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Weak Coupling in Statistical Geophysical Systems 

1. hibroduction 

The developirientJ of the geophysical sciences in the recent years is inconceivable without, the iise of digital oo1ii- 

~~i i te rs .  Aside from the analysis and interpretation of t'he large data set's which nsually are obtained in peophysic!ixl 
c.x1xrinients7 the con~pnt~er is used for sim dating physical syst'ems to underst'and their hehaviolir in S~JR( 'C  and tii~lr. 
I'roiiiinent esaniples are t,he general circulation in tjhc ocean and at'niosphere or the dynaluics of the synoptic tlir- 
\)iiIent, eddy field in t'he ocean. As a coninion featiirc these system are governed by stmrlgly nonlirieat. tlyrlaillicts. 
.However, nature provides a variet'y of problem where the evolution of the system can be st,iidied to a Inrge est,ent, 
1 ) ~  analytical means. Generally, these problem can be formulated a's int~ract ion of weakly co?rpZ~d s y s t v ~ ~ ~ s .  rn tIiis 
note T will briefly review some results from weakly coupled statistical systems and present soille recacnt applicxt ions. 

The concept' of treating weakly coupled systems is very simple. Considcr a syst,eiri descr.il)cyi h;y a ,qf,rtr ?!p(;tor 
(6) -~ (yl, y2, ...) which is in int.eractive contact wit,h a set of e r t e m d  (i.c?. considered as gii~eii) f i c . l d . 9  v q t )  - .  ( tpl ,  

...I. The vcetors 9 and T ~ J  inay be field functions by dependence on a spatial coord,inate 5. rSnit:ll)Ic scnIi1ig of thc 
equations of motion governing F(t )  will reveal a small parainet.er E < 1 eharact2erising the .twaX')~eas of the coui)ling. 
'I'he e.volution of the sylsten, will be governed by equations of motion 

which niay he assumed to be of first order without loss of genera1it.y. The operators H and 
The iise of only one coupling parameter is a simplification, in general there is one for each type of coupling. 

system. A solrition to the full equation of motion can be attempted in t'he form of a perturbntioiz eqmitsion. 

are of order iiiiity. 

Suppose now t,hat equation (1) can be solved for F = 0, the solution p(O) will be called the f w r  . S t n i p  of the 

9 = p(0) + &?(I) + E % p )  + ... ( 2 )  
wit'h t8he initial condit'ion p(t = 0) = rp(O). In  general the solut'ions q,Ct1), 72. 2 1, contrtin seczilar co?itrib~ttiioir,s ivhicIi 
grow indefinikly in time. Since t'he pert'urbations of the solution rp about the free state g,(O)  are required t'o he slnnll ,  
the occurrence of seciilarities leads to an integration time limit for the validity of t,he expansion ( 2 ) .  However, t,he 
nonuniform behaviour of the pert'urbation series is not a disaster because the secular contributions are just' those 
which reflect, the effect of the coupling. The higher oder solutions can be interpreted as being forced by intrract'ions 
of the free state and t,he external fields. Xecular terms can then be reinterpreted as a slow ch,ai)ge of t h P  fwc. state as 
the consquen,ce of the u w k  coupling. This heuristic procedure can be put in a more rigorous form by using ;I iiiultiple- 
scale representation of the t'inie variable (BOGOLJUBOW and MITKOPOLSKI [ 11, sA4NDR1 [ 171). 

Many geophysicl syst'ems appear t'o be errat,ic in space and time. Only mean values are resolvable in  expcri- 
nients. Then t,he stat'e vector 9 and possibly also the external fields y must he regarded as random acct,ia,Dlw, In 
this case it is desirable t'o construct equations descrihing the evolut'ion of the probability distribution p ( q ,  t )  of y 
at, h i e  t or even the niiiltivariat'e probability dist,ribiitions p(y.il, t,, ... , p i f t ,  tn). Equivdent.lp, equations of nwt.ion 
for t'hc (infinit'e) set of correlations 

(:+I <6g;,(t) ... 8y;,,U)) = ./. dpp(y, t )  89 i, . * a  dg,i% 7 8yt = pi - (ot> 

and t.he multiple time correlat.ions (&pi,(tl) ... 8qi, ( tn ) )  inay be considered. These are easily derived from the equs- 
tions of motion (1). In  most problems one would be satisfied to predict the variances (dqi(t) 6Tt ( t ) )  which chnrac- 
tsrize t,he statist.ica1 stat,e of t.he system t.o t:he lowest order. If t,he e.quat.ions of motlion contain non-linc.arit.ies tlir 
evoliit'ion equations of t'hc variances are not closed. One is faced then with an infin,ite hierarchy ?f ~imZut,ioii epmtiorts 
which generally can be solved only if a closure hypot,hesis js imposed. In contrast to  st,rongly coupled statistical 
systenis (turbulence) this probleni is set'tled for weakly coupled systems occurring in geophysics. 

In  the applications considered in this paper the operator H is linear. The free st'ate is a linear 'ic.azv system 
(or R steady state system if H is zero). Problenis wit'h a non-linear H are conceivable hut hardly a c c e d d c  l q  
analytical niethods. The concept, of solitons can he viewed as a first step in this direct'ion. Solitoris arc n class of 
cxacat sollitions to nonlinear dispersive syst,ems a'nd can be superposed in a similar way as linear waws (see c g .  
SCOTT et al. [ 181). At>tenipts have been made to apply the soliton concept to geophysical systems but t'o lily knowl- 
edge weak int'eractions aniong solitons and external fields have not, yet been studied, not' to mention the statistical 
part of such a probleni. 

Thcre are two prominent cases to which inany weak coupling problems in geophysics can he r.etlirc~ct1. The 
l'i r s  t) O R  se treats t'he weak coupling of t'wo systenis wit,h widely differevit isztyinsic t,inJe xa2es. !i'his caw t iirns out, 
to he ident'iunl tjo t'he probleni of thc diffusion of particles in a t,urhulent fluid already treated  TAYLOR [ I ! ) ] .  Since 
this problem has recently been reviewed by HASSXLMANN [i] the emphasis of this note will be put on tho  second 
( * : ~ s c  which treats the weak coupling of linear systcnis wit'h compamble iiitrizsic time scrtlr~.s. 'l'his problvni can be 
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solved. by the theory of resonant intcractions between random wave ficlds. The basics of this theory have hcwi 
foriiiulated by I'wmtLs [ 151 studying non-linearly interacting phonons in solids. 

It will bc convenient forthe fornial analysis to remove the linear term in the equations of niotion hp transfortiling 
to interwt ion variables 

(4) 

i.5) 

x = elft I r 

iiLx -- c.B(')(x, I/), t )  + ?R(?)(x, y, f )  t ... , 
whic~h yic.lds 

B(?I)(x, ip, f )  = eTJl il(n)(e-nt x, i l l )  . 

2. The diffusion problem 
Asstiin(: t'hat y i ( t )  is rapidly flnctuating and can be regarded as a st'a'tist'ically stationary random variable for t'inics 
s~iiall compared with the intrinsic time scale of t'he st'ate ~ ( t ) .  Atat,istical stntionarity nieans t,hat correlations ar(% 
invariant, against tramslat'ion in t'inie. The first eider problr:ws 

= B(l)(X(O), ?/I, t )  =- P ( t )  (ti) 
i s  then identical to the diffusion of a particle in a turbul f l u i d  wherc x ( I )  represents the posit)ion vecttor of t'he particle 
and p ( t )  the turbulent 1,AC:RANC:ian fluid velocit'y. The forcing fimct>ion P ( t )  is also stat&ieally st,at.ionary with cs- 
pectatJion valiw 

! P ( t ) )  = constant' ( 7 )  

nij(z) = (Piit) /3j(t + x ) >  (8) 

m d  covariance f unc:tion 

Tt. is a well-lcnown result, (TAYLOR [ 191) t.hat th.e .response to station,aq forcing is n.o?2-stcrt,io,mr~. 8tm ight.fort'wa~.d 
integration of (ti) yields a linear increase of expectation values an.(! cnvnrian,ces 

( x ( j ' ( t ) )  = t @ t )  , @x'i''(t) sx'jl'(t)) - t f a t  X,(z) . (!)I 
+w 

T?M second wla.tion is an asymptotic time liniit with respect bo the rapidly fluctuating f i e l d  P i t )  (or y ( t )  respcct i ~ l ~ . ) .  

q'he t,inie t is large compared to the integral correlat'ion scale niax I J dz Rij(x)l (Rj i (0)  l?jj(0))-1/2 of /3(s). A t  the 

same t,inie the analysis applies only to small deviations ~ $ 1 )  from the free &ate x ( O )  which requires t c . - I .  This 
]inlit, on t'he validit'y of (I)) can be reinoved by interpret#ing the infinitesinial increiiient's as rate of change of :t slowly 
varying stat>e described hy  a probability distribution p ( x ,  t ) .  It has been shown (CHANDRASEKFJAR [:<I) that p ( x ,  t )  
i.r governed hy a FOKKER-PLANCK equation (heat conduction equation) 

~l 

i , j  -w  

f th,e expe ctn.tin7~ valu,es ( x i )  an.d the covariances (6xi dx,) grow l~imarl~y for infinitesinial times. The advection of 
I)rolmlrilit.y in the phase spare x i  is given by the velocit,y 

and the diffiision of proha1)ility l y  the tensor 
.I 

I);j(x) = 5- f d t  Rjj(t) (12) 
--m 

which is equal to t'he spectral density of the forcing a t  zero frequency. Thris the long-term behaviour of the system ,is 
pvemed hy the lo,ui frequency components of the forcing. For a iiiore det,ailed review of thc. diffusion prohleni and 
applications in geophyciics t.he reader is referred to HASSELMANN [ T I .  

3. The wa,vc! interaction prohlein 
The ocean, the atmosphere and the solid earth support a variety of wave motions. Surface gravity waves on top of 
the ocean are a familiar phenomenon. There are other wave types which fill the inbcrior of ocean and atinosphctrc, 
such as int'ernal gravity waves, acoustic waves and planehry waves. The solid earth allows propagat'ion of svisniic. 
waves. It, shoiild be emphasized that waves by definit,ion can only exist if int'eract'ions are wcak. 

3.1 The r a d i a t i v e  t r a n s f e r  e q u a t i o n  
Linear wave$ are characterized by an aniplitude a,  a wavevector k and a frequency Q which are related by a dis- 
persion relation w = Q ( k ) .  Large scale inhoinogeneities (compared to period and wavelength) of the wave carrying 
background can he treated by WKR methods. Waves appear then in form of slotuly varying wave trains which may 
locally be represented b y  wave groups characterized by n local dispersion relotion o : Q(k ,  x, t ) .  A wavc pronp pro- 
pagatcs with thc group velocity 
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U n  the trajvctory wavcvector and frequcricy change according to  

while changes in amplitude are conveniently expressed in the form of action conservation (\VJTITIIAM [x()], 
1ht!:TI IlfItTON [21) 

Thr wave energy E = 1u(k)12 is a quadratic functional of the amplitude. Ecination (15) states that ~ y t l * p  r r c . t j o i /  
f (E/rV)dx i s  a?i adiabatic inouriant (see e.g. LANDAU and 12imnm [8]) f o r  slozdy rargi~cg linenr ware g r o ~ ~ p .  

It will soon become apparent that the funct,ion appropriate to descv-ibe the state of a ~vrakly inttq-at t lllg ra11- 
t l ~ i i i  wave firld is the action spectrum 

This second order wave correlat,ion can loosely he interpret.ed as nuniber density of waves in. fh.e ylmse s - p t r ~ c  (,k. ;r) .  
Its etV~Uti0TL is governed by  cc radiative transfer equation 

which i.9 the generalization of action comervation (15) of linear wave gro~ups. Interaction processes have been ac.co~i~lt(.tl 
€or by trhe source function S(L,  x, t )  which det'eririincs t'hc local changc of action of the wave gro~ips duc to  \ \ ~ l <  
c:oupling between them and with external fields. 

Before proceeding wit.h t,he derivation of S I will briefly focus on t'he ohvioris resemblance hetwetw :in en- 
stmhle of interacting wave groups and an ensemble of interact'iag part'icles. Indeed, equations ( 1 3 )  and (14) arc  
HAMrimmian equations with a HAMrLToaian Q(k ,  x, t )  for a particle wit'h genernlized coordinate x and inonicrit UIII k 
and cnergy m. Action conservat'ion is then conservation of part'icle number and the radiative transfer equation is 
analogous t.o t.ransportz eqiiations (such as BOLTZMANN'S) governing the evoliit'ion of the part>icle dist'rihntion fiinctinn 
in phase space. Wc will set: that the  analogy becomes even closer when considering weak intcvxrt ion prowssrs in 
t.he WRVC field. 

%2 T h e  evol i i t ion of wave  co r re l a t ions  
'l'hv (.voliition of a weakly interacting wave system proceeds on two widely different time scales, the  pcriod of the 
waves and a 1n11ch larger interaction time scalp. The perturbation parameter E in (1)  is the ratio of these time scalcs. 
Usually, it is :L inensiire a wave dope so that the theory applies to infinitesinial aniplitndes. Thc opcratorh = l ( ' I )  or 
I W  in equations (1) and (5) are then polynomial operators of degree ?a + 1 .  To evaluate the source frinctiuii A' i t  is 
convenient to project the state vector x and the equations of iuotion (5) into a normal mode base wliicah is dcfined 
as the base in which H is diagonal. Since I? describes free linear waves it has purcly imaginary eigrnrnlries 

I l w ,  - in,,u, . ( IS)  

The t i o y t n a l  rnorle w p a m i o n  of the state vector is given by 
z(r,  1 )  = 2 C&(t) U,(P)  . 

S 

Nornixlizntion of thc rigen-\-rctors u,(T)  is conveniently applied such that thc wave energy is given by 2 luJ2. 
'I'hc projcctiori operator onto normal inodc ainplitudes follows from the soliit ion of the adjoint eipt~nvaliir 1)ro1~1(~n~ 

Jl",llP = i Q & S  (20) 

since u8 and ii' van he chosen orthonormalizpd 
J- dx usuSl = 8,,. . (21) 

In  general the eigenvaliie problems (18) and (20) have a threefold structure. The physical space (with coordi- 
nate x) can be decomposed into a propagation space (with coordinate y) and a cross-space (wit'h coordinate 2 ) .  In 
t'he propagation space the system is homogeneous and infinite (or periodic), eigenfunotions arc of sinusoidal forin. 
In  thc cross-space the waves are t.rapped and form &anding modes. If the stat,c vect.or consists of niorc than one 
field  component^, an additional a,lgehraic cigenva'lne prohlPrri remains t'o he solved for t,he different' wave 1)ranches. 
'I'hc cigtwvwtor us(%) then t.akcs the form 

where v lahcls for each wavevertor k the cross-space modes and 1 labels the wave branches characterized by the 
polarization vectors .?&. Thus s r: ( I ,  k ,  Y) and &, is the dispersion function Q:(k) of the wave niocles v and bran- 
~1ir.s I. If the state vector ;5 is real, the sum in the representation (1'3) includes sumination over the coinples fhigeii- 
v(vtors u - ~  = u: with eigenvaluc = -as. 

Projection of the equations of motion (5) yields the rate of change of the novmal mode aniplif?rdPs 
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The soiiiewhat, heuristic! approa(:h t'o this eqitat'ion present'ed here can be put on  a ~iintliciiiatica~ll~ fimier groriritt 
by using iiiultipletiirie-scale niethods (1)iivmsoN [4]). 

It should be iiicntioncd t,hnt equation ( 5 2 )  is irreversible with respect to t h e  and thus dlo\vs the tloscvriptioii 
of R syst'eiii which evolves towards an equilibriuni. This is not' the case €or the exact infinit,c hierarchy. This is 
a coniiiion feature in statistical niechariics: by snioothiiig the correlations (neglect'ion of cun~iilxnt's iiiiplicd by tho 
Osussiaii hypothesis) irreversahility is introduced and equat'ions are obtained which descriht thc iiiacrosc~o~iic 
hehaviour of the system. 

The st.atistica1 description of a weakly interacting wave ficld can be siniplified fiirt.hcr i f  the f r c r  stitte t'ttri. l ie  

y p d e d  u s  statistically homogeneous (in the propagation space) mid stutionnry. This means that correld <t t .  ions are 
nvnriant itgninst translat.ioiis in t.he propagation space and in time. TIL~TL the z i w e  f i e ld  i s  oonrpZct~i,y (1c.vr.ibed 6y 
lie ccctioti. sye(.:tra N ,  = NE(1;) of wave branch 1 and mode v defined by 

Equation (32) t,hen reduces t'o a lom1 evolut'ion equation of the spectra Nj(k )  which constitute the soiircc function 
A' introduced in the radiative t,raiisfer equation (17). 

-,:- ( c ~ ~ u ~ ~ )  = 8,9,,N, (33) 

3.3. A 1) pli  ca  t ioii s 

The weak interaction theory has found iiiariy applicittions in the recent years in oceanography beearise adv;~nrcs in 
ineasiiring tcchniyues have revealed that considerable amount of energy of the oceanic niotions in t,he ctc!ty-se:t 
is stored in t.he form of waves. For illustrat'ion I present some applications concerning the oceanic internal wave 
field. Internal waves exchange energy and niomentutn wit'h low-frequency niotions by ineans of wavt.-inclrictd 
1Lx '\(Nui,m-sl'resses. This is of considerable iniportance for t)he understanding and iiiodelling of the la rgc s c a l ~  
iiiot>ion, i.c. t'he general circulation pattern and nieso-scale synoptic eddies. Interact,ion processes with thc wi~ve 
field must be account'ed for in nutiierical models of the circulation in form of carefully defined paraiiiet rizstions. 
A tlct.ailed understanding of the energy balance of t.he wave field is requircd, i.e. the generation, transfer and dissi- 
piit'ioll processes affecting the wave field n i r i s t  be studied. In t'his task t'he weak internct'ion t'hcory t,urnr:d oiit to 
he a powerful tool (MULLER and O ~ u ~ i t s  1111). 

3.3.1 Genera t ion  of i n t e r n a l  waves  in  t 'he  seasonal  theru ioc l inc  

Two generation niechanisiiis have been proposed to explain t'lie occurrence of high-frequency internal a'ci~c's w l i i c ~ l i  
arc trapped in  the seasonal t herniocline of t.he ocean : resonant> generat,ions by atniospheric t,nrbulence and t Iic. ~ r w k  
coupling of surfacc and int'ernal waves. 

Tlie source fun.ction of atmospheric generutioib is of the form S4 in equation (31) 

Sp'(12) = f dk' f dw' q ' y k ' ,  60') b(k - 12') S(Qk," - 01') F,t,(k', (0') , (34) 
where Ela(,,, ( k ,  io) is the speotriiiii of the turbulent atmospheric field, such as pressure, wiridst'ress or buoyancy f l u s  
at the sea surfaw. liisufficierit knowledge of tlie spectral structure of in t'he wavenuniber-frequcricy region of 
iiiteriial waves presently prevents a det,ailed t'heoretical invest,igat,ion of this iiiechanisni. 

Getaeration of internal .waoes by resotaai1.t i?iteraction of two surface wave componerlts l c n d s  to u so'iirce f uiir:tiotL 
eitierqliirg frow the term AS, in (31) by eualuatiwg thx quadru.ple correlation of ihe external f ie ld  SOT (8 Gitrwsimi. i r ~ w e  
f i e l d .  'l'liis yields (OLBERS and HIGICTXIWH [ 141) 

nliei*c N,(k\ is t,he (two-dinicnsional) surface wave spectru tii. This quantity is well-known froiii observations and 
paranict cicd models have been found. Evaluation of the scattering integral (35) yields a paranietxization of t'he 
t'ransfer rate in ternis of spectral parameters of the surface wave field which in case of wind sea niay further be 
related to t)he surface wind speed. Sonte features of observations can be explained by the iiicchanism, suc.li as the  
burst'like occurrence of internal waves in the seasonal thermocline which might' he due to the very strong dcpendcnc~c 
of the transfer rate on t,he local sea state: the rate is proportional t.o the fourth power of the significant, wave 1it:iglit 
and the seventh power of tlie loud wind speed ( in  case of wind sea). Tlie prochess will bc iiivest8igat8ed in tlic JASIS- 
esperinient. 

b%((k) f dk' J' dk" T$(k,  k ' j  k")  6(k' - k" - k )  d(tu' - [V'' - o k ,  y )  A'g(k') A ' g ( k " )  , (35 ) 

3.3.2 E n e r g y  bttlaiice of t h e  deep-sea  i n t e r n a l  wave  f ie ld  
0baervu.tionx of the internal zrcm field i.n. the muin thern~ocline of the oce.a?t lead to t l ~ c  cowljeclio)t~ of u wi 
w)id level of the intern.al z(iawe spectrum (GARRETT and MUNK [5], MULLER et. al. [El) .  This is a siir1)rising result i i i  

vicw of the large number of t'he interact'ion processes which iiiay affect the st'ate of the wave ficld. However, ~ V U I  

in the vicinity of possible generat,ion regions, such as the sea surface, rough bot,toni topography, cmitincntal  slope^ 
or strong shear currents, the shape and the level of the spectrum do not show significant differences froni a universal 
foriii ( W r r ~ s c i r  [all) .  

A first conception of a balance of tlie universal spectruni evolved froni the investigat'ions of the rwonant, 
iiitcrac.t.ions within t:hc interliiil wave field (OLRERR 11 31). The source futictio?i. j o r  triad i&mzetioris 

S(k)  J dk' 1. dk" { T i  ( k ,  k', k") d(k - k' - k")  6(w - 0' - CO") [A'"'' - N N '  - ""1 + 
+ 2T- (k ,  k', k") d(k - k' + k") 6 ( o  - w' + of') [N'N" + NN' - N N " ] }  (:Hi) 

is derived froni the term in eqiiation (31). (The propagation space is here - in contrast to t'lie last' esainple - 
t.he three-dimensional space. This is an adequate siinylification since observations showed that the vert.ic;il scales 



o f  tho waves itre siiiall coii11iaretl l o  t'lic vert'ical scale of t,lic st,riLt.ificahion). Eot'ice that interticil wsiotLci/(t iriterctctiolr.~ 
r o ~ . w r ~ i o  the fotctl  e i i q y  (not act'ion !), i.e. 

,j" dk  w S ( k )  = 0 ( 3 7 )  
hiit for :L given spectrum N ( k )  there will generally be a transfer of energy within the spectral regioii, i.e. S ( k )  \\ill 
s h o w  sources and sinks. In  a state of equilibriuiii t,hcsc iiiust be balancod by external generation and dissi1)atiori 
lbrocesscs. P'ollowing these ideas a rough balance could be proposed by which int'errial waves draw energy froiii t'hc 
low-frcqucncj, oceanic shear current and loose this energy after non-linear transfer by wave breaking (Or,ulms [ 131, 
MijLr, i sR arid OLUICRS [ll]). 

A t  present ot'her generation processes cannot be excluded. The general picture which has emerged froiri a (I(.- 
tailed investigation of the scattering integral (MCCOMAS and ~ H l w I i E R T O N  [S] ; MCCUMAS [ 101) can 1Je expressed t is 

follows. Any deviation ftotii the eyiiilibriuiii state result's in a large bransfer of energy t'o the spectral dissipation 
region, i.e. wherever energy is supplied from e.xternal fields i t  is very efficiently transferred to a region whe.re it. 
can bc dissipated by wave breaking. Time scales of t'he noii-linear transfer frequently lie below the wave pcriotl 
arid thc: weak interaction condition becomes questionable. A siiiiple illiistri.,tion of this concept'ion is a systetii o f  
connected trrhes filled to the top with water: wherever water is supplied an equivalent portion is iiuiuediately 
si)illcd at t,he hwest out-flow and thc equilibriuiu s h i ~ c  is rest.orcd. 
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