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Investigation of processes governing the large-scale 
variability of the atmosphere using low-order barotropic 

spectral models as a statistical tool 

By HARALD A. KRUSE a n d  K. HASSELMANN, Max-Planck-Znstitut fur Meteorologie, 
Bundestrasse 55,2000-Hamburg 13, F.R. Germany 

(Manuscript received January 10; in final form May 13, 1985) 

ABSTRACT 

Idealized low-order spectral models based on quasi-geostrophy have been proposed by Charney. 
Egger, and others for a qualitative explanation of quasi-stationary flow patterns in the 
troposphere, such as  blocking highs. To test these concepts, we consider spectral, quasi- 
geostrophic, barotropic models of a slightly higher, but still relatively low resolution (28 and 68 
degrees of freedom). The models are treated as regression models, the predictors being the 
individual components of the prognostic vorticity equation, namely the beta, advection, 
orography, friction and forcing terms. A 10-year record of observed north-hemispheric 
geopotential data is used as data basis for the statistical regression analysis. The regression 
model may be interpreted as  a truncated model in which the individual terms have been modified 
by (a) projecting the truncation and other systematic model errors onto the terms retained in the 
simplified system, and (b) keeping in the retained terms only the contributions which are 
correlated with the observed change in the atmospheric state. The model is applied in the inverse 
mode as  a diagnostic tool to determine which processes are most important for the evolution of 
the system, and how much of the observed large-scale variance of the atmosphere can be 
explained by such a low-order system. Despite the strong spectral truncation, the model is found 
to explain a reasonable percentage of the observed variance (of the order of 30'%1. or 0.55 corre- 
lation, for 68 components). However, it was not possible to explain a significant fraction of the 
variance by still more strongly truncated models of the idealized form proposed by Charney and 
Egger. Our analysis indicates that all degrees of freedom of the truncated system (28 or 68) 
contribute significantly to the dynamics of the large-scale components. The most important 
processes are the wavelmean-flow interaction and the beta effect, followed by the nonlinear 
interactions among waves and the annually varying thermal forcing. Interactions with orography 
and frictional effects are generally negligible. The residual variance not represented by the model 
cannot be parameterized in a simple manner in terms of the components of the truncated model 
itself and must be treated as external stochastic forcing. Thus for a realistic description of 
large-scale atmospheric variability, low-order spectral models must be augmented by a 
significant stochastic forcing component in addition to the internal interactions. 

1. Introduction 

A basic question in understanding the low 
frequency atmospheric variability o n  t ime scales of 
several d a y s  t o  a few months  is the  rBle played b y  
the  internal interactions between large-scale a tmos-  
pheric components, as compared with the external 
forcing exerted by other  slowly varying com- 
ponents of the  climate system, such  as the ocean. In 

the present paper, we t ry  t o  gain some insight into 
the nature  of internal large-scale atmospheric 
interactions. 

For the s tudy of  the dynamics o f  the  atmos-  
phere, complex general circulation models (GCMs) 
of  the  type applied in operational weather fore- 
casting a re  generally used. These models include 
realistic representations of  as m a n y  physical 
processes as possible, a r e  therefore expensive, and 
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permit only a limited number of experiments. The 
restrictions in the statistical data base of these 
experiments often make it difficult to determine 
whether all processes represented in the models are 
significantly correlated with the behaviour of the 
real atmosphere. 

On the other hand, many qualitative features of 
low-frequency global atmospheric variability ap- 
pear already in the solutions of strongly simplified 
versions of the general hydro-thermodynamic 
equations. Thus the frequency-wavenumber 
variance spectra of observed atmospheric 
anomalies agree fairly well with the dispersion 
relations of free waves computed for a system 
linearized about a realistic mean flow (Ahlquist, 
1982; Kasahara, 1980; Machenhauer, 1977). 
Simplified models for the linear and nonlinear 
response to orographic and thermal forcing pro- 
posed by Egger (1978), Charney and DeVore 
(1979), Charney and Strauss (1980), Charney et al. 
(1981) and others, or models of low-order non- 
linear vacillations by Lorenz (19601, Platzman 
(1962), and Baer (1970) also appear to qualita- 
tively reproduce the principal features of observed 
low-frequency vacillations. 

The purpose of this paper is to determine 
through a quantitative statistical comparison with 
observations the degree to which the low-fre- 
quency variability of the atmosphere can indeed be 
explained in terms of such relative elementary 
models. As model we shall use the equivalent- 
barotropic vorticity equation with orographic inter- 
actions and Newtonian forcing. It was a beta-plane 
version of this model, with very low spectral 
truncation, which was proposed by Egger to 
explain the development of blocking highs, and by 
Charney and collaborators to descrihe the alter- 
nating blocked and zonal flow states of the index 
cycle. We shall use models of slig,htly higher 
resolution containing 4 meridional wavenumbers 
and a (rhomboidal) truncation at zonal wave- 
number m = 3 or 8 (corresponding to 28 and 68 
degrees of freedom, respectively). 

The overall skill of the models is established in 
the usual manner by correlating the time series of 
the observed and predicted atmospheric states, or 
changes of atmospheric state, for different forecast 
times. To determine the relative contribution of 
different processes to the skill, the observed 
atmospheric change is also correlated with the 
individual model terms. The basic data set consists 
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of the 10-year twice-daily gridded data of analysed 
hemispheric 500 hPa geopotential height observa- 
tions (Section 2), which were kindly provided by 
the Deutscher Wetterdienst (German Weather 
Service) and transformed to a spherical surface 
harmonics (SSH) representation by the Institute of 
Meteorology at the University of Koln (Speth and 
Kirk, 1981). From this, we derived the “observed” 
stream function data by means of the quasi- 
geostrophic balance equation on the sphere. 

The truncated model (Section 3) is not used 
directly, but is regarded as a generalized statistical 
regression model in which the individual dynamical 
terms are treated as predictors and the (integrated) 
model tendency as the predictand. Thus the 
coefficients of the individual terms are adjusted to 
achieve an optimal prediction. In this manner, the 
truncation and other errors of the model are 
projected onto the terms retained in the truncated 
system, and the components of the nonresolved 
residual processes which are correlated with the 
resolved processes are included implicitly in the 
model (Section 4). It should be pointed out that the 
method emphasizes the ability of the model to 
predict changes of the atmospheric state, and is 
therefore not appropriate for a discussion of the 
force balances characterizing very low frequency or 
stationary atmospheric waves. 

A similar but simplified statistical analysis, using 
a linear rather than a full nonlinear model, has 
recently been carried out by Roads and Barnett 
(1984) for the same data set. The present approach 
has been extended by Bruns (1985) to a baroclinic 
model. Bruns uses a slightly different dynamical 
description in terms of the atmospheric anomaly 
fields rather than the complete atmospheric state. 
He also applies an alternative statistical analysis 
method in the frequency rather than the time 
domain, which permits a discussion of the zero- 
frequency stationary wave components. 

In Section 5 ,  we compare the overall skill of our 
model with the two extreme cases of a simple 
persistence model and a high resolution GCM. The 
contributions of the individual processes, and the 
effects of truncation, are discussed in Section 6 .  
The results are summarized in Section 7. 

2. Data base 

Our basic data consists of northern hemispheric 
analyses of the geopotential height $ provided by 
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the German Weather Service (Deutscher Wetter- 
dienst), Offenbach. The field $ is given on a 
rectangular grid (381 x 381 km2 at 60°N) on a 
stereographic plane at 60”N (with the centre of 
projection at the South Pole), covering the area 
north of about 10 . .. 12.5ON. The data are 
recorded for 6 pressure levels 850, 700, 500, 300, 
200, 1 0 0  hPa, but for our purposes we have used 
only the 500 hPa data. The analyses are pro- 
vided twice daily at 00.00 and 12.00 GMT, and 
cover the 10-year period 1967-1976, correspond- 
ing to a time series of length 2 x 365 x 10 = 7,300 
for each grid point. 

For estimates of statistical significance, we 
assume that the number of independent samples is 
approximately 600. This is based on a con- 
servative estimate of 6 days for the autocorrelation 
time of the spherical harmonic expansion coeffi- 
cients (for most components, the autocorrelation 
time scale is considerably smaller). All statistical 
significance evaluations given in the following refer 
to 95 % confidence levels. 

The grid point data were converted to (complex) 
spectral coefficients fl by least square fitting the 
spherical surface harmonic (SSH) expansion 

15 15 

((A O,p, t )  = C C Re[#;(p, t )  .eid1.fl(O) 
m=O n = m  

to the finite set of grid points. The series was limited 
to meridionally symmetric modes (n - m = even) 
and truncated triangularly at the total wavenum- 
ber n = 15, yielding a set of (n + 1). (n + 2)/2 = 
136 real coefficients (Speth and Kirk, 1981). 

The geopotential data were slightly modified in 
order to satisfy the boundary condition a$/& = 0 
at the equator. The longitude dependence in the 
tropical regions was also smoothed by requiring 

x $(A, cp=  12S0N).dA = const. (2.2) 

This was found to be necessary in order to reduce 
the noise in the lowest order stream function (rigid 
body rotation) component y: derived from the 
geopotential height data. (The association of the 
noise in yy with the extrapolation to the equator 
was pointed out by W. Metz and D. Schilling, 
personal communication.) The time series of the 

geopotential SSH coefficients and the recombined 
height field charts in the data covered region were 
not visibly influenced by this smoothing procedure. 

The geopotential height was converted to the 
“observed” stream function y by the linear balance 
equation for the sphere, 

(2.3) div (fagrad y) = V 2  $, 

which relates the non-divergent geostrophic wind to 
the geopotential field $. The solution for y, which is 
antisymmetric with respect to the equator, was 
obtained by expanding eq. (2.3) in spherical surface 
harmonics (cf. Eliasen and Machenhauer, 1969). 

The orographic data required for the model were 
based on a set of global terrain height (and sea 
depth) on a l o  x l o  grid provided by the Geo- 
physical Fluid Dynamics Laboratory, NOAA 
(Smith et al., 1965). After averaging over 5O 
longitude x 2.5O latitude areas and setting sea 
depths equal to zero, the expansion in SSHs was 
performed with the same truncation as for the $ 
and ydata. 

3. The dynamical model 

The dynamical model is based on the familiar 
quasi-geostrophic vorticity equation for the stream 
function y, formulated in pressure and spherical 
coordinates, 

a aw 
- v2 y =  ~ ( y ,  v2 +n + f,- 
at aP 

(3.1) 

together with the heat balance equation, which 
relates the pressure velocity w to the stream 
function y, 

a a  
w = - ’ U [. (v, y )  + - at - ap y - Q] . (3.2) 

Here Q is a heating function and u represents the 
static stability. The Coriolis parameterfis regarded 
as variable in the vorticity advection term in eq. 
(3.1), but is kept fixed at a constant mid-latitude 
valuef, in the remaining terms of the equations. 

From a scale analysis viewpoint, the model (3.1), 
(3.2) is strictly consistent only in the p-plane, for 
flow scales small compared with planetary dimen- 
sions (cf. Pedlosky, 1979, and Kruse, 1983). We 
nevertheless follow the standard practice of apply- 
ing the model also to planetary scales, since it 
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represents the simplest energetically consistent 
model and a fully scale-consistent nonlinear model 
would require a considerably more cumbersome 
analysis, for example in terms of Hoiigh functions 
(cf. Kasahara, 1976). The model has been widely 
used as the basis for formulating simple hypo- 
theses of the type we wish to test. 

For the upper boundary, we assume a freely 
moving, impermeable pressure surface p 2 ,  

O ( P 2 )  = 0. (3.3) 

At the lower boundary, taken at a constant 
pressure surface pI,  the pressure velocity is deter- 
mined by the time derivative of the surface 
pressure, Ekman pumping, thermal forcing and 
orographic interactions. In the linear approxi- 
mation, the boundary condition takes the form 

a 
O(PJ = Pfo - (v - PE f o  v 2  (v + PE P V V 2  rp [ .  at 

(3.4) 
J atp=p1 

The thermal forcing function rp represents the total 
heat released into the atmosphere below the lower 
model boundary p = p I  and consists of a super- 
position of the sensible heat flux from the earth and 
sea surface to the boundary layer and the diabatic 
heating within the boundary layer. The horizontal 
inhomogeneity of the density distribution within the 
boundary layer induced by thermal expansion 
modifies the divergence of the Ekman transport and 
thus the Ekman suction term (cf. Egger, 1978; 
Charney and De Vore, 1979). For our purposes, it 
is sufficient to note that thermal heating represents 
an external forcing function, independent of (v. 

To derive the barotropic, spectral form of the 
model, the vertical and horizontal structure of the 
stream function ly is expanded in a set of 
orthonormal modes, 

v(A,  0, P ,  t )  = 1 1 V%t) .  F ‘ ( p ) .  Y,(A, 0) (3.5) 

Here the functions Ya denote the antisymmetric 
spherical surface harmonics (SSH) and the func- 
tions F’ an orthonormal set of vertical structure 
functions, which we need not specify further. We 
assume here only that the first “barotropic” mode 
(i = 1) is approximately constant with height. 

Substitution of the expansion (3.5) into (3.1)- 
(3.4) and projection onto the first vertical mode 
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(vi = (v, and the truncated set of wavenumbers 
y = (m,,, n,) then yields the truncated spectral model 

Ij/, = B,  + A :  + A,” + 0, + E,  + F; + Fi  + N ,  

(3.6) 
with source terms as follows: 
B ,  = linear p-term = L, (v,, where 

i2 am,, 

VV 

L , = - ,  

v, = n,(n, + 11, 

= 2n/(l day). 

(Inclusion of the divergence terms in the barotropic 
mode yields a modified operator L> = L y e  
vy/(vy + A*), where A2 is the Lamb parameter. 
However, we shall retain first the simpler expression 
L, and consider the Lamb parameter corrections 
later in the context of the regression analysis.) 
A :  = nonlinear wave/mean-flow interaction term 

A ;  = nonlinear wave-wave interaction term = 

The interaction coefficients occurring in A ;  and 
A :  are given by 

= Za.p J,p, Y,. yp, with m,andlor m p =  0. 

Zap J a g y  V ,  v /p  with m, and mB # 0. 

with t a g y  = Jjsphere  J (  Ya, Yp) Y,d(cos @dA, where a 
is the radius of the earth, J denotes the Jacobian 
and Y ,  a (normalized) SSH function. 
O,, = orography interaction term = 1, H,,  v,, 

where 

and hp denotes the SSH expansion coeffiecient of 
h/RT .g-’ = orography/scale height. 
E,  = Ekman friction term = K, (v, (K, real, 

constant). 
py = mean heat flux term = ( fO/pI)pEpVrpPy = 

const. 
F: =seasonal modulation of heat flux term = 

F; cos wot + F ;  sin mot, F; = const, FS.= 
const, wo = 2n/l year. 

The symbols L, J ,  H, K denote constants 
involving the Rossby speed, nonlinear interaction 
coefficients, orography, and the friction coefficient, 
respectively. They depend on the wavenumbers a, 
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/3, y and are theoretically prescribed. The residual 
term N ,  denotes the nonlinear truncation error and 
consists of quadratic products involving terms with 
vertical wavenumbers greater than unity or hori- 
zontal wavenumbers beyond the truncation limits. 
Truncation errors arise also in the boundary 
conditions, horizontally through the orography 
term, and vertically by neglecting the baroclinic 
modes in the forcing terms of the lower boundary 
condition. 

We choose a rhomboidal truncation, appropri- 
ate for our emphasis on mid-latitudes, n, - m, < K ,  
my < M ,  with K = 7 (corresponding to four odd 
modes n - m = I, 3, 5 and 7) and M = 3 or 8, 
resulting in a total of f(K + 1)(2M + 1) = 28 or 68 
degrees of freedom, respectively. 

For the following, we write eq. (3.6) in the 
abbreviated form 

(3.7) 

where the SSH wavenumber index y has been 
dropped throughout, w is understood as the vector 
of all SSH components of the barotropic mode, 
and the sum over q represents the sum over the 8 
terms of eqn (3.6). 

Since we shall be interested in the change of 
states over a time period of r = 1 . . . I0 days, we 
shall consider also the integrated form of (3.7), 
which we write formally as 

1 

(3.8) 

4. Statistical-dynamical model 

The objective of our analysis is to test how well a 
model of the type (3.8) is able to describe the 
observed behaviour of plantetary-scale flow fields, 
and to determine the relative contributions of the 
different processes to the evolution of the real 
atmosphere. 

For this purpose, we extend our model equa- 
tions (3.8) to the more generat linear form 

y ( t )  = y(t + r )  - w(t)  = 1 c q . x 4  + n(t) .  (4.1) 
a 

The constant coefficients cq are regarded here as 
free regression coefficients which we determine 
from the data by minimizing the residual noise n. 
For a perfect model, all regression coefficients cq 

would be unity, the total correlation of the set of 
predictors xq with the predictand y(l) would also be 
unity, and the residual noise n would vanish. In 
practice, we will find cq # 1 (generally < 1) and the 
total correlation is less than unity, because the 
model contains various sources of errors resulting 
in a finite noise n. The principal errors arise from 
the truncation, the quasi-geostrophic approxima- 
tion, the approximations at the upper and lower 
boundaries and the parameterizations of the effects 
of friction and heating. 

To the extent that they are correlated with the 
source terms x q  of the truncated system, the errors 
can be automatically compensated for by adjust- 
ing the regression coefficients c? to minimize n. For 
this reason, the regression coefficients may in 
principal become greater than unity. However, in 
most cases the coefficients are found to be smaller 
than the theoretical value of unity. This could be 
due to the fact that the errors are negatively 
correlated with the source terms, but is more 
probably due to unavoidable errors in computing 
the source terms x1 from the data. 

For the regression analysis, the predictors 
xg(t, r )  are determined by integrating the empirical 
source functions Xq as computed from the ob- 
served data over the interval r in accordance with 
eq. (3.8). The model is used in this mode purely as 
a dynamical diagnostic tool, not for prediction. The 
skill achieved by the model in the diagnostic mode 
will generally be considered larger than the skill of 
the same model used in the forecast mode, where 
the source functions are evaluated from the 
predicted atmospheric state computed by the model 
from the given initial state. Most of the results 
discussed in the following apply to diagnostic mode 
integrations. 

With the exception of the thermal forcing term, 
the model is regarded as time independent (i.e. 
constant regression coefficients) and the data as 
statistically stationary. In view of the expected 
strong seasonality of the thermal forcing, however, 
this term is represented in terms of three regression 
coefficients as the sum F;. = FY, + F$ of a constant 
term F and an annual modulation Fy” represented 
by its two lowest harmonic components (cf. eq. 
(3.6)). 

Tellus 38A (1986), 1 



LARGE-SCALE VARIABILITY OF THE ATMOSPHERE 17 

0-- 
0 2 6 8 10 

T. [DAYS] 

0.6 

0. L 
I 

T, [DAYS] 

Fig. 1. Pattern correlation R for 5 0 0  hPa geopotential 
anomaly as function of forecast interval r for long waves 
m = 1, 2, 3 (panel a) and medium waves WI = 4 . . . 8 
(panel b). The curves OSI and PSI refer to integrations of 
the moderately truncated model (4 meridional com- 
ponents, 9 zonal components, including m =: 0) with the 
observed and predicted source functions, respectively. 
The prediction run was carried out with the regression 
model determined from an OSI run with r = 1 day. The 
ECMWF curves refer to forecasts with the operational 
T63 model. 

5. Model skill 

An indication of the skill attainable with a 
low-order spectral barotropic model is given by 
Fig. I ,  which shows the pattern correlation of the 
observed and model 500 hPa fields as a function of 
forecast time r for the long wave (m = I ,  2, 3) and 
medium wave (m = 4, . . . 8) components of the 
field. The results refer to the 68-component model 
and both filtered fields contain all four meridional 
wavenumber components. Model integrations were 
made both in the diagnostic mode (OSI =ob-  
served source function integrals) and forecast mode 
(PSI = predicted source function integrals). In the 
diagnostic mode, the regression coefficients were 
determined anew for each integration interval r. 
For the forecast integration, the regression coeffi- 
cients were determined from an OSI run with 5 = 1 
day. As expected, the correlation is higher for the 

m= 1,2,3 

R2 1.0 

0.8 

0.6 

0.L 

0.2 

n 

MEDIUM W A V E 4  n m =  4 ,  . . . a  

- 
1 3 5 7  1 3 :  

L 7 

MERlDlONAL MODE NO n-m 

0 MODEL ( o s i ,  rn S8 

0 PERSISTENCE 

Fig. 2. Squared correlation of observed and predicted 
state for r = 2 days for long and medium zonal waves, 
decomposed with respect to the four meridional com- 
ponents IZ - m = 1, 3, 5 and 7. Model results refer to 
diagnostic runs with the moderately truncated model 
(m < 8). 

diagnostic mode than the forecast mode, parti- 
cularly for large 7. 

Also shown for comparison are the correlations 
achieved with a simple persistence model, in which 
the initial state is assumed to remain unchanged, 
and with the operational high resolution global 
GCM of the European Centre for Medium Range 
Weather Forecasts, in the forecast mode 
(ECMWF Forecast Reports, 1980). 

The model skill (fraction of variance computed 
by the model) is given by the correlation squared. 
Fig. 2 shows the corresponding variance for the 
low-order dynamic model and persistence model, 
decomposed into the 4 meridional wavenumbers, at 
r = 2 days. Of interest is the increase in variance 
explained by the model beyond the persistence 
level. (It can be inferred from Fig. 1 and is shown 
explicitly in Fig. 3 below that this is approximately 
independent of r for the diagnostic mode.) 

For the long waves, most of the forecast skill of 
the low-order model derives simply from per- 
sistence. The additional variance attributable to the 
low order spectral dynamics is of the order of only 
10% for the diagnostic mode. The high resolution 
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R 1.0- 

0.8-- 

0.6-- 

0.6.- 

0.2.- 

, , , , , , , , , 
LONG WAVES m=1,2 ,3  

r M E R l O l O N A L  MODE No n - m  

3 

L - 1  - 5- - 1. __-.----------*__ _ _ _ _ _ _ _ _  _ _  ........................ .............................. -,.-..-,.-:,~ 

0 7 1  ; I I ' I ' I ' ~ 

0.8-- 

CONSTANT FORCING - - __ - _ _  - - - __ - ___  - ___ 
0 

0 2 L 6 8 10 

RIGID ROTATION MODE 
n = l , m = O  

t [ DAYS] 

Fig. 4. Change-of-state correlation R for the rigid 
rotation mode (m = 0, n = 1) for the moderately trun- 
cated model (m < 8) with and without annual cycle in 
external forcing term. 

ECMWF forecast model yields significantly higher 
values, for example, 23 % predicted dynamical 
variance above the 13 % persistence contribution 
for r = 6  days. The large contribution from 
persistence reflects simply the strength of the large 
scale quasi-stationary wave patterns. For the still 
more slowly varying zonal flow components 
(m = 0, not shown), the persistence contribution is 
still larger. 

For the medium waves, the additional variance 
computed from the low order dynamics is signi- 
ficantly larger, typically of order 20-30%, and 
exceeds the persistence contribution for r greater 
than 2 days. At t = 5  days, for example, the 
diagnostic model and the ECMWF forecast model 
both yield approximately 30 % explained variance 
(0.55 correlation), of which only 2 % is attributable 
to persistence. 

Since the models were tuned with respect to the 
predicted change of state of the atmosphere, rather 
than the state of the atmosphere itself, it is useful to 
express the overall model skill also in terms of the 

0. L h - - 4 ' L H O D E R A T E  TRUNCATION 
I r n S  E l  

0. L h - - 4 ' L H O D E R A T E  TRUNCATION 
I r n S  E l  

0.2 1 L S T R O N G  T R U N C A T I O N  
i n 7 2 3 1  

0 4  ' I 1  

0 2 L 6 a 
ZONAL WAVE No m 

R 0.6 

0.4 

Z O N A L  M E A N  
_ _ _ -  ~ L O N G  W A V E S  , :,:,,; 1 
. . . . . .  ' 4 E U I U M  W A V E S  m = 4 ,  

0 J !  I 
1 3 5 7  1 3 5 7  

MERlDlONAL WAVE No n-m 
Fig. 5. Change-of-state correlation for r = 6 days as a 
function of zonal and meridional wavenumbers. Panel (a) 
refers to the superposition of all 4 meridional wave- 
numbers, panels (b) and (c) to the separate superposition 
patterns for medium-, long-wave and zonal mean 
components. Both moderately and strongly truncated 
models are shown. 

computed change. In this case, of course, the 
persistence model yields zero skill. 

Fig. 3 shows the change-of-state pattern corre- 
lations as a function of r for the superposition of 
the three longest zonal waves (m = 1, 2, 3), 
separated into the four meridional constituents 
(n - m = 1, 3, 5 ,  7). The model was integrated in 
the diagnostic mode (as in all cases discussed in the 
following) and was truncated at m = 8. The weak r 
dependence evident in Fig. 3 is found also for the 
medium zonal components (m = 4 - 8) and the 
zonal flow components m = 0. An exception is the 
lowest, rigid body rotation mode m =0, n = 1 
which shows a marked increase of R with r arising 
from the annual cycle forcing term, cf. eq. (3.6), 
(Fig. 4). 

Fig. 5 shows an alternative representation of the 
correlation between the computed and observed 
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Fig. 6 .  Ratio I = R 2  (moderate truncation)/R2 (strong 
truncation) of change-of-state variance predicted by 
moderately and strongly truncated models for long zonal 
waves and zonal mean flow, decomposed into meri- 
dional modes. 

change of state as a function of zonal and 
meridional wavenumber for r = 6  days. The 
medium waves are again seen to have the highest 
correlation. The correlation levels of order 0.5 for 
the moderate truncation model (m $c 8) imply 
computed dynamic variance contributions of the 
order of 25 %, which are consistent with the results 
shown in Figs. 1 and 2. Also shown are the 
correlation values achieved with the more strongly 
truncated model (m < 3). The ratios Z = R2(m <8)/ 
R2(m < 3) of the explained variance achieved with 
the moderately and strongly truncated spectral 
model are shown in Fig. 6 for the long waves and 
zonal mean flow (medium waves are not resolved in 
the strongly truncated model). The increase in Z is 
due primarily to the improved representation of the 
non-linear wave-wave interaction term and in- 
creases, as to be expected, with the meridional 
mode number. The truncation effect is surprisingly 
small for the first meridional mode. 

6. Contributions of individual processes 

We now consider the relative contributions of the 
different processes of eq. (3.6) to the change- 
of-state correlation R ,  or skill R 2 .  The skill is 
preferable to the correlation in the present context, 
since we may consider then the additive con- 
tributions to the variance from different processes. 
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However, since the processes are not statistically 
independent, we must distinguish between the 
variance contributed by a single process without 
inclusion of other processes (individual corre- 
lation), and the incremental variance contributed 
through the introduction of a process after the 
remaining processes have already been represented 
in the model (partial correlation). The discussion in 
the following is based on a hierarchy of models in 
which the processes are introduced sequentially, 
and we consider then the (partial) variance contri- 
bution of each additional process in the hierarchy. 
We choose the sequence corresponding to the 
ordering of terms given in eq. (3.6), anticipating 
that this will correspond also to the relative 
importance of the processes. However, it must be 
kept in mind that the successive variance contri- 
butions of the individual processes will generally be 
smaller than the individual variance contributions 
because of the correlation of the newly added 
processes with processes already introduced pre- 
viously. This applies particularly to the quasi-linear 
term A ,  describing the interaction with the zonal 
mean flow, which is generally strongly correlated 
with the /?-term B (cf. also Bruns, 1985). 

The variance contributions of the different 
processes for the moderate truncation model m < 8 
are summarized in Fig. 7 for different meridional 
and zonal wavenumbers for an integration time 
r = 6 days. Approximately the same variance 
contributions are found for all r in the range 
r =  2 - 10 days, in accordance with the weak 
r-dependence of the total variance shown in Fig. 3. 

For the medium waves (zonal wavenumbers 
m = 4 - 8) the full model explains about 30% of 
the variance for the 2nd and 3rd meridional mode, 
and about 15% for the 1st and 4th modes. The 
explained variance is fairly evenly partitioned 
among the p-effect, the interaction with the zonal 
mean flow, and the wave-wave interaction term. 
The thermal and orographic forcing and the linear 
feedback (Eckman friction) are relatively insigni- 
ficant. 

For the long waves (m = 1 - 3) more than 60% 
of the explained variance can again be attributed to 
the /?-effect, the mean flow advection and wave- 
wave interactions. The rest is due mainly to the 
thermal forcing, while the orographic and fric- 
tional term are again very small. 

The zonal mean flow ( m = 0 )  shows charac- 
teristics similar to the long waves, except that the 
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Fig. 7. Fraction of explained variance for a hierarchy of models constructed by sequentially introducing the seven 
source terms listed in eq. (3.6). The results refer to the moderately truncated model (rn < 8) for an integration time 
r = 6 days. 

@-term and the wave-mean flow interactions are 
missing in this case. 

The regression coefficients generally fall off with 
increasing 5. Fig. 8 shows as example the decrease 
of the P-term coefficient cB for different meridional 
wavenumbers for the case of the strongly trun- 
cated model (rn < 3). The decrease in the coeffi- 
cients essentially balances the increase in the ratio 
of the variance of the integrated source function to 
the variance of the change of state. For large r, the 
integrated source function variance grows linearly 
in r, in accordance with a random walk process, 
while the change of state variance becomes 
constant. The resultant explained variance remains 
at approximately the same level (Fig. 3). 

We note that 8' does not begin with the 
theoretical value of unity near r --t 0. Since the 
linear p-term contains no truncation error or 
parameterization approximation, we attribute this 

0 2 L 6 0 10 

T [DAYS] 

Fig. 8. Dependence of the regression coefficient cB for 
the @term on integration time r for the strongly truncated 
model (m < 3). Vertical bars indicate variations between 
different zonal wavenumbers for a given meridional 
wavenumber. 

to the errors caused by the quasi-geostrophic 
approximation for large scale planetary flows, 
which slow down the effective phase velocities of 
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Fig. 9. Net heat flux north of 12.5ON. Left-hand side: inferred from model regression analysis: right-hand side: 
observations, from Schutz and Gates (1971, 1972). 
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the planetary scale components (cf. Machenhauer, 
1977; Ahlquist, 1982). The values of cB shown in 
Fig. 8 are consistent with the orders of magnitude 
of the Lamb parameter A* normally introduced to 
describe this effect. (To relate cB to the Lamb 
parameter we note that cB represents the ratio of 
the Rossby speed with and without the Lamb 
parameter correction, respectively, cf. Section 3.) 

If the remaining regression coefficients are 
normalized by cB to remove this common correc- 
tion factor, the coefficients for the wave-mean flow 
and wave-wave interaction are found to be close to 
unity, as expected, and show no significant depend- 
ence on 5. However, the normalized orographic 
forcing coefficients co/P are typically only of order 
0.1, suggesting that the theoretical barotropic 
orographic forcing is largely masked, possibly by 
baroclinic components. The regression coefficients 
for the weak linear (Ekman or other) forcing terms 
are also found to be strongly scattered, often 
changing sign, and are not statistically significant 
for most modes. The lack of significant linear 
forcing is consistent with the finding of Egger and 
Schilling (1983) that the synoptic scale inter- 
actions, which appear as external forcing terms in 
low order spectral models, are not linearly corre- 
lated with the larger scale components and can be 
regarded as statistically independent stochastic (red 
noise) forcing terms. 

These qualitative features are largely insentitive 
to the truncation of the model, which affects only 
the magnitude of the total explained variance (cf. 
Fig. 6) rather than the relative importance of the 
different processes. 

The only significant boundary forcing found 
was the term F,(t) = (f,/p,) pE pu,rp,. It is of some 
interest to test whether the inferred heat input rp is 
consistent with standard concepts on the dis- 
tribution of atmospheric heating. Fig. 9 shows the 
distribution q(A, 0) computed from the model for 
the four seasons, with a suitably chosen factor pE pw 
(a simple boundary layer calculation indicates that 
the factor is consistent with usual estimates of the 
Ekman friction and thermal diffusion coefficients in 
the boundary layer, cf. Kruse, 1983). Also shown 
are some computations of the total heat flux for 
January and July from observations by Schutz and 
Gates (1971, 1972). The inferred heating dis- 
tribution is not inconsistent with observations, the 
model reproducing in particular the pronounced 
warming over the oceans during the winter season. 

7. Conclusions 

From our diagnostic analysis of the processes 
governing the dynamics of barotropic large scale 
planetary flow, we conclude that: 
(1) Hypotheses suggesting that barotropic plane- 

tary scale motions can be treated qualitatively 
as a separate dynamical system, whose vacilla- 
tions can be largely explained by the inter- 
actions within the system itself, are not borne 
out by the observations. The percentage vari- 
ance of the change of state of the planetary 
scale motions which can be explained by the 
interactions within the system itself is rela- 
tively low for the lowest order model and 
increases continuously as the truncation limit is 
increased. The variance explained by the model 
is typically of the order of 15% for the most 
strongly truncated 28 component model (4 
meridional, 4 zonal wavenumbers, including 
m = 0) and 30% for the 68 component model 
(4 meridional, 9 zonal wavenumbers), while the 
corresponding value for the high resolution 
ECMWF model (T63, 4096 components) is 
estimated to lie in the range 70-90% (exact 
numbers are not available for the application of 
the ECMWF operational model in the diag- 
nostic rather than the predictive mode). The 
explained variance remains relatively constant 
in the forecast range 5 = 2 - 10 days. This is a 
characteristic of diagnostic as opposed to 
predictive models. The analysis of Bruns 
(1985) indicates that essentially the same 
conclusions hold for an extended low-order 
model including baroclinic modes. 

(2) A better simulation of the change of state is 
generally achieved with low-order spectral 
models for the medium scale components 
(meridional wavenumbers 3, 5, zonal wave- 
numbers 4-8) than for the longest waves. 

(3) Thermal forcing was found to be the only 
significant (deterministic) forcing. The seasonal 
and geographical distributions inferred for this 
term are reasonably consistent with the stan- 
dard picture of atmospheric heating. Inter- 
actions with orography and frictional damping 
were found to be negligible. 

(4) The fact that no statistically significant linear 
feedback terms were found implies in parti- 
cular that the truncated nonlinear interactions 
cannot be parameterized in terms of a 
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(diagonal) linear operator, for example in the 
form of an effective viscosity or diffusion 
process. This supports similar findings by 
Egger and Schilling (1983). 

( 5 )  The three processes representing the internal 
dynamics which were resolved explicitly in the 
low-order vorticity balance-the ,&term, ad- 
vection by the zonally average flow and 
wave-wave interactions-were generally of 
comparable order. 

(6) The relative significance of the different terms 
of the model discussed in (3), (4) and (5) refers 
to the contributions of the terms to the change 
of state of the atmosphere, not to the rBle of the 
terms in the balance of forces characterizing 
the stationary wave components. (Interactions 
with orography, for example, are known to be 
important for the stationary components, al- 
though they were found to be negligible in our 
analysis.) The study of very low frequency 
variability requires a somewhat different 
approach in which the emphasis is placed on 
the force balance rather than the imbalance 
considered here (cf. Bruns, 1985) and the rBle 
of slowly varying boundary conditions (SST, 
snow and ice cover) is explicitly taken into 
account. 

(7) The projection of truncation and other model 
errors onto the terms included explicitly in the 
model through the generalized regression 
analysis did not significantly alter the model 
coefficients. This suggests that the terms not 
resolved explicitly in the model should be 
represented as statistically independent 
stochastic forcing terms, as also proposed by 
Egger and Schilling (1983). 

In summary, the most appropriate low-order 
dynamical description of the barotropic planetary 
scale motions is that of an internally coupled 
system driven by a superposition of a seasonally 
dependent external heating and stochastic forcing. 
For the moderately truncated model (rnG8) and 
integration times r in the range 2-10 days, the 
stochastic forcing contributes about twice as much 
to the variance of the change of state of the 
atmosphere as the deterministic internal and exter- 
nal forcing. This ratio increases to 5 :1 for the 
strongly truncated model (rn < 3). We conclude 
that although low-order spectral models of the 
atmosphere are clearly useful tools for studying 
basic interaction processes, they can provide 
realistic descriptions of true atmospheric vari- 
ability only if augmented by significant external 
stochastic forcing terms. 
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