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Theory of Synthetic Aperture Radar Ocean Imaging' 
A MARSEN View 

K. HASSELMANN, 1 R. K. RANEY, 2 W. J. PLANT, 3 W. ALPERS, 4 R. A. $HUCHMAN, 
D. R. LYZENGA, 5 C. L. RUFENACH, 6 AND M. J. TUCKER'7 

This paper reviews basic synthetic aperture radar (SAR) theory of ocean wave imaging mechanisms, 
using both known work and recent experimental and theoretical results from the Marine Remote Sensing 
(MARSEN) Experiment. Several viewpoints that have contributed to the field are drawn together in a 
general analysis of the backscatter statistics of a moving sea surface. A common focus for different 
scattering models is provided by the mean image impulse response function, which is shown to be 
identical to the (spatially varying) frequency variance spectrum of the local complex reflectivity coef- 
ficient. From the analysis has emerged a more complete view of the SAR imaging phenomenon than has 
been previously available. A new, generalized imaging model is proposed. 
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1. INTRODUCTION 

There have been many contributions in recent years to the 
problem of adequately describing, either in theoretical or ex- 
perimental terms, the imaging response of a synthetic aperture 
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radar (SAR) to the surface of the ocean. Not all of this work 
would appear to be fully self-consistent, which has lent a 
flavor of excitement as well as confusion to the field. Examples 
of the broad spectrum of SAR ocean imaging models preva- 
lent in the current literature may be found in the work of 
Larson et al. [1976], Elachi and Brown [1977], Jain [1978, 
1981], Shemdin et al. [1978], $huchman et al. [1978], Teleki et 
al. [1978], Alpers and Rufenach [1979, 1980], Swift and Wilson 
[1979], Raney [1980a, b, 1981a, b], Valenzuela [1980], Har•Ier 
[1980, 1984a, b], Rufenach and Alpers [1981], Alpers et al. 
[1981], Shuchman [1981], Alpers [1983a, b], Iranov [1982, 
1983-1, Rotheram [1983], Tucker [1983, unpublished manu- 
script, 1984], Ouchi [1983], and Plant and Keller [1983]. 

In an effort to narrow the range of models applied to the 
SAR ocean-imaging problem, a series of microwave back- 
scatter and SAR workshops were held as part of the Marine 
Remote Sensing (MARSEN) project. This paper is an effort to 
summarize the degree of synthesis which was achieved and to 
present a more complete SAR sea-imaging theory than has 
previously been available. The workshops benefitted greatly 
from the input of many colleagues not listed explicitly as au- 
thors. We wish to thank particularly Robert Harger, Allan 
Haskell, Peter Hoogeboom, Vincent Hsiao, Atul Jain, Daniel 
Kwoh, Bruce Lake, Paul de Loor, Richard Moore, Omar 
Shemdin, and John Vesecky for their contributions to the 
workshops. 

The final paper represents a consensus of the listed authors 
with respect to the appropriate SAR sea-imaging model. A 
minority dissenting view expressed at the workshops 
questioned the basic assumption of our theory, that surface 
reflectivity can be regarded as spatially white within the reso- 
lution of a SAR. We discuss this point in more detail below. 

The agreement achieved on the appropriate form of a gener- 
al SAR ocean-wave-imaging model does not imply that there 
also exists a general consensus on the relative importance of 
all aspects of the kinematics and dynamics of a moving sea 
surface which affect SAR imagery. The purpose of this paper is 
rather to develop the general theoretical framework needed to 
discuss the effects of competing processes and to provide a 
common language for interpreting the numerous microwave 
modulation, hydrodynamic interaction, and SAR-imaging 
data which were collected during MARSEN. We have not 
attempted to analyze, resolve, or merely summarize the nu- 
merous, often conflicting viewpoints in the literature. Instead 
we have chosen what we regard as a more constructive route 
by simply rederiving the basic backscatter relations from ele- 
mentary principles. By a careful introduction of definitions 
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and statement of hypotheses, we believe many apparent 
controversies in the literature evaporate as misunderstandings, 
and the commonality or complementarity of different view- 
points emerges. 

The first part of this paper is accordingly confined solely to 
the theory of electromagnetic backscattering from a rough, 
moving sea surface, without reference to SAR-imaging theory 
(except in the identification of the particular statistical proper- 
ties of the backscattering coefficient which are required later 
for SAR analysis). This reiteration of largely classical results 
with a few straightforward extensions derives also from our 
MARSEN SAR workshop experience, where it was found that 
misunderstandings entered invariably at the fundamental level 
of scattering theory, rather than in the finer subtleties of SAR 
processing. 

With the exception of a brief discussion of the speckle co- 
variance function in section 3.5, the SAR analysis in the 
second part of the paper has been limited throughout to the 
clutter-averaged mean image. The problem of higher-order 
clutter statistics is intriguing and can probably help shed light 
on the nature of the backscattering•processes. However, it is a 
more complex problem than can be treated here ['see Ouchi, 
1981; Raney, 1981a, 1983; Alpers and Hasselmann, 1982; 
Barber, 1983]. Also, it has not been at the core of the ocean- 
wave-imaging controversy, which has centered on the rela- 
tions between the mean image and the wave field. 

Since SAR imaging represents a basically quadratic process 
(the square modulus of a linearly filtered complex signal) the 
clutter-averaged mean image is determined entirely by the 
second moment statistics of the complex backscattering (re- 
flectivity) coefficient. Higher statistical moments have no 
impact on the mean image properties. It is therefore irrelevant 
in this context whether the reflection coefficient is continuous 

and Gaussian, as predicted by the two-scale Bragg scattering 
models for intermediate incidence angles, or strongly intermit- 
tent and non-Gaussian, as expected for specular reflection 
near vertical incidence, or the backscattering from breaking or 
near breaking waves near grazing incidence. Higher-order sta- 
tistical properties of the .reflection coefficient affect only the 
speckle statistics. Nonetheless, the different scattering pro- 
cesses can be distinguished also in the clutter-averaged mean 
image through different signatures in the second-moment co- 
variance functions. This includes, in particular, the form of 
modulation (linear or nonlinear) of the second moments by 
the long waves. 

A major simplification of SAR-imaging theory, both for the 
mean image and the speckle statistics, follows from the hy- 
pothesis that the complex reflectivities at different points (at 
the same or different times) on the sea surface are un- 
correlated. This applies for spatial separations which are large 
in comparison with the radar wavelength but still small in 
comparison with the SAR resolution scale. Within the resolu- 
tion of a SAR, the surface reflectivity may therefore be regard- 
ed as spatially white. We make this hypothesis throughout this 
paper. As far as we are aware, it is consistent with all explicit 
backscattering models of the sea surface. For instance, the 
interpretation of the normalized radar cross section of the sea 
by composite surface theory relies on spatially white back- 
scatter [Wright, 1968]. The backscattering model used to ac- 
count for the operation of dual-frequency scatterometers also 
invokes this assumption [Plant, 1977; Alpers and Hasselmann, 
1978; Plant and Schuler, 1980]. Experimental results agree 
well with the predictions of both models (Figure 1 and Schuler 
et al. [1982]). Furthermore, experiments designed explicitly to 

test the whiteness assumption have been carried out at large 
incidence angles [-Pidgeon, 1967]. Results of these experiments 
confirm that sea backscatter decorrelates spatially quite rap- 
idly at microwave frequencies, certainly within distances com- 
parable to SAR spatial resolution cells. It should be noted that 
the hypothesis concerns only the second moments and implies 
essentially a decorrelation of phases, but not necessarily the 
statistical independence of different scattering elements. In 
particular, the cross sections can be (and generally are) corre- 
lated. 

The consequence of not assuming spatially white back- 
scattering is to involve the modulation pattern of the basic 
scattering elements strongly in the final results. That is, by 
assuming that widely separated scatterers remain correlated, 
the relationship between the amplitudes and phases of these 
scatterers becomes very important. Since these modulation 
patterns move with long-wave phase speeds, such speeds also 
strongly enter the final results. This is not to imply that phase 
speeds of long waves cannot enter SAR ocean-imaging models 
if the whiteness assumption is made. For instance, in common 
with any technique which maps from a platform moving with 
respect to the scene, wavelengths in the direction of flight in 
SAR images will expand or contract in a manner depending 
on wave phase speed [Valenzuela, 1980; Harger, 1980; Plant 
and Keller, 1983]. Also, as we shall discuss further below, 
specular scatterers may move at speeds approaching long- 
wave phase speeds and thus may contribute to an image de- 
pendence on this speed. 

For a spatially white backscattering surface, the general 
quadratic functional dependence of the real SAR image on the 
complex reflectivity field contracts on forming the clutter en- 
semble average to a diagonal form, implying that the mean 
SAR image may be represented simply as the independent 
superposition of the individual mean images of a continuous 
distribution of separate, infinitesimal surface scatterers. The 
mean SAR-imaging properties of a moving random surface 
may therefore be expressed in terms of the mean image im- 
pulse response function for an infinitesimal scattering element. 
This depends on the local time history of the backscattering 
element and is generally a function of position within the 
long-wave field. The principal effect of scatterer motion is a 
mean azimuthal displacement and broadening of scattering 
elements in the image plane. 

It is shown that the mean image impulse response function 
is identical to the frequency variance spectrum of the reflec- 
tivity coefficient. The identity is based on the usual SAR 
equivalence relation between Doppler offset frequencies and 
azimuthal displacements, and the variance spectrum is defined 
with a finite frequency resolution in accordance with the finite 
(single or multilook) effective SAR integration time. This result 
provides a common reference point for the discussion of differ- 
ent ocean-wave-imaging models. From the spectral viewpoint 
the SAR imaging of a time dependent scattering element may 
be regarded simply as the independent mapping of an en- 
semble of different scatterers having different Doppler fre- 
quencies into different, azimuthally displaced image points. 
This interpretation is applied to the multiplicative noise model 
[e.g., Raney, 1980a, b, 1981a], the purely advective two-scale 
Bragg scattering model [e.g., Alpers and Rufenach, 1979; 
Alpers et al., 1981], and two-scale models in which the multi- 
plicative noise and advective effects are combined [e.g., Ru- 
fenach and Alpers, 1981; Raney, 1981b; Tucker, 1983, unpub- 
lished manuscript, 1984; Plant and Keller, 1983]. The spectral 
approach is particularly helpful for the main goal of this 
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still small in comparison with the radar wavelength. The two requirements can be satisfied simultaneously for kern h • kb/5 
(cf. sections 2.2 and 2.6). 

paper, the amalgamation of different scattering mechanisms 
and viewpoints into a comprehensive imaging model. 

Some confusion in past SAR-imaging discussions has re- 
sulted from the use of different two-scale models. We have 

accordingly taken some care to distinguish between the 
electromagnetic-hydrodynamic (EMH) two-scale model, in 
which the scale separation is based solely on the requirements 
of electromagnetic backscattering and hydrodynamic interac- 
tion theory, and the SAR two-scale model, in which the sepa- 
ration scale is determined by the (considerably larger) SAR 
resolution scale and integration time. 

The characteristics of the frequency variance spectra of dif- 
ferent sea-surface-scattering models are considered in detail in 
part 1 of the paper (sections 2.1-2.8). We have attempted to 
maintain a formalism sufficiently general to encompass most 
contemporary scattering models (regardless of possible diffi- 
culties in actually carrying out the scattering calculations for 
non-Bragg scattering models). In part 2 we first derive the 
SAR-imaging relations for frozen and moving surfaces (sec- 
tions 3.1 and 3.2) and, after applying these relations to the 
backscattering models of part 1 in section 3.3, turn then to the 
impact of the mean image impulse response functions (vari- 
ance spectra) on the imaging of a complete long-wave field 
(sections 3.4 and 3.5). This includes an analysis of the different 
contributions to the modulation transfer function (MTF) in 
the linear imaging regime (section 3.4) and a discussion of the 
nonlinearities introduced by strong azimuthal displacements 
(velocity bunching) and smearing (section 3.5). The order of 
magnitude of the different effects are estimated for typical 
SAR and sea state (wind-sea and swell) conditions. Special 
emphasis is given to the dependence on SAR parameters, since 
this is important both for distinguishing between competing 
scattering processes and for optimizing SAR ocean-wave- 
imaging performance (section 3.7). This section is preceded by 
a brief discussion of the speckle covariance function (section 
3.6), which provides independent information on the scattering 
mechanism. It is shown that the smearing of scattering ele- 
ments induced in the mean image by motion effects is reflected 
in a finite correlation scale of the speckle covariance function 
only for isolated, intermittent scattering targets, while a dis- 
tributed scattering surface yields always a white speckle co- 

variance function IRahey, 1981a, 1983]. The principal con- 
clusions of the paper are summarized in section 4. 

2. PART 1: BACKSCATTERING FROM A RANDOM MOVING 

SEA SURFACE 

2.1. Microwave Backscattering From a Time 
Independent Random Surface 

As preparation for the general time dependent case, we 
review first some basic relations for the backscattering from a 
time independent random surface. In the context of this paper, 
the surface may be envisaged as a frozen instantaneous sea 
surface state. 

A time independent random backscattering surface is often 
defined simply as a surface for which the complex reflectivity 
(backscattering coefficient) r(x) is a white process: 

<r(x)r*(x + •)> - rro(X ) •5(•) 

where a0(x) represents the specific backscattering cross section 
and the angle brackets denote ensemble mean values. 

We note that "white" implies here the statistical decorrela- 
tion of spatially separated backscattering elements, as ex- 
pressed by the • function in (1), but not necessarily statistical 
homogeneity: the specific cross section a0(x) can vary with x. 
(As was pointed out earlier, zero correlation also does not 
imply statistical independence of the backscattering elements, 
an important point in considering speckle statistics.) 

For the needs of formal statistical analysis, the averages in 
(1) are defined with respect to a hypothetical infinite ensemble 
of different surfaces, although in practice the averages must be 
estimated by averaging over a finite region of the given, 
unique surface for a finite time. We assume that in the differ- 
ent realizations the large-scale ocean wave features which are 
to be imaged remain identical, but the small-scale scattering 
properties with scales of the order of the radar wavelength 
vary statistically. The separation scale between the determinis- 
tic long-wave field and the statistical short-wave (ripple) field 
will be defined more precisely later. 

Equation (1) represents the starting point of most theories 
of radar imaging of a time independent random surface. It is 
therefore important to recall the approximations of electro- 
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magnetic backscattering theory on which it is based, in partic- 
ular in order to generalize the relation later to the time depen- 
dent case. 

The concept of a backscattering surface consisting of a con- 
tiguous distribution of uncorrelated, formally infinitesimal 
backscattering surface elements is intuitively plausible. For- 
mally, it is normally derived from Kirchhoffs integral repre- 
sentation of the backscattered electromagnetic field. 

For a point xs in the far field region of the backscattering 
surface S', Kirchhoffs integral takes the form 

½s(x•,t)=•-• (R')-'n. V R'c •' ½ x' t---- 

where R'= x'--x•, c is the velocity of light, n is the unit 
surface normal vector, and the field •b represents the total 
electromagnetic field, consisting of the sum of the incident 
field •b i and backscattered field •b s (for a given polarization). 

The reflection coefficient r is defined by referring the total 
field •b on the scattering surface to the emitted incident field •b e 
on a smooth reference surface S, close to S'. For the present 
purposes it is natural to take the undisturbed, horizontal 
mean sea surface as reference surface (cf. Figure 1; we shall 
consider alternative, moving reference surfaces in the following 
section). Equation (2) may then be written formally as 

, ½,(x,, t) = - 4% , 
(3) 

where k e represents the wave number of the incident electro- 
magnetic wave field and, by definition, 

r(Xr)•Pe(Xr, t -- --•t2ke dSr 
( R'l•-t)qS(x',t -•)dS' ,4) =--n. V R'c 

(We may set R, = R' in the far field.) The normalization is 
chosen such that r = 1 for perfect reflection. 

It should be noted that although the reflectivity is defined 
through (4) as a local quantity at a point x', it is not assumed 
that the backscattering mechanism is necessarily local. The 
total field appearing on the right-hand side of (4) can, in prin- 
ciple, be generated by interactions with any region of the sur- 
face. In practice, the field will, of course, be largely determined 
by the properties of the surface in the immediate neighbor- 
hood of x'. 

Equation (1) follows immediately from (4) if the phases of 
the field •b at different points on the backscattering surface are 
uncorrelated. Either this can be simply postulated, or one can 
attempt to derive this property from given statistical proper- 
ties of the surface. In the latter case one needs to enter further 

into the methods of electromagnetic backscattering theory. 
Since Kirchhoff's integral contains the total electromagnetic 
field, the application of Kirchhoffs method requires some 
first-order estimate of the net electromagnetic radiation field 
in the presence of the backscattering surface. Various back- 
scattering models may be constructed, dependent on the 
choice of the first-order field. 

The most frequently used model in sea surface back- 
scattering application is the two-scale model, first considered 
by Wright [1968] and Bass et al. [1968] (cf. also Hasselmann 

and Schieler [1970], Wright [1978], Valenzuela [1978], 
Harger and Levine [1978], and others). In this model the first- 
order solution is derived from geometric optics, which is ap- 
plied to a smoothed first-order surface containing only the 
long gravity wave components of the surface wave spectrum. 
The decomposition of the full surface into a smoothed surface 
and a superimposed residual short-wave "ripple" surface is 
achieved formally by introducing a separation wave number 
kem h which divides the surface elevation spectrum into long- 
and short-wave components. In order to apply geometric 
optics for the long-wave field, the wave number kem h should be 
at least an order of magnitude smaller than the wave number 
of the incident radiation (Figure 1). The indices emh refer here 
to electromagnetic-hydrodynamic; the same scale separation 
criterion is applied for the WKB analysis of the hy- 
drodynamical interactions of short waves propagating in a 
field of long waves (sections 2.6 and 3.3). The first-order elec- 
tromagnetic field on the scattering surface is constructed from 
the geometric optics solution by expanding in a Taylor series 
with respect to the coordinate direction normal to the long- 
wave surface, i.e., with respect to the ripple amplitudes. The 
first-order backscattered field can then be obtained from 

Kirchhoff's integral by applying standard Bragg resonance 
scattering theory in a local reference system determined by the 
local normal and the tangential plane (facet) to the long-wave 
surface. To lowest order the backscattered energy in directions 
not too close to the specular reflection direction (i.e., the 
normal) is proportional to the sum of the ripple variance spec- 
tra at the Bragg wave numbers k• = + 2k0, where k0 is the 
projection of the incident wave number onto the facet plane. 
The signs are immaterial for a frozen surface, since the vari- 
ance spectrum is an even function of the wave number; how- 
ever, they become relevant in the time dependent case, where 
they represent ripple waves traveling in opposite directions. 

According to Bragg theory, the backscattered field cannot 
be identified strictly with individual infinitesimal scattering 
sources but represents the resonant return from a single wave 
number component which is filtered out by constructive inter- 
ference from the backscattered return of the full ripple spec- 
trum by integrating over a finite backscattering area (a facet). 
To apply the standard plane surface Bragg resonance theory, 
the facet dimension must be large in comparison with the 
wavelength of the incident radiation in the facet plane. At the 
same time the facet must be sufficiently small that it can still 
be regarded as plane: the normal to the smoothed long-wave 
surface should not change significantly within the facet. An 
additional important requirement of Bragg theory is that the 
rms displacement of the ripples is small in comparison with 
the radar wavelength. These competing requirements can be 
reasonably well satisfied with kem h • O(keh/5), where ke • repre- 
sents the horizontal component of the incident wave number 
k e. A formal analysis of the relevant expansions is given by 
Brown [1978] and Bahar and Barrick [1983]. We return to the 
EMH two-scale model, including the question of the mutual 
consistency of the relevant asymptotic electromagnetic 
theories in the two spectral regimes, in section 2.6. 

For a continuous ripple field, as predicted by the standard 
WKB theory of short waves modulated by long gravity waves, 
the statistical independence of the backscattered return from 
different facets postulated in (1) follows immediately from the 
statistical properties of the ripple spectrum: the backscattered 
return from different facets is proportional to the Bragg Fou- 
rier components of the ripple spectrum for the respective 
facets, and these are statistically independent by definition for 
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Fig. 2. Comparison of measured and theoretical cross sections of the ocean for a radar frequency of 4.5 GHz (6.7-cm 
wavelength): (•) vertical polarization and (b) horizontal polarization (from V•lenzuei• •]978], using data of DMe• et •L 

a statistically quasi-homogeneous ripple field, provided the 
facet dimension is large in comparison with the wavelength of 
the Bragg components, as assumed. 

In the framework of the quasi-continuous two-scale Bragg 
model the g function in the white noise relation (1) can there- 
fore be regarded as valid for SAR-imaging theory, provided 
the SAR spatial resolution scale is larger than a facet dimen- 
sion. If the resolution scale were less than kcmh-•, the g func- 
tion would need to be replaced by a finite width structure 
function. However, the geometry of SAR's automatically limits 
the resolution to scales large in comparison with the radar 
wavelength, so that the white noise g function relation (1) can 
be regarded as fully valid. 

It is important to note that the scale separation length 
kcm h- 1 is determined here solely by the radar wavelength and 

the simultaneous requirements of geometric optics for the 
long-wave field and Bragg scattering theory for the short 
waves. It is independent of (and in fact generally considerably 
smaller than) the SAR resolution scale. We discuss the alter- 
native SAR two-scale model in which the separation wave 
number ksa r is determined by SAR parameters in section 2.7. 

A considerable body of field and laboratory evidence exists 
in support of the two-scale, continuous Bragg scattering 
model in the range of incidence angles 0 from about 20 ø to 70 ø 
for vertical polarization and 20 ø to 60 ø for horizontal polariza- 
tion (cf. review by Valenzuela [1978]). Figures 2a and 2b, 
reproduced from Valenzuela's review, show the good general 
agreement found between observations and the theoretical 
predictions of the two-scale (composite wave) model for the 
cross sections in both horizontal and vertical polarization. For 
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0 < 20 ø the Bragg return begins to be contaminated by specu- 
lar reflection, which becomes the dominant backscattering 
mechanism for 0-• rms wave slope (_•5ø-8 ø for wind seas). 
For large incidence angles, 0 > 60 ø, the spotty appearance of 
SAR images and the spiky return found in microwave back- 
scattering measurements from towers suggest that intermittent 
backscattering mechanisms, such as the return from white 
caps or cusping waves, may become as important as continu- 
ous Bragg scattering (these may include intermittent Bragg 
scattering, e.g., from parasitic ripples on steep, nearly breaking 
waves). As Figure 2 shows, the average radar cross section of 
the ocean is larger than predicted by the Bragg model for 
horizontal polarization and 0 > 60 ø. However, an apparently 
satisfactory agreement can be obtained by adding a wedge- 
scattering component to the Bragg prediction [Lyzenga et al., 
1983]. 

Satellite SAR's are normally designed to operate in the 
Bragg regime. The mean angles of incidence of the Seasat SAR 
and the SAR of the planned European satellite ERS 1 are near 
22 ø. Aircraft SAR's also operate largely in the Bragg range, 
although incidence angles beyond the Bragg limit occur for 
large horizontal ranges (for example, in the UPD6 and UPD4 
SAR data in MARSEN [Shuchman et al., 1983b; Lyzenga and 
Shuchman, 1983]). 

The Bragg EMH two-scale model is attractive because it 
can readily be extended to the time dependent case. It pro- 
vides then, in conjunction with the two-scale WKB model of 
ripple dynamics, a complete theoretical framework for trans- 
lating our present understanding of the kinematics and dy- 
namics of the short- and long-wave components of the surface 
wave spectrum into a SAR ocean-wave-imaging model. It will 
therefore naturally play a central role in the following sec- 
tions. In particular, we shall refer to the EMH two-scale 
model to derive the properties of the SAR two-scale model, 
which is needed for the application to SAR imaging. 

Nevertheless, it is important to recognize also the limi- 
tations of the two-scale Bragg model. Because of power limi- 
tations, satellite SAR's are generally operated rather close to 
the lower incidence angle limit of the Bragg regime, where 
contaminations by specular reflection may not be negligible. It 
has also occasionally been suggested that contributions from 
non-Bragg processes can be significant even in the regular 
Bragg scattering incidence angle interval (cf. D. Kwoh and B. 
Lake, private communication, 1983). We shall accordingly 
consider later a more comprehensive scattering model which 
includes other types of scattering processes as well as the stan- 
dard Bragg mechanism. In this context it is important to note 
that the white noise property (1) may be expected to hold 
generally for all types of scattering processes. Although quan- 
titative scattering calculations cannot always be carried 
through for non-Bragg scattering mechanisms, the back- 
scattered return from neighboring regions of the surface can 
also be regarded as white for these processes with respect to 
the spatial resolution relevant for SAR imagery, since only 
very small vertical displacements of the effective mean height 
of individual backscattering elements, of the order of only a 
radar wavelength, will already result in a decorrelation of the 
backscattered signals (cf. (2) and (4)). 

2.2. General Backscattering Properties of a 
Moving Sea Surface 

2.2.1. The covariancefunction. The general phase decor- 
relation argument suggesting that at the SAR resolution scale 
the random reflectivity of a frozen sea surface may be regard- 

ed as spatially white can be applied equally well to a moving 
sea surface, provided that the different infinitesimal scattering 
regions at different locations may be regarded as "physically 
distinct" during the finite SAR-viewing period. However, since 
scattering elements on a moving sea surface can propagate or 
be advected, the validity of this assumption is not self-evident. 
We shall return to this question shortly. However, accepting 
the assumption for the moment, the covariance function of the 
complex reflectivity for the general case of a time dependent 
backscattering surface takes the form 

(r(x, t). r*(x + 5,, t + z)) = C(x, t; z) g(•,) (5) 

It is convenient to factor the covariance function C into the 

cross-section a0, representing the variance of r, and the nor- 
malized correlation function R, 

C(x, t; z) = a0(x, t)R(x, t; z) (6) 

The important time variable describing the statistics of the 
fluctuating reflectivity in the time scale range relevant for SAR 
imaging (the SAR integration time T•, typically of the order of 
1 to 2 s) is the time lag variable z. The time variable t de- 
scribes the more slowly changing variations of R and a0 with 
the time dependent long-wave field, which is characterized by 
periods typically in the range 8-16 s. It is permissible to ignore 
the dependence of a0 on t in many SAR-imaging applications. 
However, the dependence on t in the correlation function R 
cannot generally be neglected. Independence of t for both R 
and a0 would imply a statistically stationary process r, and it 
will be shown later that this is not consistent with a two-scale 

description of the sea surface. 
2.2.2. Transformation to moving coordinate systems. We 

return now to the basic assumption of a spatially white pro- 
cess. For the discussion of this question and other applications 
it is useful to consider transformations to moving coordinate 
systems. 

In most scattering models the local scattering elements can 
be regarded as propagating at approximately constant veloci- 
ty. If the scattering is evaluated in a reference system moving 
at this velocity, the scattering calculations are transformed (for 
the selected local scattering element) to a case which is time 
independent except for the intrinsic time variability of the 
scatterer. For Bragg waves the propagation velocity is given 
by the superposition of the phase velocity of the Bragg scatter- 
ing waves and the (generally larger) local long-wave orbital 
velocity. For specular reflection or wedge scattering, the rele- 
vant velocity is the propagation velocity of the discrete surface 
feature satisfying the particular backscattering conditions of 
these processes. The effective propagation velocities of these 
non-Bragg processes can be estimated to be of the order of the 
long-wave phase velocities. These are approximately an order 
of magnitude larger than the orbital velocities characterizing 
Bragg wave propagation. 

It should be noted that for all backscattering mechanisms, 
the relevant first-order propagation velocities are determined 
by the detailed time dependence of the small-scale, geometric 
surface features responsible for the scattering. The propaga- 
tion velocities of the modulation patterns of the small-scale 
backscatterers (which in the case of Bragg scattering, for ex- 
ample, are given by the long-wave phase velocities) are irrel- 
evant. The long-wave energy modulation of the ripples may be 
regarded as part of the intrinsic time variability of the Bragg 
scattering waves due to hydrodynamic interactions [Keller 
and Wright, 1975], which remains as a residual second-order 
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time variability after the first-order time dependence has been 
removed by transformation to a moving coordinate system. 
Non-Bragg scattering processes will also exhibit a similar (but 
generally more significant) residual time variability due to the 
changes in the shape of the backscattering surface element 
after the first-order effect of the uniform propagation of the 
undistorted backscattering surface element has been removed. 

In transforming to a new coordinate system •- x- Vt 
moving at velocity V it is assumed that the new reference 
surface •qr and the new point •s at which the scattered field is 
evaluated are also translated relative to the original reference 
surface Sr at the velocity V. Thus the scattering and reference 
surfaces and point •s all appear stationary in the system • (cf. 
(3) and (4)). On transforming the backscattering coefficient r 
computed in the quasi-stationary system • back into the orig- 
inal coordinate system x, in accordance with (3) and (4), the 
coefficient then receives the well-known Doppler factor e 2ike'vt, 

r = ?e 2ik"'vt (7) 

A first Doppler factor e a'cw arises through the phase shift of 
the incident field relative to the moving reference surface, and 
a second identical factor arises through the velocity of the 
point Xs relative to •s. Stated more simply, the incident and 
backscattered fields in (3) experience equal and opposite Dop- 
pler frequency shifts Aco = +k e ß V in accordance with the 
nonrelativistic limit of the Lorentz frequency and wave 
number transformation and relations. 

Consider now the effect of a translation on the general re- 
flectivity covariance function 

(r*(x + •, t + z)r(x, t)) = Ca(x, t; z, •) (8) 

in which it is no longer assumed a priori that the • depen- 
dence can be factored out as a •i(•) function. However, we 
assume still that in the quasi-stationary coordinate system • 
the (local) spatial correlation scale is small in comparison with 
the SAR resolution scale. Thus in this coordinate system the •i 
function separation applies locally, as in the time dependent 
case. According to (7) the relation between the covariance 
functions in the two coordinate systems is given by 

Cg(x, t; % •)= Cg(:•, t' % •')e -2ike'w (9) 
where 

• - • - Vr (10) 

For SAR applications the maximal time lag of interest is the 
SAR integration time T•. According to (10) the maximal differ- 
ence in the spatial lags in the two coordinate systems is then 
VT•. It follows that the reflectivity can be regarded as spatially 
white in both coordinate systems at the SAR resolution scale 
L provided VT/< L. For Bragg scattering, V • 0 (dm/s), and 
the inequality is well satisfied for typical SAR systems (T/• 
0(1 s), L• 0 (10 m)). For non-Bragg scatterers, VT• can 
become of the same order as L. However, in these cases the 
correlation time scale •' is normally smaller than T/, so that the 
relevant maximal lag differences 5,- 5, = V? are again nor- 
mally smaller than the SAR resolution scale. We conclude that 
for the time lags of interest it is generally not possible for a 
scattering element to propagate a distance of the order of a 
SAR resolution scale and that the spatially white property 
may therefore be expected to hold also for moving surfaces, as 
assumed in (5). 

Equation (9) illustrates well the two-scale structure of the 
covariance function with respect to the variables t and z. The 
time scale t is governed by the periods of the modulating 

long-wave field; in the absence of modulation, r is a stationary 
process and Cg is independent of t. The phase factor in the 
right-hand side of the equation, on the other hand, shows that 
significant changes in the covariance function can be induced 
through advective effects alone for time lags of the order of 
z = O(2k e ß V)-•, i.e., for time lags corresponding to a dis- 
placement of the scattering element (in the slant range direc- 
tion) of the order of a tenth of a radar wavelength. These time 
scales are typically of the order of 10-2 s. 

We shall apply the uniform translation, constant Doppler 
relation (9) extensively in the following sections. In the frame- 
work of the two-scale model we shall consider also the 

straightforward generalization of (9) to accelerating systems, in 
which the Doppler frequency changes linearly with time. In 
the application of (9) to SAR an additional small quadratic 
phase term arises also in the constant translation velocity case, 
since the emitted wave is a spherical rather than a plane wave. 
Consequently, the direction of the incident wave number k e 
and the associated Doppler shift (9) vary linearly with time in 
the moving reference system. The term may be interpreted 
simply as a modification of the effective platform velocity rela- 
tive to the target as seen from the stationary target IRahey, 
1971]. 

2.2.3. Role of the finite resolution variance spectrum in SAR 
imaging. Since SAR imaging represents a quadratic process, 
the mean (clutter averaged) image properties can be deter- 
mined completely if the second-moment correlation function 
R(x, t; z) is known together with ao(X, t). We shall discuss the 
manner in which the second moments enter into the SAR 

processing algorithms and the structure of the mean image in 
more detail in section 3.2. However, we mention here that the 
correlation function R(x, t; z) itself enters in a rather intract- 
able multiple-integral form. It turns out to be both more con- 
venient analytically and more instructive physically to consid- 
er the second moments in the Fourier domain. 

A quantity which can be directly related to the SAR mean 
real image impulse response function is the finite resolution 
(normalized) variance spectrum of r (also called the power 
spectrum of the FM signal [Plant and Keller, 1983])' 

/•(x, T/; •0)- ( I•(x, T/; •0)l•)T//2•o (11) 

where r is the finite resolution Fourier transform of r defined 

over the limited time interval T/ by the weighted Fourier 
transform 

r/; r/-1 t)m(t, co)e -itøt dt (12) 
in which H denotes a slowly varying weighting (tapering) func- 
tion which is of the order of unity within most of the interval 
-T//2 < t < T//2 and is zero for Itl > r//2. The normalization 
is such that •_• H(t, co) dt-- T/. The weighting function is 
weakly dependent on co. For frequencies small in comparison 
with the SAR system bandwidth, H is effectively independent 
of co, but the width of the integration interval is reduced for 
larger co. The form of H is determined in detail by the SAR 
system and involves the SAR antenna pattern as well as the 
processor bandwidth and/or integration time T• (see section 
3.2). We shall refer to T/simply as the SAR integration time. 

In the case of ideal single-look processing, the SAR-viewing 
time (as determined by the antenna pattern) and the processor 
integration time are matched. Some effects of mismatch of 
these parameters are discussed by Rufenach et al. [1983]. If 
multilook processing is employed, the processor integration 
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(fi(co), fi(co')) = g(co -- co')/•(co) (17) 

Since n(t) is a stationary process, the finite resolution ex- 
pressions (11) and (12) can be replaced in this case by the 
appropriate infinite resolution expressions (16) and (17) ((16) 
should be written rigorously as a Fourier-Stiltjes integral). 

The essential difference between the multiplicative noise 
model and the two-scale models considered in the following 
sections is the statistical stationarity of the process r. The 
statistical homogeneity of the noise factor n is not a funda- 
mental requirement and was introduced solely for notational 
simplicity. For incorporation in the general two-scale model 
considered in section 2.5 we shall accordingly extend the defi- 
nition of the multiplicative noise model in the following to 
apply to any model for which the complex reflectivity can be 
represented as a statistically stationary, but not necessarily 
homogeneous, process. Thus for these extended multiplicative 
noise, models we require only that R(x, t; z)• R(x, z) and that 
/•(x, T/; co) •/•m(X, co) for large T/. 

2.4. The Advective EMH Two-Scale Model 

In this model the scale separability assumption of the multi- 
plicative noise model is replaced by the complementary hy- 
potheses that the small-scale backscattering surface elements 
are frozen with respect to an observer moving with the local 
orbital velocity of the long waves and that the time depen- 
dence of the reflectivity coefficient arises solely through the 
advection of the frozen small-scale backscattering elements by 
the long-wave orbital velocities. 

In accordance with the basic EMH two-scale model dis- 

cussed in sections 2.1 and 2.2, the backscattering mechanism is 
normally thought of as resonant Bragg scattering. Although 
this is not a formal requirement of the model, the assumption 
that the internal time variability of the scattering elements is 
less significant than or, more importantly for the later exten- 
sion to a more general two-scale model, can be &coupled 
from the large-scale advection effects is clearly more question- 
able for non-Bragg scattering processes such as white capping, 
specular reflections from isolated facets, etc. The scattering 
conditions for these non-Bragg processes generally depend on 
the entire wave spectrum, and the influence of the long waves 
on the effective propagation velocity of a backscattering fea- 
ture cannot be expressed simply in terms of the local advective 
orbital velocity. However, the two-scale model remains appli- 
cable for isolated, intermittent Bragg scattering events, such as 
the backscattering from parasitic ripples on the forward face 
of breaking waves. 

Even when internal interactions are neglected, Bragg scat- 
tering ripples cannot be regarded as strictly frozen, since they 
propagate as free waves with the phase velocity appropriate to 
linear gravity-capillary surface waves. This yields an ad- 
ditional velocity which must be superimposed on the advec- 
tion velocity of the facet. Since the phase velocities for the two 
Bragg components traveling toward and away from the radar 
have opposite signs, the effect can be shown to split the image 
into two images separated by a constant displacement in the 
azimuthal direction [Alpers et al., 1981]. However, the image 
separation is generally small, for Seasat of the order of 50 m. 
The image pair consists generally of a strong primary image 
and a weak ghost, since the intensities of the two Bragg lines 
are normally significantly different (except for winds blowing 
directions approximately orthogonal to the radar look direc- 
tion). Since our later inclusion of intrinsic facet time variability 
will smear these images together in any case, we shall ignore 
this effect in the discussion to follow. 

For the purpose of the two-scale analysis, we regard a facet 
in the Lagrangian sense as an element of the long-wave sur- 
face, of spatial dimension kem h- l, which is advected with the 
local long-wave orbital velocity v. A facet is characterized by 
its position (which moves with the mean local orbital velocity 
of the facet) and its normal direction. The distortion of the 
facet shape and associated Bragg scattering wave number due 
to the current shear within the facet is not considered. This 

effect may be regarded as part of the WKB short-wave/long- 
wave interaction (cf. sections 2.6 and 3.4) and can be incorpor- 
ated as a contribution to the intrinsic short-wave time depen- 
dence in the general EMH two-scale model considered in the 
following section. 

During the integration time T• of the SAR, the velocity v 
and unit normal vector e of the facet will change by in- 
crements which, for times T• small in comparison with the 
characteristic long-wave period, may be expanded in the 
Taylor series 

v = v ø + ti• ø +'" (18) 

e = e ø + t/• ø +... (19) 

where v ø is the orbital acceleration, e ø is the rate of change of 
the facet normal, and the superscript zeroes denote values at 
the time t = 0 when the facet is centered in the radar bore- 

sight. 
We consider now successively the effects induced by the 

facet velocity, acceleration, and changes in the normal direc- 
tion on the structure of the reflectivity variance spectrum (11). 

The advection of a frozen backscattering surface by a con- 
stant velocity induces a Doppler frequency shift 

coa = 2kevv ø (20) 

in the backscattered signal (in addition to the linear Doppler 
term indicated by the SAR platform motion), where v, ø is the 
component of v ø directed toward the radar (the slant range 
component). This applies independently of the scattering 
mechanism (cf. section 2.2.2). Thus without the additional ac- 
celeration and facet normal drift terms, the variance spectrum 
/•(x, T•; to) would consist simply of a single line (of finite 
resolution) at to = coa. (Superposition of the ripple phase ve- 
locities yields a split line at the two frequencies coa + cob, where 
+cob represents the positive and negative frequencies of the 
two free wave Bragg components.) 

If the acceleration term in (18) is now included, one obtains 
a linearly changing Doppler frequency, and the reflectivity 
coefficient for a given facet contains the linear and quadratic 
phase terms 

where 

r(x, t)= r0(x ) exp (icoat + i/•0t2 2) (21) 

/•o = 2ket3. ø (22) 

and r0(x ) represents the time independent reflection coefficient 
of the frozen surface. (We have neglected here an additional 
quadratic phase term arising from the change in the incident 
wave number direction in the moving coordinate system (cf. 
comment at the end of section 2.2.2 and section 3.2). This is 
important only for non-Bragg scatterers moving with high 
azimuthal velocities.) 

The imaging of a scatterer containing linear and quadratic 
phase shift terms is well known from the imaging theory for 
moving point targets [Brown, 1967; Harger, 1970; Raney, 
1971; Tomiyasu, 1978]. The linear (constant Doppler) term 
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time for any given look is reduced in proportion to the 
number of looks; T• is then essentially equal to the integration 
time for one of the n looks. We shall consider throughout this 
paper the image for one look only, regardless of whether this 
corresponds to the single-look case or one look of a multilook 
set. With respect to the clutter-averaged mean image, the 
mean image for one look of a multilook image set is identical 
to the mean multilook image, so that the single-look and mul- 
tilook cases differ only in the effective integration time T•. 
Multilook processing is of interest mainly for problems of 
clutter statistics, for example, for the estimation of the hypo- 
thetical clutter-averaged mean image from a finite number of 
images contaminated by clutter. (For ocean wave imaging, one 
finds it is largely irrelevant whether a number of independent 
looks are averaged to reduce the clutter contamination a 
priori or whether single-look processing is used and an equiv- 
alent reduction of clutter noise with the same resolution trade- 

off is achieved by subsequent spatial averaging [Alpers and 
Hasselmann, 1982].) 

If r represents a stationary process, R is asymptotically in- 
dependent of T• for large T•. Specifically, R becomes indepen- 
dent of T• in this case if the width of the spectrum is broad in 
comparison with the frequency resolution Acoi = 2n/T• associ- 
ated with the finite integration of time T• or, expressed in the 
time domain, if the scatterer coherence time is much smaller 
than the integration time [Raney, 1980a]. Expressions (11) 
and (12) represent in this case familiar relations for the finite 
resolution approximation to the (normalized) variance spec- 
trum R(x; co), defined as the Fourier transform of the time 
independent (normalized) covariance function R(x; r). How- 
ever, for a nonstationary process, or a stationary process 
characterized by a spectrum which is narrower than the fre- 
quency resolution Aco i, the finite resolution variance spectrum 
will depend in general on the integration interval T•. This 
distinction is important in the later discussion of different 
backscattering models. 

The significance of the variance spectrum (11) for SAR 
imaging can be readily understood by representing an ele- 
mentary backscattering facet as a Fourier superposition of a 
continuous ensemble of scattering components ?(co), as defined 
by (12), each characterized by a separate frequency co. The 
SAR image of a target which returns the incident radar signal 
with a constant offset frequency co is well known [Harger, 
1970]: the target is displaced azimuthally in the image plane 
by a distance 

Ax = P co (13) 
2Uk e 

proportional to co, where p is the slant range of the target and 
U is the platform velocity. For discrete targets the frequency 
offset is normally due to a constant radial velocity of the 
target. The net image of the backscattering element can then 
be reconstructed from the images of the individual frequency 
components of the spectrum by superposition. Since the mean 
real image is given by the mean square modulus of the com- 
plex image, the relevant distribution function characterizing 
this superposition is the frequency variance spectrum. Thus 
the normalized variance spectrum (11) is seen to represent 
simply the SAR mean image impulse response function for an 
infinitesimal scattering element of the moving surface, with 
azimuthal displacements translated into frequencies in accord- 
ance with (13). For a modulated backscattering field the im- 
pulse response function will generally be a function of position 
in the long-wave field [Plant and Keller, 1983]. 

A formal derivation of the SAR real image impulse response 
function for a moving random surface is given in section 3.2. 
We add here only two comments. First, the diagonal quadrat- 
ic form of the mean image impulse response function (involv- 
ing only products of spectral components of the same fre- 
quency' cf. (11)) is not a consequence of an assumed station- 
arity of r (for which mean quadratic products of Fourier com- 
ponents of different frequency vanish) but holds generally for 
stationary and nonstationary scattering processes. Second, the 
SAR system impulse response function has already been 
folded into the definitions (11) and (12) of the net impulse 
response function as a finite resolution variance spectrum. 
Thus for a time independent scattering surface, for which the 
infinite resolution variance spectrum is given by a g function 
at zero frequency, (11) and (12) yield a finite width variance 
spectrum which is identical to the SAR system real image 
impulse response function. 

In the remaining sections 2.3-2.8 of part 1 of this paper we 
discuss the form of the finite resolution variance spectrum for 
various backscattering models. 

2.3. The Multiplicative Noise Model 

Significant simplifications of the general SAR-imaging rela- 
tions result if it can be assumed that the normalized reflec- 

tivity r'a o- •/2 is a statistically stationary, homogeneous pro- 
cess, i.e., if R(x, t' r)--• R(x, r),/•(x, T/; co)--•/•(x, co) [cf. Raney, 
1980a, b]. 

Physically, this implies that the structure of the normalized 
temporal statistical fluctuations of the backscattering elements 
is independent of time or the position of the backscattering 
elements relative to the larger-scale ocean wave field. The as- 
sumption is plausible if the internal kinematics and dynamics 
of the small-scale scattering ripples, white caps, etc., are large- 
ly independent of the long waves being imaged. It will be 
shown that this is not the case for two-scale models of the sea 

surface. (Note, however, that we have not excluded a modula- 
tion of the cross section, since the assumed stationarity and 
homogeneity refer to the normalized reflectivity.) The multipli- 
catlye noise model nevertheless provides a useful description 
of certain aspects of the time dependent ocean wave imaging 
problem which can be incorporated later in a more complete 
model including the two-scale interactions. The model may 
also provide a satisfactory description in itself for other appli- 
cations, such as the imaging of bottom topography and other 
oceanic processes producing slowly varying or time indepen- 
dent microwave signatures or the imaging of moving distrib- 
uted backscatterers over land (forests, corn fields, etc.). 

Formally, the reflectivity coefficient may be represented in 
the multiplicative noise model as the product 

r(x, t) = ro(x ) ß n(t) (14) 

of a spatially varying reflectivity r o and a multiplicative time 
dependent noise term n(t). The factors may be normalized 
such that (ro 2)= ao(X) and the unit variance noise defines 
the correlation function, 

(n*(t + z)n(t)) = R(z) (15) 

In the Fourier domain, the reflectivity coefficient can be 
represented as a superposition 

r(x, t) = to(X) a(•o)e •' dco (16) 

of statistically uncorrelated Fourier components n(co), where 
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yields an azimuthal displacement 

P o (23) Ax = • vp 
where p is the slant range and U is the platform velocity (in 
accordance with (13) and (20)), while the quadratic term yields 
a smearing of the image whose mean square width is given by 

5x 2 = • 6po (24) 
The rms image smear 5x may be interpreted as the change in 
the azimuthal displacement Ax as given by (23) due to the 
change gv, ø experienced by the facet velocity during the SAR 
integration time. The maximum change is [svpOlmax = 16oø•/2l, 
and the factor 1/3 corresponds to a box car integration 
weighting between - Ti/2 and + •/2. The acceleration smear- 
ing is identical in form to the image smearing caused by a 
defocus of the SAR processor, which also produces a quadrat- 
ic phase error to lowest order (cf. section 3.2). Since the two 
phase terms add linearly, the smearing by facet acceleration 
can be cancelled locally by an appropriate focus adjustment. 
However, the facet accelerations vary with position in the 
long-wave field and fluctuate in sign, so that a reduction of the 
smearing in some regions of the image can be achieved only at 
the expense of an increased smearing in other regions. Never- 
theless, a net improvement in image quality can often be 
achieved by suitable focus setting. This represents a useful 
method for identifying range acceleration effects experi- 
mentally, although care is required because high azimuthal 
velocities of scattering elements produce similar smearing sig- 
natures which are not always easily distinguishable (cf. sec- 
tions 3.2 and 3.7 and the discussions of Jain [1978], Alpers 
and Rufenach [1979, 1980], Alpers et al. [1981], Alpers 
[1983a], Raney [1981b], Jain and Shemdin [1983], and Shuch- 
man et al. [1983]). 

Although these imaging relations for point scatterers are 
well understood and can be immediately generMized to a spa- 
tially distributed ensemble of statistically uncorrelated scatter- 
ing facets in the present model, we shall express the time 
variability of the reflectivity coefficient again in terms of the 
frequency variance spectrum. This provides a general, com- 
plete description of the impulse response function of the model 
in a form which can later be readily extended to include other 
scattering models. 

For a reflectivity coefficient of the form (21) the expression 
(12) for the finite resolution Fourier transform r(w) of r(t) 
yields 

r(x, •; •) = ro(x)(4•/flo)i/2• - iei•/2(•) (25) 

where • = 2(w - wa)/flo•, eiø = exp {-i(w - wa)2/2•o} is an 
unimportant phase factor, and 

• iflø2t• m t dt (26) f •/:(•) = (4•/flo)- •/2 e 2 flo 
represents a spectral width function. The normalization is 
chosen such that J_• © f(•) d• = 1. 

The integral (26) can be readily evaluated for flo•2/2 >> 1 
(acceleration smearing large in comparison with the SAR reso- 
lution scale). One obtains 

o > 1 

Generally, (25), (26), and (11) yield for the normalized finite 

resolution variance spectrum of the advective two-scale model 
the distribution 

R-,(x,T•' c0)= 5c0. •f(c0 -- roa) (28) 
with a frequency width 

&0 =/•o T•/2 (29) 

and center frequency at cod (equation (20)). 
The acceleration smearing of an individual facet element 

may thus be interpreted as the image of a superposition of 
scatterers with different frequencies c0 distributed about a 
center frequency cod. In contrast to the multiplicative station- 
ary noise model, in which the reflectivity variance spectrum 
and thus the smearing were independent of the integration 
time, (29) indicates that in the present nonstationary case the 
width of the spectrum and the acceleration smearing is pro- 
portional to the integration time T•. 

We turn now to the third motion term, the linear change in 
the facet normal direction, (19). A change in the orientation of 
the facet normal implies a change in the Bragg wave number, 
since this is determined by the projection of the incident radar 
wave number vector on to the facet plane. According to Bragg 
scattering theory the backscattering coefficient is proportional 
to the (complex) Fourier amplitude of the ripple surface eleva- 
tion spectrum at the Bragg wave number. Since the separate 
wave number components of the (frozen) ripple spectrum of a 
given facet are statistically independent, the changes in the 
complex backscattering coefficient induced by a shift in the 
position of the Bragg wave number within the ripple spectrum 
will be random. Formally, the effects of these changes are 
similar to the random changes of the reflectivity coefficient 
occurring in the multiplicative noise model and can be includ- 
ed in this model. 

However, the contribution from this term is found to be 
small in comparison with other motion effects. To estimate the 
order of magnitude of the effect, the linear drift in the facet 
normal direction, (19), can be translated into an equivalent 
linear drift 

kb = kb ø + t• ø (30) 

of the Bragg wave number, where •o can be determined from 
/•o by straightforward geometry. To significantly affect SAR 
imaging, the phase changes induced in the reflectivity coef- 
ficient through the changes in the Bragg wave number must be 
at least of the order of 2r• (for smaller phase changes, the 
motion effects remain below the SAR resolution scale). This is 
equivalent to the requirement that the Bragg components at 
the beginning and end of the SAR integration period T• must 
be statistically uncorrelated, or that the change in the Bragg 
wave number must be at least of the order of the wave number 

resolution kern h of the ripple spectrum (where kern h is the two- 
scale separation wave number). For values of e ø typical of a 
wind sea and for Seasat SAR parameters, the phase changes 
are found to be an order of magnitude smaller than 2r•. We 
conclude that image smearing due to variations of the facet 
normal direction are generally negligible and that the variance 
spectrum (28), based only on the range velocity and acceler- 
ation terms, provides an adequate description of the mean 
image impulse response function for the advective EHM two- 
scale model. 

2.5. The General œMH Two-Scale Model 

Since the multiplicative noise and advective EMH two-scale 
models address essentially complementary aspects of the kin- 
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Fig. 3. Reflectivity variance spectra for an individual backscattering facet for the models (a) multiplicative noise, (b) 
advective EMH two-scale model, (c) general EMH two-scale model, and (d) non-Bragg scattering events (e.g., specular 
reflection). The spectrum for Figures 2a and 3d and the positions of the peak frequencies for Figures 3b and 3c are 
independent of the SAR integration time. The width of the spectrum for Figure 3b is proportional to the product of the 
integration time and the facet acceleration. The Figure 3c spectrum represents a convolution of the Figures 3a and 3b 
spectra. The frequency scale of the Figure 3d is governed by the long-wave phase velocities rather than the orbital 
velocities and is therefore considerably larger than for the other spectra. 

ematics of the sea surface, they can be readily combined into a 
single, generalized two-scale model. For this purpose we need 
only to replace the frozen ripple field of the advective two- 
scale model by the time variable scattering field of the multi- 
plicative noise model [Rufenach and Alpers, 1981]. 

The reflectivity variance spectrum of the combined two- 
scale model can be immediately inferred from the variance 
spectra of the separate models from which it is constructed. 
Each frequency component co' of the multiplicative noise 
model is displaced and smeared by the advective motion of 
the facet in which the scatterer is imbedded in accordance 

with relations (20) and (29) of the advective two-scale model. 
Thus an individual frequency component of the multiplicative 
noise model is transformed by the facet motion into a finite 
width, displaced spectral band characterized by the normal- 
ized variance spectrum Ra(x , r/' co -- co'), (28). Since the differ- 
ent frequency components of the multiplicative noise model 
are statistically uncorrelated (in accordance with the assump- 
tion of a statistically stationary process in the facet reference 
frame moving with the long-wave orbital velocity), the net 
reflectivity variance spectrum Rg(x, T/' co) of the generalized 
EMH two-scale model is obtained simply by the convolution 
of the spectrum R m of the multiplicative noise model with the 
spectrum R a of the advective two-scale model, 

g(x, T,' co)=; ga(X, T,; co- co')/•,.(x, co') dco' (31) 

The relation between the reflectivity variance spectra for the 
three models is illustrated in Figure 3. 

For a convolution of the form (31) the mean frequency 

rbg = Ra(co)co dco (32) 

and the mean square spectral spread 

= f - (3.) dco (33) 

of the general EMH two-scale model are given by the sums of 
the corresponding expressions for the multiplicative noise and 
advective two-scale models, 

cb• = (h m + cb,• (34) 

The mean frequency of the general EMH two-scale model is 
independent of the integration time T•, while the mean square 
spectral spread consists of the sum of the two terms which are 
independent of T/ and increase quadratically with T/, respec- 
tively. It will be shown in the following section that the multi- 
plicative noise contributions, which arise from the internal 
time variability of the ripple spectrum, are generally small in 
comparison with the corresponding advective terms (h• and 
(3coa 2) in the EMH two-scale model. (However, this is no 
longer the case in the SAR two-scale model' cf. section 2.7.) 

We note in conclusion that although Bragg scattering sur- 
faces, for which the generalized EMH two-scale model applies, 
are usually regarded as quasi-homogeneous in the sense that 
the cross section a0 and reflectivity variance spectrum R vary 
only slowly on the scale of the long waves, continuity with 
respect to x is not specifically postulated in the present model. 
Once the statistical independence of neighboring back- 
scattering facets has been established, the statistical descrip- 
tion of the backscattering properties of individual facets, and 
their associated imaging properties, can be developed indepen- 
dently for each facet. Thus the model applies equally well for 
an ensemble of isolated Bragg scattering elements, such as 
parasitic ripples on breaking wave crests. 

2.6. Determination of the EMH Scale Separation 
Wave Number kem h 

In the EMH two-scale model the wave number kem h separ- 
ates the surface wave spectrum into two regimes in which 
different expansion methods are applied in the treatment of 
both the electromagnetic backscattering and the hy- 
drodynamic interactions. Since the theories for both spectral 
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regimes are asymptotic, the EMH two-scale model should in 
principle be insensitive to the precise choice of kern h. A closer 
inspection of the scale separation conditions reveals that this 
is not strictly the case. Fortunately, this is of little significance 
in practice, since it is shown below that kern h must, in fact, be 
chosen within rather narrow bounds to satisfy the expansion 
conditions in both regimes simultaneously. However, it indi- 
cates certain formal shortcomings of the straightforward two- 
scale concept which may need to be addressed in the frame- 
work of a more general theory [cfi Brown, 1978; Bahar and 
Barrick, 1983]. 

The problem appears in essentially the same form in both 
the electromagnetic backscattering and hydrodynamic interac- 
tion analysis and arises from the divergence of certain mo- 
ments of the long-wave spectrum which are required for the 
short-wave analysis. We consider first the hydrodynamic case. 

The short waves are described dynamically in the EMH 
two-scale (WKB) model in terms of a spectral transport equa- 
tion. The long waves enter in the equation in the form of an 
advective term containing the long-wave orbital velocity and a 
refraction term proportional to the horizontal orbital velocity 
shear. The source terms of the transport equation describe the 
rate of change of the short-wave spectral energy density due to 
wind generation, dissipation, and the nonlinear transfer 
through resonant wave-wave interactions [Keller and Wright, 
1975; Hasselmann and Schieler, 1970]. The combination of all 
these processes determines the mean energy density of the 
backscattering ripples (i.e., the radar cross section), the modu- 
lation of the short waves by the long wave (see also section 
3.4), and the intrinsic short-wave interaction time, which de- 
termines the multiplicative noise contributions to the reflec- 
tivity variance spectrum (cfi (34) and (35)). 

The long-wave orbital velocity and orbital velocity shear 
appearing in the short-wave transport equation are asymp- 
totically independent of the scale separation wave number 
kern h only if the corresponding moments of the long-wave spec- 
trum which define the variances of these variables exist. For a 

Phillips one-dimensional frequency spectrum proportional to 
co-5 (cfi (37)), the moment corresponding to the orbital veloci- 
ty exists. However, the mean square orbital velocity shear 
diverges linearly in kern h as the long-wave cutoff kern h ap- 
proaches infinity [Hasselmann and Schieler, 1970]. It is con- 
ceivable that the explicit asymptotic dependence of the refrac- 
tion term on the long-wave cutoff kern h is balanced in the 
transport equation by a similar dependence of opposite sign of 
the nonlinear wave-wave interactions on the low-wave- 

number cutoff kern h of the short-wave spectrum [Valenzuela 
and Laing, 1972]. However, this has yet to be demonstrated. 

The same divergence problem arises in the electromagnetic 
backscattering analysis. To compute the Doppler frequency 
shifts and smearing of the backscattering facet, the range of 
components of the long-wave orbital velocity and acceleration 
are required. While the moment corresponding to the orbital 
velocity exists, the mean square acceleration diverges loga- 
rithmically with kern h. The backscattered return from the short 
waves themselves is independent of kern h to lowest order in the 
Bragg scattering expansion. However, if the Bragg expansion 
is extended to second order, wave-wave interactions involving 
the entire wave spectrum arise [Hasselmann, 1971; Barrick, 
1971]. The relevant interaction integral depends explicitly on 
the low-wave-number cutoff kern h of the short-wave spectrum. 
Again, it appears plausible that in a consistent higher-order 
electromagnetic scattering theory the dependencies on kern h of 
the long- and short-wave expansion regimes would cancel, but 
this has also not yet been demonstrated. 

We turn finally to the determination of the scale separation 
wave number. In order to satisfy the requirements of geo- 
metric optics for the long-wave reflection field, we require 
kemh << ke sin 0, where 0 denotes the incidence angle. On the 
other hand, Bragg scattering theory 

(•2)1/2k e cos 0 << 1 (36) 

where (•2) represents the mean square displacement of the 
short waves. For a Phillips one-dimensional frequency spec- 
trum 

F(co) = •g2(/)- 5 (37) 

where Phillips' constant • • 0.01, one obtains 

•kernh - 2 
(•2) __ • (38) 

4 

and the condition (36) yields 

kem h >> «x//•ke cos 0 ,• 0.05k e cos 0 (39) 
The choice kern h • ke/5 satisfies the requirement (39) while 
(marginally) satisfying the geometric optical condition for the 
long waves; both conditions are better satisfied at larger inci- 
dence angles. Similar estimates have been obtained by Brown 
[1978]. 

Under these dual constraints the separation wave number 
can clearly be varied by a factor of not more than about 2. We 
may estimate the effect of this uncertainty on the rms long- 
wave acceleration, which determines the width of the reflec- 
tivity variance spectrum. For a Phillips spectrum (37) extend- 
ing from a low-frequency cutoff %, at the peak of the spectrum 
up to the long-wave cutoff frequency (_Dem h (a reasonable ap- 
proximation for a wind sea spectrum), the mean square accel- 
eration is proportional to In ((_Demh/(_Dp)--In [(kemh/kt,)l/2]. 
Thus a variation in kern h by a factor 2 results in a variation in 
the rms acceleration by a factor [1 + In 2/ln (kemh/kp)l/2] 1/2 
For kern h --(0.2)2rr-sin 22ø/22 cm (Seasat) and kp = 2p/200 m 
(typical wind sea wavelength) one obtains a factor 1.08. Thus 
the uncertainty in the estimation of the acceleration smearing 
due to the indeterminacy of kern h is only of the order of 8%. 
Although this is acceptable for practical applications, the fact 
that the EMH two-scale model is not asymptotically indepen- 
dent of the scale separation wave number nevertheless points 
to a formal inconsistency of the lowest-order theory which 
should be addressed in a more complete theory. 

We conclude this section with a comment on the magnitude 
of the multiplicative noise broadening of the reflectivity vari- 
ance spectrum predicted by the hydrodynamic two-scale 
model. The WKB formalism on which the short-wave spectral 
transport equation is based assumes that the short waves can 
be regarded to first order as freely propagating linear waves. 
This implies that the dynamic interaction time of the ripples is 
large in comparison with the ripple periods or that the line 
shift chin and broadening (g(_Drn 2)1/2 due to the intrinsic ripple 
dynamics are small in comparison with the frequency offset 
+ coo of the Bragg line due to the linear wave dispersion rela- 
tion. Wave tank measurements indicate that (•(_D2) 1/2 < 0.1(D b 
[Keller and Wright, 1975]. It was remarked earlier that the 
Bragg line offset +coo yields azimuthal displacements in the 
image plane of the order of + 25 m for Seasat. Thus the multi- 
plicative noise offset and smearing in the EMH two-scale 
model is only of the order of 2-3 m and can be neglected. 
These considerations are clearly not sensitive to the choice of 
the scale separation wave number. 
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2.7. The SAR Two-Scale Model 

The general EMH two-scale model has been developed 
above solely from considerations of electromagnetic back- 
scattering theory and the requirements of hydrodynamic inter- 
action analysis, without reference to SAR imaging. Starting 
from the SAR viewpoint, models of SAR ocean wave imaging 
have often been based on an alternative two-scale repre- 
sentation, in which the separation scale is determined by the 
SAR resolution scale ksa r- 1 (cf. Figure 4). This is generally at 
least an order of magnitude larger than the EMH resolution 
scale kern h- 1. For SAR purposes the scale ksar-• appears more 
appropriate, since the separation scale defines the division of 
the wave field into deterministic and statistical regimes [cf. 
Tucker, 1983, 1984]. Waves longer than the SAR resolution 
scale, which can be imaged explicitly by the SAR, clearly need 
to be treated deterministically (for a given scene), while the 
subresolution scale short waves can be meaningfully con- 
sidered only in statistical terms. 

As used to determine k .... the term SAR resolution scale 
must be understood to include a temporal resolution scale as 
well as the ordinary SAR spatial resolution scale. Since data 
must be collected for a length of time equal to the integration 
time T• in order that a SAR image be formed, waves whose 
periods are shorter than T• must clearly be treated statistically. 
That is, such waves contribute to the width of the reflectivity 
variance spectrum of a facet rather than its mean frequency. 
This temporal resolution is easily translated into a spatial 
resolution using the gravity wave dispersion relation: 

2, = g T•2/2rc (40) 

where g is the gravitational acceleration and 2i is the shortest 
wave that can be treated deterministically with an integration 
time T•. If 2i exceeds the SAR spatial resolution scale, then it is 
the appropriate spatial scale to determine ksar. 

The SAR two-scale model can be derived directly from the 
EMH two-scale model simply by averaging over the ensemble 
of intermediate-scale waves whose wave numbers lie in the 

band bounded by the SAR and EMH separation wave num- 
bers. For this purpose the velocity-induced displacement Ax, 
(23), and mean square acceleration smear •x 2, (24), for the 
EMH two-scale model may be divided into contributions (de- 
noted by the index l) arising from the ]-ong waves of scale 
greater than the SAR resolution scale and residual terms (de- 
noted by the index i) associated with the intermediate-scale 
waves. We neglect here the higher-order contributions to the 
offset and smearing which are induced by cross-section vari- 
ations on the scale of the intermediate-scale waves. 

For either long- or intermediate-scale waves, it follows from 
(13) and (18) that 

P (Vo o + tea ø + «t2b'o ø) Ax - • (41) 

where we have carried the expansion to second order in t. 
Then boxcar averaging over the SAR integration time yields 

P T/2 ) = (so + (42) 

/92 
= + + .oeoq: ) (43) 

where angle brackets now indicate time averages. For the long 
waves, %o, t•oo, and b• ø are constants, so to first order, 

variance 

spectrum 
of 

surface 

elevot •on 

SAR two scale model 

E MH two scale model 

long waves short w•ves (ripples) 

/intermediate scale waves 

k 

Fig. 4. Spectral regimes of the EMH and SAR two-scale models. 
Generally, k•a r << kcm h << k b. For Seasat, k•ar • 2n/20m, kcm h • 2n/1.5 
m, and k 0 • 2n/30 cm. 

P 

(44) 

Ox• __ <Ax•> _ <Ax•>• = • 6•o 
as in the advective EMH two-scale model. 

For the intermediate-scale contribution, however, we must 
average (42) and (43) over an ensemble of intermediate-scale 
waves. Denoting this by brackets, we find 

[Ax,] = 0 (45) 

(•Xi 2 • [<ix/2>] -- [<ix> 2] 

p2 
- •5. ([%io2] + •2 [eoiO2]T•2 + •2[%ioi;oi]Ti 2) (46) 

Since surface gravity waves are only weakly nonlinear, it is 
easy to show that 

[l)piOl)pi O] = __ [[}pi02] (47) 

to a very good approximation. The last two terms in (46) 
therefore cancel, and we have 

p2 
(•Xi 2 = • [I)pi 02 ] (48) 

Thus acceleration smearing does not contribute to the broad- 
ening of the reflectivity variance spectrum by intermediate- 
scale waves. The broadening (48) arises from the variability of 
the individual facet velocities within a SAR resolution patch 
relative to the mean orbital velocity of the patch. 

The vanishing contribution from the intermediate-scale 
facet accelerations and the form of the smearing term (48) may 
be inferred more simply by direct evaluation of the reflectivity 
variance spectrum of a SAR resolution patch. This can be 
determined by superposition of all frequency components of 
all facets within a patch. At any given time t during the SAR 
integration period the quasi-instantaneous frequency of the 
reflectivity coefficient of an advected (frozen) backscattering 
facet is given by 

cO = 2ke% = 2ke(%l ø + t•øt + ...) + 2kevoi = oO l -Jr- oO i (49) 
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TABLE 1. Motion Effects for Waves of Different Scale for General EMH and SAR Two-Scale Models 

Wave Scale EMH SAR 

Long waves displacement 
K < ksa r AX = Ax t + Axi, 

equation (23) 
acceleration 

smearing Ax 2, 
equation (24) 

Intermediate-scale displacement 
waves, Ax = Ax t + Axi, 
ksa r < k <kem h equation (23) 

acceleration 

smearing Ax 2, 
equation (24) 

Ripples, kem h < k multiplicative 
noise smearing due 
to internal ripple 
dynamics (small) 

displacement Axt, equation (44), 
acceleration smearing 
Axt 2, equation (45) 

multiplicative noise smearing 
due to intermediate scale 

velocity spread, equation (48), 
plus internal ripple dynamics 
(small) 

multiplicative noise smearing 
due to intermediate scale 

velocity spread, equation (48), 
plus internal ripple dynamics 
(small) 

Since the probability distribution of v,i is Gaussian, the 
intermediate-scale waves produce a Gaussian broadening of 
the reflectivity variance spectrum of width 

Eco, 23 = 4ke2EV,, 23 (50) 

Noting that for a stationary wave field [v•i 2] -[v•iø2], this 
corresponds to the mean square displacement given by (48) 
when the standard frequency azimuth displacement relation 
(13) is applied. (We ignore here modifications of the spectrum 
due to correlations between the orbital velocities and cross 

section [Hasselmann and Schieler, 1970].) The change of vt, i 
during the integration interval, although producing an acceler- 
ation smearing of an individual facet, is seen to be irrelevant 
when considering the net contribution of an ensemble of facets 
within a patch, since the mean square velocity [v•i 2] occurring 
in (50) is independent of time. 

Since the intermediate-scale contribution to the broadening 
of the reflectivity variance spectrum is independent of the SAR 
integration time (aside from a small dependence due to the 
possible dependence of ksar on T•), the subpatch scale processes 
may be considered as multiplicative noise in the SAR two- 
scale model. We shall refer to this smearing contribution in 
the following as the "velocity spread" term. The total multipli- 
cative noise mean square smearing of the SAR two-scale 
model is given by the sum of the velocity spread term and the 
intrinsic frequency spread of the small-scale ripples (which is 
small, however, for Bragg scattering ripples, as shown in the 
preceding section). 

The relations between the long-wave displacements and ac- 
celeration smearing terms and the subscale multiplicative 
noise contributions for the EMH and SAR two-scale models 

are summarized in Table 1. Estimates of the orders of mag- 
nitude of the different terms for different wind sea and swell 

conditions and SAR parameters are given in section 3.5. 

2.8. Non-Braqq Scatterinq Mechanisms 

A general SAR ocean-wave-imaging theory for non-Bragg 
backscattering processes cannot be carried through for lack of 
a general statistical scattering theory for these processes. How- 
ever, various imaging relations could in principle be derived 
for a random ensemble of specular reflection elements, for 
which the relevant statistical kinematical properties of the sea 
surface are reasonably well known. Many of the features dis- 
tinguishing specular reflection from Bragg scattering may be 
expected to carry over also to other non-Bragg backscattering 
mechanisms. 

The principal distinction between the specular reflection 
theory and the Bragg scattering model lies in the two-scale 
analysis. The basic decomposition of the backscattering sur- 
face into statistically independent regions of scale small in 
comparison with the wavelengths of the long waves remains 
valid for the specular reflection case (and presumably other 
non-Bragg processes). However, it cannot be assumed, as in 
Bragg scattering theory, that the small-scale backscattering 
elements are simply advected by the orbital velocities of the 
long waves. In contrast to Bragg scattering, the backscattering 
condition for specular reflection is a condition not on the 
small scale ripples but on the smoothed long-wave surface. 
The position of a point on the smoothed long-wave surface 
which satisfies the specular reflection condition that the local 
normal is directed toward the radar generally propagates at 
velocities which are of the order of the long-wave phase veloc- 
ities (although it is found that the characteristic velocity is 
weighted toward the short-wave end of the long-wave spec- 
trum). 

The structure of a backscattering wave cusp in wedge- 
scattering theories similarly involves significant contributions 
from the long-wave components of the spectrum [Lyzenga et 
al., 1983]. The translation velocity of a moving coordinate 
system in which the backscattering feature appears frozen to 
first order will therefore similarly be strongly governed by the 
long-wave phase velocities. 

The reflectivity coefficient for individual non-Bragg back- 
scattering elements of this type will accordingly exhibit Dop- 
pler shifts of the order 

ro a = 2key • = 2k(w cos 0 + v sin 0) (51) 

where w and v are the vertical and horizontal components of 
the effective propagation velocity of the backscattering ele- 
ment, with w = O(c•Ot), v - 0 (long-wave phase velocity). For 
0 > 20 ø (sin 0 > 0.3) the horizontal phase velocity is the domi- 
nant term. Doppler shifts of this magnitude will exceed the 
bandwidth of many SAR processors if the long wave is not 
propagating in an approximately azimuthal direction. We 
shall return to this point in section 3.2. 

In addition to a mean frequency offset (51), the reflectivity 
variance spectrum of an individual scattering event has a finite 
width representing the residual time variability of the event as 
observed in the moving reference frame [Keller et al., 1984]. 
In the EMH or SAR Bragg two-scale models, the mean square 
broadening could be divided into a multiplicative noise term, 
which was independent of the SAR integration time, and an 
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acceleration term proportional to the square of the integration 
time. A dependence on integration time arises generally when 
the spectrum of the backscattering process cannot be resolved 
within the SAR integration time. In the case of non-Bragg 
scattering by discrete events, the "blink" time of an event will 
often be shorter than the SAR integration time, so that a 
multiplicative noise type broadening, independent of the inte- 
gration time, may generally be expected. 

The order of magnitude of the spectral broadening may be 
estimated from the amplitude and phase changes associated 
with the blink interval T•t. A finite blink interval T•t implies an 
amplitude modulation with an associated frequency broaden- 
ing of the order of gco•,• = 2r•/T•, while a change gv. in the 
slant range velocity component during the scattering period 
corresponds to a phase change or frequency broadening of the 
order of 6c%h = 2kerr. In the case of specular reflection, the 
probability distribution of &ob• and gco•,h can be estimated 
from the (approximately) Gaussian sea surface statistics. One 
finds gv. is generally of the same order as but somewhat 
smaller than v., while T• is of the order of a second (for 
Seasat), yielding 6co•,• << 6c%• •< c%. For wedge scattering from 
cusping waves one may anticipate smaller values of T•t and 
6%,•, and thus more comparable contributions from the ampli- 
tude and phase terms. The width of the spectrum may again 
be expected to be of the same order as the mean frequency 
offset. 

In summary, the reflectivity variance spectra for non-Bragg 
scattering processes such as specular reflection and wedge 
scattering from cusping waves can be characterized generally 
by both larger mean Doppler displacements and broader spec- 
tral widths than in the Bragg case (cf. Figure 3). The frequency 
scale is determined by the long-wave phase velocities (weight- 
ed toward shorter waves approximately in accordance with 
the variance spectrum of the wave slope) rather than by the 
long-wave orbital velocities. In many cases this frequency 
scale will be larger than the SAR processor bandwidth. 

An interesting property of the specular reflection model 
(which may be expected to carry over qualitatively to cusping 
waves) is the pronounced anisotropy of the return. Range 
traveling waves exhibit the strongest modulation depth and 
suffer least from azimuthal smearing. 

Assuming the reflectivity variance spectra for non-Bragg 
scattering mechanisms to be known (including the long-wave 
modulation properties), a general SAR ocean-wave-imaging 
model including both Bragg and non-Bragg scattering pro- 
cesses can be constructed by straightforward superposition of 
the relevant variance spectra. Since non-Bragg mechanisms 
are generally characterized by considerably larger azimuthal 
displacements and smearing terms, they should normally be 
readily discernible from Bragg scattering. They can also be 
recognized by their different speckle statistics' non-Bragg 
mechanisms are generally characterized by higher intermit- 
tency and finite speckle correlation scale lengths, while the 
speckle field for a continuous Bragg scattering surface is white, 
independent of the smearing induced by motion effects (cf. 
Raney [1983] and section 3.6). 

3. PART 2' APPLICATION TO SAR IMAGING 

3.1. Mean Image Impulse Response Function for a 
Frozen Random Backscattering Surface 

To define terms, we summarize first the well-known SAR- 
imaging relations for a time independent backscattering sur- 
face. To a good approximation a SAR system may be regard- 
ed as separable with respect to the range and azimuthal 

channels. We shall make this approximation throughout. 
Since range sensing occurs at the speed of light, motion effects 
can be neglected for this channel, and we shall therefore limit 
ourselves in the following two sections to the azimuthal coor- 
dinate only. The extension to two dimensions is straightfor- 
ward and can be achieved by simply replacing the azimuthal 
spatial coordinate x for the frozen surface case by the two- 
dimensional surface coordinate vector x, using the appropriate 
SAR parameters for the range chirp rate, etc., in place of the 
corresponding azimuthal parameters. We shall return to the 
two-dimensional description in later sections when we discuss 
the imaging relation for a two-dimensional wave field. 

The complex backscattered signal cx(x) received by a SAR 
at time t, or position x = Ut, where U is the platform velocity, 
is given by the convolution [Harger, 1970; Alpers and Ru- 
fenach, 1979; Plant and Keller, 1983] 

Ci(X) = f T l(X -- X')F(X') dx' = T 1 Q r 
where the transfer function 

(52) 

rl(x ) = D(x)Hi(x ) (53) 

consists of the product of the basic Doppler linear frequency 
modulation phase factor 

D(x)=exp{-•-x 2} (54) 
with linear frequency rate 

•8 -- 2keP- • (55) 

and a weighting function factor Hx(x) representing the effect of 
the antenna pattern (and an irrelevant geometrical propaga- 
tion term in accordance with the radar equation). 

To recover the complex image c2(x) from the return signal, 
a matched filter 

T2(x ) = D*(x)H2(x ) (56) 

is applied to c•(x) in the SAR processor, 

C 2 -- C 1 Q T 2 (57) 

where the weighting (tapering) function H2(x ) extends over the 
integration interval T• of the processor. For ideal single-look 
processing the widths of Hi and H 2 are matched; for multi- 
look processing, T• is a corresponding submultiple of the 
target viewing time. 

Thus the reflectivity r(x) is mapped into the complex image 
through a convolution 

c2(x) = r(•) T (58) 

with a net imaging transfer ("ambiguity") function given by 

T(x) -- T 1 (• r 2 (59) 

The real image I(x) is formed by taking the square modulus 
of c2(x), I(x)- Ic2(x)l 2. The ensemble (clutter) averaged mean 
image for a statistically white backscattering surface is given 
according to (58) and (1) by 

(I(x)) = f Ir(x - x')2 ao(X') dx' = Irl 2 ©ao (60) 
The net real image impulse response function ITI 2 is a 

narrow peaked distribution whose width represents the SAR 
resolution. As was pointed out earlier, it is irrelevant for the 
discussion of the clutter average image whether we are con- 
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sidering a high-resolution single-look image or one look of a 
lower-resolution multilook image. 

3.2. Mean Ima!7e Impulse Response Function for a 
Mot;inq Random Backscatterinq Surface 

The multiple convolution contractions leading to the simple 
net SAR mean image expression (60) can no longer be carried 
out in the moving surface case, since the reflectivity coefficient 
now depends not only on x, or the equivalent time variable 
t = x/U, but also explicity on time as a second variable. Thus 
it is not possible to represent all SAR operations as filter 
operations acting on a single-variable function. However, a 
generalized imaging expression analogous to (60) can be 
derived also for the moving surface case if the scattering sur- 
face is spatially white. It will be shown that the mapping of the 
surface reflectivity into the mean SAR image can again be 
characterized generally by an impulse response function, and 
that this is identical to the finite resolution variance spectrum 
of the local reflectivity introduced in section 2.2.3. 

In the time dependent case, (52) for the return signal must 
be written 

c•(x) = • T•(x -- x')r(x', t) dx' (61) 
where t = x/U. The matched filtering operation yields then the 
complex image 

c2(x)=ffT2(x--x")Tl(x"--x')r(x',t)dx'dt" (62) 
with t"= x"/U. 

This cannot be contracted into a form analogous to (57). 
Continuation of the formal analysis presented in the preceding 
section for the frozen surface case, without invoking the specif- 
ic linear Doppler properties of the return signal and the corre- 
sponding matched filter of the SAR processor, leads to a mean 
real image given by a triple integral over all three variables of 
the reflectivity covariance function C(x, t; r), which also 
cannot in general be contracted further to a form equivalent 
to (60). 

An exception is the multiplicative noise model. In this case 
the integrations can be factorized, and the image can be ex- 
pressed again in the form (60) as a convolution over the cross- 
section distribution, in terms of a modified, broadened impulse 
response function. The smearing of the image may be interpre- 
ted as a reduction of the effective SAR integration time due to 
the finite correlation time of the backscatterers. Additional 

phase decorrelation terms due to the processor defocussing 
may be included in the analysis, yielding a net "partial coher- 
ence" of the combined system consisting of the SAR and the 
time dependent backscattering field. A detailed analysis of the 
multiplicative noise model in terms of correlation functions, 
including additive system noise contributions (see the system 
diagram, Figure 5), may be found in the work of Raney 
[1980a, b, 1981a]. 

To provide a joint interpretation of both the intrinsic time 
variability effects which can be modeled as multiplicative noise 
and the time variability due to the nonseparable advection 
and propagation of backscattering elements, we adopt here an 
alternative description of the motion effects based on the fre- 
quency rather than the time domain. 

If the explicit Doppler linear frequency modulation rela- 
tions (53), (54), and (56) are substituted into the transfer func- 
tions T1 and T2 in (62), we obtain the relation 

mult•phcabve 
scene 

noise 

additive 

system 
noise 

bme •nde- 

pendent scene 
backscatter 

antenna 

pattern and 
Doppler FM 

SAR 

processor 

Fig. 5. SAR processing diagram for the multiplicative noise 
model. The time dependent fluctuations of the backscattering coef- 
ficient are represented as a statistically stationary noise factor applied 
to a time independent random backscattering field. 

c(x) = dx' exp [ifi(x- x')2/2] f dx" r(x', t")Hl(x" -- x') 
ß H2(x -- x") exp [--ifi(x -- x')(x"-- x')] (63) 

?(x', T/; ro)= • H(/', ro)r(x', t' + •) exp [--iro• d/' (66) 
ro = 2keU(x- x')/p (67) 

and 

pro _U[).N-1 (68) H(•, co)= Hi(UtaH 2 2keU 
The normalization factors 

N'= N exp (ifi(x - x')2/2) (69) 

and 

N = -1 UtaH2 2•U U•' t (70) 
have been introduced to conform with the earlier definitions in 

(12). 
The characteristic scale of the tapering function H(t, ro) in 

(66) is determined by the (single look or multilook) integration 
time T•. For ro << (2keU2ri)/p (the natural bandwidth of the 
SAR procesor), H is essentially independent of ro and is simply 
given by Hi (U•)H2(--Ui'). However, as ro approaches the 
natural processor band limit, the scale of H decreases (i.e., the 
width of the Fourier transform ?(x', T•; ro) increases). 

Applying the white noise relation (5), we obtain from (65) 
for the clutter-averaged mean real image 

(I(x)} (Ic2(x)l 2} ; N2ao(X ', ~ ' ß = = T3R(x, T• ro) dx' (71) 

where R(x', T•; ro) is the finite resolution (normalized) variance 
spectrum of the scattering element at x' with ro given by (67) 
and ao(X', T3 is the average cross section over the integration 
time. For ro << 2keU2ri/p, N 2 is independent of ro and can be 
taken as a constant outside the integral. 

or, substituting x" = x' + •, 

c2(x)=fdx'exp[ifl(x--x')2/2]•dxHl(:•) 
ß H2(x -- x'-- •) exp [--ifi•(x -- x')]r(x', t' + œ) (64) 

with/' = •/U. Equation (64) may be written as an integral over 
a finite resolution Fourier transform r as defined in (12)' 

C2(X ) = f N'F(x', Ti; ro) dx' (65) 
where 
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Fig. 6. Mechanism of image smearing due to the superposition of statistically independent scattering elements of 
different frequency (multiplicative noise model). (a) Mapping of two time independent scattering elements at different 
positions A and B. (b) Mapping of a time independent scattering element A and a similar scattering element B' at the same 
position moving with constant range velocity (or, equivalently, a stationary target B' at the position A with a constant- 
frequency phase factor). The scattering element B' has the same frequency signature as B in Figure 6a; B' is therefore 
mapped into a position displaced in the azimuth direction relative to A (ignoring filter edge effects indicated by the dashed 
lines). (c) Mapping of a continuous superposition of statistically independent scatters with different offset frequencies at the 
same location (multiplicative noise model). The frequency variance spectrum is mapped directly into an identical distri- 
bution in the image plane. Thus the variance spectrum represents the net impulse response function of the SAR for the 
given time dependent scattering element. The finite resolution of the SAR is included in the definition of the variance 
spectrum as a finite resolution spectrum. 

Equations (67) and (71) can be readily interpreted [cf. Plant 
and Keller, 1983]. Because of the motion effects, a scattering 
element at x' is imaged into a finite distribution along the x 
axis. If the time dependence of the reflectivity at the point x' is 
decomposed into its Fourier components, the component of 
frequency to is imaged into a position displaced from x' by the 
distance Ax = (p/2keU)to (equation (13)). Conversely, the con- 
tribution to an image point x displaced by a distance 
Ax = x- x' from the scattering element position x' arises 
solely from the energy of the fourier components of frequency 
(• as defined by (11) and (12). Because of the finite integration 
time of the SAR, the frequency in the frequency-azimuthal 
displacement relation (13) has a finite indeterminacy. The rela- 
tion must therefore be interpreted as applying to a finite width 
frequency band given by the inverse of the SAR (single look or 
multilook) integration time in accordance with the definition 
(66). 

According to this simple physical picture the mean image 
impulse response function/• describing the smeared image of 
an infinitesimal scattering surface can be represented as the 
superposition of the standard "train off the track" azimuthal 
displacements of an ensemble of scatterers of different fre- 
quency. The discussion of different SAR ocean-wave-imaging 
models thus reduces to the determination of the reflectivity 
variance spectra characterizing the different scattering models, 
as presented in part 1. 

The effect of the finite SAR system resolution is implicitly 
included in this picture through the definition of the variance 
spectrum as a finite resolution spectrum. Thus a time indepen- 
dent backscattering surface is represented by a finite width 
variance spectrum, centered at zero frequency, which is identi- 
cal in shape to the SAR system mean image impulse response 
function. 

We cannot enter here into a discussion of the details of the 

SAR filter functions H• and H 2 or the various speckle and 
system noise aspects of single-look versus multilook pro- 
cessing [cf. Ouchi, 1981; Raney, 1983; Alpers and Hasselmann, 
1982]. However, we note in conclusion that (65)-(71) imply 
that the mean image intensity is not affected by either the 
choice of filter functions or the time dependence of the back- 
scattering surface, provided the SAR processor bandwidth is 
sufficiently broad to accept all frequency components of the 
return signal. Thus to first order the filter functions and vari- 
ance spectrum of the reflectivity coefficient lead only to a 
smearing of the image, without energy loss. This will not nec- 
essarily be the case for non-Bragg scatterers which propagate 
at velocities of the order of the long-wave phase speeds. For 
instance, typical aircraft parameters of U = 100 m/s, T• = 1 s, 
k e -- 2 cm-•, altitude of 10 ½ m, and 0 = 25 ø when substituted 
into the expression for the natural processor bandwidth yield 
a value of about 60 Hz for this bandwidth. The mean fre- 

quency, (•o)g/2rc, of facets traveling at the phase speed of 
waves whose wavelength is 60 m or longer and which propa- 
gate more than about 15 ø off the azimuth direction will exceed 
this processor bandwidth. Thus a decrease in mean image 
intensity will occur, providing a means of assessing the extent 
of non-Bragg scattering from fast-moving facets in the scene. 

3.3. Application to Backscattering Models 

The variance spectra for the different backscattering models 
discussed in part 1 were represented schematically in Figure 3. 
In Figures 6 and 7 we interpret these now as mean image 
impulse response functions. 

Figure 6a shows the standard linear Doppler history of two 
stationary targets A, B displaced in relation to one another in 
the azimuthal direction by a distance Ax. The imaging of a 
target B' at the same position as A but moving with a con- 
stant velocity v• = (U/p) Ax toward the radar is illustrated in 
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Fig. 7. SAR imaging of time dependent scattering elements for advective and general two-scale models. Dashed lines 
indicate stationary targets. (a) Smearing of an accelerated scattering element with zero mean range velocity (zero mean 
offset frequency with constant frequency drift rate). The variance spectrum and smearing are proportional to the integra- 
tion time. (b) Displacement and smearing of a scattering element with nonzero mean velocity and constant acceleration 
(mean offset frequency with constant frequency drift rate) in accordance with the advective two-scale model. (c) General 
two-scale model: image of a scattering facet consisting of a continuous superposition of statistically independent scattering 
elements of different intrinsic frequency which are subjected to a common advection at a mean velocity and a superim- 
posed acceleration (common offset frequency and frequency drift). The net variance spectrum impulse response function is 
given by the convolution of the multiplicative noise and advective variance spectra. 

Figure 6b. Target B' can be interpreted alternatively as a 
stationary, time dependent scatterer generating a constant 
offset frequency co - 2ke% in the backscattered signal. Targets 
B and B' exhibit identical Doppler histories (except for differ- 
ent bandwidth limitations, which may be neglected to first 
order for small offset frequencies). Thus B' is mapped into the 
image point B, displaced in relation to its true position at 
point A. This corresponds to the azimuthal displacements of 
backscattering elements due to the advection by long-wave 
orbital velocities in the EMH or SAR two-scale model. 

Figure 6c shows the imaging of a scattering element at A 
which consists of a continuum of scatterers with different 

offset frequencies. The variance spectrum of the reflectivity 
coefficient is mapped directly into the image plane in accord- 
ance with the geometrical relations illustrated for a single fre- 
quency in Figure 6b. This corresponds to the image smearing 
induced by the subscale variability of the scattering coefficient 
in the multiplicative noise model. 

Figure 7 illustrates the structure of the variance spectrum 
and impulse response function for the general (EMH or SAR) 
two-scale model. The acceleration of a backscattering element 
results in the tilt of the Doppler frequency line relative to the 
Doppler slope of a stationary reference target (Figure 7a). The 
linear increase in the relative Doppler offset with time yields a 
reflectivity variance spectrum which is broadened in relation 
to the zero-frequency line of a stationary target into a band of 
width 6co ket)t,T i. The mean velocity (frequency) of the back- 
scattering element is assumed to be zero, so that the spectral 
distribution is centered on zero frequency. The image of the 
backscattering element is broadened accordingly into a distri- 
bution of width 6x • v, pT•/2U. 

Figure 7b shows the corresponding reflectivity variance 
spectrum and real image impulse response function for the 
general case of the purely advective two-scale model, in which 
the facet motion consists of the superposition of a nonzero 

velocity and an acceleration term. The distributions are identi- 
cal to those of Figure 7a except for an additional frequency 
(azimuthal) displacement induced by the mean facet velocity. 

Figure 7c, finally, illustrates the superposition of the advec- 
tive effects of Figure 7b and the subscale variability smearing 
of Figure 6c in the general (EMH or SAR) two-scale model. 
Each of the frequency components of the spectral continuum 
shown in Figure 6b is broadened by the acceleration tilting 
shown in Figures 7a and 7b. The net variance spectrum (im- 
pulse response function) is accordingly given by the convolu- 
tion of the individual variance spectra (impulse response func- 
tions) of the advective two-scale and multiplicative noise 
models. The mean displacement and mean square smearing of 
the impulse response function of the general two-scale model 
are given simply by the sum of the corresponding terms for 
the separate multiplicative noise and advective two-scale 
models. 

3.4. Linear Wave-Imaging Transfer Functions 

Once the real image impulse response function describing 
the imaging of the individual scattering elements of a random 
backscattering sea surface has been established, the next step 
in SAR ocean-wave-imaging theory is to describe the imaging 
of an entire ocean wave scene. 

Under certain restrictions on the characteristic wave height 
and wavelength of the wave field to be discussed below, the 
image may be regarded as a linear functional of the wave field. 
If the surface wave displacement •(x, t) and the clutter- 
averaged mean image intensity I(x) (we have dropped the 
angle brackets to simplify the notation) are represented as 
Fourier integrals, 

•(x, t)= f [•(k)e "k'x-*t) + •(-k)e -"k'ux+*ø + c.c.)] dk (72) 
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with 

and 

a = (gk) •/2 (73) 

l(x) = f [(k)e a"x dk (74) 
the Fourier components of the wave and image fields can be 
linearly related in the form 

/(k) = Iok[T(k)•(k ) + T*(-k)•(-k)] (75) 

where Io denotes the scene-averaged mean of l(x) and T(k) 
represents a nondimensional modulation transfer function 
(MTF). The modulus of the wave number k has been intro- 
duced to make T nondimensional (the magnitude of the MTF 
therefore applies to the wave slope rather than height, but the 
phase is referred still to the wave height). 

It should be noted that the representations (72) and (74) are 
not strictly analogous. Equation (74) represents the two- 
dimensional Fourier transform of a two-dimensional surface. 

Equation (72), however, represents a three-dimensional trans- 
form of a three-dimensional function which can be reduced in 

this particular case to two two-dimensional wave number inte- 
grals over the two dispersion surfaces ro = +_a because it is 
assumed that the surface displacement field consists solely of 
free waves satisfying the dispersion relation (73). The complex 
wave amplitudes •(k) refer to waves traveling in the positive k 
direction only, so that in general •(k):/= •*(-k), while the 
image amplitude /(k) satisfied the usual reality condition 
I•-k) =/*(k) for a two-dimensional surface. 

The variance spectra F•(k) and F•(k) of the wave and image 
fields are defined by 

2(•(k)•(k')*) = fi(k - k')Fc(k) 
210- 2(/(k)[(k') * ) = fi(k- k')F,(k) 

(76) 

(77) 

where the angle brackets denote statistical averages over the 
quasi-homogeneous, quasi-stationary ensemble of long-wave 
fields. The normalization is chosen such that 

F;(k) dk = (•2) (78) 
• F,(k) dk: 10-2((1 - 10) 2) k• > 0 (79) 

The spectrum F•(k) is normalized as a "half-plane" variance 
spectrum to remain consistent with the definition of F;(k), 
which also represents a "half-space" normalized spectrum with 
respect to three dimensional frequency-wave number space. In 
terms of the variance spectra, (75) yields 

F,(k) = k2[Ir(k)12F(k) + Ir(-k)12F(-k)] (80) 

Applying the EMH two-scale model, the modulation trans- 
fer function T may be divided generally into three constit- 
uents, 

T = Tt + Ta + T,, (81) 

The tilt component T, represents the changes in the back- 
scattering cross section induced by variations in the local 
angle of incidence relative to the changing local facet normal. 
These affect both the Bragg backscattering coefficient and the 
Bragg wave number itself. The dependence of T t on incidence 
angle, wave propagation direction, and the form of the ripple 
spectrum is duscussed in detail, for example, in the work of 

Wright [1978] and Alpers et al. [1981]. The function is imagi- 
nary (in phase with the wave slope) and is generally of the 
order of 3-10 for incident angles in the Bragg range 200-70 ø . 
For a Phillips spectrum it is independent of the long-wave 
frequency to first order, and for a cosine-squared directional 
distribution it is approximately proportional to the cosine of 
the propagation direction •p of the long waves relative to the 
SAR look direction. A small additional modulation caused by 
changes in spatial resolution cell size due to surface waves has 
been noted recently [Wright et al., 1980; Gower, 1983]. In 
SAR imagery it is important primarily for range-traveling 
waves;it may easily be included in T•. 

The hydrodynamic MTF Ta describes the changes in the 
backscattering cross section due to the hydrodynamic modu- 
lation of the ripple energy spectral density at the mean (non- 
modulated) Bragg wave number by the long gravity waves. In 
principle, it can be determined within the framework of the 
EMH two-scale model through the short-wave spectral trans- 
port equation applying standard WKB methods and a pertur- 
bation expansion with respect to the long-wave amplitudes 
(section 2.6, Keller and Wright [1975] and Wright [1978]). 
However, a closed theory for Ta has not yet been developed. 
Although the purely advective and refractive long-wave/short- 
wave interactions can be rigorously determined, the full hy- 
drodynamic MTF depends on source functions in the trans- 
port equation which are known only poorly, such as the long- 
wave modulation of the wind input to the ripple waves, or the 
short-wave energy dissipation mechanism. Our present knowl- 
edge of Ta is therefore largely empirical and is based on back- 
scatter measurements from towers or in wind wave tanks. The 

data are generally rather strongly scattered, and the depen- 
dence on environmental parameters such as atmospheric sta- 
bility and sea state has not been clearly established. Most 
measurements of ITal lie in the range 5-15 and show a weak 
decrease of I with long-wave frequency and wind speed. The 
function is again largest for radar look directions parallel to 
the wave propagation direction. The phases vary considerably 
but are frequently near zero l-Alpers and Jones, 1978; Wright 
et al., 1980; Plant et al., 1983; Tanq and Shemdin, 1983]. 

The third MTF T m represents the most interesting transfer 
function from the viewpoint of SAR imaging. It arises through 
the motion-induced azimuthal displacements ("velocity bunch- 
ing") of individual backscattering elements in the image plane 
and has no counterpart in real aperture radar imaging. 

The real image impulse response function for a moving 
backscattering element (facet or patch) is characterized by 
both an azimuthal displacement and an azimuthal broadening 
of the basic stationary target response function. If the rms 
displacements are small in comparison with the characteristic 
wavelength of the long waves, the velocity bunching mecha- 
nism can be characterized to first order by a linear MTF. 
However, for larger rms displacements the process can become 
strongly nonlinear [Alpers et al., 1981]. The azimuthal broad- 
ening is always nonlinear. We defer the discussion of the non- 
linear mapping aspects to the following section. 

The velocity bunching imaging mechanism is illustrated in 
Figure 8. The rays connect the positions of backscattering 
elements on the surface to the positions into which they are 
mapped in three different image planes a, b, or c. The different 
planes correspond to different scales for the velocity-induced 
azimuthal displacements (different wave amplitudes or differ- 
ent p/U ratios). A uniform distribution of backscattering ele- 
ments on the sea surface is alternately contracted (bunched) 
and dilated in the image plane, thereby producing a SAR wave 
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Fig. 8. Geometry of the velocity-bunching mechanism. Ray slopes relative to the vertical are proportional to the range 
components of the local orbital velocities of the backscattering facets. Images (dashed profiles) are constructed by the 
projection of facets along rays onto the horizontal sections intersecting the rays. Sections nearer to the bottom of the 
figure correspond to higher wave amplitudes. Section a lies in the linear imaging region, while the images at sections b and 
c are strongly nonlinear. Each ray is broadened by multiplicative noise and acceleration effects, as indicated for a single 
ray at the light. 

image even in the hypothetical case that the waves produce no 
direct modulation of the backscattering cross section and 
woul,d therefore remain undetectable by a real aperture radar. 
The angles of the rays relative to the vertical are proportional 
to the local range velocity components, i.e., the azimuthal dis- 
placements in the image plane, of the individual back- 
scattering elements. (For the purpose of this construction, the 
surface displacement is assumed small in comparison with the 
distance of the surfaces a, b, or c below the mean surface level.) 
For the image plane a the wave amplitude and azimuthal 
displacements are sufficiently small that the velocity bunching 
mechanism is linear, while in cases b and c the displacements 
become comparable with the wavelength of the long waves 
and the wave images are nonlinearly distorted. We note that 
the nonlinear cusps occurring in image b, which have fre- 
quently been noted in the discussion of sinusoidal wave 
images [Alpers and Rufenach, 1979; Swift and Wilson, 1979; 
Valenzuela, 1980; Rufenach and Alpers, 1981; Raney, 198 lb] 
are randomly distributed in the case of a statistical wave en- 
semble and cannot be related to a particular critical significant 
wave height. Moreover, they become smeared out by the ac- 
celeration and multiplicative noise smearing of individual 
backscattering elements (as indicated for a selected ray at the 
right edge of the figure). 

In the linear case the MTF Tm may be determined by ex- 
panding the relative image intensity distribution l(x)/l o due to 
velocity bunching with respect to the amplitudes of the wave 
field. One obtains by straightforward geometry [Alpers et al., 

1981] 

( ) Tm(k ) = • cos 0 -- -•- sin 0 (82) 

where k,, and ky denote the azimuthal and (horizontal) range 
components of k (0 is the angle of incidence). 

The first and second terms in the parentheses on the right- 
hand side of (82) arise from the contributions of the vertical 
and horizontal orbital velocity components, respectively, to 
the slant range velocity. For small angles of incidence (Seasat, 
ERS 1) the vertical velocity contribution is dominant, and the 
largest motion effects are found for azimuthally traveling 
waves. For grazing incidence, sin 0 ,-- 1, the horizontal velocity 
term dominates, and the largest velocity-bunching effects are 
found for waves traveling at 45 ø to the radar. 

A qualitative comparison of the three MTF's T,, T•, and Tm 
is shown in Figure 9. Tm is generally considerably larger than 
T, and T•, except for very long or range traveling waves. The 
dominance of Tm is encouraging for SAR imaging in as far as 
this transfer function is determined only by the kinematics of 
the long waves and is independent of the dynamics or form of 
the short-wave ripple spectrum. However, the high values of 
Tm also indicate that the linear modulation theory for velocity 
bunching has only limited application for shorter waves and 
that the nonlinear aspects of SAR imaging, which ultimately 
destroy the wave-imaging capability by displacing the imaged 
position of a scattering element by distances exceeding a 
wavelength, need closer study. 
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Fig. 9. Dependence of linear SAR imaging modulation transfer 
functions on period of long waves. The largest MTF's for tilt and 
hydrodynamic modulation occur for range-traveling waves. For ve- 
locity bunching the largest MTF occurs for azimuth-traveling waves if 
the angle of incidence is small and at 45 ø for grazing incidence. 

3.5. Nonlinear Imaging Properties 

Nonlinearities enter into SAR ocean wave imaging mainly 
through velocity bunching (for steep waves) and image smear- 
ing by multiplicative noise and acceleration effects. The hy- 
drodynamic and tilt modulation can also become nonlinear, 
but the nonlinearities are generally small for the incidence 
angle range 20ø-70 ø and will not be considered further here. 

We consider first the smearing terms for the general SAR 
two-scale model. The broadening of the impulse response 
function may be regarded qualitatively as a low-pass filter 
which removes all components of the long-wave spectrum 
whose azimuthal wave number components are greater than 
the inverse of the smearing width. However, since the smear- 
ing is not constant but depends on the local properties of the 
backscattering facet or patch, it cannot be regarded formally 
as a linear filtering process. 

The mean square broadening 6x 2 may be represented as the 
sum of two terms, the multiplicative noise term, which for the 
SAR two-scale model is determined mainly by the velocity 
spread 6xi 2 of the intermediate-scale waves (the inherent time 
variability of the ripples is small in comparison with this term) 
and the term •xt 2 arising from the range component of the 
long-wave orbital acceleration (cf. section 2.7). 

Equations (44) and (48) yield for the intermediate-scale 
mean square velocity spread and the expectation value 
(averaged over the long-wave ensemble) of the mean square 
acceleration smearing, respectively, 

p2•_, •ro0emh ( ky2sin20)to2F(to, qb) dtodq b •x• 2 = •-• • cos 2 0 + -•- sat 

(83) 

(,Sxt 2) p2T•2;_: ;o•'•( ky2sin20) = 12U2 ,• cos 2 0 + • 
co4F(co, qb) &o d•b (84) 

where F(co, •p) is the two-dimensional wave spectrum as a 
function of frequency and propagation direction •p, and 
(_Dem h -- (gkemh) 1/2, rosa r -- (gksar) 1/2. Assuming a Phillips-type 
wind sea frequency spectrum, (37) (with a low-frequency cutoff 
at the peak frequency %,), and a frequency independent 
cos2 (•P- •Pw) half-plane spreading factor for the directional 
distribution of the waves relative to the local wind direction 

•pw, (83) and (84) yield 

(•Xi2(pcosO) 20• - -2] (85) "- ' • COem h COp < COsa r U g • [(_Osar 2 

((Sxt2) = p cos 0 gT• o• co.• (86) U •ln •v < •s•r 
Equations (85) and (86) apply for azimuthally traveling 

waves (the worst case in terms of the ratio of smearing to 
azimuthal wavelength). However, for small incidence angles, 
both smearing terms arc only weakly dependent on the wave 
propagation direction. The smearing is also only a weak func- 
tion of the wind speed W, the peak frequency, or the state of 
development of the wind sea (which can bc characterized by 
the dimensionless frequency v = •W/2ng). These parameters 
influence the smearing terms only through Phillips constant • 
(which is weakly dependent on v [Hasselmann et al., 1973]) 
and through the weak logarithmic dependence of (Jxt 2) on 
• in (86). 

Figure 10 shows the dependence of the rms smearing terms 
•x• and •xt on • (or • = 2n/•e) for a value of • = 0.01 and 
for the Seasat parameters 0 = 22 ø, k,r = 2n/20 m, and • = 
2.5/4 s (four-look case). The rms smearing Jxt by the long- 
wave acceleration is of the order of 20 m, while the velocity 
spread term •x• due to intermediate-scale waves is of the order 
of 45 m. The abscissa may bc translated into wind speed if a 
fully developed wind sea spectrum is assumed, for which •e • 
0.13.2•q/W, where W corresponds to the wind at 10-m ane- 
mometer height. 
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Fig. 10. Image smearing (rms) for the general SAR two-scale 
model. Long-wave acceleration: •x I. Velocity spreading by 
intermediate-scale waves •x•. A Phillips-type spectrum with low- 
frequency cutoff at •e = 2nTe is assumed. The wind velocity scale W 
applies for a fully developed spectrum, for which Te • W/(O. 13g). (The 
values for a Pierson-Moskowitz spectrum do not differ significantly 
from the values for a Phillips cutoff spectrum.) Also shown is the peak 
wavelength •e and the total rms displacement •Xto t due to both inter- 
mediate scale and long waves. The velocity bunching mechanism be- 
comes strongly nonlinear for •Xto t sin & • •e, where & is the direction 
of wave propagation relative to the radar look direction. 



4680 HASSELMANN ET AL.'. SAR OCEAN WAVE IMAGING 

The empirical Pierson and Moskowitz [1964] spectrum 

Fp•(W) = gg2w- s exp [-- 5/4(w/%,) -4] (87) 

for a fully developed wind sea yields values of gx• and gXl 
which are a few percent smaller than the values taken here for 
the simple Phillips spectrum with low-frequency cutoff (which 
is more appropriate for growing wind seas [Hasselmann et al., 
1973]). 

Also shown in Figure 10 is the peak wavelength 2•, and the 
total rms displacement •Xto t due to the orbital velocities of 
both intermediate-scale and long wave for azimuthally trav- 
eling waves (i.e., the net rms displacement due to both velocity 
spread and velocity bunching), 

((•Xtot2) = (•Xi2 4- (AXl2) =(19 COS 0 ) 20• U g '• [o9/9-2 

•("øs0 ) • -2 (88) 
The corresponding relation for a Pierson-Moskowitz spec- 
trum is identical to the result (88) for a Phillips spectrum 
except for an additional factor (re/5) •/2 • 0.8. 

The ratio 

__ (.Oemh - 2] 

gXtot sin •b/2•, = 0.13 sin •b cos 0. P•g (89) UW 

provides a measure of the net nonlinearity of the velocity 
spread and bunching mechanisms for a fully developed sea 
(and small incidence angles). Here •b is the wave propagation 
angle measured from the range direction. The nonlinearity 
parameter is seen to decrease with increasing wind speed, since 
the peak wavelength 2•,(• W 2) increasees more rapidly with W 
than t•Xto t ('•' W). For the worst case of azimuthally traveling 
waves, the net velocity spread and bunching mechanisms may 
be regarded as approximately linear from high wind speeds 
above perhaps 16 m/s, is significantly nonlinear in the range 
8-16 m/s, and becomes strongly nonlinear (such that even 
nonlinear techniques of inverting the image spectrum back to 
the wave spectrum become questionable) for wind speeds 
lower than 8 m/s. Monte Carlo simulations of the SAR images 
of random (but unidirectional) wave fields by Alpers [1983b-I 
support these conclusions. 

According to Figure 10 the nonlinearity of the velocity- 
bunching mechanism is generally more critical for wave imag- 
ing than the smearing due to the velocity spread or the even 
smaller acceleration terms. Strong smearing effects which limit 
the spectral resolution are found only for relatively short 
waves less than about 100-m wavelength. In many cases a 
high-wave-number resolution cutoff of this order results inde- 
pendently of the smearing through considerations of the 
signal-to-clutter ratio [Alpers and Hasselmann, 1982]. (M. J. 
Tucker (unpublished manuscript, 1984) quotes a longer- 
wavelength cutoff due to the subresolution scale velocity 
spreading but uses a more restrictive cutoff criterion.) The fact 
that wind sea waves, in contrast to swell, have not often been 
observed in satellite SAR images is normally attributed to the 
strong nonlinearity of the velocity-bunching mechanism. This 
is most pronounced for azimuthally traveling wind seas and 
(contrary to immediate intuition) for weak and moderate 
winds. 

3.6. The Speckle Covariance Function 

So far the discussion of this paper has been restricted to the 
properties of the mean image, defined as the average over an 

abstract ensemble of images with a given, fixed long-wave field 
but different realizations of the subresolution scale scattering 
field. In practice, of course, only one image realization of a 
selected wave scene is obtained from a given look, and the 
ensemble average must be estimated by averaging over subse- 
quent looks or over neighboring pixels. The (unavoidable) sta- 
tistical uncertainty of such estimates depends on the structure 
of the speckle statistics, particularly the speckle covariance 
function. 

The speckle variability also gives rise to a broadband, ap- 
proximately white variance spectrum which extends from the 
lowest resolved wave number of the scene to the SAR resolu- 

tion cutoff wave number ksa r. The speckle variance spectrum 
masks the mean image spectrum at high wave numbers and 
results in an effective high-wave-number signal-to-clutter 
cutoff which is normally an order of magnitude smaller than 
the single-look resolution cutoff wave number [Alpers and 
Hasselmann, 1982]. 

We shall not attempt to discuss the problems of speckle 
statistics and signal-to-clutter ratios in detail here. However, 
we derive briefly a simple property of the speckle covariance 
function which is basic for the general theory of speckle: for a 
spatially white, Gaussian, time dependent backscattering sur- 
face, the speckle covariance function is also white [Palermo, 
1963; Porcello et al., 1976; Raney, 1981a-I. 

At first sight this result appears surprising in view of the 
smearing of the mean image impulse response function by the 
motion effects. However, the mean image smearing is found to 
carry over into the speckle statistics only in the non-Gaussian, 
nondistributed scatter case, in which the backscatter is domi- 
nated by relatively few, isolated events. The internal consist- 
ency of the smearing of the mean image response function by 
motion effects and the lack of spatial correlation in the speckle 
statistics can be understood by analogy with pulse-stretching 
techniques. The phase shifts introduced into the backscattered 
return by motion effects are analogous to the phase shifts 
appearing in the Fourier representation of a stretched pulse. 
Although the phase shifts broaden the pulse envelope, they 
normally have no influence on the pulse autocorelation func- 
tion. 

The real image speckle covariance function 

R,(•) = <[I(x + •)- <I(x + •)>][I(x)- <I(x)>]> (90) 

can be expressed as a fourth-order product in terms of the 
complex image ca(x), 

Ri(•)-- ([c2(x 4- •)c2*(x 4- •)- (c2(x 4- •)c2*(x 4- •))'] 

ß [c2(x)c2*(x)- (c2(x)c2*(x))]) (91) 

For simplicity, we have assumed in (90) and (91) a statis- 
tically homogeneous scattering surface, R independent of x, 
since we are not concerned here with the modulation of the 

speckle by the long waves. However, the following analysis 
can readily be generalized to the modulated case. 

Expressing the complex image in terms of the reflectivity 
coefficient Fourier amplitudes through the relations (65)-(70) 
and applying the Gaussian decomposition of fourth moments 
into products of quadratic moments, we obtain the simple 
general relation 

R,(•) = f (?(x', Wx+•_x,)?*(x', COx_x,)) dx' 2 (92) 
where the frequencies coa,• of the (finite resolution) Fourier 
components ? are related to their subscripts Ax in accordance 
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with the standard frequency-azimuthal displacement relation 
(13), 

2keU 
cob,, - Ax (93) 

For a stationary backscattering process (multiplicative noise 
model), the second-moment product 

(94) 

appearing in the integrand in (92) is nonzero only if the fre- 
quencies co,,+½_,,, and co,,_,,, are the same (within the finite 
resolution of the spectrum), i.e., if I•l-• 0 (SAR resolution). 
Thus the speckle covariance function is white within the reso- 
lution scale of the SAR. 

If the process is nonstationary, the product (94) can be non- 
zero for • •: 0. This will be the case, for example, if the fre- 
quency components ?(x', co) are broadened by acceleration 
effects. However, it can be shown generally that as long as the 
frequency broadening due to advective scatter motions is 
small in comparison with the width of the linear frequency 
modulation induced by the platform motion, the product (94) 
is a rapidly oscillating function of x', with an oscillation fre- 
quency proportional to •. Thus the integral (92) vanishes on 
integration over x' unless • becomes sufficiently small. The 
relevant scale is again found to be the SAR azimuthal resolu- 
tion scale. Thus the second-order speckle statistics may be 
regarded as white for the purposes of SAR imaging in the 
general case of line broadening due to both multiplicative 
noise and scatterer advection. 

The argument is clearly crucially dependent on the de- 
composition of the fourth-order product (91) into the square 
modulus of the integral of a second-moment expression, (92), 
i.e, on the validity of the Gaussian hypothesis. This can gener- 
ally be justified from scattering theory if the second moments 
(in particular, the cross sections) can be regarded as continu- 
ous on the resolution scale of the SAR. However, for discrete, 
separated small-scale scattering processes the hypothesis is not 
applicable. In this case the fourth-order Fourier products 

M½ = (?(x', co x + ½_ x,)?*(x', co x _ x,)?(x", COx + ½ _ x,,) 

ß ?*(x", COx_x,,)) (95) 

which appear on substitution of the Fourier representation 
(65) into (91) cannot be factored into a second-moment prod- 
uct expression 

M 4 = (?(x', cox+½_x,)?*(x', cox_x,))(?(x", co,,+½-x,,) 

ß ?(x", cox-x,)) (96) 

in which x' and x" are statistically separated, leading to the 
quadratic integral equation (92), but must be represented in- 
stead by an expression of the form 

M4 = F(x, •, x')5(x' -- x") (97) 

in which the 5 function factor describes the vanishing prob- 
ability for the simultaneous scattering at two different posi- 
tions x' and x" for intermediate scattering. The function F 
depends on the details of the statistics of the individual scat- 
tering events. The azimuthal correlation scale of the speckle 
covariance function in this case is generally found to be of the 
same order as the smearing scale of the mean image impulse 
response function. Observations of spatial speckle correlation 
functions can therefore provide a useful method for discrimi- 
nating between continuous and discrete scattering mecha- 
nisms. 

3.7. Dependence on SAR Parameters 

For the verification of SAR ocean-wave-imaging models, 
direct sea truth measurements of the two-dimensional wave 

spectrum are required. Many measurements under different 
environmental and SAR operation conditions w•11 generally be 
needed to distinguish between competing imaging mechanisms 
and to establish the dependence of the various linear and 
nonlinear imaging functions on the local wind and wave con- 
ditions and SAR parameters. In the preceding two subsections 
we considered the dependence of the principal imaging 
characteristics on the wind sea spectrum. In this section we 
discuss the influence of the SAR parameters. 

A comparison of different SAR images of the same wave 
scene obtained under different SAR operating conditions is an 
effective method of discriminating between imaging mecha- 
nisms. This approach was widely adopted in MARSEN and 
earlier experiments (Marineland, West Coast), where star pat- 
terns were usually flown with two or more different airborne 
SAR's (or real aperture radars) over a given wave site. 

Table 2 summarizes the dependencies of the imaging func- 
tions characterizing the different imaging mechanisms on 
various SAR parameters. A general difficulty in considering 
dependencies on SAR parameters with given physical con- 
straints (e.g., antenna size) are the dependence ambiguities 
arising from the interrelations between different SAR parame- 
ters for a given hardware configuration. It is assumed in Table 
2 that each of the SAR parameters listed is varied indepen- 
dently of the other parameters, even where this implies 
changes of the antenna dimension or platform velocity. In case 
of doubt we refer to the equations presented in the tekt, in 
which the SAR parameters summarized i.n the table are shown 
in the context of the other variables. 

As a general feature, we note that different scattering pro- 
cesses generally exhibit rather different dependencies with re- 
spect to radar incidence angle and look direction, while the 
sensitivities with respect to radar wave number or resolution 
(regarded independently of the integration time) are generally 
less pronounced. The integration time represents a particu- 
larly useful parameter for process discrimination. The multi- 
plicative noise smearing is independent of the integration time, 
while the rms smearing due to acceleration terms increases 
linearly with this parameter. 

The focus setting is also a useful discriminator. However, 
the interpretation of this parameter is a little more subtle. In 
the SAR two-scale model defocusing is equivalent to introduc- 
ing an offset in the mean range acceleration of the back- 
scattering patch. It therefore leads to a reduction or an in- 
crease in the local acceleration smearing, dependent on the 
sign of the local acceleration. Thus some regions of the wave 
image are selectively focused, while other regions become 
more strongly smeared. A similar effect occurs in the case of 
the specular reflection and the wedge-scattering models. In 
this case the mean quadratic phase term which is compensated 
or enhanced by defocusing can arise not only through the 
range component of the acceleration of the reflecting facet or 
backscattering cusp, but also through the azimuthal velocity 
component of the backscattering element, which propagates in 
these models at relatively high speeds of the order of the long- 
wave phase velocity (see the comments at the end of Sections 
2.2.2 and 3.2). Estimates of the quadratic phase-smearing 
terms due to acceleration in the SAR two-scale Bragg model 
and the azimuthal velocity component of non-Bragg models 
yield comparable orders of magnitude for both types of model. 
Thus a discrimination between Bragg and non-Bragg scatter- 
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ing models based on defocusing experiments alone requires a 
rather careful analysis of the predicted effects for the particu- 
lar wave field being imaged. 

The largest uncertainties occur in the last column of Table 
2. Very little is known about the backscattering properties of 
actively breaking wave, foam, spray, etc. However, it can be 
assumed that the inherent variance spectra and therefore 
image smearing of these processes will be considerably 
broader than for Bragg scattering and that the mean propaga- 
tion velocities determining the azimuthal displacements will be 
of the order of the orbital velocities at the crests of breaking 
waves. These are normally comparable with the long-wave 
phase velocities. Thus the characteristics of these processes 
will presumably be rather similar to the characteristics of 
specular reflection or wedge scattering from individual cusping 
waves. However, the backscatter from discrete small-scale sur- 
face roughness elements may be expected to be more isotropic 
than for specular reflection, wedge scattering, or Bragg scatter- 
ing from freely propagating waves. 

Not included in the table are the speckle properties. For 
continuous scattering, the speckle variability represents a 
white noise process, independent of the smearing of the mean 
images by motion effects, while for discrete scattering pro- 
cesses the speckle function generally has the same spatial scale 
as the impulse response function of the mean image (cf. the 
preceding section). 

Incoherent multilook processing can be useful for dis- 
tinguishing between processes on the basis of speckle statistics. 
This can provide information not only on the spatial speckle 
correlation scale as a function of the number of looks, but also 
on the lifetimes of scattering events through the temporal 
speckle correlation properties. However, with respect to the 
mean image itself, multilook averaging offers no basic advan- 
tage, since the process is essentially equivalent to the spatial 
smoothing of a higher-resolution single-look image over the 
coarser multilook resolution cell. The main motivation for 

multilook processing in this case is the indirect effect of the 
reduction of the acceleration smearing which can be achieved 
through the shorter integration time, assuming the partial 
images are registered to account for this effect [Alpers et al., 
1981; Raney, 1981b]. 

It is clear from an inspection of Table 2 that it is not possi- 
ble to identify a single definitive experiment to determine ex- 
actly which scattering mechanism is dominant under which 
environmental conditions for a given SAR configuration and 
viewing direction. The resolution of this question must come 
from the analysis of many SAR images for a wide variety of 
wave states and SAR configurations. The summary of depen- 
dencies in Table 2 may nevertheless provide a useful guide for 
the analysis and interpretation of the MARSEN and other 
SAR data sets. 

4. SUMMARY AND CONCLUSIONS 

1. Under rather general conditions the complex reflectivity 
of a moving, random backscattering sea surface can be regard- 
ed as spatially uncorrelated (white) within the spatial resolu- 
tion of a SAR. In this case the influence of the motion effects 

on the mean SAR image can be expressed in terms of a single 
function, the (spatially dependent) mean image impulse re- 
sponse function. This is identical to the normalized frequency 
variance spectrum of the subresolution-scale variations of the 
local complex reflectivity coefficient, where frequencies trans- 
late into azimuthal displacements in accordance with the stan- 
dard SAR equivalence relations. The variance spectrum is de- 
fined as a finite resolution spectrum as required by the finite 

(single look or multilook) integration time of the SAR. Thus if 
the backscattering process is statistically nonstationary, the 
spectrum will depend on the SAR integration time. 

2. The first task in SAR ocean-wave-imaging theory is 
therefore to determine the variance spectrum of the back- 
scattering surface as a function of position in the wave field. 
Once this is established, the imaging problem is reduced to a 
mapping exercise. In the linear small-wave height limit, the 
mapping can be represented generally in terms of linear mod- 
ulation transfer functions relating the wave and image spectra. 
In the nonlinear regime the transformation from a given wave 
spectrum to the image spectrum can be determined numeri- 
cally by Monte Carlo simulations. However, a general classifi- 
cation of the nonlinear transformation characteristics for dif- 

ferent spectral distributions has not yet been established. Nu- 
merical techniques for the more relevant inverse transforma- 
tion from the image spectrum to the wave spectrum also still 
have to be developed. 

3. The determination of the reflectivity variance spectrum 
provides a common focus for the analysis of different back- 
scattering models. These can be divided into two broad cate- 
gories: two-scale Bragg scattering models and non-Bragg, dis- 
crete scattering models. It is generally assumed that Bragg 
scattering represents the dominant backscattering process for 
incidence angles in the range 20ø-70 ø in which satellite and 
airborne SAR's are most frequently operated. For small inci- 
dence angles, specular reflection becomes the primary mecha- 
nism, while at large incidence angles backscattering from 
white caps, cusping waves, and specular reflection on the for- 
ward face of breaking waves probably play an important role. 
It should be noted, however, that it is not entirely clear that 
non-Bragg processes can indeed always be neglected in the 
standard Bragg scattering regime, particularly near the transi- 
tion to the specular reflection region in which satellite SAR's 
(e.g., Seasat and the planned European satellite ERS 1) often 
operate. 

4. A rather complete theory can be developed for Bragg 
scattering using a two-scale approach. We have distinguished 
between two types of two-scale models, depending on the 
choice of the scale separation wave number. In the 
electromagnetic-hydrodynamic two-scale model the separa- 
tion wave number kem h is determined within relatively narrow 
bounds by the expansion requirements of electromagnetic 
scattering hydrodynamic interaction theory. It must be chosen 
approximately an order of magnitude smaller than the Bragg 
wave number kb. In the SAR two-scale model the scale separa- 
tion wave number ksa r is given by the inverse of the SAR 
(spatial or temporal) resolution scale. Typically, ksa r is an 
order of magnitude smaller than kem h. In both models the 
wave field is treated deterministically for wave numbers 
smaller than the scale separation wave number and statis- 
tically for higher wave numbers. The SAR two-scale model is 
the appropriate model for discussing SAR imaging but can be 
developed theoretically only by referring to the physically 
more fundamental EMH two-scale model. 

The mean image impulse response function may be 
characterized in both types of two-scale models by a mean 
azimuthal offset induced by the range component of the local 
long-wave orbital velocity and a smearing of the distribution 
due to the range component of the long-wave orbital acceler- 
ation and the intrinsic time variability (multiplicative noise 
contribution) of the small-scale scattering elements. 

5. Part of the past controversy over SAR ocean-wave- 
imaging mechanisms may be attributed to misunderstandings 
regarding the type of two-scale model being considered. In the 
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EMH two-scale model the multiplicative noise smearing is 
due solely to the internal dynamics of the Bragg scattering 
ripples and is generally negligible in comparison with the 
long-wave acceleration terms. In the SAR two-scale model, on 
the other hand, the principal multiplicative noise contribution 
arises from the variable orbital velocities of waves of inter- 

mediate scale whose wave numbers k lie in the range ksar < 
k < kcm h. This is generally larger than the acceleration smear- 
ing due to the waves in the residual long-wave region k < ksar. 
Thus the relative significance of the multiplicative noise and 
acceleration-smearing contributions is reversed for the EMH 
and the SAR two-scale models. 

6. The smearing of the mean image impulse response func- 
tion for the SAR two-scale model affects only relatively short 
waves of wavelength less than about 100 m. Frequently, the 
imaging of waves in this part of the spectrum is already com- 
promised by the decrease of the signal-to-clutter ratio for high 
wave numbers. 

7. The more important characteristic of the mean image 
impulse response function is the mean azimuthal offset. This 
contributes to wave imaging through the modulation of the 
density of backscattering elements in the image plane pro- 
duced by spatial variations in the orbital velocity field (veloci- 
ty bunching). However, for azimuthal displacements which are 
comparable with or larger than the wavelength of the waves 
being imaged, the velocity-bunching mechanism becomes non- 
linear, and the imaging is degraded rather than enhanced by 
this mechanism (see point 9). 

8. In addition to the velocity-bunching mechanism, long 
waves can be imaged by a SAR through the modulation of the 
local backscattering cross section, independent of the motion 
effects. Cross-section modulations arise through the hy- 
drodynamic interaction of the short Bragg scattering ripples 
with the long waves and through the change in the local angle 
of incidence associated with the changing tilt of the long 
waves. Generally, the velocity-bunching modulation transfer 
function dominates over the hydrodynamic and tilt MTF's for 
waves not traveling purely in the range direction. This is fortu- 
nate in the sense that the velocity-bunching MTF depends 
only on the known kinematics of the long waves. The tilt 
MFT depends also on the shape of the short-wave spectrum 
near the Bragg wave number (although this is fairly well 
known empirically), while the hydrodynamic MTF is deter- 
mined by the energy balance of the short-wave spectrum, 
which is only partially understood. 

9. The main difficulty of SAR ocean wave imaging in the 
Bragg regime is the nonlinearity of the velocity-bunching 
mechanism for wind seas propagating in the azimuth or near- 
azimuth directions. Nonlinearities first begin to take effect for 
wind speeds below about 16 m/s, become severe for wind 
speeds below about 12 m/s and probably make it impossible 
to recover useful information on wind seas propagating in 
near-azimuthal directions for wind speeds less than about 8 
m/s. However, for wind speeds below 8 m/s the wind sea 
wavelengths are less than 60 m and thus fall in the spectral 
range which already cannot be imaged because of smearing 
and the limited signal-to-clutter ratio. 

10. Of the non-Bragg scattering processes, a reasonably 
complete theory based on known backscattering conditions 
and available statistics for the realization of these conditions 

can be developed only for specular reflection. In the case of 
wave breaking, wave cusping, spray, etc., too little is known 
about the details of the backscattering process or, equally im- 
portant, the probability of occurrence of a particular back- 
scattering configuration to carry through a quantitative statis- 

tical analysis. However, it may be expected that the basic 
characteristics of the reflectivity variance spectrum for a 
specular reflection apply also for other non-Bragg scattering 
processes. The effective propagation velocities of the local 
backscattering surface elements are generally determined by 
the phase velocities of the long- or intermediate-scale waves, 
rather than by the orbital velocities of these waves. Thus the 
mean frequencies and bandwidths of the reflectivity variance 
spectra are generally an order of magnitude higher than the 
corresponding values for the Bragg two-scale model. The 
imaging should accordingly be an order of magnitude more 
nonlinear and smeared than in the Bragg case. The fact that 
such marked effects are not widely observed in SAR images 
for incidence angles between 20 ø and 70 ø tends to uphold the 
current view that Bragg scattering is the dominant process in 
this range. However, pronounced "streaking" consistent with 
the stronger motion effects of discrete non-Bragg scattering 
events have been found in MARSEN SAR images and other 
SAR data at higher incidence angles. We note again that the 
high velocities of these scattering elements implies that their 
Doppler frequencies may exceed the SAR processor band- 
width except when the velocities are nearly azimuthal. 

11. The discrimination of the various mechanisms con- 

tributing to SAR ocean wave imaging requires detailed com- 
parisons of a large set of SAR image spectra with sea truth 
data obtained under different environmental and SAR oper- 
ating conditions. Fortunately, the dependencies of the different 
imaging mechanisms on wave frequency, look direction, SAR 
incidence angle, integration time, etc., are generally sufficiently 
distinct to make such an exercise appear meaningful. 

12. In addition to the mean image properties, speckle sta- 
tistics can also give valuable information on the type of scat- 
tering mechanism, particularly for distinguishing between con- 
tinuous Bragg and strongly intermittent non-Bragg processes. 

13. An effective test of many of the concepts summarized 
in this paper can be made with the MARSEN SAR data and 
with similar data collected in earlier and planned future exper- 
iments. A verification of the basic premises of the general SAR 
two-scale Bragg scattering model for incidence angles between 
20 ø and 70 ø with these data would provide a rather complex, 
generally nonlinear but nevertheless theoretically and numeri- 
cally tractable model for the quantitative interpretation of 
SAR ocean wave images. 
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