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ABSTRACT 

A stochastic Budyko-Selkrs model is considered in which, in contrast to the usual statistical 
dynamical climate models, the nonaveraged weather fluctuations are retained as internal random 
forcing terms. Consequently, the climate variables are no longer deterministic but are stochastic 
variables, which can be characterized by their variance spectra. The calculated variance spectra 
of the yearly and zonally averaged surface temperature of the earth are consistent with 
observations both in the qualitative structure of the spectrum and the order of magnitude of the 
energy levels. 

1. Introduction 

In Part 1 of this series (Hasselmann, 1976, refer- 
red to in the following as I) a stochastic model of 
climate variability was considered in which slow 
changes of climate were explained as the integral 
response to continuous internal random forcing by 
short time-scale “weather” disturbances. 

In Part 2 (Frankignoul & Hasselmann, 1977) 
the concepts of I were applied to sea-surface tem- 
perature anomalies and thermocline variability in a 
local ocean-response model, which was valid for 
short-time scales of the order of 1 month to a few 
years. 

In this paper a non-local and global stochastic 
climate model applicable for longer time scales is 
considered. Attention is again directed more 
toward the principal features of stochastic climate 
models than the quantitative modelling of climate 
variability. Thus the simplest climate model of 
Budyko (1969) and Sellers (1969) is used rather 
than later, more sophisticated models of Sellers 
(1973), Adem (1969, or others. 

Several attempts have been made to explain 
climatic changes using statistical dynamical models 
(SDMs) in terms of changes in external parameters 
such as the solar radiation. The simplest of these 
models are the zonally averaged energy balance 

models of the Budyko-Sellers type. The charac- 
teristic feature of these models is the temperature 
dependent albedo, which provides a strong positive 
feedback between ice and snow cover and tem- 
perature. As a consequence of this positive feed- 
back Budyko (1969) and Sellers (1969) found a 
great sensitivity of the equilibrium climate state to 
rather small changes in the solar radiative heating. 

To close the prognostic climate equations of the 
SDM model, the short time-scale “weather terms”, 
i.e. the meridional atmospheric fluxes of sensible 
and latent heat, are averaged and parameterized in 
terms of the surface temperature, while neglecting 
their fluctuations. In this way time variability can 
arise only through changes in the external 
parameters. However, if the statistical dynamical 
model is extended to retain also the non-averaged 
weather components, there is no need to invoke 
changes in external parameters to explain climate 
variability. 

Because the weather fluctuations formally ap- 
pear as random forcing terms in the prognostic 
climate equation, the climate variables are no 
longer deterministic, but have to be regarded also 
as stochastic variables and must accordingly be 
characterized by their power spectra (I) or similar 
statistical functions. 

In this paper the power spectra of the surface 
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temperature at different latitudes are calculated 
from a stochastic Budyko-Sellers model in which 
the ocean, the dominant contribution to the thermal 
inertia of the system, is represented by either a 
single layer or a two-layer model (Sections 2a, 2b, 
respectively). 

The parameterization of the mean weather 
terms, i.e. albedo, infrared emission and meridional 
flux, is described in Section 2c. For the temperature 
dependence of the albedo two parametrizations are 
used, Sellers’ (1969) original expression and a 
modified formula. The power spectrum of the ran- 
dom forcing, providing the input t o  the model, is 
not available directly from meteorological data, but 
can be estimated with the aid of scaling con- 
siderations (Section 2d). The results of the model 
presented in Section 3 shows reasonable quali- 
tative and order of magnitude agreement with ob- 
served climatic variance spectra. 

2. The stochastic model 

The basic climate variable in Budyko’s (1969) 
and Sellers’ (1 969) models is the zonally and yearly 
averaged surface temperature T of the earth. It is 
determined from the Zonally averaged, vertically in- 
tegrated equation of the heat balance of the earth- 
atmosphere system, 

where R is the radiation balance 

R ( T )  = Q(1- - Z ( T )  (2.2) 

and A is the energy gain due to the meridional flux 

(2.3) 

Here cp and p represent the specific heat at constant 
pressure and the density respectively, Q (8) is the 
mean annual incoming solar radiation per unit area 
at latitude 6; a(T) is the planetary albedo, Z(T) the 
infrared emission, F the vertically integrated 
meridional heat flux, and a the average radius of 
the earth. 

The vertical integration in (2.1) extends from the 
upper atmosphere down to a depth of the ocean or 
land mass where the thermal response to 
meteorological forcing becomes negligible. The 

heat capacities of the atmosphere and the upper 
layers of the land masses are very small compared 
to that of the oceans, so that the vertical integration 
in (2.1) can be restricted to  an integration over the 
effective thermal depth h of the ocean (to be 
defined below). The left-hand side of (2.1) then has 
to be weighted with the factor I(@ = Iw(8)/lo (@, 
where lo is the length of a latitudinal circle and I, 
represents the length of the ocean-covered portion 

In this paper the earth is taken to be symmetric 
about the equator. Taking a spacing of 5 O  latitude 
eq. (2.1) will be discretized in our numerical investi- 
gations into the following set of differential 
equations (i = 1, .  . ., 19) 

of 1,. 

ZI m a  

Equation (2.4) is usually used to  test the sensitiirity 
of the equilibrium climate state to changes in the 
solar radiation Q (Schneider & Gal-Chen, 1973; 
Held & Suarez, 1974). To close the problem the 
right-hand side of (2.4) is averaged over a period 
sufficiently long to remove the weather fluctuations, 
and the “mean weather” is then parameterized in 
terms of the surface temperature. 

Weather-fluctuation terms occur not only 
through the meridional heat flux, but also in the al- 
bedo and infrared emission terms through the vari- 
able cloudiness and humidity. In general, the right- 
hand side of (2.4) can therefore be written as a 
mean plus the deviation from the mean 

Ri + Ai = (R,) + ( A i )  + S‘, (2.5) 
where S; = R ;  + A’,. In contrast to  the usual SDM 
approach, we shall retain the term S; in the basic 
climate equation (2.4) as a stochastic forcing term. 
Thus the surface temperature is not determined 
deterministically (by (2.4)), but must be regarded 
as a stochastic variable. 

(a) One layer ocean model 
In applications of the Budyk-Sellers model to 

study non-stationary phenomena (Held & Suarez, 
1974; Schneider & Gal-Chen, 1973) the ocean is 
normally described by a wmpletely mixed homo- 
geneous layer of depth h,. Equation (2.4) then 
reduces to 

cp@, aTi(a’t) - - - (Ri(Ti(a,t)))  + (A,(T(a,t))) + S’, 
at 

(2.6) 
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For small excursions about an equilibrium state 
?,(u, t )  (hea r  feedback) the quantities (R,) and 
(A,) can be expanded with respect to the surface 
temperature, and after Fourier transformation the 
basic climate equation may be written 

ioT, (u ,o)  = VUIT,(a,o)- f',(u,o)l + 

where 

(2.7) 

For a stable equilibrium state f' the feedback 
matrix Y is negative definite (i.e the real part of all 
eigenvalues of V is negative). 

Assuming that the characteristic time scale of 
the random forcing is small compared with the time 
scale of the climatic response, so that the spectrum 
of the atmospheric input can be regarded as white 
in the climatic frequency range, the variance cross 
spectrum G, (w) of the surface temperature Ti can 
be calculated from (2.7) as (6. (I)) 

Gu(w) = H,&lFJO) (2.9) 

where H = ( i d  - Y)-I (Z = unit matrix) and 
Fki(0) is the cross spectrum of the random forcing 
at zero frequency 

1 

(b) Two layer ocean model 
For larger time scales, the "copper plate" model 

of the ocean in terms of a single homogeneous layer 
is clearly inappropriate. Although an accurate 
description will not be possible without including a 
full Ocean circulation model, a more realistic 
representation of the thermal response of the ocean 
may be attempted by the following two layer 
model. The upper layer is again a completely mixed 
homogeneous layer of depth h,. In the lower layer 
of depth h, (= 4500 m) a vertical heat flux occurs 
through turbulent heat conduction. The simplest 
models of the vertical thermal structure of the 

oceans are based on this concept (Mu&, 1966). 
The vertical temperature profile in the lower layer is 
then determined by the (one dimensional) heat con- 
duction equation 

aT y a2T 
at PC a 2 2  
-=-.- 

with the boundary conditions 

T(z = u - h , )  = T(u); - = 0. 

(2.1 1) 

The solution of (2.1 1) for a given Fourier compo- 
nent is given by 

(2.12) 

where u1 = \/2y/opc. 
The effective turbulent heat conductivity y of the 

ocean is taken to be 1 cal cm-' OC-' sec-I (Munk, 
1966; Roether et al., 1970). 

The boundary condition of zero heat flux 
through the ocean floor is not strictly correct, but 
this approximation is not critical. It can be shown 
that including the heat fluxes into the continents 
and the ocean floor reduces the power spectrum of 
T for frequencies in the range of lo-' cpy to 
cpy by only 3 to 5 %. Outside this range the correc- 
tion is still smaller. The effect is weak because of 
the relatively small heat conductivity of the earth's 
crust (0.0023 cal cm-' "C-' sec-I) as compared 
with the oceans (1 cal cm-' OC-' sec-'). 

The differential equation (2.4) for the surface 
temperature takes for the two layer model the form 

= (Ri) + ( A , )  + S', (2.13) 
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Substituting (2.12), one can easily carry out the in- 
tegration over the temperature profile on the left- 
hand side of (2.13), and one obtains 

(2.14) 

Equation (2.14) differs from eq. (2.7) for the cop- 
per plate model only through the additional com- 
plex heat capacity factor 

a ,  s i n h p +  s i n p  

2h, cosh p + cos p 
. a, sinh - sin 

g(w)= 1 +-. 

- i  
2h, cosh + cos p 

where 
2h B = 2 .  
a ,  

For small w the imaginary part of g(w) vanishes 
and the real part approaches the constant value 
g ( w  .+ 0) = 1 + h,/h, .  This is because long-period 
temperature waves affect deep layers of the ocean, 
and as w .+ 0 the thermal capacity is given simply 
by cp(h, + h,). For large w the real part of g(w) 
approaches 1, and the imaginary part vanishes as 
1/fi.  The imaginary part of g(w) corresponds 
formally to a term d w / 2 h l  contributing 
negatively to the diagonal elements of the feedback 
matrix VW However, this negative feedback is of lit- 
tle significance for the spectral response, since for 
large w the feedback becomes small generally com- 
pared with the thermal inertia term. 

As an alternative description of the lower ocean 
layer an upwelling term can be included. This is 
perhaps more consistent with the one-dimensional 
heat bdance model of the deep ocean on which 
estimates of the turbulent heat diffusion coefficient 
are normally based. The vertical temperature 
profile is then determined by the heat balance 
equation 

where the upwelling velocity w = 1.2 cm/day 
(Munk, 1966). The analysis is the same as above 
execept, that the complex heat capacity factor g(o)  
is modified. 

(c) Parameterization 
In order to calculate the power spectrum of T ac- 

cording to (2.9) we have to prescribe the tem- 
perature dependence of the albedo, the infrared 
emission and the meridional flux term (cf. (2.8)). 
We take the parameterization of the infrared emis- 
sion ( Z ( T ) )  and the average energy gain due to 
the meridional flux ( A ( T ) )  as functions of the sur- 
face temperature from Budyko (1969) 

( I (T) )  = A ,  + B I T  (2.15) 

( A  (T))  = Y, (T - T )  (2.16) 

where A , ,  B ,  and y1 are empirical constants, and T 
is the global average of the surface temperature, 
F(t) = I ;'2T(6,f) cos 61riB. 

We shall consider two parameterizations of the 
temperature dependence of the albedo, Sellers' 
( 1969) relation 

r 

and a second relation which assumes that there is 
no albedo feedback north of the yearly averaged 
ice-boundary. In the second case the albedo feed- 
back takes place only in the region between the 
snowfall margin and the ice-boundary. Assuming a 
cosine-form for the annual temperature cycle 

T(t)  = T,,, - a3 cos 2m (2.18) 

the yearly averaged albedo as a function of tem- 
perature is given by 

(2.19) 

where ~ ~ ( 8 )  is the snow-free albedo at latitude 0, a, 
is the albedo in presence of snowcover, T,,, is the 
yearly averaged surface air temperature, and ku,, 
taken to be f 10 O C ,  designates the yearly averaged 
temperature a t  the snowfall margin and the ice- 
boundary, respectively. 

(d) Stochastic forcing 
The power spectrum of the random forcing 

(2.10) has to be estimated from real data. Unfor- 
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tunately, time series data of the relevant energy flux 
term entering in the BudykoSellers model, or of 
the zonally averaged humidity and cloudiness, are 
not readily available. However, order of magni- 
tude estimates can be obtained by scaling con- 
siderations. 

Three rapidly fluctuating weather variables ap- 
pear in the right-hand side of (2.4). 

S; = A ;  + b,n’, + b,q’, (2.20) 

The first term is the variation A\ of the meridional 
flux term. The second and third terms arise from 
the variations dp 4; in cloudiness and humidity, res- 
pectively. The constants b, and b2 can be derived 
from the parameterizations of the albedo and in- 
frared emission in terms of these variables. How- 
ever, the estimates suggest that the contributions of 
n’ and q ‘  to the random forcing are small com- 
pared with the meridional flux term, and for sim- 
plicity we shall therefore retain only the term A;. 

Equation (2.10) is thus given by 
1 c 

x R$(O);  (2.2 1) 

where R Au is the covariance function of A and i (by 
definition through the second form of the equation) 
is the integral correlation time scale of A. 

To estimate F,(O), the integral correlation time f 
was taken as 5 days. It was assumed further that 
the diagonal elements 0,’ = RAii(0) were constant 
for all latitudes i, and that the r.m.s. deviation u, 
was equal to the mean of A at 5 5 O  latitude. This 
value is not inconsistent with the analysis of Oort 
(in preparation), which shows that the r.m.s. 
deviations of the sensible and latent heat flux at 
various heights in the atmosphere generally lie in 
the range of 50% to 100% of the mean. 

The horizontal correlation length was assumed 
to be of order 1500 km ( 1 5 O  latitude); specifically 
with a spacing of 5 O  the crosscorrelation matrix 
RA, was set equal to 

Rf i  k 1 (0) = $R$ (0) 

R f i  k 2 (0) = fR$ (0) 

R;i,3(O)=@RA,(O) (2.22) 

R f i  + (0) = 0 for n > 3 

3. Results 

Equation (2.9) was evaluated numerically. Fig. 1 
shows the temperature spectrum at  different 
latitudes for a Sellers-type albedo feedback and a 
one-layer ocean model, with a mixed layer depth 

10 m e>  720 G. e< 300 

h , =  5 0 m  30° < 8<72O 

These values reflect the fact that mixed layer depth 
is larger at higher latitudes than at  lower latitudes, 
because of the stronger wind-mixing, and that the 
ocean is partly covered with ice for 8 > 72O. The 
wind-mixing in polar regions is less efficient, so that 
a smaller mixed layer is generated. 

The spectra increase with decreasing frequency 
flattening at lower frequencies because of the net 
negative feedback, as described in I. The un- 
dulations around fz 10-1 cpy are caused by the 
coupling between latitudes through the meridional 
flux term, which results in a superposition of dif- 
ferent relaxation rates from different latitudes. (The 
matrix of eigensolutions of the linear system is not 
diagonal with respect to the latitude index i.) For 
large frequencies the level of the curve is mainly 
determined by the heat capacity of the system. 
Thus the spectrum at  the pole is higher than at  5 5 O  

latitude because of the smaller thermal inertia of 
the mixed layer (10 m depth) at high latitudes. 

Fig. 1. Theoretical variance spectra of the surface tem- 
perature at different latitudes. (Sellers’albedo; b = 0.009; 
single-layer ocean model.) 
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Fig. 2. Theoretical variance spectra of the surface tem- 
perature at 55' latitude for different albedo feedback 
parameters b. (Sellers' albedo; single-layer ocean model.) 
The bars indicate temperature data for Central England, 
from Kutzbach & Bryson (1974). 

Fig. 3. Theoretical variance spectra of the surface tem- 
perature at different latitudes. (Arccos-albedo; b, = 
0.006; single-layer ocean model.) 

The spectral levels at zero frequency are deter- 
mined mainly by the net negative feedback. For 
diagonal V( Vu =A(,, 6,) the zero frequency level is 

given by F,,(O)/l:. Because of the large positive al- 
bedo feedback the level is higher at latitude 55' 
than at the pole, where the albedo feedback is de- 
creased due to the smaller solar radiation Q. For 
the ice- and snow-free low latitudes there is again 
no positive albedo feedback, and the low zero- 
frequency level is governed solely by the negative 
feedback from the infrared emission and the 
meridional flux. 

In Fig. 2 the power spectrum of the surface tem- 
perature a t  latitude 5 5 O  is plotted for different al- 
bedo feedback parameters b. The straight h e  is the 
spectrum without feedback (& spectrum). The 
bars indicate the range of experimental and his- 
torical data for Central England, from Kutzbach & 
Bryson (1974). (Note, however, that the variance 
for an individual temperature record will be higher 
than the variance of zonally averaged temperatures 
considered here.) 

Increasing b corresponds t o  an increase of the 
positive feedback and thus a decrease of the resul- 
tant negative feedback. The feedback dependence is 
most pronounced at  low frequencies, as expected. 
For b > 0.0105 the resultant feedback becomes 
positive and the system becomes unstable. 

The strong dependence of the spectra on  the 
feedback parameter illustrates in another way the 
well known sensitivity of the Budyko-Sellers model 
to small changes in the model parameters. This is 
due to the fact that the model has been tuned to  lie 
very close to the instability point. 

Figs. 3 and 4 correspond to Figs. 1 and 2 except 
that Sellers' albedo (2.17) has been replaced by the 
arccos-albedo (2.19). At large frequencies the 
spectra in both cases are nearly identical, because 
the heat capacities of the system are the same. The 
differences occur a t  small frequencies, where the al- 
bedo feedback has a stronger influence. Because 
the arccos-albedo yields zero albedo feedback 
beyond the snow and ice limits (72O and 42O 
latitude), and the random forcing is assumed 
latitude independent, the spectra at the equator and 
at the pole are identical for small frequencies. Al- 
bedo feedback parameters b ,  = (aE - aJ/a3i.r larger 
than 0.00607 lead again to an unstable growth of 
the temperature variations (Fig. 4). 

Fig. 5 shows the effect of including a second 
ocean layer. At large frequencies the spectrum is 
determined mainly by the mixed layer and decays 
as w-l, as before. As f decreases, deeper layers of 
the ocean are affected by the temperature oscil- 
lations at the surface, so that the thermal inertia 
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Fig. 4. Theoretical variance spectra of the surface tem- 
peratwe at 55' latitude for different albedo feedback 
parameters b,. (Arccos-albedo; single-layer ocean 
model.) The bars indicate temperature data for Central 
England, from Kutzbach & Bryson (1974). 

increases and the spectrum is reduced. This effect 
continues until the temperature waves reach the 
bottom of the ocean. Then the thermal inertia be- 
comes constant, and the spectral response returns 
again to a w-* law at a lower level corresponding to 
the larger heat capacity of the entire ocean column. 
At lower frequencies, finally, the spectrum flattens 
again because of the negative feedback. The level at 
zero frequency is the same as for the one-layer 
model, since for very low frequencies all thermal 
inertia effects become unimportant; the level at w = 
0 can be changed only by changing the feedback 
V, or random forcing FJO). 

Upwelling has the effect of reducing the depth of 
penetration of the temperature waves into the lower 
layer. 

Thus the characteristic low-frequency response 
times of the system are reduced by almost an order 
of magnitude and the variance spectrum in the 
range < f < lo-' is accordingly higher. 

The total variance of the temperature spectrum 
is 1.2 ("C? (for the two-layer ocean model, Fig. 5). 

lo-!. ---- two layer ocean model -.-.- two layer ocean model 
with upwrlling 

104  I I ! 
10-6 10-5 I;-& 10-3 i A - 2  1;-1 1 

f [CPY] 

Fig. 5.  Influence of a second mean layer on the variance 
spectrum of the surface temperature at 5 5 O  latitude. 
(Arccos type albedo feedback, b, = 0.006.) The bars in- 
dicate temperature data for Central England, from 
Kutzbach & Bryson (1 974). 

This value may be compared with changes pro- 
duced by variations in the solar radiation. Using 
essentially the same model, Budyko (1969) found 
that a 1% decrease in solar radiation caused a 
change of the mean temperature of the earth's sur- 
face by 1.5OC. A similar result was obtained by 
Manabe L Wetherald (1967) using a high 
resolution General Circulation Model: they found a 
1.2OC change in the mean temperature of the 
earth's surface for a 1% change in the solar 
radiation. 

Thus the internal stochastic forcing of the clim- 
ate system by short time-scale weather variability 
generates a temperature variance of the same order 
as produced by 1% variations in the solar 
radiation. 

It should be noted, however, that the tem- 
perature variations were computed here for small 
excursions about an equilibrium state, assuming 
linear feedback and a random forcing independent 
of the climate state. For larger changes (ice ages) 
the dependence of the feedback coefficients and 
random forcing on the climate state will need to be 
taken into account in the framework of a more 
general theory based on the Fokker-Planck 
equation (cf. I). 
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4. Conclusions 

The general features of the observed spectra of 
the surface temperature variability in the range of 
climatic time scales from 10 to 104 years can be ex- 
plained by a stochastic forcing model, in which the 
temperature fluctuations are generated through in- 
ternal random forcing. 

Both the qualitative form of the spectrum and 
the order of magnitude of the energy levels are con- 
sistent with observations-more can clearly not be 
expected from the highly idealized Budyko-Sellers 
model used. Different positive albedo feedbacks af- 
fect the shape and the level of the spectra very 
strongly at small frequencies, while the heat 
capacity is dominant for large frequencies. 

There exists a critical value of the albedo feed- 
back factor beyond which the spectral response 

becomes infinite (net positive feedback). This 
instability value is the same as that found by Held 
& Suarez (1974), and is not far removed from the 
mean operating value normally assumed for the 
Budyko-Sellers model. The introduction of a 
second ocean layer reduces the level of the spectra 
for frequencies greater than years-'. The level 
at zero frequency is not changed. The results 
demonstrate the importance of constructing more 
realistic ocean-cryosphere models for studying 
lower frequency climate phenomena. 
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