found 
to be higher and the avalanche growth rate lower than previous predictions (see Fig. 6). 
 

 

 
 
FIG. 6. Dependence of the avalanche growth 
rate on the normalized inductive electric 
field (solid curve) in comparison with 
Ref.[3] (dashed curve) and the growth rate 
inferred from the model of Ref.[45] (dotted 
curve). 

 
The theory also explains existence of two different threshold electric fields, and describes a 
mechanism for hysteresis in the runaway electron avalanche. The two different electric 
fields characterize a minimal field required for sustainment of the existing runaway 
population and a higher field required for the avalanche onset.  
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The avalanche eventually saturates, and the runaway current should then decay in line with 
dissipation of the stored magnetic energy. This decay can be described in terms of self-
sustained marginal criticality [50], which implies that the inductive electric field stays close 
to the avalanche threshold within the slowly evolving runaway current. Also, the runaway 
current density should vanish at any point where the field is subcritical, because the runaway 
population cannot be sustained there.  These two conditions specify a nonlinear “Ohms law” 
for the runaway current. To illustrate the marginal criticality regime, we herein adopt Eq. 
(15) for the threshold field and assume that the time-scale of the avalanche growth can be 
estimated as 	
  τ av ∼ lnΛ mc / e( ) / E − E0Ec( ) . (16) 

Based on dimensional arguments, the knowledge of the threshold field gives an immediate 
estimate for the lifetime of the runaway current I  [50] 
  τ ∼ I / (E0Ecc

2 )  . (17) 
The marginal criticality scenario implies that the ratio of τ /τ av  is large for  E ∼ 2E0Ec , i.e. 

  τ /τ av ∼ eI / (Λmc
3) >>1 , (18) 

which is indeed the case when the runaway current is greater than 250kA .  
Once combined with the Ampere law and the Faraday law in a nearly cylindrical 
configuration of the large aspect ratio torus, the marginal criticality condition gives a simple 
analytical model of the slowly evolving runaway current profile. This model eliminates the 
avalanche time-scale from the consideration and extends the analysis of Refs. [46], [51]. An 
example of the marginal criticality scenario is shown in Figures 7 and 8. 
  

 
FIG. 7. Snapshot of the current profile during 
the decay of the runaway current.  Note a 
sharp edge of the current-carrying channel.  

FIG. 8. Radial profile of the electric field for 
FIG. 7. Note that the electric field is below the 
critical field outside the current – carrying 
channel. 

 
It should be pointed out that the presented picture of the current decay implies global 
equilibrium and macroscopic stability of the system whereas uncontrolled evolution of the 
current profile may provoke tearing instabilities. Moreover, ITER plasma is prone to vertical 
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instability during disruptions [19]. The resulting vertical displacement events (VDE) can 
change the runaway behavior significantly [52]. Consequently, runaway kinetics and VDEs 
need to be modeled self-consistently. This effort is currently underway [53], [54] . Linear 
MHD-analysis of the post-disruption plasma in ITER has also reveals a variety of 3D MHD 
modes that can grow during VDEs [55]; self-consistent assessment of the runaway impact 
on unstable MHD modes is a yet unfulfilled challenge.  
 
5. Microinstabilities 
 
A strongly anisotropic distribution of the runaway electrons is generally prone to high-
frequency kinetic instabilities that cause enhanced scattering of the runaway electrons. It is 
therefore important to examine plausible micro-instabilities in ITER systematically in order 
to first quantify the conditions for their excitation, i.e. their linear thresholds. The main 
potential benefit from enhanced scattering appears to be in the dramatic enhancement of 
energy losses via synchrotron radiation. These losses grow significantly before energetic 
electrons become trapped and before they diffuse to the walls. Note that the number of 
trapped electrons is inherently small in a large aspect ratio machine, whereas synchrotron 
radiation grows fast with the pitch angle for all electrons.  
	
The relevant instabilities are in the frequency range of electron plasma waves and whistlers. 
In the early tokamaks, such as TM-3, T-6, TFR and others, the ‘fan’ instability [56], [57] 
was observed frequently in the presence of runaway electrons. This phenomenon has been 
attributed to excitation of magnetized electron plasma waves  [58], [59]. The corresponding 
local theory  (linear and quasilinear) has been instrumental in understanding the 
experimental data including enhanced scattering of the runaway electrons. Yet, the initial 
local analysis [58], [59] did not cover the effect of plasma non-uniformity on the excited 
waves and the system size constraints on the wave growth. Also, the analysis of magnetized 
plasma waves needed to be extended to other potentially unstable modes. References [60], 
[61], [62] reflect the efforts motivated by these unsettled issues. In particular, they highlight 
the role of whistler waves and suggest an estimate for their convective damping, in addition 
to collisional dissipation. However, the expression for the instability threshold obtained in 
[60], [61], [62] is problematic for two reasons. First, the collisional damping rate for 
whistlers was overestimated. Second, the explanation of convective damping missed the 
possibility of wave ducting (internal reflection) and amplification over multiple radial passes.  
 
The characteristic wavelengths of the runaway-driven modes are typically smaller than the 
plasma radius, which suggests the use of the WKB approximation rather than a full wave 
description of the waves of interest. This approach has been implemented in a ray-tracing 
code COIN (convective instability) [63] that is designed to examine kinetic instabilities of a  
runaway beam in a tokamak for any given equilibrium configuration of the plasma and any 
distribution function of the runaway electrons. The code evaluates an amplification factor of 

the wave, K = Γb − Γν( )∫ dt , by integrating the kinetic drive Γb  and the refined collisional 

damping rate Γν along the wave packet trajectory. 
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FIG. 9. An example of wave packet trajectory. 
Green (light) parts of the curves—magnetized 
plasma branch, red (dark) part of the curve—
whistler wave branch. 

FIG. 10. Maximized growth rate for whistlers 
(color coded) shows existence of instability for a 
range of plasma densities and temperatures. 

 
Radial non-uniformity of the tokamak plasma creates a cavity for whistlers and magnetized 
plasma waves with multiple transformations of these two modes into each other as shown in 
Fig. 7 of Ref. [63]. The calculated instability thresholds are consistent with previous 
experimental observations of the runaway-driven instability in several tokamaks (T-3, T-6, 
TFR, and T-10). The code predicts robust stability of the runaway beam in the analyzed 
DIIID experiments and an instability window for ITER-relevant parameters (see Fig. 10). 
 
6. Summary 
 
This overview paper is an attempt to highlight fundamental physics elements in the ongoing 
theoretical studies of runaway electron kinetics pertinent to large tokamaks including ITER. 
Listed below are recent conclusions and thoughts about next-step tasks that sum up the gist 
of these studies. 
 
A combined effect of pitch-angle scattering and synchrotron radiation limits the energy gain 
of the runaway electrons and raises the critical field for runaway avalanche above the 
Connor-Hastie field. 
 
Distribution function of the runaway electrons tends to be non-monotonic in energy with a 
peak at a phase-space attractor. The peaked distribution is more prone to micro-instabilities 
than the monotonic distribution. 
 
Heavy impurities (irrespective of their ionization degree) are the dominant contributors to 
elastic scattering of the runaway electrons under plausible runaway mitigation scenarios in 
ITER. 
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Self-consistent kinetic modeling of primary runaway formation during thermal quench 
shows feasibility of prompt conversion of the plasma current into a sub-MeV runaway 
current for heavy injection of impurities. 
 
Non-uniformity of the plasma creates a possibility for the post-thermal-quench current to be 
carried by two distinct runaway populations (a sub-MeV and an ultrarelativistic). 
 
Interaction between runaway electrons and pellets (or pellet shards) in mitigation scenarios 
is still an underexplored topic. The physics of pellet ablation and subsequent expansion of 
the ablated plasma have not yet been included into runaway modeling in a self-consistent 
way. A factor of particular interest is the transient non-uniformity of the ablated plasma over 
magnetic surface. 
 
The present-day test particle modeling of runaway electron transport and losses needs to be 
extended to self-consistent description of the runaway impact on magnetic flux surface 
stochastization and magnetic island formation. 
 
The time-scale of avalanche-controlled runaway current decay in ITER tends to be 
comparable to the time-scale of vertical displacement events (VDE), which indicates the 
need of self-consistent analysis of the VDEs and the runaway avalanche. 
 
Revised thresholds for runaway-driven micro-instabilities show an instability window for 
whistlers in post-disruption ITER plasma with wave excitation over multiple radial passes 
through the plasma. This calls for nonlinear analysis of instability saturation and related 
assessment of the wave-induced scattering of runaway electrons. Also, possible use of the 
excited waves for diagnostic purposes deserves attention. 
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