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1. INTRODUCTION 

Climatic variability is defined, in current terminology, as the variability of  
the coupled atmosphere--ocean--cryosphere--land system on t ime scales 
longer than the theoretical limit of  deterministic synoptic-scale weather 
forecasts. Thus climatic prediction, at least as regards the atmospheric com- 
ponent,  is necessarily statistical in nature. It has often been surmised (e.g. 
Lorenz, 1959, 1977; Leith, 1975; Davis, 1976) that  statistical forecasting 
over long time scales can be effectively accomplished by  linear models, even 
when the deterministic equations of  the system axe strongly nonlinear. It can 
be argued that the loss of  information on the detailed properties of  the sys- 
tem implied by  a statistical representation will limit the predictability of  the 
reduced statistical system, and it is plausible that  within these limitations 
linear models may then yield an adequate first order description. 

A linear t reatment  is also appropriate when considering the response of  
the climatic system, or components  of  the system, to small external influ- 
ences. These may represent either changes which are external to the entire 
climatic system (e.g. solar insolation, anthropogenic CO2 emissions, changes 
in the dust  content  of  the atmosphere due to volcanic activity, etc.) or 
variations of  the internal transfer rates describing the coupling between 
individual components  of  the climatic system (heat transfer at the air--sea 
interface, air--sea--ice interactions, etc.). The linear transfer functions describ- 
ing these responses largely characterise the dynamical structure of  the cli- 
matic perturbations.  

This may be illustrated, for example, by  the Fokker--Planck model  (cf. 
Hasselmann, 1976) 

ap/at + ~ (a/ayi)(vip) = ~ (a/ayl) Dij ap (1.1) 
i i.i aYi 

for the evolution of  the probabil i ty density p(y)  of  climatic states in a climatic 
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phase space y = (Yl, Y2, ...) representing the instantaneous state of the 
"slow" components of the climatic system (ocean, cryosphere, land vegata- 
tion, etc.). Here the velocity vi denotes the (deterministic) rate of change of 
y due to internal coupling within the system, and the diffusion coefficient 
Dij arises from the stochastic forcing of the stow components of the climatic 
system by short time-scale atmospheric (weather) disturbances. The atmos- 
phere is assumed to adjust to a statistically stationary equilibrium state 
(dependent on y) on a time scale short compared with the characteristic time 
scales of the slow system y. Thus the atmospheric variables are parameterised, 
for the time scales relevant for climatic variations, in terms of y. 

Equation (1.1) represents a closed evolution equation for the climatic sys- 
tem, provided the dependence of the coefficients vi and D; i on the climatic 
state y is known. In addition to knowledge of the internal dynamics of the 
slow parts of the climatic system, this requires information on the response 
of the atmosphere to changes of y. 

For small perturbations of the climatic states about an equilibrium mean 
value, the dependence of the coefficients vi and Dii on the perturbations of 
y can be linearised. In this case eqn. (1.1) can be solved analytically; the prob- 
ability distribution is asymptotically stationary and normal, with moments 
which can be simply related to the linear response coefficients of the expan- 
sions of v i and Di~ (Hasselmann, 1976). Thus the main problem in developing 
a quantitative description of climatic perturbations is to determine the linear 
response relations of the basic components of  the climatic system. 

In practice, it is difficult to derive linearised climatic equations directly 
from the full nonlinear equations of the atmosphere, ocean and other com- 
ponents of the climatic system. The standard approach is therefore to fit 
linear models to observed data, normally under constraints expressing partic- 
ular physical preconceptions regarding the structure of the model. The main 
problems encountered with this technique, as has been pointed out by 
Lorenz (1959, 1977) and Davis (1976), lie not so much in the formal fitting 
procedure, as in the inherent statistical indeterminacy associated with finite 
data sets. A minimal-error model can be determined only within prescribable 
error bands. Typical questions which then arise are whether these error limits 
are sufficiently narrow to distinguish between competing models within a 
given class, or whether an alternative class of models may have yielded 
another, perhaps better defined optimal model. 

This review will therefore be concerned primarily with the basic problems 
of statistical uncertainty and significance in model fitting. Although the 
emphasis will be on linear models, much of the analysis is directly applicable 
to arbitrary nonlinear models and will accordingly be presented, where 
appropriate, in a general form. 
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2. MODEL FITTING 

(a ) D e t e r m i n i s t i c  m o d e l s  

As mode l  we shall t e rm general ly any  set o f  equa t ions  

rv(~) = 0 , v = 1, 2, ... n (2.1) 

in terre la t ing the  c o m p o n e n t s  of  a da ta  set ~ = ( a l ,  a2, ... am). 
The  mode l  re la t ions  are o f t en  cast in the  predict ive fo rm 

rv - fly - -  fv(¢t') = 0 (2.2) 

where  fly =- au v represents  a par t icu lar  da ta  value ( the  pred ic tand)  which is 
p red ic ted  f rom the  remaining da ta  values ~' = (... a t ...),/~ ~ Pv ( the 
predic tors)  t h rough  the  func t ion  f v .  If the  pred ic t ion  cor responds  to  a causal 
physical  model ,  addi t iona l  side condi t ions  mus t  be satisfied. For  example ,  if 
the  da ta  represen t  measu remen t s  at  d iscre te  t imes,  the  predic tors  mus t  rep- 
resent  earlier da ta  than  the  predic tand.  

The  model - f i t t ing  or  " inve r se"  p rob lem arises when  the  mode l  conta ins  a 
n u m b e r  o f  free parameters  a = (a l ,  a2 ... aq ), which can be chosen to  yield 
an op t ima l  fi t  o f  the  mode l  to  the  data.  "Op t im a l  ~ is general ly de f ined  in 
te rms o f  an er ror  f unc t i on  

e = Z_J M , ~ r , r ~  (2.3) 
V,~=l 

where  M,~ is some posi t ive-defini te ,  symmet r i ca l  matr ix .  The  op t ima l  mode l  
is t hen  given by  the  pa rame te r  vec to r  a ° which minimizes  e: 

e(a °) = min (2.4) 

o r  

l ( ~ e / ~ a i )  = 2_J M , ~ r , ( ~ r ~ / a a ~ )  = 0 ,  J = 1,  2 . . . .  q (2.5) 
v , # = l  

By a sui table l inear r e c o m b i n a t i o n  o f  the  set o f  re la t ions  rv,  the  met r ic  
can be normal ised  to  the  un i ty  mat r ix ,  M ~  = 5v~, and the  op t imal  m o d e l  
becomes  the  usual least-square solut ion.  However ,  we shall re ta in  an a rb i t ra ry  
error  metr ic ,  as we shall requi re  the  general  fo rm later  when  discussing a 
cr i ter ion for  the  choice  o f  the  er ror  metr ic  in c o n n e c t i o n  wi th  m o d e l  val idi ty 
tests. 

For  q ~< n, eqns. (2.5} may  def ine  a n u m b e r  o f  local min ima  or s ta t ionary  
points ,  bu t  the re  will no rma l ly  exist  on ly  a single absolu te  m i n i m u m  {2.4}. 

If the  mode l  conta ins  more  free paramete rs  t han  mode l  relat ions,  q > n, 
the  mode l  is general ly  u n d e r d e t e r m i n e d .  In this case a un ique  op t imal  mode l  
may  be def ined ,  however ,  by  requir ing tha t  t he  re la t ions  (2.1) are satisfied 
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exactly, and that  in addition some further positive-definite property ~ of the 
model is minimized. For example, if the model predicts a continuous func- 
tion ~(t) in 0 ~< t ~< T, and the data represent observed values a(t])  at discrete 
measurement times ti, a~ ~ a ( t  i )  (the model relations (2.1) being given simply 
by r~ - a i -- &(tj) = 0), ~ may be defined as the mean-square deviation of 
from its mean value, 

T "I' 

r /=(1/T0)  f ( & ( t ) - - ( 1 / T o ) f  ~ ( t ' ) d t ' }  2d t  
0 0 

or by some similar measure of the "noisiness" of the model (Backus and 
Gilbert, 1967; Gilbert, 1971). 

More generally, both cases may be combined by minimising the sum e + 7, 
thereby requiring both a good fit to the data and a " smooth"  model. This 
method is applicable independently of the number of parameters of the model 
(Long and Hasselmann, 1979). If r / takes the form of a quadratic expression 

n+n' 

rl= ~ M,,ur'vr' u 
v , g = n + l  

in terms of n' model " o u t p u t "  parameters r' v (as in the example), the addition 
of r7 to the error function is formally equivalent to the extension of the model 
(and the associated metric) to include further constraints ri~ = 0 for p = n + 1, 
n + 2, ... n + n', such that  the total number of relations n + n' is greater than 
the number of parameters. 

For the following it is irrelevant whether the quadratic form (2.3) contains 
additional terms representing "smoothness"  criteria, and we shall simply 
regard the net metric Mvu as given, with q ~< n = total number of model rela- 
tions, with or without  possible additional constraints. 

(b ) S ta t i s t ica l  mode l s  

Up to this point the data = have been treated as a single, unique set. In 
statistical modelling, however, the data of a particular experiment are regarded 
as only one realisation selected from a hypothetical infinite ensemble of  pos- 
sible realisations. The optimal model is accordingly defined with respect to 
the complete statistical ensemble, rather than a single realisation. 

Two techniques for statistical model fitting can be considered, depending 
on whether ensemble averages (denoted in the following by cornered paren- 
theses) are introduced before or after the definition of the model: 
(1) Averaging equations (2.4) and (2.5) yields an optimal statistical model 
defined by (e(=, a)) = min, or 

Mv~(rv(Or~/Oaj)) = 0 ,  j = 1, 2 ... q (2.6) 
P~p=I 

(2) Alternatively, the data ai can be ensemble averaged prior to model fitting. 
In this case the original minimal-error equations (2.4} and (2.5) apply 
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unchanged. The method normally requires the derivation of  new data expres- 
sions from the original data, for example in the form of  quadratic products,  
which are then "ensemble"  averaged by  time or space averaging to provide 
estimates of  the input  covariance functions or spectra for a deterministic- 
model fit. 

The first technique is generally more useful in constructing maximum 
skill predictions, whereas the second technique has advantages in testing 
physical hypotheses.  Adopting the terminology of  linear time-series analysis 
we shall refer to the two types of  models as filter models and spectral models, 
respectively. However, to the extent  that  our considerations apply also to 
nonlinear models, we shall interpret the term filter here generally to denote  
arbitrary nonlinear relations between the data of  individual realisations, and 
the term spectrum to imply a spectrum of arbitrary order. 

3. L I N E A R  M O D E L S  

A model  will be termed linear if the model  relations are linear with respect 
to the data (but  not  necessarily with respect to the model parameters a). 
In the predictive form, the model  relations are given by 

rv =-{3v-  ~ A v u a ~ - - C v  = 0  (3.1) 

In the case of  linear filter models, the set of  coefficients Avu and Cv are 
often chosen to be identical to the set of  model  parameters a. In this case the 
averaged least-squares equations (2.6} yield the usual linear regression solu- 
tions 

Av~ = ~ ( (Jv~)  • NVx~ v, I~ = 1, ..., n (3.2) 
4=1 

Cv = <[Jv > - -  ~ Av,,<au> (3.3) 
la=l 

where N~,  is the inverse of  the covariance matrix ( (ax -- <ak>)(au -- <au>) > of  
the set of  predictors for the predictand fly. We note  that  the solutions (3.2) 
and (3.3) are independent  of the choice of  error metric. Note  also that the 
index v occurs simply as a "tag";  the linear regression coefficients are deter- 
mined independently for each predictand ~v. Where notationally convenient 
we shall therefore suppress the index v in (3.2), (3.3) and consider formally 
a single prediction equation. 

A simple example of a linear filter model  which is nonlinear with respect 
to its model  parameter a is given by  the set of  relations: 

r l  = ~ 1  - -  as  

r2  = f12 - -  a 2 ~  

r. = {3. - -  a"a (3.4) 
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w h e r e  c~ = x i ,  [31 = X i + l ,  [32 = x i + 2 ,  . . - ,  [3n = X i + n  a n d  X l ,  272, . . .  i s  a d i s c r e t e  

t ime series. The data set a, [31 . . . .  /3, represent a data sample of  length n + 1 
beginning at some arbitrary reference time i. The error expressions (3.4) 
result if a linear prediction is sought for all predictands x;÷~, j = 1, 2 . . . .  n in 
terms of  the predictor xi under the side condition that the predictions for all 
lags j should be mutually consistent with the solutions for a first-order 
Markov process 

X i +  1 = CtX i + Z i (3.5) 

where z i  represents uncorrelated white noise, <zi > = 0, <z i z j  > = const • 5ii. 
This case is actually an example of  a model which is more conveniently 

treated by the spectral method than by filter equations. The {discrete) vari- 
ance spectrum Fx(wj) of  the process x i  defined by (3.5) can be shown to be 

F x ( w j )  = ~ A / ( h  2 + (co j  - -  2peon) 2 ) , coj = ( 2 r r / T ) j  , j = 1, ... n 

{3.6) 

where A = F ~ ( c o j )  = const represents the variance spectrum of the 
white-noise forcing, X = - - l n ( a ) / A t  is the relaxation (e-folding) time of  the 
Markov process {3.5), At is the time increment between successive measure- 
ments and T -1 is the f requency resolution ( T  = 2 n A t  is then the length of  
the record pieces used to estimate the individual Fourier amplitudes by the 
Bartlett procedure,  yielding the Nyquist f requency con = 7 r / A t ) .  The equation 
can also be written in a simpler alternative form, but  with a more compli- 
cated interpretat ion of  the parameters, by performing the summation over 
the Nyquist folding frequencies {Reynolds, 1978). Equation {3.6) represents 
n linear-model relations for the data F~(coj) which are linearly dependent  on 
the noise parameter A and nonlinearly dependent  on the relaxation param- 
eter a. The principal advantage of  eqn. (3.6) over the set {3.4) is that the 
covariance matrix of  the sampling errors for spectral estimates is diagonal. 
This greatly simplifies the error analysis and the testing of  model validity 
(cf. section 7). 

4. MODEL INDETERMINACY 

Irrespective of  whether  the model is of  the filter or spectral type,  the min- 
imal-error fitting technique yields a set of  optimal model parameters 

a ° = ( ~ i ( m )  , i = 1 ,  2 . . . .  q 

as functions ~i of some set of ensemble-averaged data properties m = 
(rnl, m2, ... ms). Normally, the rni  represent moments,  and we shall refer to 
them simply under this term. 

The main difficulty in statistical model fitting is that  ensemble-averaged 
moments  cannot  be determined exactly from measurements, but  must be 
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estimated from finite data samples. The error 5m I = ~ j  -- m r between the 
estimated moment  mi and true moment  m r gives rise to a model error 

t~a i = ¢t ° - -a  ° -~ ~ (O¢i/Omj)tSm.i (4.1) 
i=1 

Given the statistical properties of  the data, the statistics of the model errors 
8ai can then be determined. If the estimates r~y are computed from a fairly 
large data set, which is normally the case, the joint probability distribution p 
of 8m, and therefore also of  8a, will be approximately Gaussian by the 
Central Limit Theorem: 

p(Sa) = (2ff)--q/2T1/2 exp(--p2/2) (4.2) 

where 

q 

p2= ~ TiiSaiSa i (4.3) 
i , j = l  

and Tij is the inverse of  the covariance matrix 

(SaiSay)= ~ (()dpi/Om~)(Odpj/Oml)(~mk~m l) (4.4) 
k , l = l  

The covariance matrix < (SmiSm j ) can be estimated from the data using stan- 
dard methods (Jenkins and Watts, 1968). 

Unfortunately,  it is not  possible to deduce the properties of the (hypo- 
thetical) statistical data ensemble exactly from a single realisation provided 
by a particular experiment. One can ask only whether a particular realisation 
is consistent with an assumed statistical ensemble at some prescribed con- 
fidence level. Given the statistical ensemble and the associated true optimal 
model a °, eqns. (4.2) and (4.3) can then be used to define a region R in the 
model phase space a such that  95%, say, of  all optimal models ~o estimated 
from finite data sets lie within R. The shape of the region R is to some 
extent  arbitrary, but it is customary to limit the region by a hypersurface of 
constant probability density. In the present case this corresponds to a hyper- 
ellipsoid p2 < const (Fig. 1). This choice of R is optimal in the sense that  it 
yields the smallest confidence volume in a -- space for given confidence 
limits, and regions of  exceptionally low probability density are excluded. It 
also has the important  property that  it is invariant with respect to linear 
transformations of the variables. The q-dimensional probability distribution 
p(a) induces for the variable p2 the ×2 probability distribution 
p(p2)dp2 = [ 2q /2F( q /2 ) ]-1(p2) t q /2-1) exp(--p2 /2 )dp 2 (4.5) 

with q degrees of  freedom. The estimated optimal model ~o may then be 
regarded as consistent with the true optimal model a ° of an assumed statis- 
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'I confidence reg ion "R 
velidi~y region R 

region R 

a~ 

Fig. 1. Relation between the probability region R, confidence region R and validity region 
R v (ef. section 7) in the model parameter space a = (al, a2, . . .  a q ) .  The true minimal-error 
model is represented by the vector a °, the model estimated from a finite data set by "~0. 

tical ensemble  if the  square dis tance p2(~o _ a 0) is less than  the  appropr ia te  
conf idence  limit p2 o f  the  x2-dis tr ibut ion.  

Conversely,  for  a given es t imated opt imal  mode l  ~o one  can now def ine  a 
conf idence  region R o f  permissible t rue  models  a ° such tha t  the  dis tance 
p2(~o _ a o) lies within the  appropr ia te  conf idence  limit o f  the  t rue  model  a °. 
It may  be assumed to  first o rder  tha t  the  covariance mat r ix  (5miami ) ,  and 
the re fo re  (5aiSa i) ,  remains the  same for  all statistical ensembles  considered,  
the probabi l i ty  d is t r ibut ions  differ ing on ly  in the  posi t ions o f  the  mean  value 
a °. In this case the  conf idence  region R is identical  to  the  region R ex cep t  
for  a shift  o f  the  center  f rom a ° to  ~o due  to  the  in terchange  o f  f ixed and 
variable parameters  a ° and ~0 {Fig. 1). 

The  es t imated mode l  ~o is the  " m a x i m u m  l ike l ihood"  mode l  in the  sense 
tha t  the  probabi l i ty  dens i ty  p(~0) with respect  to  ~0, for  f ixed a °, is a maxi- 
mum when the  assumed " t r u e "  mode l  a ° is chosen co inc ident  with the  esti- 
mated  mode l  ~o. However ,  it should be remarked  tha t  the  express ion "maxi -  
mum l ike l ihood"  must  be unde r s tood  here  s imply as a formal  def in i t ion;  we 
have no t  considered the  relative l ikel ihood,  in the  non- technical  sense of  the  
word implying probabi l i ty ,  o f  d i f fe ren t  p robabi l i ty  dis t r ibut ions  character ised 
by  d i f fe ren t  a °. The  m a x i m u m  of  p refers to  a p robab i l i ty  dens i ty  with 
respect  to  ~o, no t  a °. In fac t  it is meaningless in the  present  c o n t e x t  to  con- 
sider the  relative probabi l i ty  o f  d i f fe ren t  t rue  models ,  since we have assumed 
only  a single ensemble  def ining a single t rue  model .  Only  the  inverse ques t ion  
is well posed,  namely  whe the r  the  observed da ta  set is statist ically consis tent ,  
within prescribed conf idence  levels, with a given probabi l i ty  d is t r ibut ion.  
(The ex t ended  statistics needed  to  consider  d is t r ibut ions  of  t rue  models  is 
discussed in s tandard  t ex t  books ,  e.g. Martin {1971) or  in the  present  frame- 
work  in Barne t t  and Hasselmann (1979) . )  

In f i t t ing models  to  da ta  it is normal ly  desirable to  retain a large n u m b er  
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of model  parameters, to ensure that  the model  class encompasses a close 
description of  the real system, while at the same time minimising the statis- 
tical uncertainty of  the optimal model  fit. Unfortunately,  the two require- 
ments are generally incompatible. As is familiar from power spectral analysis, 
high resolution, requiring a large number  of  model  parameters, generally 
implies low statistical significance. Moreover, the introduction into a model  
of  parameters which do not  significantly improve the model  fit can degrade 
the statistical significance of  the more important  model parameters and is 
thus actually harmful, rather than simply not  helpful. 

To determine the degree of  detail which can be statistically supported by 
a given data set, it is useful to consider a nested sequence of  model  classes. 
This is illustrated in the following sections. 

5. M O D E L  N E S T I N G  

The degradation of  the statistical significance of  a model by  the inclusion 
of  noisy parameters is demonstrated by  the simplest case in which only one 
parameter, a l ,  say, is statistically significant. Assume that all parameters have 
been ortho-normalised, 

< ~ai~a i )  = ~ij 

Let (~0)2 = 10, say, and (~o)2 = 1 for j ~> 2. We test the hypothesis that  the 
true optimal model  is given by  a ° = 0 (for a linear regression model  (3.1)-- 
(3.3), this implies zero predictability). 

If the model  class is defined to contain only the single free parameter al ,  
the estimated optimal value (~o)2 = 10 is found to be significantly different 
from zero beyond  the 99% confidence level. However, as the number  of  
parameters q introduced into the model  is increased, the statistical significance 
of  the test variable p2 = ~=1  (a/2) is successively degraded by the addition of  
noise (Fig. 2). For q > 9, the entire model  (including the parameter a °) can 
no longer be distinguished from the zero-predictability model at the 95% 
confidence level. 

The apparent paradox that a model  which is statistically significant in its 
simplest form must be rejected in its entirety when embedded in a larger 
model  class - -  even though the added parameters are clearly suspect as noise 
- -  can be resolved by  distinguishing between a priori and a posteriori nesting. 
If the nesting sequence is specified prior to the analysis o f  the data, it is 
permissible to terminate the sequence of  models at some value q (in the 
present case be tween 1 and 8) for which the resultant optimal model  is still 
statistically significant. However, it is not  permissible to terminate a model  
class sequence which has been defined a posteriori -- for example, by reorder- 
ing the parameters in a decreasing sequence with respect to their individual 
significance levels. This technique is often applied in various schemes of  
coefficient screening, whereby coefficients which fail to satisfy individual 
statistical significance criteria are rejected. 
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Fig. 2. Degradation of the statistical significance of a model containing a single significant 
predictor a 1 by inclusion of noisy predictors a2, a 3 ..... For q > 9 the entire model must 
be rejected at the 95% confidence level. 

Fig. 3. Construction of sequences of  apparently significant models from statistically 
insignificant predictions (EOF sequence) by a posteriori reordering of the predictors, or 
rotation of the predictor space. The EOFs were formed from 400 predictors from the 
Equatorial Pacific (20 time lags, 20 time series); the predictand is SSTA at Christmas 
Island 8 months in the future (from Barnet and Hasselmann, 1979). 

The dangers o f  c o e f f i c i e n t  screening or reordering are i l lustrated by a sec- 
ond  e x a m p l e  (Fig.  3) ,  s h o w i n g  an a t t e m p t  to  predict  the  sea-surface tempera-  
ture a n o m a l y  (SSTA)  at Christmas  Island eight m o n t h s  in advance  using past  
and present  data  f r o m  t w e n t y  s ta t ions  in the  equator ia l  Pacif ic  (Barnett  and 
Hasse lmann,  1 9 7 9 ) .  The  predic tor  fields cons i s t ed  o f  s ix S S T A  s tat ions ,  
various series represent ing  a n o m a l i e s  o f  trade winds ,  sea-level  and sea- 
surface  pressure,  and the  S o u t h e r n  Osci l la t ion  Index.  For  each series,  data  
values  were  t a k e n  at 20  t i m e  lags e x t e n d i n g  back  t w o  years in to  the  past,  
y ie lding a to ta l  o f  2 0  × 20  = 4 0 0  predictors .  The  covar iance  matr ix  o f  this  
4 0 0 - c o m p o n e n t  predic tor  vec tor  was  o r t h o g o n a l i s e d  by  a sui table  ro ta t ion ,  
and the  a m p l i t u d e s  o f  the  resul tant  empir ical  o r t h o g o n a l  f u n c t i o n s  were  
then  taken  as t h e  n e w  predic tor  variables.  The  nes ted  s e q u e n c e  o f  m o d e l  
classes ob ta ined  by  taking  the  first q E O F  ampl i tudes  as predictors  y ie lded  
the  curve p2 versus q s h o w n .  The  m o d e l s  are stat is t ical ly  indis t inguishable  
f rom the  zero-predic tabi l i ty  m o d e l  a ° = 0 for  all q. 

H o w e v e r ,  if o n l y  the  m o s t  " i m p o r t a n t "  c o m p o n e n t s  are reta ined by  
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reordering the coefficients with respect to their statistical significance, one 
obtains a sequence of models which are apparently significant at the 95% 
confidence level for values of q up to and beyond q = 8 (the reordering pro- 
cedure actually leads to representations in terms of  modified functions which 
are linear combinations of  EOFs, rather than the EOFs themselves, since 
these do not  in general yield an exactly diagonal covariance matrix (5aiSai 
for the coefficient perturbations, as required for the assessment and ordering 
of the statistical significance of individual predictors). 

A still higher apparent significance can be constructed by rotating the 
model parameter space such that  the new axis a~ lies in the direction of the 
vector ~0 representing the minimal error solution. For q = 20, this would 
yield in the present example (a~) 2 = p2 = 21, and a truncation of the series 
after q = 1 would yield an extremely high (but entirely ficticious) signifi- 
cance level. 

It is clear from these examples that  if the model parameter space has no a 
priori preferred coordinates, the significance level of a model must be judged 
in terms of  the probability density in the complete q<limensional parameter 
space. A posteriori projection on to data-dependent subspaces results in 
biased statistics. 

Screening is equivalent to replacing the original vector ~0 representing the 
maximum likelihood solution in the q-dimensional model space by an alter- 

~0 native vector as, in which the smallest components of the vector ~o (in a 
space whose axes have been arbitrarily chosen) are set equal to zero. Although 
this may yield a model which is also consistent with the data (namely if a~ 
still lies within the likelihood region), there is no a priori reason to regard the 
screened model as superior to the original solution. The projection on to 
parameter subspaces is a legitimate, unbiased procedure only if the subspaces 
have been decided on by data independent,  a priori criteria. 

In contrast to Fig. 3, in which a possible predictability was lost in the 
noise of a large number of irrelevant predictors, Fig. 4 shows an example of 
a statistically significant prediction for the same predictand, SSTA at 
Christmas Island using a smaller number of predictors. EOFs were again used 
to define a nested-model class sequence, but in this case only those SSTA 
stations and atmospheric variables were retained which were anticipated 
to be effective predictors by a priori physical arguments (Barnett and 
Hasselmann, 1979). It must  be recognised, however, that  practically all 
physical mechanisms proposed to explain long-term, ocean--atmosphere 
interactions have actually been influenced to some extent by at least cursory 
inspection of  the data. Thus the assumption of a genuine a priori data selec- 
tion must be questioned also in this example. 

This points to a basic dilemma in the objective statistical testing of  
prediction models for climate studies. In most cases only a rather limited 
data sample is available and will become available in the near future. In 
addition to the danger of  biasing by a priori data inspection, if a sufficient 
number of data subsets are considered successively as predictors, ult imately 
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Fig.  4. C o n s t r u c t i o n  o f  s t a t i s t i c a l l y  s i g n i f i c a n t  p r e d i c t i o n s  o f  S S T A  at  C h r i s t m a s  I s l a n d  
0, 4 a n d  8 m o n t h s  in  t h e  f u t u r e  b y  a p r io r i  s e l e c t i o n  o f  p r e d i c t o r s .  T h e  E O F s  w e r e  c o n -  
s t r u c t e d  in this case from only 4 time series, but again using 20 time lags (from Barnett 
and I-Iasselmann, 1979). 

one will happen by chance on the most "significant" components of the data. 
These are the same as one would have found by a posteori screening after an 
analysis of the complete data set. If the results of the complete regression 
analysis must be rejected as statistically insignificant, the significance of pre- 
dictions using predictor subsets, even when chosen a priori, must be inter- 
preted with caution. The number of  data subsets which have been tried and 
rejected before retaining a "statistically significant" subset of predictors 
must be taken into account. In practice, this can be rather difficult to 
quantify,  in particular since several investigators may be contributing to the 
model building. A frequent suggestion is to use one part of the data to fit 
a model and then the remainder for an independent test. This provides some 
protection against undue high claims of statistical significance resulting 
from a priori data inspection (provided the second data set is not available 
for inspection). However, it is powerless against trial-and-error selection, 
since the probability of success with both data sets simultaneously is essen- 
tially the same as for the combined data set. 

It appears that ,  in practice, the validity of prediction models can be only 
partiaUy supported by purely "objective" statistical tests and must depend 
to an important  extent  on the inherent physical credibility of  the model. 
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6. SKILL 

The above discussion has been concerned only with the region of  statis- 
tically acceptable minimal-error models in the model parameter space a, 
wi thout  any evaluation of  the quality of  the resulting models. Various mea- 
sures of model  performance can be considered, depending on the type  and 
purpose of  the model.  

Filter models are normally designed for prediction. A measure of  predict- 
ability is given by  the skill parameter 

S = 1 -- <e)l(~ Nv~(flvfl,)) (6.1) 

which varies between zero, for a zero prediction function fv in (2.2), and 
unity,  for vanishing residual error. For true minimal-error models, 
S i> 0, bu t  negative S can occur in estimated minimal-error models (e.g. in 
the zero prediction case). 

For linear regressive models, the residual rv and the predictors a ,  are statis- 
tically orthogonal,  and eqn. (6.1) can then be writ ten in the alternative form 

S = ( ( ~  A u a u )  2 )1(~2 ) (6.2) 

in which S is expressed as the ratio of  the predictable variance to the total  
variance of  the predictand. (We have retained here only a single predictand 
- -  see the remark following equation (3.3) -- and have assumed zero means 
for fl and a v.) 

In practice, S must be estimated from finite data samples. The hindcast 
skill SH is then defined as the estimate which results if the same data sample 
is used to estimate both  the coefficients and the skill, 

where 

( 6 . 3 )  

-4.  = ~ [ l ~ k ~ ] / V x .  , ( 6 . 4 )  
k 

]~'k~u = [O(kOl/.L] - 1  

and the square parentheses denote  t ime or space averages over the finite data 
sample. Equations (6.3) and {6.4) are identical to eqns. (6.2) and (3.2) 
except  that  the ensemble means < ...) have been replaced by  data averages 
[...]. 

Since {6.3) is a positive<iefinite quanti ty,  any errors in estimating the 
coefficients Av~, will yield a finite hindcast skill, even when the true skill is 
zero. 
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The expectation value of SH can be evaluated by expanding {6.3) with 
respect to the small perturbations 

5A v = . 4 ~ - - A ,  , 

5 m . ~  = [ a . a ~ ]  - -  <a .a ,>  

Since the perturbations are approximately Gaussian, the expectation values 
of the linear perturbations vanish to first order, and <SH> is determined by 
quadratic terms. For small values of the coefficients A,,  i.e. small S, the dom- 
inant quadratic terms are those containing the perturbation product 5A~,SA~, 
as all other terms retain the small factors A,. The expression (6.3) then 
reduces simply to 

<SH> = S + <SA> (6.5) 

where the mean artificial skill 

<SA> = ~ <SA,6A~><avc~,>/<~ 2> (6.6) 
u , p  

The estimation of  the skill from a second data sample b independent of the 
data sample a used to estimate the coefficients yields the forecast skill SF. 
In this case the residual and predictors are not exactly orthogonal with 
respect to the averages [...] b, so that  the original form (6.1) must be used 
rather than (6.2). Considering still a single predictand, we have 

S F - - - -  1 -- [e]b/[~e]b (6.7) 

where 

[e]b = [(~ --  ~ (2 , )o~ , )2 ]~  (6.8)  
p 

Expanding (6.7) and (6.8) again in a perturbation series, one obtains in 
analogy with the derivation of {6.5) and {6.6) for small S 

<SF> = S -- <SA> (6.9) 

Thus the hindcast skill (SH> is increased and the forecast skill <SF> decreased 
by the same amount,  the artificial skill (SA> {Lorenz, 1959, 1977; Davis, 
1976). The relations (6.5), (6.6) and (6.9) between <SF>, <SH> and <SA> can 
be readily understood; the deviations from the true prediction coefficients 
which are introduced to yield an artificially improved hindcast fit to a 
particular data sample must necessarily yield errors of magnitude comparable 
to the improvement in the hindcast fit when the model is applied to an inde- 
pendent data sample to which the coefficients were not tuned. 

The mean artificial skill <SA> can be computed from the known covari- 
ances of the moment  estimates using (4.4). The hindcast skill SH for a partic- 
ular data realisation can then be compared against <SA> to test if the minimal- 
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error solution can be distinguished statistically from the zero-predictability 
model, A,  = 0. The probability distribution of  

SH = SA = ~ 6Av6A~<c~vc~u>/<fl2> (6.10) 

for the zero-predictability case is approximately a x2~listribution. However, 
the equivalent number of degrees of freedom is less than q, since -- in con- 
trast to the expression (4.3) for p2 _ the quadratic form (6.10) is not nor- 
malised with respect to the covariance matrix < ~A v6Au>. (The equivalent 
number of degrees of freedom of an approximately x2<listribution may be 
defined as the number of degrees of freedom of a X2~listribution which has 
the same ratio of standard deviation to mean.) Thus the inequality S H 

constant does not define a minimal phase-volume region bounded by a con- 
stant probability density surface in the model parameter space Av. For this 
reason the quadratic form p2 is preferable to SH as a test variable for estab- 
lishing statistical significance. 

7. MODEL VALIDITY 

For filter models a zero residual error cannot normally be expected, even 
for high skill values. The error is zero in the mean only if it is zero for each 
individual realisation. Thus if the optimal model yields a non-zero residual, 
this cannot be attr ibuted to sampling errors and must be accepted (apart 
from measurement errors) as real. In many cases the residuals rv actually rep- 
resent meaningful physical processes, such as the noise input necessary to 
maintain a dissipative system in a statistically stationary state. 

In the case of  spectral models, however, where the model relations are 
expressed in terms of averaged quantities, it is generally conceivable that  the 
model could, in principle, satisfy perfect data exactly. The observed residuals 
can then be attr ibuted entirely to sampling inaccuracies in the estimation of 
the moments  from finite data samples. The most useful measure of  model 
performance in this case is not  the skill, but  rather the validity of the model, 
as inferred from the statistics of the residual error. Typically, spectral models 
are used to test physical hypotheses rather than to predict, and for this rea- 
son also the skill is a less relevant parameter than the model validity. (How- 
ever, an interesting proposal for using spectral model properties to construct 
prediction filter models has recently been proposed by Leith (1975).) 

Let us assume that  for the optimal model ~o, estimated from a finite data 
sample, there exists a set of moments  m (different from the estimated 
moments  ~ )  for which the model would be exactly valid, e(m, ~o) = 0. Under 
the hypothesis that  m represents the true moments  the probability distribu- 
tion of  the error ~ for an estimated optimal-fit model, as determined from a 
finite data set, can be calculated. This then yields a confidence limit eL for 
the rejection (3 > eL) or acceptance (3 < eL) of  the valid-model hypothesis. 
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For  small deviat ions 5m; = rh i - -  mi of  the  es t imated  m o m e n t s  m~ f rom 
their  t rue  values m~, the  es t imated  error  is 

~ = ~ M~uSr, Srv (7.1) 
t , , t l=l 

where  
t 8r~, = 8r ,  + 8r" (7.2) 

consists o f  the  variat ion 

8r', = ~ (Orv/Om~)Sm j {7.3) 
j = l  

induced by  the  deviat ions in the  m o m e n t s  and the  variat ion 

q 

8r~ = ~ (Or,/Oak)Sak (7.4) 
~ = 1  

which arises f rom the  errors 8ak in the  mode l  parameters  incurred by  f i t t ing 
the  mode l  to  the  es t imated  m o m e n t s  ra the r  than  the  t rue  ones. 

The  variat ions 8ak can be expressed as l inear func t ions  o f  the  rj b y  making 
use o f  the  minimal  cond i t ion  ~/OSaj = 0. In mat r ix  no ta t ion ,  one  obta ins  

8a = _ p - 1  R+MSr , (7 .5)  

where  P = R÷MR, Rvk = Orv/Oak, and R ÷ deno tes  the  t ranspose  o f  R. 
Subst i tu t ing  (7.5) (7.4)  and (7.3) in (7.2),  8r is seen to  be a linear func t ion  

of  8m. For  large sample sizes, the  errors 8mj and the re fo re  8r ,  are approxi-  
ma te ly  jo in t ly  Gaussian. Thus (7.1) def ines  a variable which has approxi-  
ma te ly  a x2<lis tr ibut ion.  However ,  the  equivalent  n u m b e r  o f  degrees of  free- 
dom is in general less than  the  n u m b e r  o f  variables q, since the  mat r ix  M,~ 
in the  quadra t ic  fo rm {7.1) is no t  def ined  as the  inverse o f  the  covar iance 
mat r ix  (8r~Sr~). In fact ,  this is no t  possible, as it can readily be seen tha t  the  
er ror  ~ vanishes in the  subspace spanned by  the  q co lumn  vectors  o f  the  
mat r ix  Rvk, so tha t  t he  rank  o f  the  covariance mat r ix  (8r~Sr~ > is maximal ly  
n - -  q. If  the  covar iance mat r ix  (8r;Sr'~) is non-singular,  the  maximal  n u m b e r  
of  degrees o f  f r eedom is f = n - -  q, and is a t ta ined  if Mvu is chosen as the  
inverse o f  this ma t r ix  (Linnik ,  1961;  Olbers e t  al., 1976) .  

In this case ~ represents  an op t imal  variable fo r  test ing the  hypo thes i s  of  a 
valid model ,  just  as p2 yielded an op t imal  tes t  variable fo r  the  zero-predict -  
abil i ty hypothes is .  The  inequal i ty  ~ < eL def ines  an (n - -  q) - -  d imensional  
hyperel l ipsoid  in the  (n - - q )  - -  d imensional  e r ror  space o r thogona l  to  the  q 
vectors  Ruk. For  a given conf idence  value, t he  ellipsoid has a minimal  vo lume 

t t - - 1  i f  Mvt, = (SrvSru) , and the  surface of  the  ellipsoid then  represents  a surface 
of  cons tan t  p robab i l i ty  densi ty .  These condi t ions  provide  a cr i ter ion for  
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choosing the error metric, which in the previous considerations remained 
unspecified. A different choice of M,u yields a larger confidence ellipsoid 
which normally contains rather extended regions of  very low probability 
density which should be excluded from the validity region. 

In analogy with the definition of  the confidence region for prediction 
models, we can now ask further: in which region of  the model parameter 
space a can a model be regarded as a valid model at a given confidence level? 
To make the problem meaningful, it must be assumed that  a set of  moments  
m corresponding to a perfect-fit model uniquely determines the associated 
model parameters a °, and vice versa. 

An important  example in which this is not  the case is in "consistency test- 
ing" (Fofonoff ,  1969; Miiller and Siedler, 1976). For particular classes of 
flow fields, such as internal waves, quasi-geostrophic currents or simply 
incompressible flow, the auto- and cross,spectra for different components  of  
motion must satisfy certain restraints. These are specified by the general 
structure of the flow field, independent  of  the spectral distribution of energy. 
Similar restraints exist if the flow exhibits certain symmetries. In these cases 
the error expressions r, involve only the moments  m and are independent of 
a. Thus the model-fitting problem does not  arise. Although the following 
discussion is then irrelevant, the statistical tests for the validity of the zero- 
error hypothesis remain applicable. 

We consider now the hypothesis that  the perfect-fit model ~o associated 
with the true moments  m does not coincide with the estimated model ~0 of 
our finite data sample, but deviates from this by a small quant i ty  Aa = a ° -- ~0. 
For small Aa, the confidence ellipsoid in the error phase space, which is deter- 
mined by the derivatives br~/amj and 3rv/~ak at the parameter values m, a ° 
of the perfect-fit model, will remain approximately constant, independent of  
the shift Aa. However, the calculation of ~ for a given data sample is affected, 
as the errors of  the individual model relations r~ must be defined now with 
respect to the new perfect-fit model a ° rather than the optimal-fit model ~o, 
as previously. Thus in expression (2.3) the individual errors r~ = rv(~,  ~o) 
must be replaced by rv(v~, a ° ) = r~(~, ~o) + Z,~=I (~rv/aa 1) • Aa 1. Noting that  
~o is defined as the parameter set which minimizes the net error ~, so that  
the linear terms in the expansion of ~ with respect to Aa vanish, one obtains 
then for the estimate of the net error relative to the model a °,  

~(~,  a ° )  = ~(ga,  ~o)  + Ae  (7 .6 )  

with 

Ae = ~ Mv~RvjR~kAaiAa ~ (7.7) 
p,/~,j ,k 

The model a ° is then accepted as valid at a given confidence level if ~(ffa, ~o) 
< eL, which yields the elliptic relation 

~-J Njk~ajAak < "eL - -e (m,  ~o) (7.8) 
./,k 
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with the positive definite matrix 

N~,, = ~ M , ~ u R , i R ~ ,  k (7.9) 

If the maximum likelihood model &o is accepted as valid, ~(r~, .~o) < eL, eqn. 
(7.8) defines a hyperellipsoid region R~ of models which are equally accept- 
able at the given confidence level. If M , ,  is chosen optimally as the inverse 
of the covariance matrix (5r',6r~), the matrices Nik in (7.8) and Tj~ in the 
expression (4.3) for p2 can be shown to be identical. 

Figure 5, from Reynolds (1978), gives an example of a validity test for a 
first-order Markov model (3.5) of sea surface temperature  anomalies in the 
North Pacific. The model corresponds physically to a constant-depth mixed 
layer driven by local white noise fluctuations of  the heat transfer across the 
air--sea interface (Frankignoul and Hasselmann, 1977). A minimal-error 
model was determined for each 5 °-square of the region shown by a (unit 
metric) least-squares fit of  the logarithms of  the predicted spectra, given by 
{3.6), to the observed spectra. A unit-matrix error metric is optimal in this case, 
since the covariance matrix (5ri,~r'~) is also proport ional  to the unit matrix. 
The model is seen to be valid in the central ocean, but  fails along the 
boundaries and near the equator,  where horizontal  advection and upwelling 
may be expected to become important .  

The physical hypotheses of the model were more readily tested in this 
example in terms of  the spectra than the corresponding filter relations (3.4). 
This is generally the case when the model includes assumptions both about  

4 }J" I -T L--J rq 

~ [ T ' "  - ' - ' l -  - - ~ - - - - ~ r ~  I 1 ~ v i , , 1 ~ -  

~20°E 140 160 180 160 l l ,0 120 1'3( °W 

No model va l i d  ] Three - parameter,  
t w o - n o i s e  model va l id  

Two-parameter ,  f i r s t - o rde r  [ ]  Three-parameler ,  second-order  
outoregression model va l id  autoregression model val id 

Fig. 5. Regions of validity of the first-order Markov (autoregression) model (3.5) for SSTA 
in the North Pacific. Also shown are the regions in which the first-order Markov model is 
invalid, but extended models containing an additional free parameter are valid (from 
Reynolds, 1978). 
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the form of the forcing (in this case white noise) and the response (first- 
order linear relaxation). Filter models are more convenient for constructing 
optimal prediction models without  side conditions regarding the structure of  
the forcing or the response. 

8. CONCLUSIONS 

In fitting models to data, one is normally faced with the problem of 
model indeterminacy due to data uncertainty.  In the case of statistical models 
the uncertainty is associated primarily with finite estimation errors. These can 
be relatively large, particularly in climate applications, but have the advantage 
that  they can be estimated theoretically. Although not  considered here 
explicitly, instrumental errors can, of course, be regarded simply as a con- 
tribution to the total error and treated in the same framework as the sampl- 
ing errors (provided they are Gaussian). 

Two types of  statistical models were discussed: filter models, in which the 
model was defined for individual data realisations and the net model error 
was obtained by taking ensemble averages over the errors for the individual 
realisations, and spectral models, in which the model was formulated for 
ensemble-averaged data variables. In both cases the probability distribution 
in the model parameter space of the minimal-error models estimated from 
finite data realisations is approximately Gaussian. Confidence limits of  
models, discrimination between competing models, etc. can then be discussed 
in terms of the quadratic form p2 occurring in the exponent of  the Gaussian, 
which has a ×2 probability distribution with q degrees of freedom where q is 
the number of model parameters. 

Other quadratic forms were found to be important  in connection with 
the question of model performance. The performance of  filter models is nor- 
mally measured in terms of the predictive skill. The hindcast skill SH, which is 
estimated from the same finite data sample used to estimate the optimal model, 
exceeds the true skill S, which in turn is greater than the forecast skill SF ob- 
tained when an estimated optimal model is applied to an independent data 
sample. For linear regression models and small skill, (SH) ~ S + (SA), ( S  F) ~ 
S -- (SA), where the artificial skill SA is given by a positive definite quadratic 
form in the model coefficient perturbations. 

The artificial skill SA can be used as an alternative variable to p2 for test- 
ing the zero-prediction hypothesis. However, the test variable SA has less 
resolution and is less reliable than the optimal quadratic form pU based on 
the covariance matrix of the coefficient perturbations. 

For spectral models the skill is normally less relevant than the validity of 
the model. The hypothesis of zero model error for the true (ensemble-aver- 
aged) moments  can be tested using the model error ~ for finite data samples 
as test variable. The parameter ~ is given by a quadratic form in the individual 
model residuals r~, which have a joint-normal distribution. If the error metric 
M ~  is chosen as the inverse of  the error covariance matrix (r'vr~) computed 
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for  f ixed mode l  pa rame te r s ,  the  p robab i l i t y  d i s t r ibu t ion  of  ~ is a X 2-distri- 
bu t ion  wi th  a m a x i m a l  n u m b e r  of  degrees  o f  f r e e d o m  n - -  q (n = n u m b e r  of  
mode l  re la t ions) .  O the r  choices  o f  the  e r ror  me t r i c  also yield an approx i -  
m a t e l y  ×2-dis t r ibut ion,  bu t  wi th  a smaller  equiva len t  n u m b e r  o f  degrees  o f  
f r e edom and less d i scr imina t ion .  

In app ly ing  these  concep t s  to  c l imate  da ta  it m u s t  be emphas ized  t ha t  
objec t ive  stat is t ical  tests  are possible  on ly  if there  has been  no a pr ior i  
screening o f  da ta  wi th  r e spec t  to  the  m o d e l  p roper t i e s  which are to  be 
tes ted.  Because o f  the  l imi ted  n u m b e r  and  length of  c l imat ic  t i m e  series, this  
r e q u i r e m e n t  is d i f f icu l t  to  fulfill in pract ice .  Most  physica l  mode l s  which  
have been  p r o p o s e d  to  expla in  c l imate  var iabi l i ty  have been  guided to  some  
ex t en t  b y  a pr ior i  inspec t ion  o f  the  data .  The  exclus ion o f  da ta  s imp ly  on 
the  basis o f  t he  obse rva t ion  t ha t  t he re  appea r s  to  be  no obvious  cor re la t ion  
be t ween  the  re jec ted  da ta  and  the  p red ic tand  a l ready  represen ts  a biasing o f  
the  data .  These  diff icul t ies  b e c o m e  m o r e  p r o n o u n c e d  when  searching for  
subt le  in te rac t ions ,  such as t e l e -connec t ions ,  b e t w e e n  a large n u m b e r  of  
fields. 

In conclus ion ,  we m a y  have to  a ccep t  the  fac t  t ha t  the  condi t ions  for  
pure ly  objec t ive  stat is t ical  tests  o f  m o d e l  h y p o t h e s e s  are o f t en  no t  satisfied in 
prac t ice  and  t h a t  the  credibi l i ty  o f  a mode l  will have to  rest  to  a large par t  
also on  the  intr insic c redib i l i ty  o f  the  physics  o f  the  model .  Never theless ,  a 
careful  analysis  o f  the  s tat is t ical  s ignif icance and d e t e r m i n a c y  o f  a m o d e l  
under  c lear ly s ta ted  da ta-se lec t ion  cond i t ions  r emains  a necessary ,  i f  no t  
a lways suff ic ient ,  r e q u i r e m e n t  for  assessing m o d e l  p e r f o r m a n c e .  

ACKNOWLEDGMENTS 

The a u t h o r  is gra tefu l  for  a n u m b e r  o f  he lpfu l  discussions with Tim Barnet t ,  
Dirk  Olbers ,  Peter  L e m k e  and Peter  Miiller. 

REFERENCES 

Backus, G.E. and Gilbert, J.F., 1967. Numerical applications of a formalism for geophys- 
ical inverse problems, Geophys. J.R. Astron. Soc., 13: 247--276. 

Barnett, T.P. and Hasselmann, K., 1979. Techniques of linear prediction, with application 
to oceanic and atmospheric fields in the tropical Pacific. Rev. Geophys. Space Phys., in 
press. 

Davis, R.W., 1976. Predictability of sea surface temperature and sea level anomalies over 
the North Pacific. J. Phys. Oceanogr. 6: 249--266. 

Fofonoff, N.P., 1969. Spectral characteristics of internal waves in the ocean. Deep Sea 
Res., SuppL, 16: 59--71. 

Frankignoul, C. and Hasselmann, K., 1977. Stochastic climate models, Part 2. Application 
to sea surface temperature anomalies and thermocline variability. Tellus, 29: 289--305. 

Gilbert, J.F., 1971. Ranking and winnowing gross earth data for inversion and resolution, 
Geophys. J.R. Astron. Soc., 23: 125--128. 

Hasselmann, K., 1976. Stochastic climate models, Part 1. Theory. Tellus, 28: 473--485. 



521 

Jenkins, G.M. and Watts, P.G., 1968. Spectral Analysis and its Applications. Holden-Day, 
San Francisco, 521 pp. 

Leith, C.E., 1975. Climate response and fluctuation dissipation, J. Atmos. Sci., 32: 
2022--2026. 

Linnik, Yu.V., 1961. Method of least squares and principles of the theory of observations. 
Pergamon, Oxford. 

Long, R.B. and Hasselmann, K., 1979. A variational technique for extracting directional 
spectra from multi-component wave data. J, Phys. Oceanogr., in press. 

Lorenz, E.N., 1959. Empirical orthogonal functions and statistical weather prediction, 
Scient. Rep. 1. Statist. Forecasting Project, MIT. 

Lorenz, E.N., 1977. An experiment in nonlinear statistical weather forecasting, Mon. 
Weather Rev., 105 : 590--602. 

Martin. B.R.. 1971. Statistics for Physicists. Academic Press, London, New York, 209 pp. 
Mtiller, P. and Siedler, G., 1976. Consistency relations for internal waves. Deep Sea Res., 

23 : 613--628. 
Olbers, D.J., Miiller, P. and Willebrand, J., 1976. Inverse technique analysis of a large data 

set. Phys. Earth Planet. Inter., 12: 248--252. 
Reynolds, R.W., 1978. Sea surface temperature anomalies in the North Pacific Ocean, 

Tellus, 30: 97--103. 


