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ABSTRACT

The problem of extracting directional spectra from observed, multi-component wave data has two
facets: 1) the observations provide information only on a finite number of integral properties of the
wave field; hence the directional spectrum cannot be determined uniquely from the wave data alone;
and 2) the observations contain statistical errors. These difficulties are dealt with by choosing an optimal
directional spectrum model which simultaneously minimizes some integral property of the spectrum (its
‘‘nastiness’’) and passes an appropriate test of statistical significance. Although developed here in the
context of surface wave directional spectra, the technique (adopted from the Backus-Gilbert inverse
method) is applicable to any problem requiring the fitting of a model to data which represent integral

properties of the function being modeled.

1. Model fitting techniques

Experiments designed to obtain direction-sensi-
tive measurements of ocean wave spectra provide
data which, in most cases, represent integral prop-
erties of the two-dimensional surface wave spec-

trum. These properties may be cast into the general
form

27
d = J deS(6)b(0), N
0

where the components of the data vector d are
weighted moments of the normalized directional
distribution (spreading function) § defined by the
kernel vector b (8 is the direction of wave propa-
gation; the additional dependence of all quantities
on wave frequency f has been suppressed). For
example, an array of wave gages yields as basic
data the set of cross spectra

Eif) = [

0

2

" d6S(0.NEf)

X exp[—ikr; cos(0 — 6;)] (2)

between the ith and the jth wave record, where
E(f) is the one-dimensional surface wave spectrum,
k is the wavenumber corresponding to f, and r;; and
0;; are the magnitude and direction, respectively, of
the spatial displacement from the ith to the jth wave
gage. Similarly, pitch/roll buoys provide time series
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of two orthogonal components of surface slope and
vertical acceleration at a point on the sea surface;
cross spectra between pairs of these records also
have the form (1). Normalized versions of such cross
spectra or linear combinations of them may be used
to advantage in some situations, while still retaining
the general form (1).

Given the data vector d, extracting an estimate
of the spectrum S requires the inversion of the set
of integral equations (1). Normally, the inversion
will not be unique, since the directional distribution
is a continuous function, whereas the data set d
is only of finite dimension.

One way to remove the indeterminacy is to re-
strict the model space to a finite dimensional sub-
space characterized by a parameter vector A of di-
mension less than or equal to that of d. A unique
solution can then be obtained either by the method
of least squares, if A is of smaller dimension than
d, or by inverting (1) exactly, if the dimensions of
A and d are the same (and the model class is con-
sistent with the data in the sense that a unique solu-
tion exists). The least-squares technique is usually
favored as it yields stabler solutions. A basic dis-
advantage of the method is that the solutions fail
to satisfy the data exactly, but this shortcoming gen-
erally appears less severe when the statistical errors
of the data are taken into account. In fact, Eq. (1)
represents a relationship between statistical quanti-
ties which can, in practice, never be known exactly.
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Physically realizable experiments can only provide
estimates d of the true data d, where

d=d+e, 3)

and € is a vector of random errors. Under the hy-
pothesis that a given least-squares model S is the
true spectrum [i.e., that it satisfies (1) exactly for
the true data d], the statistics of € can be computed.
These may then be used to test whether the differ-
ences between the model prediction and the ob-
served data d are statistically consistent with the
expected errors. If this is the case, the optimal model
is accepted as valid; if not, it is rejected. Olbers
et al. (1976) have used this procedure successfully
to extract statistically significant estimates of the
three-dimensional internal wave spectrum in the
main thermocline, using a model with approximately
20 free parameters, from 3660 cospectra and quadra-
ture spectra obtained from a tetrahedral array of
moored current and temperature meters.

A more fundamental shortcoming of the least-
squares method, however, is that it provides no
means, beyond statistical acceptance-rejection tests,
to demonstrate that one model parameterization is
superior to another—or even to define quantita-
tively what constitutes a superior model.

This consideration lies at the core of an alterna-
tive “‘inverse’’ technique, which appears to have
been first suggested by Backus and Gilbert (1967).
Instead of overcoming the underspecification of the
model by (1) through the restriction of the model
space to a dimension smaller or equal to that of the
data vector, the number of integral restraints of the
model is increased until the model again becomes
overspecified. An optimal model can then be de-
fined, as before, as the model which comes closest
to fulfilling all requirements in some appropriate
least squares sense. The additional integral re-
straints represent data-independent conditions which
define, in effect, what is considered —subjectively,
or on independent physical grounds—to be a
““good’’ model. For example, in the case of direc-
tional spectra, the side condition S(8) = 0 must al-
ways be satisfied in addition to and independent
of the data relation (1). The condition may be written
in the integral form
27 .

J (S — |S|)do = 0. 4
[}

Furthermore, one may seek a model which lies as
closely as possible to a particular preferred model
$(#), such as an isotropic distribution or, at the
opposite extreme, a unidirectional spectrum. In this
case one would require additionally
2

J (S — $)%do = 0. %)

o
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Alternately, one may seek the smoothest possible
model] by imposing the additional requirement

rﬂ[dis- (0)rd9 —o.
. lag

Essential for the technique is that at least one
of the additional conditions represents a positive
definite form, such as (5) or (6), which normally
cannot be satisfied simultaneously with the data.
Thus, the model is overspecified, and one can define
as the unique solution to the inverse problem the
‘‘optimal’’ model which minimizes some ‘‘error’”’
expression formed from a suitable weighted com-
bination of the various model equations, including
both data conditions and additional constraints.

In most cases, more weight will be attached to
the data conditions (1) than to subjective external
conditions of the form (5) or (6). In fact, in the origi-
nal Backus and Gilbert approach, Egs. (1) were re-
garded as rigorous side conditions, and the ‘‘error’’
function was formed only from the external re-
straints. In view of the statistical indeterminacy of
the data, however, some error in the data condi-
tions can normally be accepted. Accordingly, we
shall consider variable weightings for both data and
external conditions and adjust the weighting such
that the model satisfies the external conditions as
closely as possible, while still remaining statistically
consistent, within prescribed confidence limits, with
the observed data. [However, the rigorous side con-
dition (4) will always be satisfied exactly by assign-
ing to this an essentially infinite weight.]

It may be remarked that no inverse technique can,
of course, circumvent the basic difficulty of the un-
derspecification of the continuous distribution by
the finite data set. In all cases, a unique model
can be constructed only by introducing more or less
arbitrary additional restraints. The main advantage
of the Backus-Gilbert inverse technique is that it
defines clearly what is considered as a desirable or
undesirable model property through the specification
of an “‘error’’ function (more appropriately, ‘‘nasti-
ness’’ function), the minimization of which defines
the optimal model. This provides a tool for exploring
the sensitivity of the model to alternative additional
requirements, such as near-isotropy or near-unidi-
rectionality, by considering alternative nastiness
functions.

In the following sections, we shall examine the
consequences of the application of the nastiness
function based on the conditions (1), (4) and (5) to
the problem of estimating directional spectra. An
array of wave gages is considered as an example.
Using artificially generated data, it is shown how
the region of statistically acceptable solutions is af-
fected by array geometry and the variability of the
data estimates. Real data cases are also presented.

(6)
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2. Defining the optimal model

Simultaneous consideration of the conditions (1),
(4) and (5) suggests a nastiness function of the gen-
eral form

n = ae™e + 8 rﬂ de(s — |S|)»

0

27
+J des - 82,
[¢]

where

2w
e=d - J doSh 8)

[
is an n-dimensional column vector representing the
errors between the observed data d and the model
prediction, €" is its transpose, M is a positive definite
symmetrical matrix, which will be defined below,
and « and B are weighting factors. Since we wish
to satisfy the condition (4) exactly, we shall con-
sider (7) in the limit 8 — . [Formally, this turns
out to be simpler than including (4) as an exact side
condition and working with a Lagrange multiplier.]

The weighting factor « and the matrix M in the
first term in the right-hand side of (7) determine
the penalty one wishes to assign to a deviation be-
tween the observed data d and the model prediction,
relative to the penalty for a deviation between the
optimal model and the preferred model S, as ex-
pressed by the last term. This will depend on the
statistical errors associated with the observed
data d.

Consider the hypothesis that the optimal model
obtained by minimizing n represents the true model,
yielding the true data vector d. One can then define
an n-dimensional y-probability region R around d
such that [, p(€; d)de = -y, where p(e; d) is the proba-
bility of obtaining an error € = d — d in the esti-
mation d of d for a particular data realization. If
the data sample is not too small, the errors are ap-
proximately jointly Gaussian, i.e.,

ple; d) = 2m)~™2| V|2 exp{—12€"V e}, (9)

where the error covariance matrix V = (e€”) can
be estimated using standard techniques of time
series analysis (cf. Jenkins and Watts, 1968). The
“‘true’’ data d predicted by the optimal model may
then be regarded as statistically consistent with the
observed data d at the y-confidence level if d lies
within R. To make the region R unique it is normally
assumed that it is bounded by a surface of constant
probability density or, equivalently, constant

p? = €'V le. (10)

This definition yields the smallest region R for a
given confidence level y and is, in fact, the only
definition which is invariant with respect to linear

ROBERT BRYAN LONG AND KLAUS HASSELMANN

375

transformations of the data. The radius p, of R for
given v is readily determined by noting that the pro-
jection of the n-dimensional normal distribution (9)
on to the variable p? yields a chi-square distribution
with n degrees of freedom and standard normaliza-
tion (<p®>> = n).

Complementary to R one can then define for a
given data vector d the confidence region R as the
set of all true data d which are statistically consistent
with d. To the extent that V does not vary signifi-
cantly over R, this is the same ellipsoid as R but
with center at d instead of d. Both regions R and
R are defined by the inequality

p* = €Vle = @ -~ ATVIE ~ d) < p, (11)

with either d (in the case of R) or d (in the case of
R) regarded as fixed.

Returning to the general structure of the nastiness
function (7), we now consider the particular problem
of determining the optimal model which has a minimal
deviation from a favored model S, satisfies the con-
dition (4) exactly, and at the same time lies in the
confidence region R of d, i.e., satisfies the inequality
(11). Unless the favored model § itself is already
consistent with the data, the minimal solution will
normally lie on the surface of R, and we can there-
fore replace the inequality in (11) by an equality.
The side condition (11) can then be incorporated
in the nastiness function formed from the conditions
(4) and (5) as an additional term multiplied by a
Lagrange multiplier «. This yields the general form
(7) with the matrix in the first term given by M
= V-1 We shall adopt this form for M in the follow-
ing, thereby providing a simple statistical interpreta-
tion of the optimal model obtained by minimizing
(7). The value of the Lagrange multiplier « for given
py is determined by the side condition (11). Numeri-
cally it is more convenient to reverse the procedure
and use (11) to determine p,, given «. The appropri-
ate value a for given p, can then be determined
by iteration.

Taking the variation of Eq. (7) yields an equation
for the minimal solution:

o = r” de{2(s — $) + 4p(S — |S])

0
— 20€"Vb}8S = 0,

where we have used, from (8),

27
de = — J dobss.

0
Since S can be arbitrarily chosen, this requires
S + a€™Vib for $>0
510 = {(1 + 4B)7[S + a€™V ] for S <O.
In the limit as 8 — o, the expression for negative
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FiG. 1. Wave gage array geometries showing five-element
North Sea array (©) and hypothetical six-element star array (CJ)
used in some of the numerical experiments. The radius of both
arrays is 90 m.

S approaches zero, and we obtain

S(6) = (5 + b"™N)H(6), (12)
where .
M T
H(9)=[1 if (S%tb)\)>0 (13)
0, otherwise
and
= aVle. (14)

Substitution of (12) and (14) in the expression
(8) for the error yields a set of equations for \:

2

d=a'VA+ J " do(S + b™NHb. (15

0

Once the coefficients A are determined, S follows
from (12) and (13). The solution of (15) represents
a nonlinear problem because of the implicit depend-
ence of H on A. Moreover, the covariance matrix
V must be defined by the solution itself. However,
a solution can be readily constructed numerically by
the following iterative scheme: A zeroth-order guess
at A yields a zeroth-order solution for S(6) and H(9)
through Eqs. (12) and (13). This function is used
to estimate the covariance matrix V using standard
spectral estimation formulas (cf. Jenkins and Watts,
1976). With V and H given, Eq. (15) represents a
set of linear equations for A, the solution of which
yields the first iteration for A, and so forth. An opti-
mal solution is determined in this manner for fixed
«. As indicated earlier, a second iteration loop is
then needed to determine the « value corresponding
to a given confidence limit p,. Experience with this
scheme applied to wave gage arrays has shown con-
vergence to be reasonably reliable and rapid. In
some cases, the iteration in A showed a tendency
to overshoot, and better convergence could be
achieved by replacing the new A value at each itera-
tion step by the mean of new and old values. The
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iteration in o was based on a linear interpolation/
extrapolation scheme. Typically, seven A iterations
for fixed « and four or five « iterations were neces-
sary to complete the solution to satisfactory ac-
curacy.

3. Application to wave gage arrays

As a test, the inverse technique was applied to a
five-element directional array of bottom pressure
transducers deployed in the North Sea during
JONSWAP 75. The measurements constituted a
pilot project to measure the directional properties
of swell in shallow water in order to distinguish be-
tween several possible mechanisms of swell decay
(cf. Hasselmann et al., 1973; Long, 1973; Shemdin
et al., 1979), Due to technical difficulties an orig-
inally planned array of instruments could not be
completed in 1975 and the residual array (shown in
Fig. 1) was not optimal. Nevertheless, the data pro-
vided a suitable case for testing the usefulness of
the inverse technique under conditions of rather
weak resolution often encountered in practice.

The data set consisted of all combinations of cross
spectra and autospectra obtainable from the five in-
struments. The basic spectral estimates obtained by
standard FFT methods from 20 min records had 18
degrees of freedom, a Nyquist frequency of 1 Hz,
and a bandwidth of 1/128 Hz. To obtain higher sta-
tistical stability, however, three adjacent frequency
bands were averaged, yielding 54 degrees of freedom
at a resolution of 0.0234 Hz.

Writing the array equations (2) in the form

Eof) _ J

dos(e,
E() (6.5)

0
X exp({—ikr; cos(6 — 6;)1,

Lji=1,...,m,

(16)

the basic data set d is seen to consist of the
m(m — 1) = 20 cospectral and quadrature spectral
components of the normalized cross spectra E;/E, -
i #j; the m further equations for i =/ yield the
single normalization condition

| = JZW d6S(6.f). a7

0
This can also be treated formally as a data equation,
the only difference from the other equations being
that the statistical error of the data value 1 is iden-
tically zero. [A smail formal complication arises be-
cause the matrix V becomes singular if this is done,
whence the matrix M = V! in (7) does not exist.
For theoretical consistency in the development be-
ginning with (7), Eq. (17) should be treated as an
absolute constraint, rather than a data equation, and
incorporated into m using another Lagrange multi-
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plier. This and the vector A, defined by (14), be-
come the parameters of a model which is, in fact,
identical to that obtained by formally treating (17)
as a data equation and ignoring the resulting singu-
larity of V. This complication is purely a formal
question of interpretation without practical conse-
quence since V need not be inverted in solving the
final model equations (15).}

Computation of the elements of the covariance
matrix V involves evaluation of the covariances of
various estimates of cospectra and quadrature spec-
tra, normalized in terms of the autospectra. Recipes
for computing these covariances are given in Jenkins
and Watts (1968, Appendix A9.1and { 3.2.5)interms
of the true cross spectra of the process; at the mth
iteration, these are calculated by integrating (16)
using § = §™. An important property of V is that
it is proportional to 1/v, where v is the degrees of
freedom of the spectral estimators Ej;.

The constraint p? = p,* is evaluated from a table
of percentage points of the X,? distribution. Taking
v = 0.8 (the choice of y is to some extent arbitrary;
a smaller value has the same effect in the numerical
cases studied as a larger number of degrees of free-
dom in the spectral estimates), we obtain for the
five-element array of Fig. 1 [u = m(m — 1) = 20,
the side condition (17) not being counted], p,* = 25.
For the hypothetical six-element array used in some
of the numerical experiments below, u = 30 and
py? =~ 36,

4. Results for North Sea data

Some examples of optimal model fits for the North
Sea array are shown in Fig. 2. Directional distribu-
tions were computed for a wind sea peak (Fig. 2a)
[f =0.156 Hz, wavelength = 60 m] and a swell
peak (Fig. 2b) [f = 0.109 Hz, wavelength = 101 m],
both taken from the same spectrum (Fig. 2¢). For
each data set, two favored models were tried, an
isotropic form [.§ = 1/(27)] and one with a single lobe
centered on the apparent dominant wave direction.
The position and shape of the lobe were determined
by a preliminary calculation which least-squares
fitted a five-harmonic Fourier expansicn of S in 8
to the data set [the Fourier-Bessell technique of
Barber (1963)]. The principal lobe of this fit was re-
tained, the rest of the distribution set equal to zero,
and the result renormalized and used as S in the
subsequent analysis.

In both cases, the optimal model approaches the
favored model S as closely as possibie under the
constraints set by the data. Thus a comparison of
the optimal models for the two favored cases, which
were chosen to represent fairly opposite extreme
situations, should give some indication of which fea-
tures of the directional distribution are fairly inde-
pendent of and which are more strongly governed
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FiG. 2. Optimal spectral model fits to the North Sea data.
Favored models (see text) are indicated by discrete points
(x,0), the optimal fits by curves (solid and dashed, respectively):
(a) example of a wind wave peak; (b) example of a swell peak
(see text); (c) frequency spectrum indicating wind sea and swell
peaks corresponding to cases (a), (b).
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FiG. 3. Experiments with exact data. The mput test spectrum
Swis indicated by the circles, the favored model $ by the crosses.
Optimal model fits are shown by curves: dotted lines, v = 30;
dashed lines, v = 180; solid line, » = «. (a) Isotropic favored
model, $ = ¥m; (b) effect of misleading favored model, $
= Cy cos?[}2(8 — 317°)].

by the additional assumptions needed to invert the
data set. X !
Despite the differences in §, both optimal models

reproduce the same principal features: 1) a principal -

lobe centered near the direction indicated by the
Fourier-Bessell least-squares fit, and 2) spike-like
side lobes. The former is believed to represent a
directional maximum actually present in the wave

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 9

field. The latter appear to result from a folding of
this maximum by the antenna beam pattern of the
array; the side lobes appeared in all spectra ana-
lyzed, independent of the choice of S, and appar-
ently represent a basic limitation of the array geom-
etry. It should be noted in this context that the struc-
ture of the antenna beam pattern, defined by
Gky=1+ Y 2 exp(—ik ;)
i J i

(Barber, 1963) is reflected in the optimal model it-
self, which has the form of an expansion—for posi-
tive S —in the same set of basis functions,exp(—ik - ry).
Although the present technique generally yields
higher directional resolution than the classical an-
tenna beam method and avoids negative lobes, it
appears that the problem of generating spurious
(positive) side lobes is not entirely avoided.

5. Numerical experiments

To clarify this point, a set of numerical experi-
ments was conducted to investigate the following
specific questions:

(i) Given a set of exact, noise-free cross spectra
from the five-element array of Fig. 1, what is the
effect on the solution of varying degrees of freedom
(i.e., varying confidence regions) and different
cho;ces for §?

(i1) Given artificially generated data containing sta-
tlstlcally consistent errors and no «¢ priori knowledge
(.e., S = Vam), how does the accuracy of the re-
covered solution respond to varying degrees of free-
dom in the spectral estimators and to changes in
array geometry?

A test spectrum typical of a wind sea near the
spectral peak (Mitsuyasu et al., 1975)

Sw = Cy cos2[V5(6 — 137°)]

(where 6 is measured in degrees clockwise from
north and C, is a normalization constant) was used
for most of the numerical experiments. A second
model,

SS = C1 + Cg COS4(0 - 540)
+ Co{1 + cos[18(6 — 11491} M(6),

consisting of a narrow 20° swell peak superposed
on an undulating background, was also used. The
swell component was represented by the last term
containing the masking function

1, 104° < ¢ < 124°
0, otherwise.

The constants C,, C, and C; were adjusted so that
one-third of the wave energy was in the swell peak
and two-thirds in the background.

The wave frequency assumed in all cases corre-

M) =
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_ Fic. 4. Experiments with artificial noisy data. Input test spectrum Sy and favored model
S are indicated by discrete points (O, X, respectively). Optimal model fits for three realiza-
tions are shown in each panel: (a) five-element array, » = 30; (b) six-element star array,
v = 30; (c) five-element array, » = 180; (d) six-element star array, v = 180.

sponded to a wavelength of 100 m. For each experi-
ment, the set of ‘‘true’’ cross spectra E;; were cal-
culated by numerically integrating (16) with S = S,
or Sg. These results were used directly as ‘‘ob-
served’’ data to investigate question (i). To investi-
gate (ii), the ‘‘observed’’ data were formed by adding
a set of statistically consistent errors to the “‘true”
data. In generating the set of errors e allowance
must be made for the fact that the components of
e are not mutually independent (the covariance ma-
trix V is not diagonal). This can be accounted for
by representing e as a linear combination of the sta-
tistically orthogonal normalized eigenvectors of V.
The coefficient of each eigenvector can then be gen-
erated independently by selecting a random num-
ber from a Gaussian population with zero mean and
variance given by the corresponding eigenvalue.

Figs. 3 and 4 illustrate the results of the numerical
experiments. For Fig. 3a, the optimal model was
fitted to exact data for the five-element array of Fig.
1, assuming spectral degrees of freedom » = 30, 180
and « and § = Y. In each case, the solution has
been pushed as close to § (by the variational prin-
ciple inherent in the model) as the constraint

€"Vie = p,? will allow; since V™! is proportional
to v, | €| must diminish as v increases, and the solu-
tion looks progressively more like the test spectrum.
The v = = case indicates the limit of the ability of
the optimal model to recover this test spectrum,
given this array and no a priori knowledge. Although
the fit of the optimal model in the limit of zero sta-
tistical error is excellent, it is seen that the limited
spatial sampling still allows the existence of weak
side lobes.
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FiG. 5. Experiments with artificial noisy data. Input test spec-
trum (circles) is a sharp swell beam superposed on an undulating
background. The favored model (crosses) is assumed isotropic.
Dashed line, v = 180; solid line, v = =,

Fig. 3b shows the effect of a misleading choice
for §, in this case, a cos?® lobe identical in shape
to S, but centered at = 317°, 180° away from the
center of the Sy distribution. At 30 degrees of free-
dom, a second major lobe is allowed in the solution,
in direct response to the erroneous S distribution.
At v = 180, the constraint on €”V—'e tends to domi-
nate, and the secondary lobe is largely attenuated.

Fig. 4 illustrates the effects of statistical noise
in the data and a change in array geometry. For
each of the four panels, three sets of statistically
consistent artificial data were generated; in Figs.
4a and 4c for the five-element array of Fig. 1, and
in Figs. 4b and 4d for the hypothetical six-element
star array. The results reinforce the significance of
noise in controlling model performance. At v = 30
(Figs. 4a and 4b) the optimal models differ rather
grossly from the input test spectrum, and consider-
able variability exists between realization. The im-
proved antenna beam pattern of the six-element star
alters the results, but at this level of statistical un-
certainty, the performance of the star is not obvi-
ously superior. At v = 180 the variability between
solutions for the different realizations is much at-
tenuated, and the agreement with the true model
greatly improved. The performance of the six-ele-
ment star is clearly superior to that of the five-ele-
ment array, particularly with respect to side lobe
suppression. ‘

Finally, Fig. S shows the optimal model fit to the
test spectrum Sg, for the six-element star array for
noisg-free data, v = «, and noisy data, » = 180, tak-
ing § = Y7, Despite the presence of a peak con-
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“siderably sharper than the classical antenna resolu-

tion, the optimal model agrees very well with the
true distribution in the noise-free case. However,
the addition of relatively weak noise results in a
significant deterioration of the fit.

In conclusion, it appears that the side lobes occur-
ring in the directional distributions of the real data
cases shown in the examples of Figs. 2a and 2b are
a consequence of the array geometry in conjunction
with the noisiness of the spectral estimates. Much
improved fits can be expected for longer time series,
yielding a larger number of degrees of freedom.

6. Summary and conclusions

We have considered the problem of estimating
a function (specifically, the directional spectrum of
a gravity wave field) from measurements of integral
properties of that function when those measure-
ments are subject to statistical variability. Given
the true spectrum, the statistical properties of the
data errors are known, and a test of the hypothesis
that any given model § is the true spectrum can
be formulated. The appropriate measure of the fit
of the model to the data is the quantity p?> = €TV~ ¢,
where € is the vector of implied statistical errors
in the data and V-1 is the inverse of the error co-
variance matrix. This quantity is distributed as X .2,
where p is the number of linearly independent meas-
urements in the data set. It is then possible to es-
tablish a critical value of p? beyond which the valid
model hypothesis must be rejected at any specified
level of confidence.

For any data set, there exists in general an in-
finity of valid models; of these, we have defined
as optimal that one which minimizes some (arbi-
trarily chosen) positive definite integral property of
the model (and in addition satisfies the side condi-
tion that the distribution is not negative). One such
property, [ d6(S — S)?, where § is some favored
model, has been examined in detail, and the resulting
procedure, applied to gravity wave-gage arrays, has
been used both to analyze real data and to explore
the subset of valid models under varying conditions
in a series of numerical experiments. For weak noise
levels, good results were obtained for a variety of
directional spectra, including distributions con-
siderably sharper than the classical antenna pattern
of the array. The fit is relatively insensitive to the
choice of S. However, the quality of fit is strongly
dependent on the statistical stability of the spectral
estimates, indicating that good directional resolution
from multicomponent arrays requires considerably
longer time series than are customarily used for one-
dimensional frequency spectra.

Although the subject has been treated largely in
the context of surface gravity wave spectra, the
ideas presented are applicable to any problem in-
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volving the fitting of models to statistical data which
estimate integral properties of the model.
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