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ABSTRACT

The quasi-geostrophic response of the ocean to stochastic- forcing by wind stress and atmospheric
pressure is investigated using a linear, continuously stratified, 8-plane oceanic model with a fiat bottom.
We consider a spectral representation of the forcing and response fields, and we estimate the oceanic
response using a vertical normal mode expansion. Model spectra of the wind stress, wind stress curl
and surface pressure fields are constructed. In the wavenumber-frequency range of quasi-geostrophic
eddies, the observations suggest that because of their short correlation time scale, the forcing fields
are, to a reasonable approximation, white in frequency space and symmetric in wavenumber space.
Forcing by the wind stress has the dominant role. The oceanic response can be off-resonant or resonant.
In the off-resonant case, we predict oceanic wavenumber-frequency response spectra. In case of reso-
nance we estimate total energy transfer rates by integrating the oceanic response over depth and wave-
number (in the range 27/4000 km~'~27/50 km™?) and we distinguish between the barotropic and the
total baroclinic response, the latter being obtained by summing the contribution of all baroclinic modes.

The barotropic response is resonant at practically all eddy frequencies, and the baroclinic response is
resonant at frequencies smaller than the maximum frequency of the first baroclinic Rossby wave. In mid-
latitudes, we find comparable energy input rates into barotropic and baroclinic modes, of the order
of 3 X 10~ W m~2. In high latitudes the input is comparable for barotropic Rossby waves and smaller
for baroclinic ones. The total energy input rate by resonant forcing is only one order of magnitude
smaller than the energy input rate from the mean atmospheric circulation into the general oceanic cir-
culation. It is smaller, but comparable with the rate of energy conversion from the mean oceanic cir-
culation into quasi-geostrophic eddies by barotropic and baroclinic instabilities. At medium and high
frequencies, the baroclinic response is off-resonant. The model predicts red frequency spectra that are
consistent with temperature observations in the central North Pacific. In particular, the seasonal vari-
ability of the observed eddy field is reproduced. A comparison with observations in the western North
Atlantic also suggests that local stochastic forcing by the atmosphere is an important generating mech-
anism for the eddies in regions of low eddy activity.
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1. Introduction

Transient fluctuations of the wind stress, buoy-
ancy flux and pressure at the air-sea interface gen-
erate a variety of oceanic motions, including quasi-
geostrophic fluctuations or ‘‘eddies’’ (with periods
of the order of a week or more, and wavelengths
of a few tens of kilometers to a few thousand kilom-
eters), inertial oscillations, gravity waves and small-
scale turbulence. The fluctuations in the atmosphere
are deterministic (annual and diurnal variations) or
stochastic (reflecting the day-to-day variability of
the weather). In this paper, we investigate the quasi-
geostrophic response of an extratropical ocean to
the forcing by the stochastic component of the wind
stress and atmospheric pressure fields. Stochastic

forcing by buoyancy flux requires a slightly different’
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formalism and will be investigated in Part II of this
paper.

The stochastic fluctuations of the atmosphere are
described by their moments or equivalently by their
wavenumber-frequency spectra. Only a few fre-
quency spectra of weathership or island station data
exist for oceanic conditions, and very little infor-
mation is available for the wavenumber structure
of the atmospheric forcing fields above the ocean.
Routine meteorological observations at sea level are
available from the National Meteorological Center
(NMCQ). They can be used to estimate the needed
statistical information on the forcing fields, or con-
veniently taken as direct input for numerical ex-
periments. However, the number of observing sta-
tions above the ocean is small, and the data are
strongly smoothed by the NMC objective analysis
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scheme (Julian and Cline, 1974). Therefore, these
data are most suitable to investigate the oceanic re-
sponse at very large scales, and seem inappropriate
to wavelengths of the order of 500 km, that char-
acterize energetic ‘‘mesoscale’” eddies observed
during the POLYGON, MODE and POLYMODE
experiment (e.g., Richman et al., 1977). In this
study, we have chosen to investigate the oceanic
response analytically, using an idealized ocean-
model with a flat bottom (a linear B-plane ocean
of infinite horizontal extent) and a hypothetical
wavenumber-frequency spectrum of the atmos-
pheric forcing. Considerable attention has been
given to reviewing the observed spectral properties
of the atmospheric fields, in order to construct a
model spectrum of the forcing that is not too in-
consistent with the available data.

Our attempt to compute the integrated effect of
atmospheric forcing distributed over a broad range
of space and time scales is a novel aspect of this
paper. Most previous studies consider the response
of the ocean to a simple wind stress pattern, gen-
erally a large scale Fourier component with periodic
or steplike time dependence. A classical reference
is Veronis and Stommel (1956), who investigated
the off-resonant response of an infinite, inviscid two-
layer ocean to a meridionally uniform, meridional
wind stress, and showed that it has increasing baro-
clinic character at decreasing forcing frequencies.
Phillips (1966) considered the resonant and off-reso-
nant response of a square two-layer ocean to a fluc-
tuating, zonally uniform, zonal wind stress in the
presence of bottom friction, and found that the domi-
nant frequencies and wavenumbers of the barotropic
response were consistent with the Aries observa-
tions near Bermuda, but that the theory underesti-
mated largely the amplitudes. However, Leetmaa
(1978) recently used the observed seasonal wind
stress and suggested that the barotropic response
predicted from Phillips’s model was of comparable
magnitude to current fluctuations observed further
away from the Gulf Stream. Note that the presence
of lateral boundaries causes an accumulation of en-
ergy at the western boundary of the ocean, since,
as discussed, for example, by Gates (1968), the
group velocity of the incoming Rossby waves is
much larger than the one of the reflected waves.

In the late sixties and early seventies, less in-
terest was shown for the effects of fluctuating winds
on low-frequency oceanic motions, although much
attention was given to the effects of stationary or
moving storms. Veronis and Stommel (1956) had
found that storms have very little effects at large
depth; hence later quantitative estimates concen-
trated on the large and rapid response of the upper
layers, using the f-plane approximation (e.g. Els-
berry et al., 1976). Also, the mean circulation in-
duced by nonlinearities of the barotropic response
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to large-scale fluctuating winds was investigated, for
example, by Veronis (1970).

Meanwhile, various kinds of evidence were ac-
cumulating to support the existence of quasi-geo-
strophic eddies in all regions of the ocean. These
unsteady currents were first suggested by the results
of the Aries expedition in 1959-60, and have been
extensively surveyed during the POLYGON,
MODE and POLYMODE experiments. The statisti-
cal properties of the eddies (energy level, dominant
scales, degree of baroclinicity) may vary strongly with
the geographical position (e.g., Bernstein and White,
1977; Schmitz, 1978) and different forms of meso-
scale variability have been identified, such as mean-
dering of intense currents, rings, extension rings and
mid-ocean eddies. Considerable progress in under-
standing their dynamics has been made (cf. Rhines,
1977; MODE group, 1978). However, the dominant
generating mechanisms in regions far from intense
currents have not been identified. Possible candi-
dates are topographic influences, baroclinic insta-
bility, radiation from meandering currents or rings
and direct wind forcing.

The hypothesis of direct wind forcing of midlati-
tude eddies has generally been dismissed on the
basis of the mismatch of the dominant space-time
scales of atmospheric and oceanic disturbances (the
atmospheric disturbances having longer wave-
lengths and shorter periods). However, Frankignoul
and Hasselmann (1977) recently suggested that the
integral effect of random, short-time scale fluctua-
tions of the surface wind stress might generate a
large low-frequency variability in the seasonal ther-
mocline, and possibly below. At the same time,
Philander (1978) proposed that large storms force a
response down to the ocean floor, which interacts
with the topography and results in smaller scale dis-
turbances that could partially explain the mid-ocean
eddies. Renewed interest in atmospheric forcing
studies is also manifested by Magaard (1977), who
suggested that direct forcing by fluctuations in wind
stress and buoyancy flux may be strong enough to
generate the long baroclinic Rossby waves observed
in the Pacific. As discussed in detail by Philander
(1978), direct forcing of barotropic and baroclinic
waves becomes more efficient as one approaches
the equator. However, this will not be considered
here since the ocean model used in this study is not
applicable to equatorial regions.

This paper is organized as follows. In Section 2,
an integral form of the potential vorticity equation
for quasi-geostrophic flows is derived, using projec-
tion operators (Hasselmann, 1970). This formalism
allows easy inclusion and comparison of different
forcing, interaction and dissipation processes. The
reader who is not interested in the formal aspects
of the derivation is invited to go directly to Eq (2.37),
noting simply that we have replaced the usual dif-
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ferential form of the potential vorticity equation by
an equivalent integral form. In Section 3, the poten-
tial vorticity equation in the presence of atmospheric
forcing is solved using a vertical normal mode
expansion. The oceanic response is described in
Section 4, and the sensitivity of the response to
the model stratification is discussed. Information on
the meteorological forcing fields is summarized in
Section 5, and a tentative model frequency-wave-
number spectrum of the wind stress curl and sur-
face pressure is constructed in Section 6. The oce-
anic response is estimated in Section 7. The baro-
tropic response is insensitive to the model
stratification, and is resonant at low and medium
frequencies and off-resonant at high frequencies.
The baroclinic response is resonant at low frequen-
cies and off-resonant at medium and high frequen-
cies. Quantitative estimates of the transfer rates and
the response spectra are given. In Section 8, the
model predictions are compared with field observa-
tions and the results of numerical simulation ex-
periments. The limitations of the model and some
implications of the results are discussed in Section 9.

2. The governing equations
a. Equations of motion

The quasi-geostrophic response of a stratified
ocean to time-dependent forcing by the atmosphere
is conveniently described by the potential vorticity
equation. Here we use projection operators to de-
rive this equation for a horizontally homogeneous
extratropical ocean in the B-plane approximation.
The formalism is particularly handy to investigate
different forcing mechanisms and could readily be
used to include interaction and dissipation proc-
esses. Since low-frequency oceanic motions are
linear to lowest order (i.e., in hydrostatic and geo-
" strophic balance), we write the equations of motion
under-the form

0 o
— Uy — fous + — = 5,, 2.1
(‘)t 1 f0 2 6x1 1 ( )
0 om
— Uy + fou, + — =95, 2.2
5 Sou, o, 2 (2.2)
b+ s, 2.3)
Oxg
0
—b + Ny = S,, 2.4
or
] 0
Uy + —us = 8, 2.5
ax, ax, 3 5 2.5
with
6]
—l—uz;=3S t = 0, 2.6
o 4 us ¢ al X3 (2.6)
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m — gg = S7 at X3 = 0, (2.7)
Ug = Ss at X3 = —h. (2.8)

Here, x = (x;,x;,x3) are the coordinates (1 east-
ward, 2 northward, 3 upward), u the velocity, =
the deviation of kinematic pressure (pressure per
unit specific mass) from equilibrium, b the buoy-
ancy, { the surface elevation, f; a constant. value
of the Coriolis parameter, N(x;) the Brunt-Viisila
or buoyancy frequency, g the gravitational accelera-
tion and A the depth of the ocean. The source terms
S« . ., Sgrepresent the external forcing and all
the terms of the equations of motion that have not
been written explicitly, including dissipations, non-
linearities and deviations from the f~plane and Bous-
sinesq approximations. Since the latters are small
compared to the terms on the left hand side, they
can be expressed in terms of the lowest order solu-
tion by some appropriate perturbation expansion
(e.g., with respect to the Rossby number), hence
considered as given ‘‘external’’ fields. Note that we
do not make the ‘‘rigid lid approximation’’, which
can formally be obtained by letting g tend to infinity,
with N? remaining finite. Throughout this paper,
subscripts a and B indicate 1 or 2 and repeated sub-
scripts indicate summation.

Eq. (2.3) and (2.5) are diagnostic equations since
they contain no time derivative. Hence, at any time
instant, the fields u; and b in (2.1)-(2.8) are de-
termined by the fields u,, u, and 7. However, it is
more convenient to describe the flow field by the
state vector

Ol

ox,
ou
q’ = €u ——'B y
‘ 0x,

fo Ve

2.9

where €3 = 1 (1) if @, 8 is an even (odd) permuta-
tion of (1,2) and zero otherwise. Here ¥, is the
horizontal divergence of the current field, ¥, the
vertical component of the relative vorticity and ¥,
proportional to the horizontal Laplacian V2 = %/
Ox.0x, of the pressure. The other fields can be
expressed in terms of W by

o,

Uy = v-z(-—— ~ a%) , (2.10)
0x, ox,
uy = V-z(——aq" + 6%) , (2.11)
0x, 0x;
Uz = J dx&(ss - \I’l) + SB’ (2.12)
—h
T =f0V"2‘I'3, (2-13)
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oV, The interior vertical displacement ¢ = ~N~% is
b =fv* 6x3 ~ S, 2.14) readily obtained from (2.14). The equation of mo-
3 tion takes the form (cf. Hasselmann, 1970)
{=g " (foV2¥; - 8;) at x;=0, (2.15) oW
. — + MW = q, (2.16)
where the operator V2 indicates (8%dx,0x,)". ot
where
0 -11
M=|1 00}, @.17)
ViL 0 0
So
0x,
i}
q= €48 Ss (2.18)
Ox,
—-1y772 2 0 ] 6 2 6
SOV fRLSs — | dxb gss + 8~ N2Sg | + g(Ss + Sg) + 5;5,
\ 3

The integral operator L comprises the effect of stratification and boundary conditions, and is defined by

0 s 0
L(A)=fo—2( J deN¥(x}) J A, + g j A(x;)dxs),

T3 —h

where A(x;) is an arbitrary function.

b. Normal branch decomposition
The homogeneous equation

o

s + oMW =0 (2.20)

has three eigensolutions or normal branches,
T = B exp(—iQt) (s =0, +,-), (2.21)

with eigenvectors

0
r-(l)
1

is(1 — V2L)12
B = 1 s =
VL

+, =), (2.22)

and eigenfrequencies

@ =sf(1 - VPLY? (s =0, +, ). (2.23)

Note that 8° and )* are operators. As discussed by
Hasselmann (1970), s = +, — denotes the two in-
ternal gravity wave branches, and s = 0 the geo-
strophic flow branch. In the f-plane approximation,
the geostrophic flow branch has zero frequency.
This degeneracy will be removed by taking into
account latitudinal variations of the Coriolis
parameter.

The adjoint eigenvectors or orthogonal projection
operators ¢ are defined by

2.19)
—h
Bs'le = 8 (5,8 =0, +, ), 2.24)
so that
B 0
g =01~ VZL)‘1(~V2L) ,
1
B —is(1 — V2L)2
B =11 - VzL)"‘( 1
-1
s =+,-) .25

The eigenvectors form a complete set of vectors
> BiB; = 8.
s

The general solution ¥(x,?) of the inhomogeneous
equation (2.16) may hence be decomposed into the
three normal branches of its homogeneous form,
¥ = 3, y*B° with ¢ = B° . The equation for the
normal branch amplitude ¢* is obtained by multi-
plying (2.16) from the left with B8° and takes the
form
v

+ i = g, (2.26)

where g° = 8°-q represents the projection of the
source function onto the normal branch s.
c. Potential vorticity equation

In the following, we investigate the quasi-
geostrophic response of the ocean to atmospheric
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forcing. Hence, we only consider the geostrophic
flow branch s = 0. Since the latter is characterized
by a horizontally nondivergent current field (¥¢ = 0,
where ¥° = ¥°8°%) we introduce a streamfunction
¢°, defined by

@0 = V20 = £, (2.27)

where ° = § = 3. Multiplying (2.26) by (1
~ V2L)V-? and introducing the streamfunction,
we obtain

%(1 - V2L)¢® = Q°, (2.28)
where
Q° = 2.29)

This is an integral form of the potential vorticity
equation. The usuval differential form is obtained
by multiplying (2.28) with L™, yielding

_qu + V—zqs.

i(vz + _a_fozN-z __a_ ) ¢°

ot Ox; Oxg
i) 9
=qs + —fo'N? — V7%q;, (2.30)
Oxg 0x4
with the boundary conditions
i) 0 0]
—|N?2+g—|¢" = |[N? + g — |V2
at( & 6x3)¢ ( £ 6x3) o
at x; =0, (2.31)
0 0 ]
—_—— Y = V2 at x3 = —h. (2.32
3t ox, o} o ds3 3 ( )

Eq. (2.28) or (2.30) represents the potential vorticity
equation in its most general form. The particular form
used in this paper is obtained by specifying the source
terms S;, . . . Sg and hence the source function Q°.

d. Source terms

We consider the oceanic response to atmospheric
forcing in a 8 plane. The atmosphere excites oceanic
motions by pressure forcing and exchange of mo-
mentum and buoyancy at the air-sea interface. Let
0° = 0% + Q) + Q%denote the source function due
to B effect, atmospheric pressure and wind stress.
Forcing by the buoyancy flux is not considered here.

The B effect is included by

So = €apBXsu}
which yields Q} = BL3 ¢%dx,.
The pressure forcing is represented in (2.7) by

S7 = po'p, (2.34)

where p is the atmospheric pressure fluctuation and
po the water density, yielding Q% = p,~Yf,* dp/ot.
The momentum flux across the air-sea interface does
not enter the potential vorticity equation directly.

(2.33)
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We make the usual assumption that this flux gives
rise to body forces distributed within a thin surface
layer. The momentum flux may therefore be ac-
counted for by specifying

(2.35)

where 7 = (1,,7,) is the surface wind stress. Using
(2.19) one finds

Sa = Po—lTaS(x3),

or
Q) = —po'gfo %€ 5 L

X o

This source term can also be derived by applying
Ekman layer theory which yields

aTB

_ - —1f —1

Se = —wg = —py Yo '€up »
[+ 4

(2.36)

where w; is the Ekman suction velocity.

In summary, the integral form of the potential
vorticity equation considered here is (dropping the
subscript 0)

0P

o
— ({1 -V -p8L—=0, 2.37
= - pL==0. @3
where
0 or
OCixnt) = P ol o2 — oo 2gws — . (2.38)
ot 0x,

Since u, b and 7w are homogenous functions of ¢
[cf. (2.10) to (2.14) with S5, S5, Sg = 0], the at-
mospheric forcing function Q determines the stream-
function ¢ and hence the interior response of the
ocean. To determine the surface elevation, the iso-
static (inverse barometer) response of the sea sur-
face should be added [cf. Eq. (2.15)].

Equation (2.37) has the same form than the equa-
tions describing the stochastic climate models of
Hasselmann (1976), with Q representing the short
time scale weather forcing, except for the term con-
taining B. As discussed below, this term causes reso-
nance of the climate system (here the ocean interior).
The somewhat complex algebra of the present study
reflects this additional feature.

3. Solution of the potential vorticity equation
a. Constant buoyancy frequency

Several features of the oceanic response to atmos-
pheric forcing can be discussed by first considering
a horizontally homogeneous ocean with constant
buoyancy frequency N(xs) = N,, which is the sim-
plest and analytically most convenient form of con-
tinuous stratification. Let ¢(k,x;,0) be the Fourier
transform of the streamfunction, defined by

(x,t) = J dkdw p(k,xs,0) X explilkoxs — b)), (3.1)
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where k = (ky,k;). Since ¢k, x5,0) = ¢*(—k,x3,
—w), we consider only non-negative frequencies,
o = 0. Let Q(k,w) similarly denote the Fourier trans-
form of the atmospheric forcing function Q(x,?).
Then, one finds from the potential vorticity equation
2.37)

iQ(k,w) coshg(x; + h)

k, ] = *
dlraw) = o hgh + ghe sinbgh)

3.2)

where
q* = Nofy 2(k* + Bk,w™). (3.3)

Here ¢ = Ny2hg™! < 1denotes the ratio of the ocean
depth to the scale depth of the density and k* = kk,.
The depth-dependence of ¢ is determined by the
value of gh. A given value of gh corresponds to a
circle of center (—f/2w,0) and radius (B%4w?®
+ g¥2N, %)Y in a k-plane. For gh real, or
> —Bk.k2, ¢ decays exponentially with depth. The
oceanic response is then off-resonant or forced and,
for large gh, trapped near the surface (region I in
Fig. 1). For gh imaginary, or < —pBk k™2, ¢ varies
with depth like a cosine function (region II in Fig.
1), but becomes infinite when

&
lalh

The resonance occurs on circles of (real) radii [(8%/
4w,%) — R, 7212 (see below for definitions).The res-
onant solutions are easily identified as planetary
Rossby waves, the eigensolutions of the homogene-
ous potential vorticity equation. For the frequency
chosen in Fig. 1, only the barotropic (indistinguish-
able from the circle gh = 0) and the first baroclinic
mode (dashed circle) can be resonant.

In the rigid lid approximation, the term cosh gk
in the denominator of (3.2) can be neglected. It is
readily found that the rigid-lid approximation is valid
everywhere in k plane except in a small region lim-
ited by two concentric circles of radius r such that
B*l4e* — Ry < r? < B%40® + R,~? (indistinguisha-
ble from the circle g& = 0 in Fig. 1).

tanh|q|h = 3.9

b. Normal mode decomposition

To evaluate the energy transfer in case of reso-
nance and to consider a realistically stratified ocean,
it is convenient to decompose the general solution
of the potential vorticity equation into its normal
modes. The homogeneous form of (2.37) has sepa-
rable eigensolutions (Rossby waves)

$(x,1) = Dr(x3)

X explilkoxe — w(k)f]} n=0,1,2,..., (3.5
where the vertical eigenfunctions P, satisfy
LY, = \ D, (3.6)
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Fic. 1. Sketch of the vertical structure of the oceanic stream-
function ¢(k,x;,w) and dispersion relation (thick line) for

w =27/170 day~!, N = N, (see Table 1). Region I corresponds to
q real, region II to g imaginary.

or equivalently!

"a_f()zjv_2 _(—3— d, = _)\n—ld)n’

3.7
0x5 x4 3.7
with

(N2 +g i)@,, —0 at x;=0, (3.8

0xg

i}
—®, =0 at x3=-h. (3.9

0x;

Here ), are the eigenvalues (constant of separation).
The eigenfrequencies are given by

Bk
K+ R,

where R, = A\,Y? denotes the Rossby radius of
deformation. Values of R, are listed for various
stratifications in Table 1. Eq. (3.6) corresponds to
a Sturm Liouville problem, hence the vertical eigen-
functions are complete and can be orthonor-
malized, i.e.,

wn(k) = (3.10)

0
J dx3q)nq)m = 6nm
-k (3.11)
Y Dn(x3)Plxz) = 8(xs — x3)

Any forcing function Q (provided it can be as-
cribed to a body force) can be expanded with re-

! Derivations of Egs. (3.7)—(3.9) can be found elsewhere, e.g.,
in Magaard (1977) and Flierl (1978), who make the rigid lid
approximation. See also Philander (1978).
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TaBLE 1. Absolute value of #'%¢,(0) and R, for different stratifications and &/ = 5000 m, f, = 7 x 10~% s~'. The MODE values are
taken from Richman et al. (1977) at low mode numbers and calculated in the WKB approximation (cf. Munk and Phillips, 1968) at high
mode numbers. In the case of a two-layer ocean, h, and A, denote the thickness of the upper and lower layer, respectively, Ap the
density difference between the two layers. The value of N, € and k, are chosen to match MODE values, as described in the text.

R
Stratification [h12¢,(0) | (km)
Mode profile
N@O)=8 x 1073 ¢! n=20 1 (gh)Vf, =~ 3200
. 0 n=1 2.9 46.7
N= h“J dxgN(xz) =~ 2 x 1073 s71 n=2 2.8 19.9
o n=3 45 14.8
€=g ViN* =2 x 107 n>1 ~(2N(0)/N )2 (gh&)?/(fonm)
Constant buoyancy frequency
No=2x 103571 n=0 1 (gh)'*ify ~ 3200
€ =g hN? =2 x 1072 n=1 212 46.7
n=2 212 23.4
n=23 212 15.6
n>1 212 (ghe)"*(fonm)
Two layers
N2 = ggd(xs + hy) n=0 1 (gh)V2(fy =~ 3200
€= Aplpo =~ 2 x 1072 _ . 112 -
" hy = 8.4h, n=1 2.9 (ghénhz)Pl(fohe) = 46.7
Homogeneous
N2 = n=>0 1 (gh)'?fy = 3200
spect to the eigenfunctions. Hence, the solutions i P
2 2 ’ an(k,w) = " Ok,w). (3.17)

of the inhomogeneous potential vorticity equation
(2.37) may be written

©

#0u) = 3 | dka (k0,00 explikorn). G.12)

n=0

The normal mode amplitudes a, satisfy
%(1 + kR, Da, — iBRk.a, = Q,, (3.13)
where

Onk,t) =

(2:,_)2 J dxdx, exp(—ik.xy)

xf dryBa(x)O(1)  (3.14)

represents the projection of the forcing function Q
into the nth eigenmode. Since Q does not depend
on x3, (3.14) may be written

(k1) = P.O(k,t), (3.15)

where
P, =f dxs®By(x5) = g R ID0) (3.16)
_n

by use of (3.7)-(3.9). The values of ®,(0) are also
listed in Table 1.

Eq. (3.13) can be solved by Fourier transforma-
tion in time which yields

® — w,(k) 1 + k*R,?2

The normal mode amplitudes a, become infinite
when frequency and wavenumber satisfy the disper-
sion relation (3.10). They are proportional to the
atmospheric forcing function Q(k,w). The factor of
proportionality is determined by R,, the Rossby ra-
dius of deformation and linearly related to ®,(0),
the value of the normalized eigenfunctions at the
surface. Table 1 demonstrates that these quantities
do not depend sensitively on the stratification. In
the case of constant buoyancy frequency, we have
chosen the value of N, such that the Rossby radius
of the first baroclinic mode coincides with the one
of the stratification observed in the MODE region.
This tuning reproduces the MODE values of R, for
n > 1 within 20%, and underestimates the MODE
values of ®,(0) for the baroclinic modes n = 1 by
about a factor of 2. In the following, we shall cal-
culate the oceanic response to atmospheric forcing
for an ocean with constant buoyancy frequency.
This will thus provide a conservative estimate for
the baroclinic response. Table 1 furthermore shows
that the MODE value for a, can be reproduced with
a homogeneous ocean, and that the MODE values
for both a, and 4, can be reproduced with a two
layer ocean if the parameters € = Ap/p, and h, are
chosen appropriately. Note that the calibration.of a
two-layer ocean model should be different to inves-
tigate other physical processes, like nonlinearities
(Flierl, 1978).
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4, Statistical representation
a. Stochastic forcing

We assume for simplicity that the stochastic com-
ponent Q(x,,x,,t) of the atmospheric forcing func-
tion Q is a realization of a statistically stationary
and homogeneous process with zero mean and
power spectrum F (k,w), defined by

(Qulk,0)Q (k" ,0"))
= F(k,0)dk — k)80 — o), (4.1)

where the angle braces denote ensemble means and
the asterisk complex conjugates. The power spec-
trum is normalized such that f dk dew F(k,0)
= (Q,Xx,?)). Reality, stationarity, and homogene-
ity imply F (k,w) = F(—k,—w); hence we only con-
sider non-negative frequencies as before. Note that
the definition (4.1) implies random phases, thereby
excluding standing modes. The specification of
F{k,w) is discussed in Sections S and 6. The oceanic
model is linear, hence there is no need to specify
the higher order statistics of the forcing function.

b. Oceanic response

The oceanic response is off-resonant or resonant.
For frequencies larger than the maximum frequency
wm?* of Rossby waves, no resonance can occur [cf.
Eq. (3.17)] and the oceanic response may be de-
scribed in terms of power spectra. In the frequency
range o < wh®* there always exists a wavenumber
for which the oceanic response is resonant and the
spectra become infinite. The singularities could be
removed by introducing dissipation mechanisms
(Phillips, 1966; Magaard, 1977). However, since the
precise nature of dissipation is still controversial,
the resonant response is most conveniently dis-
cussed by estimating growth rates or energy trans-
fer rates. Integrated energy transfer rates obtained
by summing up the contributions from all the wave-
numbers within the range of quasi-geostrophic oce-
anic eddies will be calculated to facilitate the com-
parison with estimates of the input rates of other
dynamical processes. Note that the inclusion of dis-
sipation would not affect the computed energy trans-
fer rates, but only set the energy level of the oceanic
response.

c. Off-resonant response

From (3.17) we obtain the cross spectra of the
normal mode amplitudes

(an(k,w)a(k’,0'))

1 1 P,
® — wk) © — onk’) 1 + k°R,2

m

X — 0 F(k, -k’ - o).
T+ AR.2 (k,w)d(k — kK')d(w — w’)

4.2)
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Cross spectra of all oceanic variables can easily be
derived from this relation, using (3.12), (2.27) and
(2.10)—(2.15). For frequencies much larger than the
frequencies of Rossby waves, the oceanic spectra
are red and behave like @~%. This is a general feature
of the response of the long time scale ‘‘climate”
system to the short time scale variability of the
“‘weather’’ (Hasselmann, 1976).

The maximum frequency for each normal mode
is reached when k; = R, and k, = 0, and is given
by of®* = BR,/2. For values characteristic of the
MODE region (8 = 2 X 107 m~! s7!, R, as given
in Table 1) and for a wavenumber £ = 27/4000 km™!
one finds @?* = 1.2 10~% s~! (minimum period 7™i®
=~ 6 days), 0P =~ 4,7 1077 s7! (TP =~ 156 days),
and 0P < @wP?* for n = 2, 3. . .. The barotropic
response is thus resonant throughout the frequency
range of quasi-geostrophic eddies. On the other hand,
the baroclinic response is off-resonant in a much
broader frequency range, and the calculation of
forced spectra is of direct use. An illustration is
given in Section 8. Here we shall only emphasize
the need to take into account the contributions of
all baroclinic modes, hence to consider a continu-
ously stratified ocean when investigating its baro-
clinic response to transient atmospheric forcing.

Using the orthogonality relations (3.11), the spec-
trum of the depth-integrated total energy, defined by

Ei(x1,%2,1)
= 1/2p0 dx,g(uauu + N_sz) + 1/2 Ogcz (4'3)
0
—h
can be written

Etot(k !(’J) = 20 E’%m(k ,(1)) ’ (4 '4)

where

1
Enok,w) = Y2po

(w — wn)2

P2
X ———————— F(k,w) (4.5)
RX(1 + k*R,?)
represents the energy spectrum of the nth mode.

The depth-integrated kinetic energy spectrum of the
nth mode is given by

2R 2

Etnk,0) = —————
fanlb0) = TR 2

Efo(k,0) (4.6)

consistent with Gill et al. (1974). If we assume
constant buoyancy frequency, the ratio r, (k) of
energy in the nth and mth baroclinic mode is
given by

k® + R,

Fpm(K) = W

@.7

(w0 > wy, wy).
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For small £ (k < R,™%, R,,”!), most of the energy
is in the lowest mode (r, ,, = R,%R,>) but for large
k (k > R,”%, R, '), the energy is equally distributed
among the baroclinic modes. Summing the oceanic
response over the first few modes only would
therefore be erroneous at high wavenumbers.

D. Resonant response

To estimate the energy transfer rates of the
resonant oceanic response we solve Eq. (3.13) by

a,(k,t)
P, t )
= dt'eion™-vQ (K '
1+ kR, L e )
= ——P-"———J doQ(k,0)A(w — w,)e ot (4.8)
1 + k2R,2 o O )
where

1__ —iwt
Aw) = —5 .

lw

The spectra of the normal amplitudes are then
given by

(an(k,Daz k')
P2
X 8k — kKNA(w — w)A*(0' — w,)
n2
T R

where we have used lim, _, .A(w) A*(w) = 27td(w).
The linear growth of the power spectrum is a gen-
eral feature of the resonant response of an undamped
linear system to stochastic external forcing (cf. Has-
selmann, 1967). From (4.9) we obtain the growth
rate of the depth-integrated total energy spectrum
in case of resonance, i.e., ‘

J dodo'Fk,0)d(w — o')

Fk, o = w,)8(k — k'), (4.9

- d
— E%k,t
o tot(K 1)

P2
T —————— F(k, ® = w,).
R,%(1 + k?R?)
The transfer function between the oceanic energy
spectra and the atmospheric forcing spectrum de-
pends only on R, and ®,(0), as was the case for
the normal mode amplitudes. Hence, the depth inte-
grated spectra are also fairly insensitive to the choice
of the model stratification. The latter mainly deter-
mines the distribution of energy with depth.
To estimate the total energy transfer rates into
quasi-geostrophic eddies, we make a spectral inte-
gration in wavenumber space betweenk,, = 27/4000

= Po (4.10)
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km~ and &,, = 27/50 km~?. The lower integration
limit is sufficiently large for the 8 plane approxi-
mation to remain valid. The upper integration limit
corresponds to the grid size of an eddy resolving
general circulation model (EGCM) of the ocean and
is large enough for the hydrostatic approximation
to remain valid. In polar coordinates the barotropic
response is given by

a 2T
— E%(t) =2 dé
= B0 w]

0

fent :
X [ dkkTK)F(k, © = @), (4.11)

km
with
Tk) = Yapog Ph~ Yo' (k* + Ry™®)™'.  (4.12)

The observations suggest that the atmospheric forc-
ing spectrum F(k,w) is approximately white in the
frequency range of quasi-geostrophic motions, hence
F(k,w) = F(k,0) (cf. Section 5). In this case, (4.11)
may be written

a 372 kyv
— E,(@) = 2771' daj dkkT(k)F(k,0), (4.13)

or /2 o
where we have limited the integration to westward
propagating disturbances in order to satisfy the
resonance condition for Rossby waves.

As demonstrated above, the baroclinic response
will be underestimated by only considering the first
few modes. We thus define the total energy transfer
rate into all baroclinic modes by

®©

0
z 5 Er{()t(kJ)'

n=1

i}

— ENk,p) = 4.14)
ot

For an ocean with constant buoyancy frequency, the
integrated energy transfer takes the simple form

T2 kM
%E?gt(t) =27 r de J dkkT®(k)F (k,0), (4.15)

/2 (.
with
To(k) = Y pog 2h~'fo*k2(ycothy — 1). (4.16)

and y = wR k. Fig. 2 shows that the barotropic re-
sponse dominates at low wavenumbers (kK < R,™")
and the baroclinic response dominates at high wave-
numbers (k > R,™?).

5. Meteorological' input

In midlatitudes the dominant time scale of the
atmospheric fields is a few days and most of the
air-sea exchanges are associated with the eastward
traveling frontal cyclones and anticyclones, which
have wavelengths from 3000 to 6000 km. However,
the forcing of the ocean is not confined to the very
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FiG. 2. Transfer functions T°k) and T%(k) for N = N,
(see Table 1).

energetic weather system band, and atmospheric
spectra have significant energy at lower frequencies
and higher wavenumbers.

Except for the annual peak?, atmospheric spectra
in mid and high latitudes are approximately white
at periods >10-20 days, as illustrated in Fig. 3,
which represents the frequency spectrum F(w)
= f dk F(k,w) of atmospheric pressure at Ocean
Weathership N (after Dorman, 1974) (see also Figs.
5 and 6). The whiteness of low-frequency spectra
is due to the fact that processes with a short cor-
relation time scale normally have a frequency spec-
trum which is white at sufficiently low frequencies
(e.g., Hasselmann, 1976). This whiteness is also
found in zonal wavenumber-frequency spectra
F(k,,w) = [ dk,F(k,w) of tropospheric data. For ex-
ample, the frequency spectra of geopotential height
and temperature in the troposphere computed by
Willson (1975) for each zonal wavenumber m (the
number of waves around a latitude circle) are white
at frequencies below some ‘‘cutoff’’ frequency
which generally increases with m. The correspond-
ing periods range from one month at the lowest
wavenumbers to a few days for large m (see also
Pratt, 1975). Thus, even at large scales, long time
scale atmospheric disturbances like blocking ridges
do not seem to dominate the observed variability
at low frequencies (except in some regions, per-
haps), and most of the variance is due to the ‘‘low-
frequency white noise extension> of the rapidly
varying weather fluctuations.

If the atmospheric variability at low frequencies
is mostly due to the short time scale weather fluc-

2 Note that artificial redness is introduced at low frequencies
when the annual signal is not resolved or filtered.

CLAUDE FRANKIGNOUL AND PETER MULLER

113

tuations, the covariance function Z (r,7) = (vi(x
+ r,t + 7) v{X,t)) between variables v; and v; van-
ishes for time lag 7 > 7., where 7, is some short char-
acteristic time (possibly dependent on r). Then the
wavenumber-frequency spectrum

1 “ .
Fk,w) = ) Lo drdrZ(r,7) exp[—i(k'r — wt)]

is normally white at frequencies w < 7,7, for
F(,0) # 0, since the exponential ¢’*" can be set
equal to 1. Hence, one can write

lim F(k,w) = F(0)S(k),

where F(0) = [dk F(k, w = 0) is the white noise
level and S(k) the normalized wavenumber struc-
ture, fdk S(k) = 1. Spectra are positive-definite
functions. From the reality condition F(k,w)
= F*(k,w) = F(—k, —w), it then follows that the
spectra are symmetric at low frequencies. This con-
trasts with the well-known asymmetry of the atmos-
pheric fields at short periods, synoptic and plane-
tary scales, which reflects in midlatitude the east-
ward propagation of cyclones and anticyclones.
Symmetry can also be demonstrated from observa-
tions, since the propagation direction of atmospheric
disturbances has been inferred from zonal wave-
number-frequency analysis of tropospheric data.
Notice that only east-west asymmetries can be es-
timated and not the partition into standing and
propagating disturbances (Pratt, 1976). Willson
(1975)’s analysis of temperature at 500 mb (45°N)
suggests that at periods >10 days, the symmetric
part of the spectra dominates the asymmetric one
at m = 7. Similarly, Pratt and Wallace (1976) found
that the ratio of propagating variance (excess of vari-
ance in one of the two directions) to total variance
of the 500, 850 and 1000 mb geopotential height and

(OWS N)

—~ 1961-1970
~N e — -—
T 107+
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Fi1G. 3. Spectrum of pressure at OWS N computed from 10
years of data (afier Dorman, 1974). The dashed line shows the
white noise level given in Table 1.
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FiG. 4. Ratio of propagating to total variance for 1000 mb
geopotential height at 30 and 50°N. The data are based on two
6-month winters and are unfiltered. Positive values (hatched)
indicate westward propagation. The contours were drawn sub-
jectively on the basis of data communicated by R. W. Pratt.

temperature is small in midlatitudes at periods >10
days, except around zonal wavenumbers 6-9
where disturbances propagate preferably eastward
(Fig. 4). At higher values of m, there is also a weak
tendency toward preferred eastward propagation,
but the asymmetry seems to decay both with de-
creasing frequency and increasing wavenumber. At
a period of 20 days and m > 8 (A, < 3200 km), 80%
of the energy is in motions symmetric in the mean
(see also Blackmon, 1976). Recently Willebrand
(1978) investigated the symmetry of surface pressure
and geostrophic wind stress disturbances above the
North Pacific and Atlantic oceans (NMC data), by
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means of cross-spectral analysis of times series at
different locations. At periods >10 days, he also
found no preferred propagation direction. Hence,
atmospheric spectra are, to a reasonable approxi-
mation, white and symmetric in the wavenumber-
frequency range of oceanic eddies. This symmetry
has important consequences, since it implies that
atmospheric disturbances can resonantly excite
westward propagating oceanic Rossby waves.

To construct a model wavenumber-frequency
spectrum of the atmospheric forcing function Q,, we
still need information on the white noise level of
the atmospheric spectra and on their wavenumber
structure S(k). Some relevant information is re-
viewed below.

As one approaches the equator, the characteristic
time scale of the atmospheric variables becomes
more difficult to define but increases. The formula-
tion of a model wavenumber-frequency spectrum
of the atmospheric forcing thus requires a slightly
different approach.

a. White noise level

Ocean weathership (OWS) and island station data
provide information on the frequency spectrum of
the atmospheric forcing function above the ocean
and hence on the white noise level F(0). Table 2
summarizes observations on wind, wind stress, wind
stress curl and atmospheric pressure at latitudes
higher than 15°. A few wind spectra have been

TABLE 2. Atmospheric frequency spectra in extratropical oceanic conditions. U,, (U,,) denotes the wind speed (vector) at height x3 in
meters (given when known). F(0) is an estimate of the approximately constant spectral density of the variance at low frequencies; for
vector quantities, F(0) is the sum of the spectral density of each component. C and C,, are drag coefficients. ‘‘Slightly red’’ indicates a
spectral slope =<0.5 and apr (apnr) that the annual peaks are (are not) resolved. Corrections for wind level are based on a neutral log

wind profile.

Duration
Author Data Data source Location (sampling) F(O) Comments
Baker et al. U; Surface préssure 59°S, 63°W 308 days 4 x 10" m? s~2 Hz‘"1 Geostrophic wind in the
(1977) analysis (Drake Passage) (12 h) through-passage direction
only (aprn)
Frost (1975) U Weathership 59°N, 19°W 26 years 10" m? s~ Hz™! Slightly red at period >2
. India (Atlantic) (3h) years (apr)
Willebrand | U, Weathership C 52°N, 35°W 26 years 6 x 107 m? s~ Hz~! East wind slightly more
(1978) (Atlantic) (12 h) energetic (aprn)
T . 6 X 10* N>2m~* Hz™! East stress twice more
energetic; linear drag law
(apr)
‘ P 2 x 10 mb% Hz* (apr)
Fissel et al. Uy Weathership P 50°N, 145°W 10 years 7 x 10°m? s~ Hz7! Wind reduced to 10 m
(1976); also (Pacifit) 3h level (apr)
Fissel (1975) U,, 4 x 10" m? s72 Hz"! ibid.
T 3 x 10!N2m™¢ Hz ! C, = 1.5 X 1072 assumed
here (apr)
P 108 mb? Hz™! (apr)
Byshev and U Weatherships C  52°N, 35°W 3 years ~10" m? s72 Hz! Average spectra, slightly
Ivanov (1969) and D 44°N, 41°W (6 h) red (apnr)
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Duration
Author Data Data source Location (sampling) F(0) Comments
Willebrand U Surface pressure Longitudinal aver- 4 years 3 x 107 m? s72 Hz™! Geostrophic wind reduced
(1978) analysis age over North (12 h) to the surface; east wind
Pacific at 43°N twice as energetic (apnr)

T 3 X 10¢N?2m~* Hz™! East stress twice as
energetic; linear drag
law (apnr)

P ~5 X 10" mb? Hz™! Slightly red (apnr)

€as(0/0)75 2 x 1078 N* m~$ (apnr)

Hz™!
Wunsch (1972) U National Weather 32°N, 65°W 8 years ~3 x 10'm?s~2Hz! Wind measured at 11 m (3y),
Record Center (Bermuda) (1 h) 4 m (3y) and 5 m (2y)
above ground; no correc-
tions made, about 10%
underestimated (apnr)

T 10* N2 m~* Hz™! Co = 1.5 x 1072 assumed
here; wind not converted
to 10 m level, about 25%
underestimated (apnr)

P ~4 x 10" mb? Hz™! Slightly red (apnr)

Dorman (1974) U, Weathership N 30°N, 140°W 10 years 4 x 10° m? s72 Hz* Wind reduced to 10 m level
(3 h) (apr)
Uy 10" m? s~2 Hz™! ibid.
P 2 x 107" mb? Hz™! (apr)
Diling et al. €,5(0/0,)7s Surface wind at  Between 25 and 26 months ~4 X 10*N?2m® C = 1.5 x 1073 (apnr)
(1977 four coastal 30°N, 98 and (1 day) Hz™
stations 80°W (Florida
and Texas)
D. Luther Uy National Climatic 28°N, 177°W 4 years 3 x 107 m? s~2 Hz™! East wind twice as energetic
(unpublished) Center (Midway) (1 h) (apr)

T 3 x 10°N?2m~+ Hz ! East stress four times as
energetic; linear drag law
with varying roughness
length (apr)

P 2 x 10? mb% Hz™! (apr)

Brooks and T Surface wind at a 25°N, 80°W 4 months ~3 x 10® N2 m™ Summer only; C = 2
Mooers coastal station (Miami) (3 h) Hz! X 1073 (apnr)
(1977)
D. Luther Uy, National Climatic 19°N, 167°W 4 years ~2 x 10"m?s™2 Hz™! East wind slightly red and
(unpublished) Center (Wake) (1 h) more energetic (apr)
T ~7 X 1®¥ N2m™ East stress slightly red and
Hz™! more energetic; linear
drag low with varying
roughness length (apr)
P ~4 x 10° mb®> Hz~* Slightly red (apr)

listed to better document the geographical variability
of the atmospheric fields. In general, the white noise
level decreases from higher to lower latitudes (see
also Willebrand, 1978). Additionally, the white noise
level of the wind stress (and presumably of the wind
stress curl) seems to increase with the magnitude
of the mean wind. This is seen by comparing spectra
at Midway (small mean wind) and Wake (large mean
wind). Fig. 5 shows for illustration the wind stress
variance spectrum at OWS P (50°N, 145°W) (after
Fissel, 1975). Diiing et al. (1977) estimated the wind
stress curl from observed winds at Jacksonville,

Miami, Key West and Corpus Christi (Fig. 6). They
used wind stress differences between stations ap-
proximately 1800 and 700 km apart in the zonal and
meridional directions, respectively. However, the
wind stress curl variance is concentrated in rela-
tively small scales (Welch, 1972; Saunders, 1976).
Hence, the ‘‘white noise level”’ of Diiing et al. (1977)
considerably underestimates the wind stress curl en-
ergy density above the ocean since only rather
large scales contributed to their estimates. Further-
more, the wind stress curl is much smaller near
the coast than above the open ocean (Saunders,
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Fi1G. 5. Variance-conserving plot of the wind stress spectrum
Fon(w) + Fppr(w) at OWS P computed from five 2-year data
blocks (after Fissel, 1975). The dashed line shows the white noise
level given in Table 1. We have assumed C;; = 1.5 x 1073,

1977). Similarly, the white noise level of the wind
stress curl in Willebrand (1978) (Table 2) is-low be-
cause of the severe smoothing of the NMC surface
pressure field data used to compute the geostrophic
wind. The coherence between wind, wind stress and
pressure is generally poor at low frequencies be-
cause of symmetry (Fissel, 1975; Willebrand, 1978).

Seasonal variations in the low-frequency ‘‘white
noise level’’ of the atmospheric spectra' may be im-
portant. In the Northern Hemisphere the energy
level of the wind, wind stress and pressure are gen-
erally three or four times higher in fall and winter
than in spring and summer (cf. Dorman, 1974; Fissel,
1975; Fissel et al., 1976, and Fig. 12). On the
other hand, there might be much less seasonal varia-
tion in the Southern Hemisphere (cf. Kao et al.,
1970). ‘

b. Wavenumber structure

A considerable amount of wavenumber and wave-
number-frequency spectra of geopotential height,
geostrophic wind and temperature is available for
large-scale tropospheric motions along latitude cir-
cles. Two-dimensional wavenumber spectra have
also been calculated by means of spherical harmonic
expansion.

Blackmon’s (1976) analysis of the 500 mb geopo-
tential height in the Northern Hemisphere suggests
that low-frequency kinetic energy is maximum at
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two-dimensional wavenumber 8 (A = 5000 km).
Analyzing balloon data, Desbois (1975) found that
midlatitude wind kinetic energy spectra at the 200
mb level have a maximum at zonal wavenumbers
m =5orm = 6 (\; = 5000 km at 45°S) and decay
as k,729 for 8 < m < 35 = mp,, the limit of his
analysis (4000 km = A, = 800 km). The decay is
consistent with the k=2 behavior predicted by two-
dimensional and quasi-geostrophic turbulence theo-
ries (Kraichnan, 1967; Charney, 1971). These theo-
ries suggest that the observed spectral decay law
extends to higher wavenumbers. Using unsmoothed
NMC data, Julian and Cline (1974) found similar
results (mya, = 18). A slight decrease of the high
wavenumber slope with decreasing altitude —2.9 at
200 mb, —~2.8 at 500 mb and —2.7 at 850 mb (mean
for summer and winter)—can be seen in their analy-
sis. Most other published spectra have been deter-
mined by using the objectively analyzed geopoten-
tial height NMC data, and are strongly affected by
a loss of variance at the higher wavenumbers (Julian
and Cline, 1974). Among others, Pratt (1975) has
computed frequency-wavenumber spectra of the
geostrophic wind at several levels and Ilatitudes.
Low-frequency geostrophic wind spectra at 850 and
1000 mb are reproduced in Fig. 7. They also sug-
gest that the spectral decay at high wavenumbers
is less rapid near the ground. This may be due to
the frequent passage of surface fronts (disconti-
nuities). Andrews and Hoskins (1978) have predicted
that fronts cause a —8/3 spectral decay, consistent
with observations at latitudes higher than 35°. At
lower latitudes, the spectral decay is not so steep.
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F1G. 6. Spectrum of the wind stress curl estimated from four
coastal stations around the Gulf of Mexico and computed from
three 200-day data blocks (after Diiing et al., 1977). The dashed
line shows the white noise level given in Table 1.
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Fi1G. 7a. Low-frequency zonal wavenumber spectra of zonal (dashed line) and
meridional (solid line) geostrophic wind at 35°N (thick line) and 50°N (thin
line), and 850 mb. The spectra were computed from four 132-day winters, after
high-pass filtering to remove seasonal effects.

FiG. 7b. Low-frequency zonal wavenumber spectrum of meridional geostrophic
wind at 30°N (thick line) and S0°N (thin line), and 1000 mb. The spectra were
computed from two 6-month winters, without filtering [constructed from Pratt
(1975 and private communication)]. The straight lines indicate different spectral

slopes.

This is illustrated in Fig. 8 (after Kao, private com-
munication) which represents kinetic energy spectra
computed at different latitudes from the pressure
field at 850 and 1000 mb, using NMC data. Notice
also the increase in energy level with increasing lati-
tude. Kao has also computed kinetic energy spectra
from the pressure field over the North Pacific only
(dashed line in Fig. 8). There is little difference in
spectral shape (North Pacific values at m = 1,2 are
of course not representative). The energy density,
however, is generally larger over the North Pacific
than over the whole latitudinal circle, which is con-
sistent with the higher energy density generally re-
ported for the wind above the ocean (see Blackmon,
1976). Hence, information on the wavenumber
structure of the oceanic wind field may reasonably
be derived from planetary data.

Little information is available on the wavenumber
structure of the wind stress and wind stress curl.
Willebrand (1978) has suggested that the wavenum-
ber spectrum of the wind stress should be slightly
less steep than that of the wind. Frankignoul and
Hasselmann (1977, Fig. 2) estimated wavenumber

spectra of the meridional wind stress and the wind
stress curl from simulated data generated by a nu-
merical model of two-dimensional barotropic turbu-
lence. The poor spatial resolution severely limits
the representativity of the spectra (especially for
the wind stress curl), but this computation suggests
that the high wavenumber decay of the wind stress
spectrum is similar to the one of the wind.

c. Isotropy

At the synoptic and planetary scales, the wind
and wind stress fields are predominantly zonal. This
anisotropy decreases with increasing wavenumber.
Desbois (1975) has shown that the assumption of
isotropy becomes partially valid in the range 2000
< Ay < 3000 km, and is fully valid at smaller scales.
Similar properties are expected from the wind stress.
The overall effects of the low wavenumber anisot-
ropy [as estimated by comparing F(0) for zonal
and meridional stress] is generally small, but be-
comes important as the trade wind region is ap-
proached (Table 2).
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munication).

6. Representation of the atmospheric spectra

In view of the sparsity of the information on the
atmospheric fields above the ocean and their com-
plexity, the construction of an analytically convenient
model spectrum of the atmospheric forcing func-
tion is admittedly subjective and other representa-
tions could have been favored. Making drastic sim-
plifications, we assume here that the atmospheric
forcing function Q; is statistically stationary and ho-
mogeneous. To represent the seasonal changes in
the intensity of the atmospheric fields and their lati-
tudinal nonhomogeneity, we postulate a parametric
nonhomogeneity: we choose different spectral levels
for different seasons (Section 8), and different model
spectra for mid and high latitudes (say, the delimita-
tion is ~35°).

We also assume that in the wavenumber-fre-
quency range of quasi-geostrophic eddies, the at-
mospheric spectra are white in frequency domain,
and symmetric, so that they take the form (5.1) with
S(k) = S(—k). As discussed in Section 5, the as-
sumption of whiteness and symmetry is justified at
low frequencies or high wavenumbers, and not un-
reasonable in the high frequency, small wavenumber
part of the eddy range.

a. Wind stress

For convenience, we assume that the wind stress
field is isotropic, so that

Sk) = (12mwk)S(k), (6.1)
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hence
(101_13(1) Fk,w)
= (127k)F0)Sk) = (12ak)Fk,w). (6.2)

As discussed in Section 5, the wind stress field is
isotropic at medium and small scales, but not at the
largest scales. Since the transfer functions (4.12) and
(4.16) depend on wavenumber magnitude only, an
anisotropic forcing will cause an anisotropic re-
sponse, but the anisotropy will not affect the inte-
grated oceanic response considered below. We thus
assume isotropy for algebraic simplicity in this
section.
The general form of the wind spectrum is then
Fr ) = —Q[ (035 + S10k) K ""] . 63
27k

where C is defined such that { dk(F,,, + F,,) = FA0),
the white noise level of the wind stress variance
F, . (®) + F,,;, (0). We assume nondivergence, as
suggested by surface wind stress data (Roden, and
Willebrand, private communications), so that one
has S, = -5, and C = F(0), with |dk S(k) =
Note that at low latitudes (say, up to 25°N), the
wind stress divergence might become nearly com-
parable to the wind stress curl (Roden, 1974; Diiing
et al., 1977), which would decrease the magnitude
of the oceanic response spectra by a factor of 2.
For S.(k), we choose the particular normalized form

Sk, k2, Osk <k,
SAk) ~ (Ybkk2, ky<k <k,
0, k >k,

withk, < k.. Here k, = 27/5000 km™!is a wavenum-
ber magnitude characteristic of baroclinic instability
in the atmosphere and k. some high wavenumber
cutoff that need not be specified as long as it is
larger than the high wavenumber limit k,, of the oce-
anic motions considered in this study. The model
(6.1) seems plausible and yields zonal wavenumber
spectra F, ; (k;,0) that remain approxxmately con-
stant fork < ky, with a weak maximum neark, = 27/
6000 km™*, and decay as k™2 for k, < k <k, A =2
slope appears appropriate for midlatitudes. In prin-
ciple, these spectra include storm and hurricane ef-
fects, since they are based on long-term statistics
of the meteorological fields. However, no information
on wavenumber spectra at the hurricane scales were
available, and our model is based on simple extrap-
olations. At high latitude, the spectral decay is
stronger, hence we shall consider a model with a
k~? decay in the range &k, < k < k.. To avoid con-
fusion, results pertinent to this latter wind stress
model will only be given in brackets. We shall
also indicate in Section 7 how sensitive the oceanic
response is to the particular model chosen for the
atmospheric forcing function.

6.4)
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From Table 2, we choose
F.0) = 10° N2> m* Hz™! (6.5)

as a characteristic white noise level in midlatitudes.
This value will be multiplied by a factor of 3 when
representing high-latitude conditions.

b. Wind stress curl

In midlatitudes, the wind stress curl spectrum
takes the form

Feundk,w) = F(0) k* §(k). (6.6)

This formula allows us to calculate the available
white noise level of the wind stress curl contributed
by scales in a given wavenumber range. For in-
stance, the available white noise level in the quasi-

geostrophic eddy range limited by k, = 27/4000
km~! and &,, = 2#/50 km™! is given by
Fein 0) = 3k k) F(0)

=10 N2m®Hz' [2x1077]. (6.7)

Notice the lower white noise level in high latitudes
due to the k2 slope, notwithstanding the increased
variance of the wind stress. Relation (6.6) is con-
sistent with the wind stress curl data discussed in
Section 5, when the observed values of F,(0) are
taken, and integration limits appropriate to the ge-
ometry are chosen. Taking 27/350 km™! as highest
wavenumber in (6.6), one recovers the white noise
level observed by Diiing et al. (1977). On the other
hand, (6.6) gives a white noise level higher by a
factor of 3 than observed by Willebrand (1978), if
we take 277/1500 km™! and 2#/5000 km~! as integra-
tion limits.

c. Pressure

Since the large-scale winds are quasi-geostrophic,
a consistent model of the pressure spectrum is
given by

3ak, 1, k < k),
Spk) = 3 Yk, k,, k<sk,
0, k > k,.
At high latitudes, we consider a model with a k5

decay in the range k, < k = k.. From Table 2, we
choose

6.9

F,(0) =4 x 10" N2m—* Hz™! (6.10)
as characteristic white noise level in midlatitudes,
and 102N2m~*Hz™! in high latitudes.

d. Atmospheric forcing function

From (2.38) we can now compute the ratio 8(k,w)
of the pressure and wind stress contributions to the
power spectrum of the atmospheric forcing function:
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—2£ -2, .2 2 4
_ P Fk,e) A(_w_) (ﬁ) 6.10)
Po‘zfo—‘!g 2F curlf(k aw) f 0 k
with
A = fo'g %y TPF,(0)/F.(0) = 6,
[A = %fo'g 2%, 2F,(0)/F(0) = 15] .

In the quasi-geostrophic eddy wavenumber-fre-
quency range, one has k > k,, w < f,, so that wind
stress forcing strongly dominates the atmospheric
forcing function. Pressure forcing is most efficient
at very low wavenumbers and high frequencies, yet
it can always be neglected in the k,w range con-
sidered here. Indeed, at £ = £, the value 6 = 1
is only reached for periods of the order of 1 day,
shorter than those considered here. The inefficiency
of the pressure forcing has been suggested by
McWilliams (1974) and Magaard (1977). In the fol-
lowing, we neglect F,, and use as power spectrum
of the atmospheric forcing function in midlatitudes

F(k,w) = po g kS (K)F(0), (6.11)

with §.(k) and F,(0) given by (6.3) and (6.4). This

_spectrum is white in both wavenumber and fre-
quency space, in the ranges of interest here. In high
latitudes the spectrum is slightly red (~ k') in wave-
number space.

7. Oceanic response

The energy transfer rates by stochastic resonant
forcing and the off-resonance response spectra can
now be estimated by introducing (6.11) into the for-
mulas derived in Section 4.

a. Barotropic response

Barotropic Rossby waves of 4000 km wavelength
can have periods as short as 6 days. Thus, one has
® < o in the wavenumber-frequency range con-
sidered here, and the barotropic response is reso-
nant. The integrated energy transfer rate (4.13) in
midlatitudes (high latitudes) is

a 32
2 EYYy = Yapy~h~1F,(0) f d6
at w2

M k?-
X Jk dk ———— S.(k)
kK2 + Ry
37

~3 po~th ™ kypky T FA0)

=3x10*Wm2 [6x 10~ (7.1)

if h =5 % 10®3m. For k > R,™, most of the baro-
tropic energy is kinetic {cf. (4.6)] and (7.1) shows
that stochastic forcing by the atmosphere yields an
increase of the barotropic velocity variance at each
level of 1 cm?s~% in 10 days (5 days).
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The result (7.1) is independent of the stratification
and inversely proportional to the ocean depth. No
latitudinal variations are expected other than those
due to the variations in the wind stress model, since
fo does not enter relation (7.1). The integrated en-
ergy transfer rate is fairly insensitive to the choice
of the spectral slopes of the wind stress model. Using
a k™3 slope instead of a k2 slope at k > k, decreases
(7.1) by 35% only; assuming white behavior at k
< k, (instead of k?) also decreases (7.1) by 35%.

The wavenumber dependence of the barotropic
response is the same as the one of the wind stress,
i.e., proportional to k~[k~%]. Hence, the energy is
mainly transferred to long Rossby waves by reso-
nant forcing. In mid-latitudes, 50% of the input is in
wavelengths >2000 km, 75% in wavelengths >1000
km. In high latitudes, 75% of the input is in wave-
lengths >2000 km, 94% in wavelengths >1000 km.
Large-scale Rossby waves have the highest frequen-
cies, where our assumption of whiteness and sym-
metry of the forcing spectrum is least valid. This
could lead to an overestimation of the energy trans-
fer rate (7.1) by a factor of 2 or 3 in high latitudes.

b. Baroclinic response

For w = w™* [=27/156 day™! in the MODE re-
gion], the baroclinic response is resonant. The in-
tegrated energy transfer rate (4.15) is

3m/2

%Ee& = YapyThIF(0) [ d6

w2

ka
X J dk(aR .k cothwR k — 1)S (k)

2

37

= =T by Nofi o0 f dy
Um
)

X (y~! cothy ~ y~2

=15%x10*Wm? [1075], (7.2)

with y = wR k. For midlatitudes, we have taken f;
=7 1075 s and N, = 2 103 s~ as characteristic
values. The integral was estimated numerically; its
value is 2.3. This integral increases approximately
as the logarithm of the high wavenumber cutoff k,,
but depends very little on k,. For high latitudes,
we took f, = 10~* s~! and the weaker stratification
Ny = 1073 s71, Since the input rate (7.2) increases
with N, and decreases with f;,, both effects tend
to decrease the baroclinic response in high latitudes.
The integrated baroclinic energy transfer rate is sen-
sitive to the choice of the high-wavenumber slope
of the wind stress model; using a k™2 slope instead
of k=2 reduces the input rate by a factor of 8. The
dependence on the low-wavenumber part of the
wind stress model is weak, as in the barotropic case.
Finally, it was remarked in Section 3 that by using
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a constant buoyancy frequency ocean, we neglect
the near-surface amplification of the response for
realistic stratification. In the MODE region, the un-
derestimation of (7.2) is by a factor of 4. Thus en-
ergy is transferred resonantly into barotropic and
baroclinic modes at comparable rates in midlati-
tudes. In high latitudes, the barotropic energy trans-
fer rate is larger than the baroclinic one.

The wavenumber dependence of the baroclinic re-
sponse is determined by the product of the transfer
function (4.16) and the forcing spectrum (6.11). For
k < R,t, the baroclinic response is proportional to
k® [k—1], whereas at high wavenumbers (k > #R,™Y)
it is proportional to £~ [£~%]. In midlatitudes, most
of the energy is transferred to scales comparable
to or smaller than the Rossby radius of deforma-
tion R, (k = R,™'). It can be shown that 38% of the
integrated energy transfer rate goes into the first
baroclinic mode and 17% into the second one. In
high latitudes, most of the energy is transferred to
intermediate and large scales (in the range k,, < &
< R;™Y); 58% of the energy input goes into the first
baroclinic mode, 16% in the second.

For frequencies larger than »P2*, the baroclinic
response is off-resonant. If all dynamical processes
neglected here were of secondary importance, the
total energy spectrum for » > w7 would be given by

Effw) = Yapo~th ' [F(0)/w?]

kum
X J dk(wRk cothaR .k — 1)S (k)

km

4 X 107*w?Wm2s 1 Hz™! [2 X 10-%2].

Again, a spectral decay in w2 is predicted with in-
creasing level at lower latitudes. Other spectra have
a similar »™? behavior, as illustrated in Section 8.

8. Comparison with data
a. Field observations

The spectral characteristics of the quasi-geo-
strophic eddy field are best documented for the
western North Atlantic (e.g., Richman et al., 1977;
Schmitz, 1978). In this region, the field is strongly
nonhomogeneous and the eddy energy is observed
to increase rapidly approaching the Gulf Stream.
Because the ocean western boundary is also nearby,
it is difficult to assess the relative importance of
stochastic atmospheric forcing in generating the
eddies without considering their complete energy
balance, thereby including nonlinear interactions
and topographic influences (known to induce fast
exchanges of energy among different scales and
modes), propagation effects (causing a westward in-
tensification of the eddy field), energy sources and
sinks. This is out of reach at present.

Nevertheless, a crude estimation of the impor-
tance of local atmospheric forcing can be attempted
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by comparing the predicted total energy transfer
rates (7.1) and (7.2) to the observed eddy energy.
Estimates of the eddy kinetic energy (KE) at dif-
ferent sites and depths are given by Schmitz (1978).
If we assume for simplicity that the KE at 4000 m
depth is representative of the barotropic eddy en-
ergy, we find that the total barotropic eddy energy
varies from less than 5 X 10> J m™2 near 28°N, 65-
55°W (the least energetic sites for which data are
presently available in the western North Atlantic)
to 5 x 10 J m~2 near 28°N, 70°W (the MODE re-
gion) and higher values closer to the Gulf Stream.
Dividing these energies by the transfer rate (7.1), we
obtain a characteristic time 7° that measures the ef-
ficiency of local stochastic forcing by the atmos-
phere. At the least energetic site 7° is rather short
(38 days); hence local forcing by the wind might be
a dominant generating mechanism for barotropic
eddies. In the MODE and more energetic regions,
7o is at least 10 times larger and local atmospheric
forcing seems negligible for barotropic motions. A
similar analysis is more speculative for baroclinic
motions, because the available potential energy
(APE) is difficult to evaluate. Schmitz gives crude
estimates of the vertically integrated kinetic energy
in the MODE region (10* J m~?) and near 28°N,
55°W (2.5 10° J m~2%). Here we assume for simplicity
that these are estimates of the baroclinic KE. From
extensive density surveys during MODE, Fofonoff
(private communication) has estimated® APE = 2.4
10* Y m~2, yielding 3.4 10* J m~2 for the total baro-
clinic energy. If we divide by (7.2), we find a char-
acteristic time 77¢ = 7 years which represents about
17 ““minimum wave periods’’. Thus, local stochastic
forcing of baroclinic motions does not seem too im-
portant in this region. Toward the east, the decay
in APE is not as rapid as in deep water KE (Rich-
man ef al., 1977). Near 28°N, 55°W, the APE seems,
nonetheless, about twice smaller than in the MODE
region. Thus, we obtain 1.5 10* J m~2 as a rough
guess for the total baroclinic energy, and ¢ = 3
years. Since the dominant time scale in this region
is larger than further west, local stochastic forcing
seems important. In the proximity of the Gulf
Stream, the observed eddy energy is very large and
our estimated input rates give a negligible contribu-
tion. Note, however, that it has been suggested re-
cently that the Gulf Stream is an important site of
cyclogenesis in the atmosphere, so that the intensity
of the atmospheric forcing might be locally en-
hanced.

Our tentative suggestion is therefore that local

3 The near-surface (first 150 m) contribution to the APE is
strongly underestimated in this calculation. This should not mat-
ter much here since we want an estimate of the energy of the
interior flow. Moreover, the estimate (7.2) also neglects the near-
surface amplification of the baroclinic response (cf. sections 3
and 6).
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F1G. 9. Location of the North Pacific measurements discussed in this study. The dashed line delineates
the regions where the XBT sections in Fig. 12 have been obtained.

stochastic forcing by the wind stress is important
for both barotropic and baroclinic motions in the
western North Atlantic regions with low eddy ac-
tivity, but is negligible in regions of high eddy ac-
tivity. Where to separate these regions cannot be in-
ferred from our analysis.

The central North Pacific is another region of low
eddy activity. Since this region is remote from
boundaries and from major currents and topographic
features, one may expect that the eddy energy is
not rapidly redistributed in k,» space, and that
the observed spectral characteristics of the eddy
field can be compared to the predictions of our linear
theory. Roden (1977) observed that the amplitude
of the disturbances of dynamic height were smaller
in the central North Pacific (say, between 170° and
155°W), than in the western part, with a southward
increase toward the trade wind region (see North
Pacific map on Fig. 9). In the central North Pacific
the dominant length scale of the (baroclinic) per-
turbations was between 400 and 600 km, almost in-
dependent of depth, and the perturbation amplitudes
were much larger in the sections taken in winter and
fall than in the sections taken in the spring. Roden
has therefore suggested that these baroclinic fluc-
tuations were due to direct wind stress forcing.

Since the pycnocline is very shallow in the central
North Pacific, the radius of deformation for baro-
clinic modes is small (Roden chooses R, =~ 10*m)
and baroclinic resonance can only occur in mid-
latitudes at periods of a few years or more. On
smaller time scales the baroclinic response must be
forced. The properties of the subsurface tempera-
ture or vertical displacement spectra may be inferred
from our analysis in Section 3. Assuming that the
buoyancy frequency is approximately constant and
that the vertical displacement is due to the baro-
clinic modes only, we find for the vertical displace-
ment

f(k ,x;g,(l))

- i fog 0k, w) sinh[(x; + h)kmR,/h]

8.1
o sinhk7R, @1

if w > w,(k). Here we have used (2.14), (2.27) and
summed the normal mode decomposition (3.12) over
the baroclinic modes only. Note that the solution
(8.1) is exponentially decaying as observed by
Roden (1977). Near the surface, x; = 0 and £(k,0,w)
=~ | Wg/w, where W; denotes the Ekman suction
velocity (2.36). This latter expression was used by
Frankignoul and Hasselmann (1977) to discuss the
frequency spectra of subsurface temperature in the
central North Pacific, mainly at 150 m depth, as
given by Bernstein and White (1974). The observed
spectra were consistent with the predicted w2 be-
havior, but the relatively high energy level was dif-
ficult to explain by stochastic wind forcing. Our new
estimate (6.7) of wind stress curl energy density is,
however, higher and the discrepancy is reduced to
about a factor of 3 (Fig. 10). This is within the un-
certainty of our calculations, especially if one takes
into account that the data were of short duration
and mainly taken in winter, when the atmospheric
forcing is most intense.

Bernstein and White (1977) have calculated zonal
wavenumber spectra of temperature anomalies at
300 m depth from repeated XBT sections along lati-
tude circles in the North Pacific, between 33 and
40°N. The spectrum for the western North Pacific
(west of 170°W) is one order of magnitude higher
than for the central and eastern parts (between 170°
and 140°W) (Fig. 11). In contrast to the spectrum
in the western part (thin line) which shows a peak
near 1000 km wavelength, the spectrum for the cen-
tral North Pacific (thick line) is rather flat, decaying
only slowly with increasing zonal wavenumber. The
smooth line in Fig. 11 shows that the model pre-
diction '

Felky, x5 = 0, 0)dk, — k)d(w ~ ')

r dky(€(k, X3 = 0, W)E*K', x5 = 0, @)

]

is consistent with the observed spectral slope in
the central North Pacific. The level of the predicted
spectrum is arbitrary and cannot be estimated with-
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F16. 10. Spectra of vertical displacement at various stations in
the central North Pacific between 30 and 43°N, 165 and 140°W at
depths of 150 m (1-4) and 200 m (5) [after Bernstein and White,
(1974) cf. Fig. 9]. We have assumed a temperature stratification
of § X 1072°C m~2. Data 1, 2 and 4 were taken in winter, data 3
in summer, and data 5 (OWS N) covers nine years. The dashed
line shows the model prediction.

out additional assumptions [the response spectrum
is red with respect to frequency, cf. Eq. (4.10)] but
the hypothesis of dominant atmospheric forcing can
be tested by comparing the seasonal variability of
the oceanic signal to that of the forcing function.
Five XBT sections in the central North Pacific were
taken during fall and winter, four during spring
and summer. We have constructed from the individ-
ual spectra (Bernstein and White, private communi-
cation) averaged spectra for these two periods
(dashed and dotted lines in Fig. 11). At wavelengths
shorter than 1000 km, the winter-fall spectrum is
about three times higher than the spring-summer
one. This seasonal variability cannot be explained
by the slight shift in the mean latitude of the sec-
tions (~2°) but strikingly corresponds to the seasonal
variability of the white noise level of the wind stress
at Weathership P (Fig. 12). Thus, stochastic forcing
by the atmosphere seems a dominant generating
mechanism for baroclinic eddies in the central North
Pacific. Because of inadequate XBT sampling in
time, the seasonal variability of the western North
Pacific could not be investigated.

The stochastic forcing models predict that atmos-
pheric and oceanic variables will be correlated. In
the off-resonance case, the predicted correlations

CLAUDE FRANKIGNOUL AND PETER MULLER

123

are small, unless smoothed data are used (Frankignoul
and Hasselmann, 1977). In the resonant case,
smaller correlations are expected if waves propa-
gate away from the forcing region. Some measure-
ments suggest a significant coherence between at-
mospheric (pressure, wind stress or air temperature)
and oceanic (temperature or current at depth) vari-
ables at high frequencies (i.e. ~10-day period) which
is consistent with the large barotropic response pre-
dicted by our model. There is no evidence of cor-
relation at low frequencies, but the data base is in-
adequate and correlations will be very difficult to
detect in the presence of many internal modes. High-
frequency coherence is reported by Ivanov and
Byshev (1972) for Weathership D (44°N, 41°W) and
by Byshev and Ivanov (1974) for the POLYGON
data taken in the tropical North Atlantic (16°N,
33°W). Note, however, that these data are very
noisy. Wunsch (1972) analyzed sea level fluctuations
at Bermuda (32°N, 65°W) and suggested that no oce-
anic normal modes were excited by pressure fiuc-
tuations at periods <12 days. He also found no sig-
nificant coherence between atmospheric pressure
and subsurface temperature in the period range 1~
25 months. However, Bermuda, like Weathership D,
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F1G. 11. Zonal wavenumber spectra of temperature at 300 m
depth in the North Pacific, computed from zonal XBT sections
taken between 35 and 40°N (Fig. 9). Thin line: west of 170°W,
thick line: east of 170°W. The dotted line shows the spectrum
computed from sections in fall and winter, the dashed line the
spectrum computed from sections in spring and summer [after
Bernstein and White (1977 and private communication)].
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Fi6. 12. Variance-conserving plot of the wind stress spectrum
at OWS P (see Fig. 5) during spring—summer (dotted line) and
fall-winter (dashed line) (after Fissel, 1975).

is in the proximity of the Gulf Stream, and Guif
Stream rings and extension rings may dominate the
low-frequency phenomena. In a region further away
from the Gulf Stream influence (around the Gillis
seamount at 35°N, 59°W), P. 1. Taylor (private com-
munication) observed recently the intensification of
bottom currents (at 5 km depth) during the passage
of hurricanes. The high-frequency coupling between
local atmospheric forcing and deep currents seems
stronger in high latitudes as expected from (7.1).
Meincke (1976) observed a significant coherence be-
tween atmospheric pressure and near-bottom cur-
rents on the Iceland-Faroe Ridge. Baker et al. (1977)
(see also Baker, 1977) detected a significant coher-
ence between geostropic wind, wind stress and deep
currents in the Drake Passage, and suggested that
the scale of the phenomenon was large. It should
be remarked that these high-latitude data were both
taken in regions with strong topographic features,
for which our analysis may not be applicable (see
also Philander, 1978).

b. Oceanic models

Faller (1966) has estimated from average wind
stress data that the rate of energy input from the
mean atmospheric circulation into the mean oceanic
circulation is about 3 x 107 W m~2. Using a two-
layer ocean model, Gill et al. (1974) suggested (ana-
lytically) that the energy input rate* into the wind-
driven Sverdrup flow is ~10-2 W m™2. The energy
budget of several oceanic GCM experiments with

4 The numbers given in this section only include the large-scale
circulation below the Ekman layer.
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idealized basin geometry and atmospheric forcing
is discussed by Holland (1975). For baroclinic
oceans, most of the (steady) wind energy goes into
mean baroclinic motions (from 17 to 24 1074 W m2
in the cases discussed), whereas little energy goes
into mean barotropic motions (from 0.4 to 3 104
W m~?). Recently, Bryan (private communication)
made an experiment with a GCM of the world ocean
(2° resolution) with realistic coastlines and bottom
topography, using Hellerman’s (1967) observed data
for the wind stress forcing. The computed energy
transfer rates of 21 x 10~ and 26 x 10~* W m2
for the Northern and Southern Hemispheres, re-
spectively, seems the most reliable estimates of the
energy input rate from the mean atmospheric to the
mean oceanic circulation. These are only one order
of magnitude larger than our estimates of the energy
input rate from the stochastic atmospheric fluctua-
tions into quasi-geostrophic eddies.

With the development of eddy resolving models
(EGCM), the energy conversion from mean into fluc-
tuating motions has also been explored. Table 3 sum-
marizes some results. of EGCM experiments. In all
cases the wind forcing is steady, eastward and sinu-
soidal, but its meridional scale varies (see the num-
ber of gyres). The thermal forcing has a fluctuating
component, but its effect has not been discussed.
Eddy energy is released via baroclinic, barotropic
or mixed baroclinic-barotropic instability. Unfortu-
nately, the energetic properties of ocean models are
strongly dependent on the model physical assumptions
and parameter values (cf. Robinson et al., 1977). In
particular, the energy input rate into eddies varies
by more than one order of magnitude in the experi-
ments reported in Table 3, and it is difficult to de-
cide which value is representative of oceanic con-
ditions. However, comparison with GCM’s, espe-
cially the recent results of Bryan (see above),
suggests that the experiments with the largest input
rates strongly overestimate the energy input into
the mean oceanic circulation. Thence, our estimates
(7.1) and (7.2) of the energy input into the eddy
field by stochastic atmospheric forcing seem
smaller, but comparable to the input rate by insta-
bility of the general circulation.

9, Summary and conclusions

We have attempted to estimate quantitatively the
quasi-geostrophic response of the ocean to stochas-
tic forcing by wind stress and atmospheric pres-
sure, in order to evaluate the importance of this
mechanism in generating oceanic eddies. Qur analy-
sis has been simplified by a variety of assumptions.
We have considered the linear response of a con-
tinuously stratified 8-plane ocean and neglected the
effects of lateral boundaries, bottom topography,
mean currents and horizontal inhomogeneities. Be-
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TasLE 3. Energy transfer rates in selected EGCM experiments. Dominant instability refers to the main process of eddy gener:«.ltion,
the amplitude of the applied sinusoidal wind stress is given and sG indicates that the wind stress pattern creates s gyres. KE is the

kinetic energy, APE the available potential energy.

Input rates (1072 W m~?)

Vertical
Domain resolu- Into mean KE Into eddies Dominant
Model geometry tion Forcing 7 (Into mean APE) KE + APE instability = Comments
Holland and Lin 1000 x 1000 km 2 layers (0.1 Nm~2, 1G) 14 3 baroclinic Experiment 1
(1975) flat bottom (-)
Han (1975) 4000 x 4000 km 5levels (0.2 Nm~2, 1'2G) n 34 mixed
flat bottom (69)
Robinson er al. 2000 x 2000 km S5levels (0.4 Nm™, 1G) 213 8* barotropic APE not given
(1977 flat bottom (not given) (*KE only)
Semtner and 3000 x 2000 km Slevels (0.3 Nm™2, 2'*G) ~16.4 ~57 mixed
Mintz (1977) flat and continental (~70)
shelf
Holland (1978) 1000 x 2000 km 2 layers (0.1 Nm™2, 2G) 16.4 10 barotropic Experiment 3
flat bottom {(-)
(quasi-geostrophic)
(0.1 Nm™2, 2G) 18.3 16.5 barotropic Experiment S
()
(0.4 Nm™2, 2G) 221 181 barotropic Experiment 8

)

cause of the linearity of the model, the oceanic re-
sponse spectra are completely determined by the
spectra of the atmospheric fields. Thus, the observed
structure of the atmospheric variables in the wave-
number-frequency range of quasi-geostrophic oce-
anic motions has been thoroughly reviewed. Be-
cause of the short correlation time scale of the
atmospheric variables, the spectrum of the atmos-
pheric forcing fields is to a reasonable approxima-
tion white in frequency space and symmetric. For
simplicity, we have assumed homogeneity of the
forcing fields. Latitudinal variations were nonethe-
less represented in a crude fashion, by using larger
variance and steeper high wavenumber fall-off in
high latitudes (e.g., wind stress decaying like k2
and £~? in mid and high latitudes, respectively). The
wind stress was found to be the dominant forcing
mechanism (Ekman pumping).

The oceanic response has been estimated using
expansion of the oceanic streamfunction into verti-
cal normal modes. Because of the (quasi) symmetry
of the wind stress in the wavenumber-frequency
range of quasigeostrophic oceanic eddies, westward
propagating Rossby waves can be resonantly ex-
cited. The barotropic response is resonant at prac-
tically all frequencies. The baroclinic response is
resonant at low frequencies (w < 2#/150 day~! in
the North Atlantic). At moderate and high frequen-
cies, the baroclinic response to stochastic forcing
is off-resonant. The baroclinic frequency spectra
then behave as w™2. To circumvent the specifica-
tion of dissipation and transfer mechanisms in the

ocean interior, we have calculated energy transfer
rates in the resonant case. The dependence on the
oceanic stratification and on the model spectrum of
the atmospheric forcing fields was reduced by con-
sidering the depth-integrated response of the ocean,
by integrating this response over horizontal wave-
number (in the range 27/4000 km™! < k < 27/50
km™!) and by summing the contributions of all baro-
clinic modes.

In midlatitudes, we find that the total energy trans-
fer rate by stochastic forcing of barotropic motions
is of the order of 3 X 10~* W m~2. Most of the energy
is transferred into long barotropic Rossby waves.
The resonant energy transfer rate into baroclinic
motions is comparable, and half of this energy goes
into the first two baroclinic modes. In high latitudes,
the energy input rate into barotropic modes remains
of the order of 3 X 10~* W m~2, but the input rate
into baroclinic motions is smaller (at least 10> W
m™?), and most of this energy is transferred to the
first two baroclinic modes. The barotropic response
is not too dependent on our many simplifying as-
sumptions, but the baroclinic response depends
fairly sensitively on the wavenumber spectrum of
the atmospheric fields.

The total input rate by stochastic atmospheric
forcing is only an order of magnitude smaller than
the energy input from the mean atmospheric fields
into the oceanic general circulation, and it appears to
be smaller, but comparable with the rate of energy
conversion from the mean circulation into quasi-
geostrophic eddies, by barotropic and baroclinic
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instabilities. Since these instabilities mainly occur
in the vicinity of the intense boundary currents, we
expect that stochastic forcing by the wind is a
dominant generating mechanism for the eddies only
in the central part of the oceans. Observations
of subsurface temperature fluctuations in the central
North Pacific (frequency spectra, wavenumber
spectra and their seasonal variations) and data in the
western North Atlantic are consistent with this sug-
gestion. Therefore, stochastic forcing by the atmos-
phere should be included in studies of mid-ocean
dynamics. This may be particularly important in
EGCM models, since they are generally tuned to
produce a ‘‘realistic’’ eddy field without the random
forcing.

Our approach has obvious deficiencies: lateral
boundaries should be included, especially for calcu-
lating the barotropic response since barotropic
waves travel so fast that they feel the boundaries.
There may also exist a considerable response at
larger scales than considered here, for example of cut-
off waves (Longuet-Higgins, 1965). However, these
waves are not adequately modeled by the S-plane
approximation, and the spherical geometry of the
earth should be considered. Also, the anisotropy
and inhomogeneity of the forcing should then be
introduced. This is why we have not discussed pos-
sible implications for climatic changes. The forcing
spectra are white (and eventually become red) down
to the lowest frequencies, so that long, low-fre-
quency baroclinic waves might induce significant
climatic fluctuations. . .

The choice of a flat-bottomed ocean also intro-
duces some limitations to the applicability of our
results, because bottom topography strongly affects
the kinematics and dynamics of quasi-geostrophic
eddies (e.g., McWilliams, 1974; Rhines, 1977;
Philander, 1978). As noted by Philander, the
topography will alter the oceanic response spectra
by scattering the large-scale motions into smaller
eddies and by supporting a new class of waves.
However, it should be stressed that the former effect
will change the wavenumber structure of the re-
sponse but not the integrated energy input rates. Our
goal was to estimate how much energy is transferred
into the deep ocean by stochastic atmospheric forc-
ing. How this energy is redistributed by other
processes depends on the wavenumber structure of
the response, but this question is beyond the scope
of the present paper.
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