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1. Introduction 

The significance of the oceans for cl imate dynamics has long been recognised and has 

been repeatedly stressed (for example9 in discussions on the development of an 

internat ional  c l imate  research program~ cf. GARP Publ. 169 1975). Nevertheless, 

comprehensive models of the ocean designed specifically for cl imate studies are only just 

beginning to emerge. The slow evolution of ocean cl imate models does not appear to be 

due to fundamental  modeling problems, but must probably be a t t r ibuted to the historical 

development of ocean modeling. For a long t ime the primary concern of ocean modelers 

was understanding the mean general circulat ion of the ocean, rather than studying the t ime 

dependent interactions of the ocean within the c l imat ic system. Since the purpose of 

modeling is largely to devise the most appropriate simplif ications for the given class of 

problems, ocean models designed for studies of the mean general circulat ion cannot be 

expected to be optimal also for cl imate applications. 

The f i rs t  task in constructing an ocean model for cl imate investigations is therefore 

to carry out a scale analysis of the ocean system, and its interaction with the atmosphere 

and other components of the cl imate system, in order to ident i fy the essential features of 

the system which need to be properly simulated for the range of space and time scales 

relevant for cl imate. Most of the simplif ications arising from a restr ict ion to c l imat ic 

scales have been expressed in various forms in the l i terature, but in a di f ferent context, 

usually in relation to the mean ocean circulat ion. I t  therefore appears useful to review 

these approaches in the framework of an ocean model designed specif ical ly for t ime 

dependent cl imate var iabi l i ty  studies. No attempt is made, however, at a comprehensive or 

even representative summary of the relevant l i terature. We refer here to the many 

excellent published reviews, for example, Bryan (1975, 1979), Pond and Bryan (1976) or 

Holland (1977, 1979). 
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Compared to the atmosphere, the most dist inct ive features of the oceans are their 

large heat storage capacity and slow response. These are normally regarded as damping 

influences, as evidenced, for example, by the smaller seasonal variations of marit ime 

climates as compared with continental c l imat ic regimes. However, the damping of 

c l imat ic  variations through the inert ia of the oceans occurs only i f  the cl imat ic system is 

forced external ly. With respect to internal interactions, the existence of long t ime 

constant components gives rise instead to a strong enhancement of the natural low- 

frequency var iabi l i ty  of the system (Hasselmann, 1976; Lemke, 1977). The mechanism of 

this ampli f icat ion is very simple: the natural var iabi l i ty  (synoptic scale turbulence) of the 

atmosphere, which can be regarded as essentially white noise on cl imat ic t ime scales, is 

integrated by the slow components of the c l imat ic system and thereby converted into 

higher variance red noise. It has been shown by Frankignoul and Hasselmann (1977), and 

Reynolds (197g, 1979) that much of the variance of observed sea surface temperature 

anomalies can be explained very simply in this manner. 

The t ime scale separation of the atmospheric and oceanic systems greatly simplif ies 

the problem of coupling the two components in an interact ive model. Although the 

inherent short term var iabi l i ty  of the atmosphere is important as a stochastic generator of 

long term c l imat ic  variations, there is no need to model the driving short t ime scale 

variations of the atmospheric forcing expl ic i t ly .  The stochastic excitat ion can be 

simulated simply by a white noise, random number generator which has the same spatial 

covariance structure as the atmospheric driving forces (the surface fluxes). The ocean 

model can then be integrated with a t ime resolution At appropriate for c l imat ic variations 

(of the order 1 month), even though the ocean is in fact driven by stochastic atmospheric 

forcing terms characterised by internal t ime scales much smaller than A t. 

A complete coupled ocean-atmosphere model must, of course, include not only the 

stochastic atmospheric forcing, but also the mean feedback from the ocean to the 

atmosphere and the fur ther interaction loop from the atmosphere back to the ocean. As 

the response t ime of the atmosphere to changes in boundary conditions is generally short 

compared with At, the response of the atmosphere to variations of the ocean (sea surface 

temperature and surface roughness) can be described to a good approximation as a quasi- 

equil ibrium stationary adjustment process. If the cl imate excursions are small, the 

response can be characterized fur ther by a linear transfer function. It thus appears a 

reasonable f i rst-order approximation to represent the atmosphere in a coupled ocean- 

atmosphere cl imate model as a superposition of a white-noise random generator and a 

closed l inear feedback loop, in which variations of the sea surface properties induce 

variations of the mean atmospheric circulat ion, which in turn yield changes in the mean 

(and white noise) atmospheric forcing of the ocean. A simple quasi-stationary atmospheric 

model of this structure has not yet been implemented in conjunction with an oceanic model. 

One of the main di f f icul t ies lies in the derivation of the l inear transfer functions of the 
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atmospheric response, which must include the perturbations of the nonlinear eddy fluxes. 

However, these problems are not our concern here. For our purposes i t  is suff ic ient to 

summarise that, although the short t ime scale var iabi l i ty  of the atmosphere represents an 

important driving term for the ocean, i t  has no direct influence on the construction of the 

ocean model, which need be designed to resolve only c l imat ic t ime scales greater than 

about a month. 

The l imi ta t ion to t ime and space scales relevant for global c l imat ic investigations 

yields a number of simplif ications in the structure of oceanic models, which are discussed 

in the fol lowing sections. The main difference between an oceanic model designed for 

cl imate investigations as compared wi th a standard mean circulat ion model lies in the 

emphasis on var iabi l i ty ,  as opposed to the steady state. Much of the discussion on the role 

of the oceans in cl imate has concentrated on the mean oceanic heat transport. It should be 

noted, however, that the mean heat transport is of interest in i tself  onIy for cl imate 

variations longer than a few thousand years, for which the ocean circulat ion can be treated 

as quasi-stationary. For shorter t ime scales, variations of the heat transport must be 

considered in conjunction with the heat storage. Changes in the heat storage, however, 

af fect  the density f ield and the thermohaline circulat ion, and thereby act back again on the 

heat transport. Thus variations of the heat and mass transports of the oceans cannot be 

meaningful ly separated. The emphasis in the construction of a cl imate model of the ocean 

should therefore not l ie solely in the problem of the heat transport, but should concentrate 

generally on techniques for f i l ter ing out the small scale, rapidly varying motions which are 

irrelevant for c l imat ic  t ime and space scales. In this manner one may hope to derive a 

thermodynamical model which is suf f ic ient ly  ef f ic ient  to be used for systematic 

investigations of the nonstationary interaction of the oceanic circulation system wi th in the 

c l imat ic  system. 

2. Filtered Equations for the Interior Ocean 

We assume that for global c l imat ic  studies the t ime and horizontal space resolution of 

the ocean model may be l imi ted in the inter ior ocean, away from lateral boundaries and 

excluding a narrow equatorial strip) to I month and 500 kin, respectively. The one month 

t ime resolution corresponds to the generally accepted def ini t ion of the lower t ime scale 

l imi t  of c l imat ic  var iabi l i ty .  The spatial resolution of 500 km may be related through the 

t ime resolution to a maximum advection velocity of 500 km month - I "  20 cm s - I .  The 

rather arbi trary choice of 500 km is not cr i t ical .  We shall require in the fol lowing mainly 

that the spatial resolution is large compared with the internal Rossby deformation radius 

(defined below), which is typical ly  of the order of 50 kin. 

Under these conditions, the fu l l  equations for the ocean can be strongly simplif ied. 

Applying the usual hydrostatic and Boussinesque approximations, the complete set of 
prognostic equations is given by 
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~ l U I f~ + ~p = ~ (2"1) 

- • t  ~ - w o = q~ "ZO (2.2) 

i ITI a-t + (u.V_) + w qs  

where the hor izontal  ve loc i ty  u = (u~v), surface elevat ion ¢, sa l in i ty  S and temperature T 

def ine the components of the basic system state vector ~ = (u,~TgS); u = (v , -u )=  Ru 

represents the vector  u a f ter  applying a 90 ° r ight  (counter clockwise) ro ta t ion R (the 

notat ion a = Ra w i l l  be used general ly for  a rotat ion R of any hor izonta l  vector  a); f is the 

( lat i tude dependent) Cor io l is  parameter; V ={ (a tosS) - I  3 a - I  a } a-X-, ~ -  is the gradient 

operator in spherical coordinates ( X = longitud% 0 = la t i tude,  a = radius of earth) -- we note 

that  the cont ravar ient  gradient operator must be dist inguished from the covar iant  

divergence operator, V = { (a cos0) - I  _~, (a cos 0) - I  a-~ cos 0 }, appearing la ter  in Eq. (2.5) - -  

w is the ver t ica l  ve loc i ty ,  w i th  w ° the value of w at the surface z = ¢; z is the ver t ica l  

coordinate, taken posit ive upwards; and p is the dynamic pressure, defined in terms of a 

constant reference density ~o and pressure deviat ion Pl  as p = ~ l / ~o  where the to ta l  

pressure I~ = f)o + l~l is represented as the sum of the hydrostat ic  reference pressure Po = 

g~o z and the pressure deviat ion PI" 

For the large hor izonta l  scales of interest here, ]51 can be determined hydrostat ica l ly  

f rom the anomaly ff I of the density f ie ld ~ = 0o + Pl re la t ive to the reference density ~o, 
O 
P 

P = g~; + g JO dz (2.o~) 

Z 

where ~ = ~ i / ~o  . 

The forc ing terms on the r ight-hand side of  Eqs. (2.1) and (2.3) represent the sum of 

turbulent  eddy transport  terms and, in the case of Eq. (2.1), non'linear advect ion (the 

impor tant  advect ion terms in (2.3) are included exp l i c i t l y  in the lef t -hand side of the 

equation). The forc ing term on the r ight-hand side of (2.2) represents the sum of the mass 

f l ux  due to prec ip i ta t ion or evaporat ion and the nonlinear slope correct ions in the 

expression for  the normal surface ve loc i ty .  I t  is general ly very small and w i l l  be neglected 

in the following.  

The f ields w and p represent non-prognost ic variables which are related to the 

components of the state vector ¢ through the diagnost ic hydrostat ic  equation (2.4), the 

equation of state of  sea wateG which defines p as a funct ion of T, S and z (or, equivalent ly ,  

the reference pressure Po = g0o z)9 and the equation of cont inu i ty ,  
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z 
f 

w =-_V I udz 
h 

where h( X, O) denotes the ocean depth. 

(2.5) 
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To close the system of equations, the turbulent mixing terms in the source functions 

need to be expressed in terms of , .  Furthermore, boundary conditions must be specified. 

The choice of parameterisation normally affects also the appropriate form of the boundary 

conditions. However, these questions are not immediately relevant for the discussion of 

this section and wi l l  be considered later. 

The system of equations (2.1)-(2.5) contains various classes of solutions characterised 

by different space and t ime scales. Thus motions coupled to displacements of the free 

surface are generally associated with signif icantly shorter t ime scales than motions 

governed only by internal displacements of density surfaces. To separate out these two 

forms of motion i t  is customary to divide the system ~ into a barotropic subsystem ~ = 

(~, ~) and a baroclinic subsystem ~' = (u',T,S), where the barotropic velocity, ~ 
O 

_u -- ~ udz , (2.6) 

-h 

is defined as the vert ical ly  averaged horizontal velocity and the baroclinic velocity as the 

residual f ield u' = u - ft. 

The associated barotropic and baroclinic components of the vertical velocity, 

w=~O+w'  , (2.7) 

are then defined in terms of the individual continuity relations 
Z 

w' = - ~  ~, d z .  
-h 

Introducing also barotropic and baroclinic components of the pressure field, 

(2.8) 

P = 13 + P' (2.9) 

where P = g ~ (2. I 0) 

and P' = g I 0dz , (2.11) 
Z 

the system of equations (2.1)-(2.3)can be separated into the two (coupled) subsystems: 
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Barotropic system 

where 

K, Has selmann 

~-T_u - + + 

O 

(2.[2) 

a = 0 (2.13) 
aT ; - ~Vo 

_~ = ~ qdz ; (2.14) 

-h 

Baroclinic system 

~tu,-fu,+~,-~ f ~'dz=q' 
-h 

~{- + (u'+[_~]).V+ ( w ' + [ ~ ]  ~-~ = qs 

(2.15) 

(2.16) 

where q' = q - ~ . (2.17) 

The interaction between the two systems occurs through the terms in square 

brackets, the vert ical ly averaged baroclinic pressure gradient in (2.[2) and the advection of 

the density f ield by the barotropic current in (2.16). (The source functions on the right- 

hand sides normally also provide some coupling.) 

Both sets of equations (2.12), (2.13) and (2.15), (2.16) can be simplified for cl imatic 

t ime and space scales. Because of the different inherent t ime scales, however, the 

approximations for the barotropic system are dif ferent from those for the baroclinic 

system. The appropriate reductions can be readily derived from a scale analysis of the 

equations. However, they are perhaps more readily interpreted in terms of the famil iar 

dispersion curves of the linearised systems. 

For free, linearised perturbations of a horizontally homogeneous, stably strat i f ied 

ocean, the terms coupling the two systems can be shown to be negligible. (The baroclinic 

pressure term in the barotropic momentum equation (2.12), and the vertical barotropic 

advection term in the density equation (2.16), although linear, are negligible for a 

horizontally homogeneous basic state for which ~I  << Po ") The barotropic and baroclinic 

equations (2.12), (2.13) and (2.15), (2.16) therefore represent in this case a projection of the 

ful l  linearised system on to two dynamically distinct subsystems characterised by different 

sets of normal modes. The dispersion curves for the barotropic and barociinic modes are 

shown schematically in Fig. 1 (the computations are based on the ~ plane approximation 

and a constant strat i f icat ion, and for the anisotropic Rossby modes only the zonal 
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wavenumber dependence is shown). 
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Fig. 1. Dispersion curves for a hor izonta| ly homogeneous ocean with density 
s t ra t i f i ca t ion (schematic). The region of interest for c l imate studies is 
indicated by the stippled box. 
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A character is t ic  fea ture  of 

wavenumbers near the inverse of the Rossby radius of deformation 

for barotropic modes 

R d = 

hN 
- ~  = Rin t 

the dispersion curves is the change in slope for 

(2.18) 

for baroclinic modes, 
where f a~ 1 

N= g ~ J 2  
is the Brunt-V~is~lgfrequency and 
n denotes the vertical mode number. 

Rd - I  < < For Rossby waves the wavenumber marks the transi t ion from the region k x 
- I  R d , in which the waves are governed by a balance between the north-south advection of 

the planetary vortici ty (the 8 effect)  and vertical  vortex tube stretching, to the region 

>> Rd - I  of divergence-free waves, in which the 8 effect  is balanced by the t ime k x 

derivative of relative vortici ty.  The region of t ime and space scales relevant for cl imate 

variations is indicated by the stippled box in Fig. I. Since the internal Rossby radius of 

deformation of the ocean is typically of order 50 km, the baroclinic Rossby waves within 

Rd -1 the box correspond to the region k x < < in which the t ime derivative of the vorticity 

field c a n  be neglected and the motions t reated as s tr ict ly geostrophic. 

The dispersion curves of all other modes are seen to lie well above the cl imate box; 

these modes therefore appear only as forced modes at frequencies well below their natural  

frequencies.  In this case the mode response is essentially given by the quasi-stationary 

zero-frequency response, so that all t ime derivatives in the equations can be neglected. 

For barotropic and baroclinic gravity modes the forced response is very small and can be 

neglected entirely.  However, since there is no numerical or analytical  advantage in 

fi l tering out the (stationary forced) gravity modes we shall retain them together with the 

more important  quasi-stat ionary forced barotropic Rossby mode. The top right corner of 

the c l imate  box is seen to reach up to the barotropic Rossby mode dispersion curve. If this 

l imiting high wavenumber,  high frequency range of cl imate variabili ty is important  for 

part icular  applications, the corresponding region of the barotropic Rossby mode spectrum 

must be t reated prognostically. We shall assume in the following, however, that these 

effects  can be ignored, and that the cl imate box can in effect  be rounded at the corner. 

Thus, for the linearised system the t ime derivatives of both barotropic equations 

(2.12), (2.13) and the t ime derivative of the baroclinic momentum equation (2.15) c a n  be 

neglected, leaving as the only prognostic equation the baroclinic density equation (2.16). 

It c a n  readily be shown by direct scale analysis that for cl imatic  t ime and space 
. I  

scales, w h i c h  s a t i s f y  the < inequal i t ies  f, << t, these  conclus ions  remain valid (with 

cer ta in  exceptions which are discussed in the next section) also for the complete, 
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horizontally inhomogeneous, nonlinear system. 

We note that although both barotropic and baroclinic velocity fields are determined 

diagnostically as quasi-stationary equilibrium fields, the governing equations of the two 

fields are fundamentally dif ferent. The baroclinic velocity u' is determined locally by the 

gradient of the density field through the (vertically integrated) thermal wind relation (2.1)) 

(for known q'). However, the barotropic velocity ~ depends on the unknown barotropic 

pressure field p in Eq. (2.12) and must be determined globally by the solution of an ell iptical 

partial di f ferential  equation (cf. Schulman and Niiler, 1970; Sarkisyan and ivanov, 1971; 

Sarkisyan and Keondzhian, 1972). We shall therefore discuss the two systems separately, 

considering their interaction later in Sections ) and 6. 

3. The Barotropic System in the Interior Ocean 

The quasi-stationary barotropic velocity field ~ is determined by the time 

independent form of Eqs. (2.12) and (2.13). The solution of these equations for the steady, 

vert ical ly integrated ocean transport in the presence of a variable bottom topography and 

density field have been discussed extensively in the l i terature (cf. Kamenkovich, 1962; 

Holland, 1967; Welander, 1968; Sarkisyan and Ivanov, 1971; Schulman and Niiler, 1970; 

Schulman, 1975; and others). The vert ical ly integrated continuity condition (2.13), 

w ° = -V. (h~J) = 0 (3.1) 

is normally used either to eliminate ~ from Eq. (2.12), thereby deriving a f ield equation for 

I~, or, alternatively, to express _.G in terms of a scalar stream function ~, 

= h - I  V@ , (3.2) 

thereafter eliminating ~). This is normally preferred, as the boundary conditions for ~ are a 

l i t t le  simpler that for I~. 

Applying the operator ~ to Eq. (2.12), one obtains the governing equation for 
O 

~(f/h)- _V~ = Iv(flh)l . d ~ _  -as = - 5  (~ f v__p,dz) + ~  (3.3) 
h 

where ds denotes a line increment along a curve f /h = const. (It should be noted in Eqs. 

(3.2) and (3.3) that, in spherical coordinates, the relations div curl = 0 and curl grad = 0 

become _VV= 0 and ~V__= 0, with two dif ferent curl operators ~and ~ corresponding to the 

co- and contragradient operators b V.) 

The baroclinic pressure f ield acts on the barotropic f low in Eq. (3.3) only through 

variations of the bottom topography, 
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I V_.p'dz + (Vp') z -h .~h .  (3.t~) 

The order of the di f ferent ia l  equation (3.3), and therefore also the required form of 

the boundary conditions, depends on the form assumed for the barotropic forcing_~. In the 

inter ior ocean the (grid scale) nonlinear momentum advection terms are negligible, so that 

q is determined by the (sub scale) turbulent momentum fluxes. Assuming the usual 

anisotropic turbulent f r ic t ion expression, 

22° 
q = v V - a z  2 + VHaU_ (3.5) 

where  a = V • V deno te s  the  Lapacian  o p e r a t o r  and VV, v H r e p r e s e n t  ve r t i c a l  and hor izonta l  

eddy v i scos i ty  c o e f f i c i e n t s ,  one finds 

-q~-~ - ~ - ~ -  * + - 6 -  * + L(u_') (3.6) 

where ~ is the surface (wind) stress and L is a l inear operator acting on the baroclinic 

veloci ty f ield u'. The exact form of L is irrelevant for the fol lowing; i t  derives from 

f r ic t ion terms associated with the baroclinic velocity analogous to the barotropic 

contributions in the second and third terms on the right-hand side of (3.6) and contributes 

to the barotropic forcing because the integral of the forces over the water column is in 

general non-zero. 

The expression for the vert ical f r ic t ion term in (3.6) applies for a deep ocean in which 

the vert ical f r ic t ion stresses are confined to relat ively thin, separated Ekman layers at the 

top and bottom of the ocean. Both vert ical and horizontal f r ic t ion terms have furthermore 

been simplif ied by ignoring terms arising from the spatial var iabi l i ty of h and f. Although 

this cannot be st r ic t ly  just i f ied by scale considerations, the approximation is adequate for 

our purposes and appears physically compatible with the basic arbitrariness of the turbulent 

closure assumptions. 

The horizontal and bottom f r ic t ion terms represent the highest spatial derivatives in 

(3.6) and therefore determine the structure of the di f ferent ia l  equation (3.3) and the 

boundary conditions of the problem. However, estimates of the orders of magnitude of 

these terms for f r ic t ion coeff icients ~V' VH typical ly  used in ocean models show that they 

are generally negligible in the inter ior of the ocean. The higher derivatives become 

important only in regions of high gradients near lateral boundaries and the equator - i.e. in 

regions which have been specif ical ly excluded from the present considerations. In the 

inter ior ocean the 0-equation therefore reduces to the f i rst-order characterist ic equation 
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0 

I V(f lh) l d~ = 
-h  

(3.7) 

Equation (3.7) represents a generalised Sverdrup relation, in which the 8 ef fect  is 

replaced in the left-hand side by a combined B-bottom topography term, and the net 

forcing torque Q includes the curl of the vert ical ly  averaged baroclinic pressure gradient in 

addition to the curl of the wind stress. 

The boundary condition required for (3.7) is that ~ must be prescribed at one point on 

each of the characterist ic curves f /h  = const. Physically, the condition of no f lux  through 

the edges of the ocean yields the boundary condition ~ = const, along all coasts. If a curve 

f /h  = const, intersects two di f ferent coasts, as is normally the case, on the west and east 

sides of the ocean basins, only one of the two boundary values may be used as boundary 

condition for (3.7). It is well  known, from considerations of the i r reversibi l i ty and stabi l i ty 

of the complete equation including f r ic t ion terms - or, al ternat ively,  from the asymptotic 

solution of the t ime dependent case- that the characterist ic equation must be integrated 

from east to west, or, more generally, for arbitrary topography 9 with the higher values of 

f /h to the r ight relat ive to the direction of integration. Thus the east coast boundary value 

must be used as the in i t ia l  condition. 

To satisfy the second boundary condition a narrow boundary layer must be inserted at 

the western coast in which the fu l l  equation (3.3)9 including the higher derivatives in 

Eq. (3.6), is solved. If horizontal f r ic t ion is included, the additional non-slip boundary 

conditions require boundary layers at both coasts. However, i t  can be shown that to f i rst  

order the eastern boundary layer does not af fect  the eastern boundary value ~ required for 

the solution of the inter ior regime. 

The contours of constant f /h for the global ocean are shown in Fig. 2 (by courtesy of 

E. Maier-Reimer). Al l  contours either originate and terminate at coasts, or represent 

closed curves. If h approaches zero continuously as one approaches a coast, the points of 

the characteristics must l ie on intersections of the coastlines with the equator. However, 

the contours tend to become closely concentrated along the coasts, so that i f  boundary 

layers are taken into account, the points at which the contours cross from the inter ior 

region into the lateral boundary layers occur ef fect ively at f in i te  latitudes. 

Closed f /h  Contours 

Closed f /h  isolines which l ie ent irely wi thin the inter ior ocean, without entering a 

lateral boundary layer or the equatorial region, occur in several regions of the ocean. They 

can arise through the presence of islands (in part icular Antarctica), but also through sea 

mounts or ridges, such as the mid-At lant ic  ridge. In these regions the quasi-stationary 
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Fig. 2. Contours of constant f/h in northern (top) and southern (bottom) hemisphere 
projections centered on the poles. Al l  oceans contain a number of (generally 
localised) regions with closed f /h contours, 
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approximation (3.7) for the barotropic flow breaks down. Integrating dd-~s 

f/h contour, one obtains from Eq. (3.7) the condition 
o 

-h 
Since the density f ield, as a prognostic f ield, and the wind stress may be arbi t rar i ly  

specified, there is no reason to assume that Eq. (3.8) wi l l  in general be satisfied, and i t  

must be concluded instead that the original equation (3.7) is inconsistent. The origin of the 

inconsistency is readily recognised: for vanishing forcing, the left-hand side of Eq. (3.7) 

reduces to the well-known theorem that the general solution for barotropic quasi- 

geostrophic f low over variable topography is given by an arbi trary non-divergent f low 

fol lowing contours of constant f /h (potential vort ic i ty) .  If such a f low is now exposed to a 

non-gradient force f ield characterised by a net torque around closed streamlines, the f low 

wi l l  be accelerated. A steady solution can exist only i f  balancing f r ic t ion forces are 

considered. 

Since the f r ic t ional  forces in the inter ior ocean are small, the balance wi l l  normally 

require a long time to become established, and i t  can therefore no longer be argued that 

the barotropic f low achieves a quasi-equilibrium state in a t ime short compared with the 

resolution t ime of the model. In terms of the dispersion curve discussion of the previous 

section, the quasi-equilibrium treatment of the barotropic modes was justif ied by the fact  

that, for a constant depth ocean, the frequencies of the barotropic modes were large 

compared with the inverse of the model resolution t ime. However, i f  variable topography 

with closed f /h contours is considered, zero frequency trapped barotropic Rossby modes are 

seen to exist which no longer satisfy this inequality. (Very low frequency barotropic modes 

are also found in a constant depth ocean i f  non-zonal wave numbers, not depicted in Fig. I ,  

are considered. However, the stationary approximation remains valid, as the group velocity 

remains large. The essential feature which leads to a breakdown of Eq. (3.7) is the trapping 

of vor t ic i ty  along closed contours.) 

It has often been conjectured (e.g. Welander, 1968) that in the mean ocean circulat ion 

the wind stress torque acting around closed f /h contours is actual ly largely balanced by the 

baroclinic pressure term, so that Eq. (3.$) is in fact approximately valid. Physically, this 

occurs through a compensation of the barotropic pressure at depth by the baroclinic 

pressure f ield, thereby essentially decoupling the circulat ion from the bottom topography. 

The details of this compensation mechanism and the degree of compensation i tsel f  are not 

well understood, but the adjustment times involved must at al l  events l ie in the range of 

the baroclinic response time, so that an equil ibrium cannot be assumed in cl imate 

var iabi l i ty  studies addressed to the same t ime scale range. 

However, a simple formulat ion of the t ime dependent barotropic equations for closed 

f/h-isolines can be readily derived. The solution may be divided into a t ime dependent 

81 

around a dosed 
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component representing the resonant excitation of a trapped potential vort ic i ty gyre by the 

mean torque averaged over a closed contour, and a quasi-stationary response to the residual 

vort ic i ty force field) af ter subtraction of the mean torque. 

The time dependent barotropic vort ic i ty equation follows from (2.12)) (2.13)) 

at  - - 

where the stream function and surface displacement are related in the quasi-geostrophic 

approximat ion through 
o 

f V ,  = _gV.~ 1 f ~ - _  - ~ y_p'dz + ~I. (3.101 

-h 

If the torque is separated into two terms) 

n 

Q = Q  +Q '  (3.11) 

Q =Q( f /h )  : j~ ~ Iv(flh)l-iQds (3.12) where 

represents a weighted mean torque over a dosed f/h isoline and Q' is the residual torque) 

the solution of (3.10), (3.11) can be expressed as the sum ~ = "~+ ~' of a non-stationary gyre 

stream function ~-= ~'(f/h) - ~'(c~) which is constant along contours f/h =-~(x) = const, and 

a quasi-stationary residual ~'. 

The equation for ~-follows by forming the weighted average of (3.9) over a closed 

f /h = ~ isoline, 

a__ I a~- a2~ 
at I ~ [h-2"Vh "V~-h-IA~] [ h - l v ~  • V~] ~ -  = Q (3.13) 

a~ 2 - . 

The relation between ~- and the weighted mean displacement ~-fol lows by taking the 

weighted mean of Eq. (3.10), and noting that the mean f o r c i n g ~ -  is small in the balance 

equation for a resonantly generated trapped vort ici ty gyre flow which is integrated over a 

time large compared with f - i ,  

- a ~ -  

~ = -gs-~a • (3.14) 

The equation for ~' is given by the d i f ference  of Eqs. (3.9) and (3.10) and yields to f irst  

a ~ < < f~) the t ime independent vor t ic i ty  equation order)  for =~= 

v d-T- (3.15) 

In Eq. (3.15) the f r ic t ion te rms in Q' can be neglected) as elsewhere in the inter ior  

ocean.  It is not known, however,  whether  f r ic t ion can be neglected also to f irst  order in 

the t ime dependent  equation (3.13) for the t rapped vor t ic i ty  gyre, the s teady s t a t e  being 



An ocean model for climate variability studies 83 

achieved in this case pr imari ly by the baroclinic adjustment process, or whether the 

f r ic t ional  torque represents an essential term in the f inal steady state balance. 

Independent of this question, however, i t  may be concluded that in regions of closed 

f /h  isolines in the inter ior ocean the stationary barotropic 0 -equation (3.7) applies only for 

the residual stream function 0' driven by the residual torque field Q', whereas the mean 

torque Q around an isoline generates a non-stationary trapped vor t ic i ty  gyre 0 in 

accordance with Eqs. (3.11), (3.12). The f ield 0 must therefore be included together with 

the fields T and S as a component of the prognostic system. 

A general discussion of the response properties of the system (~-,T,S) to external 

forcing on various t ime and space scales typical for cl imate variations does not appear to 

have been attempted. As a simple example the response of the system (~'-,T,S) to seasonal 

forcing is considered br ief ly in Section 6. 

The question of closed f /h contours has some bearing on the boundary value problem 

for islands. The boundary condition of zero normal mass f lux along coasts requires 0 = 

const., but does not specify the constant. Since 0 is only defined to wi thin a constant, this 

presents no d i f f i cu l ty  i f  the ocean is bounded by a single connected coastline. For the 

global ocean, however, this is not the case. The relation between the constant 0 values for 

di f ferent,  disconnected coasts ("islands") can be established by noting that the 0-equation 

(3.3) was original ly obtained by taking the curl of (2.12) to eliminate ~I~. Equation (2.12) 

can be recovered from (3.3) by integration, but in place of the gradient field_Vl ~ one obtains 

then as general integration constant a vector f ield a with the property V~i = 0. For a simply 
- - t -  

connected region a may be immediately identi f ied with ~ through the definit ion 

X 

~(_~) : ~- ad_x, 
X J 
--o 

where the integration curve may be chosen arbi t rar i ly .  For a mult ip ly connected region, 

however, a may be identi f ied with a gradient f ield in this manner only i f  the condition 

~adx = 0 is satisfied for al l closed curves encircling islands, for which Stokes' theorem 

cannot be applied. From (2.12) one obtains then for ~ the additional condition (cf. 

McWiIliams, 1977; Pedlosky, 1979) 

o I g-~-  V0 + V3 + H V__p'dz - ~t d x - - 0  (3.16) 

The t ime dependent  acce le ra t ion  term has been included in Eq. (3.16), but it  is 

assumed that  the quasi-geostrophic,  non-divergent  approximat ion,  with t~ given by the 

s t ream function ~0 in accordance  with Eq. (3.2), can be re ta ined.  

The closed in tegrat ion contour can be chosen to follow close to, but not exac t ly  

along, the coast  line, so tha t  the curve lies just outside the coastal  boundary layer  and stil l  

within the inter ior ,  l inear ,  f r ic t ionless  region of the ocean. On sections of the coast  

corresponding to te rminal  points of f/h contours which represent  "upstream" init ial  points 
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of the characteristics f/h =const., ~ is constant. On these sections the second term in the 

integral vanishes, since ~ d x  = 0. Along sections of the coast corresponding to 

"downstream" terminal points of f /h isolines, however, ~ cannot be prescribed, and the 

second integrand is in general nonzero. 

The method for determining the unknown constant ~up on the "upstream" section of 

the coast depends on the topology of the f/h contours. I f  the island is not encircled by a 

closed f /h isoline, there must exist characteristics which leave the island without returning 

back again, terminating at some other, disconnected coast. Conversely, there exist also 

characteristics from disconnected coasts which terminate on "downstream" coast sections 

of the island. In this case, the stationary form of Eq. (3.16) can be used. The stream 

function ~ changes discontinuously at the transition points between the sections of the 

coast containing the "downstream" terminal points of characteristics from other coastlines 

and the remaining coastal sections containing "upstream" points or "downstream" points of 

characteristics originating from the same coast. The integral of the term f/h V_~dx across 

such a discontinuity yields f /h (discontinuity in ~ ), and Eq. (3.16) then yields a simple 

relation to determine the unknown constant 0~up. 

If, on the other hand, the island is completely encircled by a dosed f /h isolin% the 

t ime dependent form of Eq. (3.16) should be used. However, the problem can be related 

very simply in this case to the solution of the t ime dependent equations (3.13)-(3.15) for the 

trapped vor t ic i ty  gyre. The smallest closed f/h contour which encircles the island must be 

tangent to the (smaller) closed integration curve in (3.16) at the nearest point of the f/h 

isoline to the island. The value of 0~ of this smallest f /h isolin% as determined from the 

trapped vor t ic i ty  gyre equations, therefore also determines the constant ~ up along the 

"upstream" section of the island coastline. 

¢. The Baroclinic System in the Inter ior  Ocean 

It is convenient  to divide the baroclinic in ter ior  ocean (excluding boundary currents)  

into a seasonal boundary layer ,  consisting of the surface mixed layer and the seasonal 

thermocl ine ,  and the abyssal ocean,  extending from beneath the seasonal boundary layer  

through the main thermocl ine  to the ocean bot tom.  There is some evidence (Stommel and 

Schott, 1977; Schott and Stommel, 1978; Wunsch, 1978) that in large regions of the abyssal 

ocean the eddy transport of momentum, heat and salinity may be negligible. The 

prognostic equations for T and S then reduce to the pure advection equations. The 

baroclinic velocity can be determined geostrophically from the density field, with an 

additional depth independent correction term which arises through the subtraction of the 

barotropic contribution of the surface Ekman transport. Applying a rotation R to the t ime 

independent form of Eq. (2.15) and substituting ~l = ~-, one obtains 
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o 

The in tegrat ion of the advect ive  density equations (2.16) for the abyssal ocean is 

ma thema t i ca l l y  s t ra ightforward)  once u', w t have been determined by (/~.l), (2.8) and the 

baro t ropic  veloci t ies  _u) ~ by the diagnost ic  or diagnostic=prognostic system of equations 

discussed in. the previous sect ion.  As boundary conditions T and S must be specif ied on all 

boundary surfaces  with inflow; on the outflow boundary surfaces T and S are  de termined 

in ternal ly  by the in tegra t ion  of the  advect ion equations.  

If s ta t ionary  solutions are  sought) the adiabat ic  density advect ion equations cause 

problems whenever closed s t reamlines  occur within the inter ior  abyssal ocean.  In this case  

the init ial  densi ty values on the closed s t reamlines  are  maintained indefinitely) and the 

asymptot ic  equilibrium solution is not de termined uniquely by the boundary condit ions.  

However) this problem does not  arise in t ime dependent var iabi l i ty  studies) although it may 

be physical ly more rea l i s t ic  to include also in this case a weak diffusion in S and T when 

very long term variat ions are  considered.  

Another  cause for a possible breakdown of the ad iaba t ic  densi ty advection equations 

is the development  of hydros ta t ica l ly  unstable densi ty profi les .  In this case some form of 

convect ive  ad jus tment  pa ramete r i sa t ion  must be included. However) regions of the abyssal 

ocean ci rculat ion which tend to develop hydros ta t ica l ly  unstable s t ra t i f i ca t ions  through 

densi ty  advect ion are  not known. 

Although the concept  of ad iaba t ic  densi ty advect ion in the abyssal ocean has been 

tes ted  by local diagnost ic  relat ions such as the B-spiral (Stommel and Schott ,  1977; Schott  

and Stommel,  1978) and yields reasonable water  mass t ranspor t  proper t ies  (Sverdrup et  al.) 

19#2; Wunsch) 1978), the approach has not ye t  been sys temat ica l ly  tes ted  in ocean 

var iabi l i ty  studies.  A comple te  invest igat ion of this question requires the coupling of the 

adiabat ic  abyssal c i rcula t ion to the diabat ic  boundaries of the inter ior  abyssal region) 

namely the surface  seasonal layer) the la te ra l  boundary layers  and the equatorial  region. 

However) cer ta in  aspects  of the t ime var iabi l i ty  of the abyssal ocean can be studied 

without  considering the comple te  system) as will be discussed in Section 6. 

The descr ipt ion of the seasonal layer  has been the subject  of numerous invest igat ions 

(cf. Kraus) 1977) and will not be reviewed here. The matching of the seasonal layer  to the 

abyssal  ocean presents  no basic diff icul ty ,  since the appropr ia te  boundary conditions for 

each system) the prescript ion of T and S on boundaries with inflow) are  mutually 

complementa ry .  

5. The La te ra l  Boundary Layers and Equatorial  Region 

The equations for the in ter ior  ocean break down along the la te ra l  boundaries because 
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the horizontal gradients and velocities become so large that f r ic t ional  and nonlinear terms 

become important. Also) the horizontal scales can no longer be regarded as large compared 

with the internal Rossby radius of deformation. The same conditions apply along the 

equator) where the geostrophic constraint vanishes and the internal Rossby radius becomes 

inf in i te.  

For a rigorous treatment of these regions a fu l ly  nonlinear t ime dependent model 

based on the pr imit ive equations, or at least) away from the equator) on the unmodified 

nonlinear quasi-geostrophic equations, is needed. A complete ocean model consisting of a 

high resolution, nonlinear, t ime dependent description of the boundary and equatorial 

regions and a simplif ied density-advection treatment of the inter ior ocean has not yet been 

constructed, i t  can be questioned, however, whether this is in fact necessary. The 

boundary and equatorial regions probably represent strongly diabatic regions, in which 

mixing by sub-scale quasi-geostrophic eddies or smaller scale turbulence represent 

important processes. As long as these turbulent processes are not fu l ly  understood, i t  can 

be argued that a detailed, high resolution model of these regions cannot be more reliable 

than the parameterisation of the governing processes, and that a much simpler bulk 

parametrical description of the current systems in the spir i t  of mixed layer models) or the 

classical integrated boundary layer models of aerodynamics) may serve equally well. 

Techniques for projecting the fu l l  set of prognostic equations of a continuous system on to 

a f in i te  set of prognostic equations for a small number of discrete parameters used in an 

approximate "bulk" description of the system have been developed and applied successfully 

in other fields (e.g. for the transport equation of surface wave spectra) cf. Hasselmann et 

al., 1973; GLinther et al., 1979). However) this approach has not yet been exploited in ocean 

modeling. Rather, simple bulk models of the return f low in western boundary currents, 

coupled to an abyssal density advection and bulk seasonal layer model in the inter ior ocean) 

could well  shed l ight on a number of open f i rst-order questions regarding the response of 

the ocean to forcing by variable surface heat fluxes and stresses on di f ferent space and 

t ime scales. 

6. Seasonal Var iabi l i ty  of the Interior Oceanic Circulat ion 

As an example of the application of a simplif ied oceanic circulat ion model to cl imate 

var iabi l i ty  studies, we consider the var iabi l i ty  of the oceanic circulat ion and heat transport 

on seasonal t ime scales. The annual cycle of the ocean is of considerable interest as the 

largest and most easily measurable signal of oceanic var iabi l i ty.  A better understanding of 

the annual cycle has therefore played a prominent role in recent proposals to in i t iate a 

pi lot long term ocean monitoring program for studying the var iabi l i ty  of the inter ior ocean 

and ocean boundary current systems. 

The problem of seasonal variations of the ocean) both in the inter ior ocean and the 

near surface seasonal layer (the mixed layer plus seasonal thermocline) has been considered 
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by several authors. Perhaps the most comprehensive discussion, supported by detailed 

numerical  calculations,  is given in Gill and Niiler (1973). Here we a t tempt  only to 

summarise some of the principal features as an i l lustration of the model properties 

described in the previous sections. Since we have not a t tempted  to specify models for the 

lateral  boundary currents  and equatorial regions, we shall l imit our discussion to the 

interior ocean, considering the boundary and equatorial regions only to the extent  that they 

influence the interior region (the influence is small). 

The seasonal t ime scale lies between the character is t ic  t ime scales for the 

adjustment  of the barotropic and baroclinic velocity fields and density changes by 

advection.  In this t ime scale range the separation of the interior ocean circulation into a 

quasi-equilibrium barotropic system and a more slowly varying baroclinic system proves 

part icularly useful. 

We assume, as in Section t¢, that  diabatic variations of temperature  and salinity 

(which we refer to in the following simply as density) are restr icted to the near surface 

seasonal layer. Below this layer local changes in density are assumed to occur only through 

advection. The s t ructure  of the velocity field responsible for the mass and heat transport  

differs significantly depending on whether one is considering a region of open or closed f/h 

contours, and we therefore discuss these two regimes separately.  

Open f/h Contours 

In these regions, which cover most of the global ocean, the barotropic and baroclinic 

velocity fields can be computed as quasi-stat ionary equilibrium fields in accordance with 

Eqs. (3.7) and (4.1). Assuming that  the seasonal density variations Ps below the seasonal 

layer are small (we shall show a posteori that  this is indeed the case), the seasonal 

baroclinic velocity -s'U' and therefore the net  velocity --sU = ~-s + -s'U' are essentially 

independent of depth in the abyssal ocean. In the seasonal layer itself the velocity field u' 
--s 

consists of the local Ekman velocity ~-e' the local baroclinic geostrophic velocity u -g  
generated by horizontal gradients of the density variations Ps in the seasonal layer, and the 

^ 

nonlocal barotropic velocity Ux, which is determined mainly by the curl of the seasonal 

variation i s of the wind stress. 

The orders of magnitude of these velocities averaged over the depth H of the seasonal 

layer can be es t imated as 

u e = 0(Zs/fH) (6.1) 

Ug = 0(gpsH/fL) (6.2) 

0 s = 0 (Zs/ShH) (6.3) 

where L represents a typical horizontal scale of the seasonal layer (assumed for simplicity 
I df to be of the same order as the horizontal scale of z s) and f3 = ~ - ~  is taken as 
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representative of the order of magnitude of Iv(f/h) I • h. Below the seasonal layer, Ug and 

~s have the same values as in the seasonal layer, but the Ekman contribution becomes Ued = 

UeH/h = 0(~s/fh). (Note that although the Ekman velocity i tself  vanishes below the Ekman 

layer, a contribution to the baroclinic velocity at depth nevertheless remains through the 

formal separation of u into a barotropic component and a baroclinic component u' with 

vanishing vert ical ly integrated transport; cf. Eq. (4.1)). 

Taking typical mid-latitude values ~s = 10-4m2s-2' H = 50 m, h = 4x103m, f = 

10-4s - I ,  L = 2x106m, B = 10-11m-ls - I ,  O s : I0-3 '  one obtains Ue..~ 0.02 m s - l ,  Ugh. 

2x10-3m s - l ,  Us~. 10-3m s - I  and Ued ~ 2x10-4m s - I .  

Using the estimates of the velocities below the seasonal layer, one can estimate now 

also the changes in density Psd induced by advection in the deep ocean, and the associated 

seasonal modulation Ug d of the abyssal baroclinic velocity. The advective vert ical 

displacements AZ are of the order of the seasonal Ekman pumping velocity Ts/fL times the 

duration of a season, say, T s = I00 days~ 107 s. This yields az~5 m. The horizontal 

displacements are of the orderAx = (Us + Ug)Ts ...~30 km. These values correspond to density 

changes in the main thermocJine in the range Psd ~ 10-5" The associated changes of the 

deep baroclinic velocity are similar ly negligible, of order 10-4m s - I .  Thus on a seasonal 

t ime scale, the ocean beneath the seasonal layer responds independently of depth only to 

the pressure loading induced by changes in the seasonal layer strat i f icat ion and the wind 

forcing. 

The small horizontal advection of the density f ield justifies a posteori also the 

neglect of boundary layer back interactions on the seasonal t ime scale, as these can affect 

the interior ocean only through the advection of density from the boundaries into the 

interior. 

The implication of these seasonal velocity variations for the annual heat transport 

cycle cannot be discussed solely in terms of the amplitudes of the seasonal wind forcing ~s 

and seasonal layer density (temperature) variations O s (Ts)' since the seasonal heat 

transport depends, through the nonlinearity of the advective terms, on the horizontal and 

vert ical structure of the mean temperature distributions relative to the structure of the 

velocity variations. In general i t  can be estimated that the seasonal variations of heat f lux 

are greater in the seasonal layer than in the deeper ocean. This is largely due to the fact 

that the seasonal component of the abyssal mass transport-  in contrast to the mean 

c i rcu lat ion-  is not compensated below the main thermocline. Thus most of the mass 

transport occurs at depths in which the temperatures are fa i r ly  uniform and the heat 

transport is re lat ively small. 

The seasonal variations of the oceanic heat f lux are generally comparable with the 

mean heat flux, as inferred also by Oort and Vonder Haar (1976), and Ellis et al. (1978) from 

satel l i te and meteorological observations. Qual i tat ively similar results were simulated by 

Bryan and Lewis (1979) in numeral experiments using a high resolution three dimensional 
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ocean general circulation model. It appears, however, that the principal features of the 

seasonal variations of the circulation and heat f lux in the interior ocean can be determined 

more simply (in regions of the ocean corresponding to open f/h isolines) using seasonal layer 

models, augmented by straightforward diagnostic calculations of the barotropic velocity 

f ield in accordance with the generalised Sverdrup relation (3.7). 

Closed f /h Contours 

In regions of closed f /h contours, the barotropic f ield can no longer be treated as a 

quasi-stationary equilibrium field, but evolves slowly in t ime in accordance with the non- 

stationary gyre equation (3.11). To estimate the order of magnitude of the barotropic 

seasonal response in these regions, we assume for simplici ty that the seasonal variations Qs 

of the mean torque Q around a closed f /h contour are sinusoidal with period T a = I year. 

To further simpl i fy the analysis we assume also that L may be taken as a typical horizontal 

scale characterising not only the horizontal seasonal layer and wind stress variations but 
_- ~i ~ - I  ~ also the region of closed f /h contours, L 0 "h an" = 0 ( (f/h).h/f) -1 .  The integration of 

Fqs. (3.1 1) and (3.12) then yields for the barotropic velocity 

~'S T "T s a 
0 = 0 (he) = 0 ( ~ - ~ - )  (6.~) 

Compared with the open contour case, Eq. (6.3), we see that the barotropic velocity 

has been enhanced by the factor Ta/2+" BL ~" I02. Thus the seasonal variations of the 

barotropic velocity are estimated to be of order 0.I m s - I  in regions of closed f/h contours, 

as opposed to 10-3m s - I  for open contour regions. The barotropic velocities furthermore 

lag the wind and thermal forcing by 90 ° , as opposed to the in-phase relation for open 

contour regions. The horizontal displacements are similarly almost two orders of 

magnitude greater than in the open contour case) ~x = 0.I m s - I  • I00 days ~ 1,000 kin. 

The vert ical displacements, however) remain small, as the resonant trapped vor t ic i ty  gyre 

is non-divergent. 

The relat ively large barotropic velocities, large horizontal displacements and 90 ° 

phase difference between the forcing and barotropic seasonal response represent 

pronounced signals that should be detectable in regions of closed f/h contours. These 

regions may therefore be more interesting for a pilot ocean monitoring program than the 

regions of open f/h contours) in which significant var iabi l i ty on a seasonal t ime scale is 

expected only in the seasonal layer, in accordance with traditional concepts. 

7. Summary and Conclusions 

Models of the t ime dependent ocean circulation can be simplified considerably by 

f i l ter ing out all short term, small scale motions which are unimportant for cl imatic 

processes. For t ime scales large compared with a day and space scales large compared 

with the internal Rossby radius of deformation (~50 km), the currents in most of the 
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interior ocean can be determined diagnostically as quasi- equilibrium fields, so that only the 

salinity and temperature fields need be treated prognostically. 

Regions of closed f/h contours, however, represent exceptions. Here trapped 

vor t ic i ty  gyres exist as free flow solutions without external forcing) and in the presence of 

forcing the barotropic velocity f ield must therefore be determined prognostically through a 

potential vor t ic i ty  equation for the gyres. 

Lateral boundary layers and the equatorial regions also require separate treatment. 

These were not considered specifically) but i t  is suggested that integrated (parametrical) 

models analogous in structure to mixed-layer models or the integrated boundary layer 

models of aerodynamics may be the most appropriate technique for coupling these regions 

to the interior ocean in a comprehensive ocean model suitable for climate studies. 

A coupled multi-region model of the global ocean circulation based on these scale 

considerations could be suff icient ly cost-effective to permit systematic investigation of 

the role of the oceanic heat storage and transport in climate var iabi l i ty studies over a wide 

spectrum of space and t ime scales. 

The analysis of the seasonal variations of the interior ocean circulation represents a 

simple example in which the f i l tered model yields considerably simpler and more readily 

interpretable results than a ful ly three-dimensional, unfiltered model. 
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