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Weak Coupling in Statistical Geophysical Systems

1. Introduetion

The development of the geophysical sciences in the recent years is inconceivable without the use of digital com-
puters. Aside from the analysis and interpretation of the large data sets which usually are obtained in geophysical
experiments, the computer is used for simulating physical systems to understand their behaviour in space and tine.
Prominent examples are the general circulation in the ocean and atmosphere or the dynamics of the synoptic tur-
hulent eddy field in the ocean. As a common feature these systems are governed by strongly nonlinear dynamics.
However, nature provides a variety of problems where the evolution of the system can be studied to a large extent
by analytical means. Generally, these problems can be formulated as interaction of weakly coupled systems. In this

note T will briefly review some results from weakly coupled statistical systems and present some recent applications.

The concept of treating weakly coupled systems is very simple. Consider a system described by a state vector
¢ () — (15 g5 ---) Which is In interactive contact with a set of external (i.c. considered as given) fz'(:lri.e Pty = (g,
Yy ---). The veetors ¢ and y may be field functions by dependence on a spatial coordinate z. Suitable scaling of f’hc
equations of motion governing ¢(t) will reveal a small parameter ¢ << 1 characterising the weakness of the céupling.
The evolution of the system will be governed by equations of motion

8 + Hp = eAD (g, v) + 243 (¢, v) + ... m

which may be assumed to be of first order without loss of generality. The operators H and A™ are of order unity.

The use of only one coupling parameter is a simplification, in general there is one for each type of coupling.
Suppose now that equation (1) can be solved for £ = 0, the solution ¢® will be called the free state of the

system. A solution to the full equation of motion can be attempted in the form of a perturbation expansion

p = @O + g 4 2@ + ., (2)

with the initial condition g(t = 0) = ¢®. In general the solutions ¢, » = 1, contain secular contributions which
grow indefinitely in time. Since the perturbations of the solution ¢ about the free state ¢(? are required to he small,
the occurrence of secularities leads to an integration time limit for the validity of the expansion (2). However, the
nonuniform behaviour of the perturbation series is not a disaster because the secular contributions are just those
which reflect the effect of the coupling. The higher oder solutions can be interpreted as being forced by interactions
of the free state and the external fields. Secular terms can then be reinterpreted as a slow change of the free state as
the consequence of the weak coupling. This heuristic procedure can be put in a more rigorous form by using a multiple-
scale representation of the time variable (BogoLsuBow and MITROPOLSKI [1], SANDRI [17]).

Many geophysicl systems appear to be erratic in space and time. Only mean values are resolvable in experi-
ments. Then the state vector ¢ and possibly also the external fields y must be regarded as random variables. In
this case it is desirable to construct equations deseribing the evolution of the probability distribution p(p, t) of ¢
at time £ or even the multivariate probability distributions p(g;, ¢, ... s Qs ts). Equivalently, equations of motion
for the (infinite) set of correlations

O (E) - Oqi, (1)> = [ d@ plp, 1) Oy, . O, » i = i — {P3p (3)

and the multiple time correlations {dp;(t,) ... d¢;,(t»)> may be considered. These are easily derived from the equa-
tions of motion (1). In most problems one would be satisfied to predict the variances {dq.(t) d¢;(t)> which charac-
terize the statistical state of the system to the lowest order. If the equations of motion contain non-lincarities the
evolution equations of the variances are not closed. One is faced then with an infinite hierarchy of evolution equations
which generally can be solved only if a closure hypothesis is imposed. In contrast to strongly coupled statistical
systems (turbulence) this problem is settled for weakly coupled systems occurring in geophysics.

In the applications considered in this paper the operator H is linear. The free state is a linear wave system
(or a steady state system if H is zero). Problems with a non-linear H are conceivable but hardly accessible by
analytical methods. The concept of solitons can he viewed as a first step in this direction. Solitons are a class of
exact solutions to nonlinear dispersive systems and can be superposed in a similar way as linear waves (see e.g.
ScoTt et al. [18]). Attempts have been made to apply the soliton concept to geophysical systems but to my knowl-
edge weak interactions among solitons and external fields have not yet been studied, not to mention the statistical
part of such a problem.

There are two prominent cases to which many weak coupling problems in geophysics can be reduced. The
{irst case treats the weak coupling of two systems with widely different intrinsic time scales. This case turns out
to be identical to the problem of the diffusion of particles in a turbulent fluid already treated by Tavroxr [ 19]. Since
this problem has recently been reviewed by HassrrMany [7] the emphasis of this note will be put on the second
case which treats the weak coupling of linear systems with comparable intrinsic time scales. 'This problem can be
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solved by the theory of resonant interactions between random wave fields. The basics of this theory have been
formulated by PrirrLs [15] studying non-linearly interacting phonons in solids.

1t will be convenient forthe formal analysis to remove the linear term in the equations of motion by transforming
to interaction variables

y = el . ()
which yields
U == eBOG, p t) + 2By, p, 1) + .0y BO (g, p, t) == ellt A(e= Tty 1) . (3)

2, The diffusion problem

Assume that y(t) is rapidly fluctuating and can be regarded as a statistically stationary random variable for times
small compared with the intrinsic time scale of the state (). Statistical stationarity means that correlations are
invariant against translation in time. The first order problem

8:)((” = B(l)(l(O): p, 1) = p{t) (6)

1s then identical to the diffusion of a particle in a turbulent fluid where ¥ represents the position vector of the particle
and B(t) the turbulent Lacrancian fluid velocity. The forcing function f(t) is also statistically stationary with ex-
pectation value

{p)y = constant (7)
and covariance function
By(r) = <B:lt) fst +7)> - (8)

Tt is a well-known result (Tavror [19]) that the response to stationary forcing is non-stationary. Straightforeward
integration of (6) yields a linear increase of expectation values and covariances

Gy = KB, L@ Py ~ t+f dr Bj(z) . ()
The second relation is an asymptotic time limit with respect to the rapidly fluctuating field p(t) (or p(t) respectively).
7 on
The time t is large compared to the integral correlation scale max | Jf dr Ry(r)| (Ri(0) Rj;(0)) =12 of f(t). At the
i,j -0

)
same time the analysis applies only to small deviations ey from the free state xO which requires ¢ <& ¢!, This
limit on the validity of (9) can be removed by interpreting the infinitesimal increments as rate of change of a slowly
varying state described by a probability distribution p(y, t). Tt has been shown (CHANDRASEKHAR [3]) that p(y, )
is governed by a FORKER-PLANCK egquation (heat conduction equation)

. d 0 d .
0p + - 0p) — Dy p =0 (10)
iy ]
f the expectation values <y,> and the covariances {dy;Sy;> grow linearly for infinitesimal times. The advection of
probahility in the phase space y; is given by the velocity

3
vi{y) =<fy ——Dy (N
4 ﬂ / dX?’ J )
and the diffusion of probability by the tensor
oo
Djj(y) = v f dr Ryx) (12)

which is equal to the spectral density of the forcing at zero frequency. Thus the long-term behaviour of the system is
qoverned by the low frequency components of the forcing. For a more detailed review of the diffusion problem and
applications in geophysics the reader is referred to HaSSELMANN [7].

3. The wave interaetion problem
The ocean, the atmosphere and the solid earth support a variety of wave motions. Surface gravity waves on top of
the ocean are a familiar phenomenon. There are other wave types which fill the interior of ocean and atmosphcre,
such as internal gravity waves, acoustic waves and planetary waves. The solid earth allows propagation of seismie
waves. It should be emphasized that waves by definition can only exist if interactions are weak.

3.1 The radiative transfer equation
Linear waves arc characterized by an amplitude a, a wavevector £ and a frequency « which are related by a dis-
persion relation w = Q2(%). Large scale inhomogeneities (compared to period and wavelength) of the wave carrying
background can be treated by WKB methods. Waves appear then in form of slowly varying wave trains which may
locally be represented by wave groups characterized by a local dispersion relation o = Q(k, z,t). A wave gronp pro-
pagates with the group velocity

e

P 13
ST ok, (13)
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On the trajectory wavevector and frequeney change according to

P .80
e T w (1

while changes in amplitude are conveniently expressed in the form of action conservation (Wrrrnam [20],
BusrierToN [21)

E o (. E
d( )—{ o, (x&-“):f(). (15

The wave energy I = la(k)|? is a quadratic functional of the amplitude. Equation (15} states that wave action
S (E[w)dx is an adiabatic invariant (see e.g. LANDAU and Livsuirz [8]) for slowly varying linear wave groups.

It will soon become apparent that the function appropriate to deseribe the state of a weakly interacting ran-
dom wave field is the action spectrum

Nk, x, t) = (a®)® /o . (16)

This second order wave correlation can loosely be interpreted as number density of waves in the phase space (k. x).
Its evolution is governed by a radiative tmnsfer equation

.{e[ i -k ,,“} (b, @, t) = S(k, 2, ) (7)
which is the genemlzzatmn of action conservation (15) of linear wave groups. Interaction processes have been acconnted
for by the source function S(k, x, {) which determincs the local change of action of the wave groups due to weak
coupling between them and with external fields.

Before proceeding with the derivation of 81 will briefly focus on the obvious resemblance hetween an en-
semble of interacting wave groups and an ensemble of interacting particles. Indecd, equations (13) and (I4) are
HaMinroNian equations with a Hamivronian £2(k, «, t) for a particle with generalized coordinate x and momentum k
and energy . Action conservation is then conservation of particle number and the radiative transfer equation is
analogous to transport equations (such as BoLTZMANN’g) governing the evolution of the particle distribution function
in phase space. We will see that the analogy becomes even closer when considering weak interaction processes in
the wawve field.

3.2 The evolution of wave correlations

The evolution of a weakly interacting wave system proceeds on two widely different time scales, the period of the
waves and a much larger interaction time scale. The perturbation parameter ¢ in (1) is the ratio of these time scales.
Usually, it is a measure a wave slope so that the theory applies to infinitesimal amplitudes. The operators 4™ aor
B® in equations (1) and (5) are then polynomial operators of degree n 4 1. To evaluate the source function & it is
convenient to projcet the state vector y and the equations of motion (5) into a normal mode base which is defined
as the base in which H is diagonal. Since H describes free linear waves it has purely imaginary eigenvalues

I, — imgu, . (18)
The normal mode expansion of the state vector is given by
7@, b) = X at) uyx). (19)

8
Normalization of the eigenvectors uy(x) is conveniently applied such that the wave energy is given by 3 |a*.
The projection operator onto normal mode amplitudes follows from the solution of the adjoint eigenvalue problem

Hu® = 1o (20)
since u, and #* can be chosen orthonormalized
[ de wduy = ;. (21)

In general the eigenvalue problems (18) and (20) have a threefold structure. The physical space (with coordi-
nate z) can be decomposed into a propagation space (with coordinate y) and a cross-space (with coordinate 2). In
the propagation space the system is homogeneous and infinite (or periodic), eigenfunctions are of sinusoidal form.
In the cross-space the waves are trapped and form standing modes. If the state vector eonsists of more than one
field component, an additional algebraic cigenvalue problem remains to he solved for the different wave hranches,
The eigenvector n(z) then takes the form

() = wk(y, 2) = Uk, qi(z) 6%, (22)
where » labels for each wavevector k the cross-space modes and ! labels the wave branches characterized by the
polarization vectors U ,l{,, Thus s = (I, k, v) and w},, is the dispersion funection Q,l(k) of the wave modes » and bran-
ches 1. 1f the state vector y is real, the sum in the representation (19) includes summation over the complex eigen-
vectors 4 = w¥ with eigenvaluc w_; = —w,.

Projection of the equations of motion (5) yields the rate of change of the normal mode amplitudes

(t) — @il {SG(O) + FG“)((I b) + ‘12(\’(’)((L b) } s (.3-;)
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where b, are the amplitudes ol the external ficlds in a suitable representation

il ) =2 N by ot 2h
r

and ({9 are polynomials of degree n 4 1, thus e.g.
G,‘\-l)(as b) - X Cigrgrtagag e~ (wsr L og)t + X feeby ¢ g o)t + ¥ C'Q"brb,' ¢ flor o)t (2.)5)

A lincar forcing term GO (D) has been included in (23). This must be small since the interaction concept is hased
on a free state for ¢ = 0. The solution to (23) can be obtained by a perturbation expansion

ay = ¥ + ea® + 2l + .. (20)

with initially a(f — 0) = a{”. This expansion contains secular terms which arise from resonances. Thus e.g. ¢l
confains the term
. s 1537750 B
D =1 3 CygrrtlPul) (27
where thie swin is restricted to components satisfying the resonance conditions
ws — Wy — Oy = 0 E—1 —k" =0. ’ (28
The latter condition follows from the homogeneity of the system in the propagation space. The {inear increase of
alD can be interpreted us a slow chanye of the free wave amplitudes due to interactions with other free wave components,
it is worth mentioning that visualization of the secular terms in the perturbation expansion in terms of inter-
action diagrams may be helpful (HasspLmann [6]). Thus the resonance (28) can be represented by two wave com-
ponents with “energies” wy and s+ and “momenta’ %’ and k", respectively, entering a vertex associated with
a coupling cocfficient (ye and one outgoing wave component with “energy” o, and “momentum™ & leaving the
vertex.
The analogy to colliding particles is hindered somewhat by the fact that the number of particles is not con-
served and the “energy” w, is allowed to have negative values. Further the true cnergy | ? and momentum kja /e
8 = 3 $§ 8 §
are conserved only if the coupling coefficients have a certain symmetry. For the interacting triplett (28) one finds

d . .
dt {xglagd® + Ngltg|® -+ agrag B} = a’s”':’.“:(’.'{“sc'r--s o T ogCps g+l o} (29)

for arbitrary o, Energy (x; = 1) and momentum (&, = kjog) are thus conserved if €' _yopfw, is symmetric in the three
indices s, s and 8" and the corresponding wave components satisfy the resonance conditions (28). Indeed it is
observed in most applications that the coupling coefficients €, ,, describing internal interactions in the
wave ficld show this kind of symmetry whereas the external coupling coefficients Cg" =~ have only the
trivial symmetry associated with the polynomial structure of (23). In general, the encrgy conserving internal
interactions can be derived from a variational principle (HassgrMany [6]) where synunetry of coupling coefficients
is a trivial by-product.

Equations of motion for wave correlations {a, ... @z, are readily obtained from (23). The evolution of the
sceond order correlation is governed by

bl = ot {60y + 60> + ) 4 (s = 8) (30)

But since GV is a quadratic polynomial of the wave amplitudes this equation already involves triple correlations
Cagtgttgs> even in the lowest non-trivial order. Thus one has to consider an infinite hicrarchy of equations. As in
turbulence theory a closure hypothesis is needed. There is no generally accepted scheme by which hierarchies
describing strongly non-linear systems can be cut short. A variety of hypotheses exist cach of which scems to
explain only limited aspects of experimental results. This dilemma is much reduced in the theory of statistical
wave ficlds. Because of the dispersive nature of wave propagation linear random wave fields are in a Gaussian
state, that is a state in which wave amplitudes are mutually independent. Weakly non-linear wave ficlds never
depart much from a (Gauvssian state. Tt has been shown by Pricocixu (16 that in the Limit of infinitely weak non-
lincar coupling the forcing correlations {GMayy can be determined under the assumption thut the lowest order amplitudes

. : o . 0 0 . . .
@\ are elements of a Gavssian ensemble. This implies that <af. ' aﬁ.n)> vanishes for odd n and becomes a sum if all

N1
possible products ((1(50,-) ai.(;)> <f(1,§l,:)a§,(:)> for even n (we assumc initially (¢, = (a{®> = 0 which remains so for
lonmogeneous systems due to o general property of the coupling coefficients).

If, in addition, the free wave amplitudes are uncorrelated with external fields we can evaluate the wave correla-
tions to any order in ¢ in terms of the initial second order correlation <(a{® a{®;. As with the amplitude equations,
the integration of the correlation equations yicld secular contributions which arise from resonances. Zhe second
order correlution asymptotically takes the form

Ltgty) ~ {@Oal0y b eS8, ({ Oty (DY) 4 e2{N (L aWal, Cal®al®y) - Sy({alOalDs ) Chhy)

S ,CBbY) - Sy(ChBBY) + Se(CBbbEY) Y + O(e) . 31)
The 8, are operators which have the form of scattering integrals involving the resonance conditions as d-functions,
The explicit structure will be illustrated in applications. The limitation in time (¢f <€ 1 or &2 < 1) for the validity
of the expanison can be removed by interpreting the lincar increase as a rate of change of a slowly varying correla-
tion {a,ay> on a time scale of orders ¢! or ¢72. This procedure yields a closed evolution equation for the second
order correlations

daay)y =— Sl 4o ‘SS -+ O(b") . (32)
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The somewhat heuristic approach to this equation presented here can be put on a mathematically fiemer ground
by using multipletime-scale methods (DAvIDSON [4]).

It should be mentioned that equation (32) is irreversible with respect to time and thus allows the deseription
of a system which evolves towards an equilibrium. This is not the case for the exact infinite hierarchy. This is
a common feature in statistical mechanics: by smoothing the corrclations (neglection of cumulants implied by the
Gaussian hypothesis) irreversability is introduced and equations are obtained which describe the macroscopic
behaviour of the system,

The statistical description of a weakly interacting wave field can be simplified further if the free state cun be
reyarded as statistically homq;eneoua (in the propagation space) and stationary. This means that correlations are
nvariant against tmnglations in the propagation space and in time. Then the wave field is completely described by
he action spectra Ny = NJ(k) of wave branch I and mode » defined by

’2' {agryy == Oss N 4 (33)

Equation (32) then reduces to a local evolution equation of the spectra Ni(k) which constitute the source function
8 introduced in the radiative transfer equation (17).

3.3. Applications

The weak interaction theory has found many applications in the recent years in oceanography because advances in
measuring techniques have revealed that considerable amount of energy of the oceanic motions in the deep-sea
is stored in the form of waves. For illustration T present some applications concerning the oceanic internal wave
field. Internal waves exchange energy and momentum with low-frequency motions by means of wave-induced
YeyNoLDs-stresses. This is of considerable importance for the understanding and modelling of the large scale
niotion, i.c. the general circulation pattern and meso-scale synoptic eddies. Interaction processes with the wave
field must be accounted for in numerical models of the circulation in form of carefully defined parametrizations.
A detailed understanding of the energy balance of the wave field is required, i.e. the generation, transfer and dissi-
pation processes affecting the wave ficld must be studied. In this task the weak interaction theory turned out to
be a powerful tool (MULLER and OLners [11]).

3.3.1 Generation of internal waves in the seasonal thermocline

Two generation mechanisms have been proposed to explain the occurrence of high-frequency internal waves which
are trapped in the seasonal thermocline of the ocean: resonant generations by atmospheric turbulence and the weak
coupling of surface and internal waves.

The source function of atmospheric generation is of the form §, in equation (31)

Sutnly — fdk’ [ de’ T3E, o) dk — k) d(wr, — o) Fank’, 0’), (34)
where Fu, (&, ®)is the spectrum of the turbulent atmospheric field, such as pressure, windstress or buoyancy flux
at the sea surface. Insufficient knowledge of the spectral structure of Iy, in the wavenumber-frequency region of
internal waves presently prevents a detailed theoretical investigation of this mechanism.

Generation of internal waves by resonunt interaction of two surface wave components leads to a source function
emerginy from the term Sq in (31) by evaluating the quadruple correlation of the external field for a Gaussian wave
field. This yields (OLBERs and HurTERICH [14])

Sik)y = fdk" [ dk” Tk, ¥, k") Ok — k" — k) 0w’ — " — wg,») Ny(k') Nyk”'), (35)
where N (&) is the (two-dimensional) surface wave spectrum. This quantity is well-known from observations and
parametrical models have been found. Evaluation of the scattering integral (35) yiclds a parametrization of the
transfer rate in terms of spectral parameters of the surface wave field which in case of wind sea may further be
related to the surface wind speed. Some features of observations can be explained by the mechanism, such as the
burstlike oceurrence of internal waves in the seasonal thermocline which might be due to the very strong dependence
of the transfer rate on the local sea state: the rate is proportional to the fourth power of the significant wave height
and the seventh power of the local wind speed (in case of wind sea). The process will be investigated in the Jasix
experiment.

3.3.2 Energy balance of the deep-sea internal wave field

Observations of the internal wave field in the main thermocline of the ocean lead to the conjection of u wniversal shape
and level of the internal wave spectrum (GARRETT and MUNK [5], MULLER et al. [12]). This is a surprising result in
view of the large number of the interaction processes which may affect the state of the wave ficld. However, even
in the vicinity of possible generation regions, such as the sea surface, rough bottom topography, continental slopes
or strong shear currents, the shape and the level of the spectrum do not show significant differences from a universal
form (Wunscrr [21]).

A first conception of a balance of the universal spectrum evolved from the investigations of the resonant
interactions within the internal wave field (OLBERs [13)]). The source function for triad interactions

S(ky = f k' J dk” {T' (b, ', k") 0k — k" — k") 8(w — ' — ”) [N'N" — NN' — NN"| +
+ 21k, K, k) 8k — & + k) 8w — o + ") [N'N” + NN’ — NN"]} (36)

is derived from the term S, in equation (31). (The propagation space is here — in contrast to the last example —
the three-dimensional space. This is an adequate simplification since observations showed that the vertical scales
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of the waves are small compared to the vertical scale of the stratification). Notice that ¢nternal resonant interactions
conserve the total energy (not actionl), i.e.

SdkwSk) =0 (37)
hut for a given spectrum N (k) there will generally be a transfer of energy within the spectral region, i.e. S(k) will
show sources and sinks. In a state of equilibriumm these must be balanced by external generation and dissipation
processes. Following these ideas a rough bhalance could be proposed by which internal waves draw energy from the
low-frequeney oceanic shear current and loose this energy after non-linear transfer by wave breaking (O1uRrs [13],
Mturer and OLsrrs [117).

At present other generation processes cannot be excluded. The general picture which has emerged from a de-
tailed investigation of the scattering integral (McComas and BreruertoN [9]; McComas [10]) can be expressed as
follows. Any deviation from the equilibrium state results in a large transfer of energy to the spectral dissipation
region, i.e. wherever energy is supplied from external fields it is very efficiently transferred to a region where it
can be dissipated by wave breaking. Time scales of the non-linear transfer frequently lie below the wave period
and the weak interaction condition becomes questionable. A simple illustration of this conception is a system of
connected tubes filled to the top with water: wherever water is supplied an cquivalent portion is immediately
spilled at the lowest out-flow and the equilibrium shape is restored.
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