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The Level of No Motion in an Ideal Fluid
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Max-Planck-Institut fiir Meteorologie, Hamburg, West Germany
17 February 1983 and 11 September 1983

ABSTRACT

The level of no motion plays a central role in the classical dynamic method and the more advanced diagnostic
schemes of the S-spiral (e.g., Stommel and Schott) and inverse method (Wunsch) to calculate the absolute
velocity in the ocean. Following simple arguments, each velocity component should vanish on separate surfaces
in the fluid and the absolute velocity vector vanishes on the intersection of these surfaces, i.e., on curves in
the fluid. It has been suggested, however, that besides these simple configurations there may be surfaces in the
fluid on which the velocity vector vanishes. Killworth has based a diagnostic scheme on this concept which
is different from the S-spiral approach and the inverse method. In this note we examine the possible configuration
of the level of no-motion in a fluid using ideal fluid theory. It is shown that stagnation surfaces in the fluid,
i.e. surfaces on which the velocity vector vanishes, normally do not exist.

1. Introduction

The concept of the level of no motion is a basic
ingredient of the classical dynamical method to infer
absolute velocities from hydrographic data. A discus-
sion of early speculations on the level of no motion
can be found in a recent paper by Wunsch and Grant
(1982). With the B-spiral approach of Stommel and
Schott (1977) and the inverse technique approach of
Wunsch (1978) there are now objective methods to
calculate the level of no motion from data. Whereas
these methods use only assumptions on the dynamics
and conservation properties of tracers, Killworth (1980)
has advanced a method that additionally involves Ek-
man pumping. This approach allows one to infer ab-
solute velocities from a single NS-section which ob-
viously is a great advantage. However, Killworth’s
method strongly rests on an assumption about the
configuration of the level of no motion: the method
always yields a surface where the velocity vector van-
ishes, i.e., ¥ = v = w = 0. This corresponds to a stag-
nation surface in the fluid and for an ideal fluid there
would be no communication of properties across this
surface. Although such a configuration does not con-
tradict the dynamics of an ideal fluid the existence of
a stagnation surface in the ocean is at least questionable.
One rather would expect the velocity vector to vanish
on a curve (where the surfaces ¥ = 0, v = 0 and
w = 0 intersect) than on an entire surface. However,
to confirm this concept, one has to dive deeply into
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the dynamics. In this note we advance the opinion
that vanishing of the velocity vector is a rather excep-
tional case compared to a level of no motion in only
one velocity component. This contrasts Killworth’s
(1980) statement that vanishing of the velocity vector
normally occurs where the east velocity vanishes.

For convenience we denote a simple level of no-
motion, i.e., a zero in either the u, v or w profiles, by
LNM. If the velocity vector vanishes at some point,
e, u = v = w = 0, this level will be called LNAM
(level of no absolute motion).

The ideal fluid equations and the functional ap-
proach of Welander (1971a) are reviewed in Section
2. In Section 3 we classify the different configurations
of the levels of no-motion and attempt to infer their
spatial structure by considering a specific solution of
the ideal fluid equations. Section 4 gives a discussion
of some diagnostic treatments of the ideal fluid equa-
tions in which the density field is regarded as given.

The ideal fluid equations conserve density, potential
vorticity and the Bernoulli function along streamlines.
This implies a functional relation between these quan-
tities in the fluid. We should point out that the analysis
in this paper excludes the degenerate case in which
density is a function of potential vorticity alone.

2. The ideal fluid equations

Steady motion of an incompressible, ideal, rotating
fluid of low Rossby number is described by the geo-

strophic and hydrostatic balances
£X u=—Vp—gok, 2.1)

the conservation of density
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: u-Vp=0 2.2)
and the continuity equation
V.u=0. 2.3)

Egs. (2.1) and (2.3) imply a vorticity equation in the
form . '

B8

w, = =0,
S
Two convenient conservation laws can be derived
(Welander, 1971a). Egs. (2.1) and (2.2) imply the con-
servation of the Bernoulli function B = p + gpz along
a streamline

t2.4)

u-VB =0, (2.5)

and the complete set (2.1) to (2.3) leads to conservation
of the potential vorticity Q = fp, _
u-vg =0. (2.6)
These equations have been used in models of the
oceanic thermocline (e.g., Welander, 1959, 1971a,b;
Needler, 1967, 1971; Luyten et al., 1983) or, with given
density field from observations, in diagnostic calcu-
lations of the oceanic velocity field (e.g., Stommel and
Schott, 1977; Killworth, 1980; Olbers et al., 1984; note
that in some of these papers potential density is used).
The problem of boundary conditions for the ideal
fluid equations has recently been discussed by Kill-
worth (1983a). The normal velocity must vanish at
rigid boundaries. Further we would like to prescribe
the vertical velocity at the bottom of the mixed layer
by the Ekman pumping velocity. Hence, on the vertical
boundaries we have

w=wyx,y) at z=0
w=0 at z=—-h|

It also seems reasonable to prescribe the surface density
on points of inflow (e.g., Luyten et al,, 1983). Thus,
at the top

(2.7)

p=pox,y) at z=0, if wyx,»)<0. (2.8)

This presumes that the equations are hyperbolic
though, as Killworth (1983a) states, no such proof ex-
ists. Corresponding boundary conditions should hold
at open lateral boundaries.

There are various ways to reduce the set of equations
(2.1) to (2.3) to one equation for either pressure (e.g.,
Needler, 1967) or other functionals of density (e.g.,
Welander, 1959, 1971b). We will make use of another
framework (Welander, 1971a) in which the conser-
vation of p, @ and B on each streamline implies a
functional relationship between these variables in the

fluid, say

B = F(p, Q). (2.9)
The function F is in principle determined by the
boundary conditions since these are responsible for
the flow pattern in the fluid. However, the detailed
functional correspondence between F and the bound-
ary values is unclear. If the form of F is prescribed a
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priori to generate solutions to the ideal fluid equations
(e.g., Welander, 1971a, and Section 3 of this paper) it
is impossible to fulfill all physical boundary conditions
as (2.7) and (2.8). We will return later to this problem.
In this paper we assume that the functional relation
between B, p and Q is not degenerate, in particular
that p is not a function of Q alone. As Needler (1971)
pointed out this latter case is degenerate in so far as
the solution in a laterally unbounded domain contains
an arbitrary barotropic flow. For this reason the (-
spiral method does not work either. Moreover, we will
assume that F(p, Q) is differentiable though it is not
at all clear to us which class of boundary conditions
(if any at all) is compatible with such a property.
With B = p + gpz and the hydrostatic balance from
(2.1) there are two first-order ordinary differential

equations
p + gpz = Flp, Q)}

D, = —gp
for the pressure field and the density field. If the density
field is known, the solution is completed by computing
the pressure from the first equation in (2.10), the hor-
izontal velocities from the geostrophic balance in (2.1)
and the vertical velocity from the density conservation
(2.2). This yields

(2.10)

1 ™~
u=—2I(F, - g2)p, + FoQ)l
v= }[(F,, — g2)px + Fo0,] L .@11)
F, . )
w= 5‘2 00y — p,Q) )

It is easy to show that the continuity constraint (2.3)
is satisfied by these expressions. _

If F(p, Q) is differentiable, the two first-order equa-
tions (2.10) can be replaced by a second-order equation

Fofpz: + (F, — g2)p: =0 (2.12)

for the density field. Since (2.12) [as well as (2.10)]
does not contain any horizontal derivatives one is
tempted to consider it as a local differential problem
for the profile p(z) where (x, y) enter as parameters
only. This is indeed the way how the approach has
been exploited to construct solutions to the ideal fluid
equations (Welander, 1971a): the functional F(p, Q)
was prescribed and (2.11) was solved with boundary
condition for p and p, at a level z = 0, i.e.,

p= pO(-x9 .V) } ‘
. at z=0.
Q = Qo(x, »)

Somehow, these local conditions—or more general
a linear combination of p and Q at two different
levels—seem to be natural for a local treatment of
(2.11). The true problem, however, is nonlocal and it
can be demonstrated that with a prescribed F(p, Q)

(2.13)
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one cannot expect to satisfy the three boundary con-
ditions (2.7) and (2.8) for any choice of py and Q.
Suppose we are in a region of downwelling and the
surface density pg would be prescribed. Then, because
of the upper boundary condition (2.7) for the vertical
velocity, the potential vorticity Q, at z = 0 cannot be
prescribed but depends on the function F(p, Q) and
on wy(x, y) since from (2.11)

F, Q(Po s Qo)
Qo

Integration along each isopycnal py = constant with
a given initial value Qg[po] determines Qy(x, ») on the
entire surface z = 0 in terms of the boundary fields
po(x, ¥) and wy(x, y) and the one-dimensional manifold
Qolpo]- Suppose now that we have solved (2.12) subject
to the boundary conditions (2.13) for the downwelling
region. For w to vanish at the bottom z = —h, density
lines p_, = constant and potential vorticity lines Q_,
= constant must be parallel, i.e., p_;, must be function
of Q_,. It is evident that this cannot be achieved for
the two-dimensional domain by tuning of the one-
dimensional manifold Qy[p,]. The property of p_ and
Q- to be parallel must thus be contained in the correct
choice of F(p, Q). -

We have pointed out the shortcomings of the F-
function approach to the ideal fluid problem. Nev-
ertheless, it is a very convenient tool to generate analytic
solutions to the ideal fluid equations. We will proceed
this way in Section 3 to present our presumably stron-
gest argument against the possibility of a stagnation
surface in the fluid.

wolx, y) = (00xQoy — poyQ0x).  (2.14)

3. Properties of the fields near a LNAM

If we insert (2.12) into (2.11) we obtain a represen-
tation of the velocity field

u= aVp X VQ = a(-’yz; ~Jxzs ny 5 3.1)
where
Fo
a=—= 3.2)
0 (

and Jy, is the y-z Jacobian of p and Q, etc. Apart from
the functional relation (3.2) expressing « in terms of
p and Q the form (3.1) can be inferred from the con-
servation of p and Q alone: since the intersection of
p = const and Q = const must be a streamline the
velocity vector u must be parallel to Vp X VQ.

The relation (3.1) allows to give a classification of
the possible configurations of the levels of no motion
in the fluid: the velocity vector should vanish if either

Jye = Jxs = Jy =0 (LNAM of the first kind) (3.3)

or

a =0 (LNAM of the second kind). (3.4)
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If only one of the Jacobians vanishes only one com-
ponent will have a LNM. For a LNM in, say, the east
component we have

J.=0 (LNM in ). (3.5)

A way to judge which of the cases (3.3) to (3.5) is
“normal” is to consider the spatial dimensions defined
by these relations. Obviously, (3.5) defines a two-di-
mensional surface. In contrast, (3.3) is the intersection
of two surfaces (note that the vanishing of two Jaco-
bians implies vanishing of the third). Hence, a LNAM
of the first kind generally occurs only along the inter-
section of two surfaces; i.e., it is a curve and thus an
exceptional case compared to a LNM as given by (3.5).

The condition o = Fy(p, Q)/Q = O defines a curve
in the (p, Q)-domain that corresponds to a surface in
the fluid. However, a = 0 is-only sufficient for the
vanishing of u if the Jacobians remain regular on this
surface given by a = 0. The investigation of this con-
figuration is the main goal of this section.

To investigate the structure of the density field close
to a point where Fy, = 0 we consider the profile equation
(2.12). A point z = z, where F vanishes is a singular
point of this differential equation and we expect in
general, i.e. for two independent boundary conditions
as e.g. (2.13), that p,, becomes singular at this level.
In this case the Jacobians J,, and J, are singular, too,
and the criterion (3.4), i.e. a = 0, is not sufficient for
the existence of a LNAM. Thus the absolute velocity
does not necessarily vanish on the entire surface given
by a = FQ/ Q =0.

As obvious from (2.14), the singular behavior of
the density field p(x, y, z) on the surface z = z,(x, y)
can only be prevented if F, — gz = 0 on this surface,
more strictly the ratio (F, — gz)/Fp must attain a finite
value as the surface Fp = 0 is approached. An example
is given below where the surfaces z = z,(x, y) defined
by Fp = 0 and z = Z(x, y) defined by F, = gz are
different unless the boundary conditions are chosen
in a very specific way.

The linear function B = F(p, Q) = ap + bQ + c of
Welander’s (1971a) thermocline solution yields
Fy = b # 0. This model exhibits only LNMs of the
kind (3.5) and LNAMs of the first kind (3.3). The
simplest function with a zero in F must be quadratic
in Q. Thus we take '

Flp, Q) = agp + H(Q — Qy)* + ¢, (3.6)
where a, b, ¢ and Q, are constants. Then
a=2KQ — O)/Q 3.7)

vanishes for Q = Q, at, say, z = z,. This point will
be determined by the boundary conditions as shown
below. Eq. (2.12) can be solved exactly for Q (any form
which is linear in p can be solved exactly as shown by
Welander, 1971a). Defining
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¢=p+go(z—a)—c (3.8)
the potential vorticity is just
J¢:
=—, (3.9)
= e-a

and the first equation of (2.10) reduces to a first-order
problem in ¢; namely

S _ (9)
el 20 b (3.10)
which may be integrated to yield
Kl(z— @) — (z: — @)]
_(2)"_ (?g)‘” _ Qs + (¢/b)”
-(3) -(3) -eem 0, + w2 O
or, using (3.9) and (3.10) again,
0-0-0uin
=Kl(z—af — (z; —a)}], (3.12)

where Q = Qi(x, y) at a level z = z, and K = g/(4bf).
For Q = Q, this equation determines the surface
z = z4(X, y), where Fg vanishes. The function z, is
thus solution of the quadratic equation

Q*—Ql—Q*ln-QQ—T

= K[(zy — a)2 —(zi — 0)2]- (3.13)
The (x, y)-dependence of z, enters through the inte-
gration constant Q,(x, y) and the y-dependence of K.
Eliminating Q, from (3.12) and (3.13) yields

Q0
Q— Qx — QO ln('Q_*
=K[(z— a)? — (z4 — @)?]. (3.14)
It is easy to show from this first integral of the profile
equation (2.12) that the vanishing of a on the surface
z = z,{x, y) is insufficient for a LNAM. The gradients
of @ follow from (3.14) in the implicit form

Q
Vo = v — )2 — — 2?1, )
Q 0- o, {Kl(z —a)’ — (z« —@)’]}. (3.15)
In particular,
_e __ 0 _
Q; = Jfp:. 0- 0o, 2K(z — a). (3.16)

The second-order gradients VQ of the density field
apparently become singular for @ = Q,, i.e., on
Z = z4(x, y). The exceptional case z, = a is considered
below. From the expression (2.11) for the velocity vec-
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tor one notices that the zero in « is cancelled exactly
by the singularity in VQ, so that

u=2bVp X V{K[(z — a)* — (z4 — a@)’]} (3.17)
is generally nonzero on z = z.(x, y).

The surface z = Z(x, y) where F, = gz is simply the
level surface z = a in this example. It is evident from
(3.15) that VQ is regular on this surface, in particular
Q. = 0, except on the curve where z = g and z
= Zzu(x, y) intersect. Approaching this curve on the
level surface z = a, Eq. (3.16) yields a vanishing Q,,
whereas approaching on the surface z = z.(x, y), we
find an infinite value. Hence the density is still singular
on this curve.

The surfaces z = z,(x, y) and z = a can be made
identical by a specific choice of Q. According to (3.13)
we must simply take Q, as solution of

O — Q01— 0OsIn % = —K(z, — a)*.
For this specific O, = Q,(y) one finds regular behaviour
Q — Q« = RKQ,)"*z = a) close to z = a with
0.,=0,0,~0and Q, ~ (2KQ,)""? as z ~ a. The
ratio (F, — gz)/Fp remains finite and indeed u = v
=w=0at z=gqg,ie., a LNAM of the second kind
is obtained.

What is the normal case? One could make the hy-
pothesis that the specific form (3.18) for Q, is the only
one compatible with the form (3.6) of the F-function.
One may express @, in terms of the boundary value
Qo (or simply identify z, with the top of the fluid,
z = 0) and proceed to investigate the compatibility
with the remaining boundary conditions. On the other
hand, if one believes that (3.6) is compatible with more
general boundary conditions the above described sin-
gularities occur. We believe that such singularities do
not happen in the ocean and conclude that « does not
vanish within the oceanic water body or, equivalently,
that the relation B = F(p, Q) between B, p and Q is
such that Fy # 0 within the range of oceanic density
and potential vorticity values. As the only possibility
for a LNAM then remains the configuration of the
LNAM of the first kind characterized by the simul-
taneous vanishing of all three Jacobians J,., Jy, and
Jyxy. As explained above, this generally defines a curve
in the fluid. Again, only a specific choice of the bound-
ary conditions (2.13) will produce solutions to the pro-
file equation (2.12) that have the three Jacobians van-
ishing simultaneously on an entire surface. It is unlikely
that such boundary conditions should just happen to
be realized in the ocean. We conclude that stagnation
surfaces are unlikely to exist in the ocean.

(3.18)

4. Inference about the LNAM from diagnostic ap-
proaches :

In the last section we attempted to construct com-
plete solutions for the full set of ideal fluid equations.
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These equations have also found wide applications in
diagnostic calculations of the oceanic velocity field from
observed density. There are various ways to relate the
velocity components to the density field and exploit
such relations for a diagnostic calculation. Here we
will briefly investigate three of these approaches with
respect to their treatment of the level of no-motion
problem. We emphasize again that in this section the
density field is regarded as given, e.g., from observations
and as such will not necessarily be compatible with
any solution of the ideal fluid equations.

The diagnostic methods considered below share the
property of inferring the local (i.e., at each horizontal
position separately) velocity profile from the profiles
of the horizontal and vertical density gradients. The
methods are based on the thermal wind equations

(3
or ()

the conservation of density (2.2) and the local form
of the vorticity equation (2.4) or, equivalently, the po-
tential vorticity equation (2.6). Constraints that relate
the velocities from horizontally separate points, i.e.,
the continuity constraint, have been eliminated. Con-
sequently, any velocity field inferred from this set of
equations (4.1), (2.2), and (2.4) using a given density
field will generally not satisfy continuity (unless, of
course, the density field has been taken from a complete
solution of the ideal fluid equations).

4.1

3

a. The B-spiral approach

The B-spiral equation
we+vJ,=0 4.2)

can be obtained from (3.1) by elimination of «. Then
integrating (4.1) in the form

AN
u=uo+(?)J;dey

() o

the unknown reference velocities u, and y, are deter-
mined in principle by considering (4.2) at two different
levels. In practice many levels are used to solve (4.2)
by a least squares procedure. The vertical component
w then follows from (3.1) or equivalently, (2.2). Notice
that the equivalence does not hold if the solution is
obtained from noisy data. Then the solution depends
on the assumption where the noise enters into the
equations. In the above scheme which is.used, e.g., by
Stommel and Schott (1977), the density conservation
is satisfied exactly whereas the vorticity and potential

4.3)
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vorticity equations contain noise and are satisfied only
in a least squares sense. It is possible to place the noise
elsewhere which yields different formulations of the
B-spiral. Integrating the vorticity equation (2.4)

w=wy+ (i—i) J: dz'v

and inserting this and (4.3) into the density conser-
vation (2.2) yields a 8-spiral equation from which the
three reference velocities g, Vo, and wy may be de-
termined by a least squares fit. The w-profile then fol-
lows from (4.4) so that the vorticity equation is exactly
satisfied but the density conservation contains the
noise. Details of this approach are described in Olbers
et al. (1984).

This latter procedure has been used to calculate the
geostrophic velocities in the North Atlantic from the
Levitus (1982) atlas. Fig. 1 displays u, v, and w for
two sections which should exemplify the complexity
of the structure of the levels of no-motion in the ocean.
Actually, the velocity field was not derived from the
ideal fluid equations but using conservation of potential
density instead of in sifu density. The reference ve-
locities were determined from data below the mixed
layer down to 2000 m depth. The thick curves in Fig.
1 indicate the LNMs for each component. They are
reproduced in Fig. 2. Apparently, on these sections
the LNMs of the different components do not coincide;,
even regarding possible error bounds. Generally the
pair-wise intersection occurs close together (the LNMs
do not perfectly intersect in points since the conser-
vation equation for density is satisfied only in a least
squares sense). Hence, this structure is more likely
consistent with LNAMs of the first kind and not with
those of the second kind.

4.4)

b. The w-equation

The w-equation (Killworth, 1980) resides on the
same subset of the ideal fluid equations as the 8-spiral.
By straightforward elimination in (4.1), (2.2) and (2.4),
one finds a second-order differential equation for w

—UW + uw; + fg pw= 0. (45)

Given u(z) and pz), the solution of this equation
subject to the boundary conditions w = 0 at the bottom
and w = wg (the Ekman pumping velocity) at the
surface would yield the profile of the vertical velocity.
Killworth (1980), however, uses (4.5) to determine the
LNM in « and hence the absolute velocity profile. We
give a brief discussion of this concept which is entirely
based on the mathematical properties of (4.5).

The properties of w in the vicinity of a zero in u
(say, u = 0 at z = z;) are obtained by the local analysis
of (4.5). One expands u and p, about z = 2
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FIG. 1. Sections of u, v and w along (a) 32.5°N and (b) 30.5°W in the North Atlantic. Units are cm s’
for # and v and 10™* ¢cm s™' for w. Heavy linés indicate LNM of the velocity components.

u= §[py(zo)<z — Z0) + Lpyzoz — Zof + - - -

pz = pA20) + pAzofz — zo) + - - -
(4.6)

and derives the recurrence relations for the Frobenius
solution
w=(z—20) 2 auz— 20",
n=0
by inserting (4.6) and (4.7) into (4.5). The indical
equation y(y — 2) = 0 has solutions v = 2 and
v = 0. The Frobenius solution for v = 2 always exists

a#0, @&.7)
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[this is w; ~ (z — 2o)’]. For the lower exponerit v
= ( the recurrernce relations break down if J,, # 0 at
z = z,. In this case any solution independent to w,
contain a logarithmic term

wy = Jy{20)z — zo)* In(z = z0) 2 anlz — 20)" (4.8)
n=0

so that the general solution will produce a singular w,,
and hence p,. This, however, is not the case if
J,. = 0 at z = z,. Then the recurrence relations remain
consistent and yield a second solution which is the
sum of w; and an independent regular solution w,
which does not vanish at z = z,. The complicated
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FiG. 1. (Continued)

analysis of the singular w-equation thus recovers of
course the configuration of the singular behavior if
J,: # 0 or the occurrence of a simple LNM in u if
J,: = 0.

The general solution of (4.5) is of the form w = aq,w,
+ a,w, where a, and a, are determined by the two
boundary conditions. Killworth (1980) now argues that
the vanishing of the Jacobian J,, at z = z, is very
unlikely and, moreover, that the ocean will not develop
singularities so that a priori a, = 0. The two boundary
conditions then enable the determination of another
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parameter such as the reference velocity u,. Further,

with w; ~ (z — z)* one obtains from (2.4) v = 0 at

z = z,. Hence a LNM in u would necessarily imply

the existence of a LNAM. In essence, this concept

attempts to determine the absolute velocity from the

demand to prevent singular behavior which is somehow
selfgenerated by the assumption J,, # 0. In contrast
we would rather tend to conclude that in general J,
= 0 where u = 0 and that the singular behavior of a
LNAM of the second kind should not occur
at all.
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FIG. 2. Level of no motion structure of the three velocity componenfs for the sections shown in Fig. 1.
Fat curves indicate LNM for u, dashed lines for v, and dotted lines for w.

¢. Needler’s formula :

An explicit expression in terms of density for the
proportionality factor « in (3.1) can be derived by
differentiating the conservation equation (2.6) for po-
tential vorticity with respect to z and using the relations
(2.4) and (4.1) to eliminate the velocity shear. This
yields '

u-V(/Q,) = ngy- 4.9)
With (4.2) one obtains for o the expression
o= k- (Vp XVQ)
£ (Vo x VO)-V(12)
8y (4.10)

" 100 — TS0, + T (SO,

which involves third-order derivatives of density
(Needler, 1982). :

It is evident from this derivation that other repre-
sentations of « in terms of p exist which involve higher
order derivatives: further differentiation of (4.9) with
respect to z yields
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u- V(f2sz) = gf(-]xy . + ngy(p, sz) 4.11

which results in an expression for o with fourth order
derivatives of the density field

f(ny)z + ny(p, sz)
Jyz(szzz)x - xz(f2sz)y + ny (szzz)z )
' (4.12)

We may proceed along this line to generate more rep-
resentations of « with increasing order of derivatives.
The possibility to derive closed representations for u
in terms of the density field simply by successive vertical
differentiation of (2.2) and use of (2.4) and (4.1) was
implicit in the considerations of Killworth (1979) but
only recently Needler (1982) has drawn attention
to it.

" What can we learn from Needler’s formula (4.10)
for the configuration of the LNAM of the second kind?
If we assume that p has finite gradients « can only
vanish if J,, = 0 which is a surface in the fluid. If the
denominator in (4.11) does not happen to vanish on
this surface too, we would conclude that « vanishes
on the surface J,, = 0 which then would represent a
stagnation surface in the fluid. However, the situation

a=g
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is not that simple as revealed by consideration of (4.12).
It is not at all evident from this representation that
the vanishing of J,, implies & = 0. The vanishing of
the numerator of (4.12) generally defines an entirely
different surface. Apparently one cannot consider the
behavior of the numerators of these expressions apart
from the behavior of the denominators. The complete
dynamics identify a with Fo/Q [Eq. (3.2)]. This indeed
shows that the vanishing of J,, is not sufficient for a
zero in a.

So far no attempts have been made to apply Need-
ler’s formula to the observed density field. It may be
of interest, however, to point out a property of the
representation (4.10) which is not readily apparent
from the derivation. The B-spiral approach makes use
of both thermal wind relations (4.1) and the resulting
current profile will satisfy both these relatiors for any
given density field. Needler’s representation (4.10) does
not have this property. Only the component of the
thermal wind orthogonal to the horizontal velocity
(u, v, 0) is used in the derivation of (4.11), i.e., the
relation

Jeut, + Jyzuz = ‘é;‘(pnyz - px-]yz) (413)
will hold for any density field if u, and v, are computed
from (4.10). The component of the thermal wind par-
allel to (i, v, 0) has not been used so that the relation

g
f

will generally not be reproduced with an arbitrary den-
sity field. Notice, however, that Needler’s formula si-
multaneously conserves density and potential vorticity
which is not the case for the 8-spiral approach.

Jyzuz —JU, = (pnyz + pxJxz) (4.14)

5. Summary

We have collected some aspects of ideal fluid theory
with the aim to investigate the structure of the flow
close to a level of no motion. Since density p and
potential vorticity Q = fp, are conserved the intersec-
tions of the surfaces p = constant and Q = constant
define the streamlines of the flow and the direction of
the velocity vector is given by Vp X VQ. If this vector
happens to be orthogonal to a coordinate axis at one
point the corresponding velocity component must
vanish there. The condition for the occurrence for such
a level of no motion in one velocity component (a
LNM) may thus be expressed in terms of the vanishing
of a Jacobian of density and potential vorticity. The
LNMs for one component generally form a surface
and the interaction of such surfaces for different com-
ponents generally form a curve where the fluid is en-
tirely motionless. Thus, on purely dimensional
grounds, such a configuration (a LNAM of the first
kind in this paper) where the velocity vector vanishes
will be rare compared to a LNM in one component.
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These simple types of levels of no-motion entirely
derive from the directional properties of the velocity
vector. Any other type must be associated with
the vanishing of the factor « in the representation
u = aVp X VQ and hence be a zero for the velocity
vector. Since o must be a function of position, a = 0
would generally define a surface where the fluid is
stagnant. We have searched for evidence for the oc-
currence of such a configuration (termed a LNAM of
the second kind in this paper), in diagnostic models
and in exact solutions of the ideal fluid equations.

As a convenient way to generate exact solutions of
the ideal fluid equation we have used Welander’s
(1971a) approach that is based on a functional relation
between density p, potential vorticity Q and Bernoulli
function B in the fluid, say B = F(p, Q). The ideal
fluid equations then identify o with a function of p
and Q, i.e., a = Fy(p, Q)/Q. We have argued within
the general framework of the F-function approach and
exemplified by an exact solution for a specific F(p, Q)
that on a fluid surface defined by Fp/Q = 0 the density
field is most likely to become singular. Only very spe-
cific boundary conditions can prevent a singular be-
haviour on the surface Fp/Q = 0. Thus, u = (Fo/Q)Vp
X VQ does not necessarily vanish where Fy/Q is zero.
Since we do not believe in a singular flow field in the
ocean we conclude that the oceanic F(p, Q) would be
such that Fp/Q does not become zero. Then the only
levels of no-motion for the entire velocity vector are
those described above as LNAM of the first kind.

The result from g-spiral calculations are consistent
with the sole occurrence of the LNAMs of the first
kind. The w-equation approach of Killworth (1980)
presumes the existence of a LNAM of the second kind
and determines the absolute velocity profile by ex-
plicitly suppressing the singular behaviour of the flow
which originates from the a priori assumption of a
LNAM of the second kind. Needler’s formula (Needler,
1982) expresses « in terms of the density field but gives
no clear statement on the vanishing of a.

To summarize we found no convincing evidence
that the ideal fluid equations with sufficiently general
boundary conditions are compatible with a stagnation
surface in the fluid.
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