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The WAM Model—A Third Generation Ocean Wave Prediction Model
THE WAMDI GROUP*
(Manuscript received 16 October 1987, in final form 18 April 1988)

ABSTRACT

A third generation wave model is presented that integrates the basic transport equation describing the evolution
of a two-dimensional ocean wave spectrum without additional ad hoc assumptions regarding the spectral shape.
The three source functions describing the wind input, nonlinear transfer, and white-capping dissipation are
prescribed explicitly. An additional bottom dissipation source function and refraction terms are included in the
finite-depth version of the model. The model was calibrated against fetch-limited wave growth data. Only two
tuning parameters are introduced in the white-capping dissipation source function. The model runs on a spherical
latitude-longitude grid for an arbitrary region of the ocean. Hindcast results are shown for six North Atlantic-
North Sea storms, three Gulf of Mexico hurricanes, and a global run for the SEASAT period. The agreement

with measurements is encouraging.

1. Introduction

Since the pioneering paper of Gelci et al. (1957),
numerical wave prediction models have been formu-
lated in terms of the basic transport equation for the
two-dimensional wave spectrum. The general structure
of the source function of the (deep water) transport
equation, consisting of a superposition of the energy
input by the wind, S;,, normally represented as the
sum of a Phillips (1957) and Miles (1957) term, the
nonlinear transfer S,; due to resonant wave-wave in-
teractions, and the dissipation S, due to white capping
and turbulence, has also been known for more than
25 years (Hasselmann 1960). Nevertheless, none of
the wave models developed since this time have actually
computed the wave spectrum from first principles alone
from the spectral transport equation. Some form of
additional ad hoc assumptions have always been in-
troduced to force the spectrum to comply with some
preconceived notions of wave development that could
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not be readily expressed by (and in some cases were
not consistent with) the source function used in the
transport equation (cf. SWAMP Group 1985).

First generation wave models developed in the 1960s
and early 1970s avoided the problem of explicitly
modeling the complete energy balance. In particular,
the details of how the spectrum attained its equilibrium
form were not specified. In these models, it was as-
sumed that the wave components suddenly stopped
growing when they reached a universal saturation level
(Phillips 1958). The saturation spectrum, represented
by Phillips’ one-dimensional /> frequency spectrum
and an empirical equilibrium directional distribution,
was prescribed. Thus, for growing windseas, the prog-
nostic region of the modeled spectrum was, in effect,
limited to wave components in the neighborhood of
the spectral peak.

It is generally recognized today that a universal high-
frequency equilibrium spectrum of the form originally
proposed by Phillips does not exist. The high-frequency
region of the spectrum depends not only on the white
capping process, but also on the local wind input and
on the low-frequency regions of the spectrum to which
it is coupled via the nonlinear transfer. It has now also
become clear that first generation wave models exhibit
basic quantitative shortcomings: they overestimated the
wind input and underestimated the strength of the
nonlinear transfer by almost an order of magnitude.

In the 1970s, extensive wave growth experiments
(Mitsuyasu 1968, 1969; Hasselmann et al. 1973) and
direct measurements of the wind input to the waves
(Snyder et al. 1981; Hasselmann et al. 1986) funda-
mentally changed the view of the spectral energy bal-
ance on which the first generation models had been
based, leading to the development of second generation
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wave models. However, for these models also, restric-
tions resulting from the simplified nonlinear transfer
parameterization effectively required the spectral shape
of the windsea spectrum to be prescribed for frequen-
cies higher than the peak frequency. The specification’
of the spectral shape was introduced either at the outset
in the formulation of the transport equation itself
(parametrical or hybrid models) or as a side condition
in the computation of the spectrum (discrete models).
Although the adjustment to a quasi-universal spectral
shape could be justified theoretically by two scaling
arguments for typical synoptic-scale wind fields (Has-
selmann et al. 1976), the second generation models
were unable to properly simulate complex windseas
generated by rapidly changing wind fields, for example,
in hurricanes, intense, small-scale cyclones or fronts.
The models also encountered basic difficulties in treat-
ing the transition between windsea and swell.

The shortcomings of first and second generation
models have been identified and discussed in detail
in the SWAMP (1985) wave-model intercomparison
study. Although both first and second generation wave
models can be tuned to provide useful results for certain
classes of wind fields—and most models considered in
the study had indeed proven their value in an opera-
tional framework—the study demonstrated that none
of the existing wave models were applicable for all wind
fields, and that none were reliable for extreme situations
for which wave forecasts are often most needed.

In the case of second generation wave models, the
problems are largely numerical rather than physical.
Techniques for overcoming these difficulties were sug-
gested already in SWAMP (1985). It was proposed that
third generation models should be developed, based
on these techniques, in which the wave spectrum was
computed alone by integration of the basic spectral
transport equation, without any prior restriction of the
spectral shape. The model presented in this paper rep-
resents the first implementation of such a third gen-
eration wave model. The work was carried out within
the framework of the WAM (Wave Modeling) pro-
gram, which was initiated after the completion of the
SWAMP Study (cf. Komen 1985).

To remove the restrictions on the spectral shape,
two steps were necessary.

First, a parameterization of the exact nonlinear
transfer source function had to be developed that con-
tained the same number of degrees of freedom as the
spectrum itself. (Computations of the exact five-di-
mensional integral representing the continuum of all
resonant interactions for the entire spectrum are still
too time consuming, even with present day vector
computers, to be incorporated in operational wave
models.) As discussed in the SWAMP Study, wave
models in which the numbers of degrees of freedom
of the spectrum and the nonlinear transfer parameter-
ization are not matched are generally unstable. In fact,
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the restrictions in the spectral shape of second gener-
ation models result essentially from the need to adjust
the number of degrees of freedom of the spectrum to
the rather simple nonlinear parameterizations used in
these models. The present model uses the discrete in-
teraction approximation of Hasselmann et al. (1985),
which retains the same cubic operator structure as the
original Boltzmann integral (see also-Hasselmann and
Hasselmann 1981 and Young et al. 1987).

Second, the energy balance had to be closed by spec-
ifying the unknown dissipation source function. (The
input source function was adopted from the measure-
ments of Snyder et al. 1981). The dissipation source
function used in the present model corresponds to the
form proposed by Komen et al. (1984) on the basis of
a series of numerical integrations of the transport
equation using prescribed source functions for the input
(from Snyder et al. 1981) and with exact computations
of the nonlinear transfer. The dissipation was tuned to
reproduce the observed fetch-limited wave growth and
the fully developed Pierson-Moskowitz spectrum.

Once the source functions have been determined by
tests for the fetch-limited, uniform wind case, the model
is completely specified and should be applicable to ar-
bitrary wind fields without further tuning. We present
verifications of a regional version of the model for nine
hindcast studies consisting of six North Atlantic-North
Sea storms and three Gulf of Mexico hurricanes. As
application of the global version of the model, we show
also examples of global wave hindcasts computed from
the gridded global surface stress fields constructed by
Atlas et al. (1987) from SEASAT scatterometer data
and conventional meteorological data using a data as-
similation method.

The source functions in the present model will un-
doubtedly need to be modified and improved as further
experience is gained in the operation of the model.
However, it is hoped that by presenting a third gen-
eration wave model, future model improvements can
be introduced at the appropriate level, namely in the
source functions representing the physics, rather than
by modifying the form of the resultant wave spectrum.

The model is formulated in spherical latitude-lon-
gitude coordinates and can be run for an arbitrarily
specified global or regional grid. It may be operated in
a deep or shallow water mode and with a first or second
order propagation scheme. An implicit integration
method is used in order to maintain an acceptable time
step At of the order of 10 to 20 minutes for all spectral
components, including the highest prognostic fre-
quency components of the model, whose response time
is considerably smaller than Az. The model is fully
vectorized and can be run, with minor editing switches,
on either CRAY or CYBER-205 computers. More de-
tails on the WAM model system, including pre- and
post-processing packages, are given in Hasselmann
(1987).
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The deep-water formulation of the model is de-
scribed in section 2, while section 3 lists the extensions
needed for shallow water. Numerical aspects of the im-
plicit integration method and the advection schemes
are discussed in section 4. In section 5 the fetch limited
growth results are shown for deep and shallow water.
Verifications of the model for a series of six North At-
lantic hindcast studies (the “WHIST” storm cases) and
three Gulf of Mexico hurricane cases are presented in
sections 6 and 7, respectively. The results of the global
integrations for the SEASAT period are presented in
section 8. Section 9 gives a summary of the conclusions
and an outlook on future developments.

2. Formulation of the model—deep water case

" The evolution of the two-dimensional ocean wave
spectrum F(f, 8, ¢, A, t) with respect to frequency f
and direction 6 (measured clockwise relative to true
north) as a function of latitude ¢ and longitude A on

" the spherical earth is governed by the transport equa-
tion

oF N
at+(cos¢) % (¢ cosoF)

d . s '
o AR+ = (@H =5 @)

where S'is the net source function describing the change
of energy of a propagating wave group and

. de

6= a VR™ cosd (2.2)

x=A_, sinf(R cos¢)~! 2.3)
dt

6 = P _ v sinf tangR ! 2.9

dt

represent the rates of change of the position and prop-
agation direction of a wave packet traveling along a
great circle path (cf. appendix A). Here v = g/4xnf
denotes the group velocity, g the acceleration of gravity,
and R the radius of the earth. The equations apply for
waves in water of infinite depth.

The generalization of the standard Cartesian ge-
ometry transport equation to the spherical geometry
form (2.1) follows (cf. Groves and Melcer 1961) from
the energy conservation equation

oF 9 .. 9 .- 0 ..

3 + 3% (¢F) + a)\(>\F) + 60(0F) S (2.5)
for the spectral density F(f, 8, ¢, \) with respect to the
four-dimensional phase space (f, 6, ¢, \). Here F is
related to the normal spectral density F with respect
to a local Cartesian frame (x, y) through F(dfdfd¢d\)
= F(dfdfdxdy), or

F = FR? cos¢. (2.6)
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Substitution of (2.6) into (2.5) yields (2.1).

The structure of the transport equations (2.1)-(2.4)
carries over to the finite depth case [ note that the great
circle propagation equations already include a refrac-
tion term, Eq. (2.4)]. However, modifications need to
be introduced in the expression for the group velocity,
in the refraction equation (2.4), and in the form of the
source function (cf. section 3).

The source function for the deep water case may be
represented as a superposition of the wind input, non-
linear transfer, and white capping dissipation source
functions,

S = S;,, + Sn1 + Sds- (27)

The wind input source function was adopted from
Snyder et al. (1981). However, following Komen et al.
(1984), their relation was scaled in terms of the friction
velocity u, rather than the wind speed Us at 5 m height:

Sin = BF (2.8)

where

8= max{O, 0.25 22 (28 % cosf — l)]w 2.9)

Pw

and w = 2xf, p, (p.) is density of air (water).

Scaling of the wind input in terms of u, is consistent
with Charnock’s (1955) original boundary layer ar-
guments and appears more appealing theoretically than
scaling with respect to the wind speed at a given height
(cf. discussions in Komen et al. 1984; Janssen and Ko-
men 1985). Empirically, it tends to yield a closer
agreement of wave growth data obtained by different
groups under different wind conditions (Janssen et al.
1987) and is supported by the hindcast cases presented
in sections 7 and 8. (Recent studies by Donelan 1987,
Donelan and Pierson 1987, however, suggest that im-
proved agreement with data can be obtained by re-
placing the wind speed Us in the formula of Snyder et
al. by the wind speed at a half-wavelength height above
the surface. This can also be interpreted as u, scaling,
but with a different form of the input function. This
question should be resolved by further numerical ex-
periments.)

The dissipation source function is based on the form

Sy = —3.33+ 10~55(w/@)X(&/apm) F  (2.10)

proposed by Komen et al. (1984), where

E:=E“'ff F(f, 0)wdfdd (2.11)
denotes the mean frequency,
E= ff F(f, 0)dfde (2.12)
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is the total energy (surface elevation variance), a is an
integral wave steepness parameter defined by

Ew4 —2

(2.13)
and

apm = 4.57-1073 (2.14)

is the theoretical value of & for a Pierson-Moskowitz
spectrum. The quasi-linear dependence of S, on F and
the dependence of the proportionality factor on the
square of the frequency is consistent with the white
capping dissipation function derived by Hasselmann
(1974).

For implementation in the present model, the
expression (2.10) was slightly modified by replacing
the mean frequency @ by the inverse of the mean pe-
riod,

=[E“ f F(, 0o 'dfd8| . (.15

It was found that this enhanced the stability of the
implicit integration scheme (enabling a larger time
step). Introducing the new definitions and slightly re-

ducing the constant, the model dlss1pat10n source was
then taken as

Sus = —2.33- 1073w/ &)*(&/ apm)? F (2.16)

where
= Ed*g™ (2.17)
apy = 0.66apy. (2.18)

The nonlinear source function S,; was represented
by the discrete interaction operator parameterization
proposed by Hasselmann et al. (1985). This retains the
basic form of the exact nonlinear transfer expression,

§5 k) = [ waodlhs + 1 — ks — k)

X 5(0.)] + Wy — Wy — w4)[n,n2(n3 + n.,)
- n3n4(n| + nz)]dkldkzdk3 (219)

where n; = F(k;)/w; denotes the action spectrum and
the coefficient o(k;, K,, k3, k4) describes the coupling
strength of a resonantly interacting wavenumber
quadruplet k,, k», k3, k;. However, the five-dimen-
sional continuum of all resonant quadruplets (three
integration dimensions and two dimensions for k,) is
reduced to a two-dimensional continuum by consid-
ering only a (mirror symmetrical) pair of discrete in-
teraction configurations. (Two continuous dimensions
are still needed to define the magnitude and direction
of the reference wavenumber vector scaling the inter-
action configuration.)

Formally, the discrete interaction approximation
may be written in the form
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S;dr;(k‘i) = E A-ywa[ﬂ]‘y”lzly(?l;;‘y + n47)
=12

—n3"n(mY + m")] (2.20)
where A4, are coupling coefficients and the action den-
sities

n”=Fk"/ e, i=1,23 v=12 (221)

are evaluated at discrete wavenumbers k;” = T;7k,,
which are related to the reference wavenumber ki,
through fixed linear transformations 7;". In practice,
S is not computed using (2.20) but by the symmet-
rical integration method described in Hasselmann and
Hasselmann (1985), in which the energy changes oc-
curring in all four wavenumbers of a given interaction
configuration are evaluated simultaneously (this is the
reason we included k, as well as the interaction integral
(2.19) in counting dimensions above).

The discrete interaction parameterization has been
tested for fetch and duration limited wave growth and
turning wind cases, with satisfactory results (Hassel-
mann et al. 1985; Young et al. 1987).

The model contains 25 frequency bands on a loga-
rithmic scale, with Af/f = 0.1, spanning a frequency
range fmax/Sfmin = 9.8 and 12 directional bands (30°
resolution). The frequency units can be selected ar-
bitrarily. In all hindcast studies presented below, the
frequency interval extended from 0.042 to 0.41 Hz. A
15° resolution model has also been tested but was not
applied in the present study.

Beyond the high-frequency limit f,,f of the prog-
nostic region of the spectrum, an f ~* tail is added, with
the same directional distribution as the last-band of
the prognostic region,

f -4
F(f, 6) = F(Juy, 0)(f_hf) for f>fi. (2.22)

The high-frequency limit is set as

Sar = min{ frax, max(2.5f, 4 fem)}.  (2.23)

Thus, the high-frequency extent of the prognostic re-
gion is scaled for young waves by the mean frequency
and for more developed windseas by the “wind fre-
quency” fpm. A dynamic high-frequency cutoff, fy,
rather than a fixed cutoff at fm., is necessary to avoid
excessive disparities in the response time scales within
the spectrum.

A diagnostic tail needs to be added for f > fj,to
compute the nonlinear transfer in the prognostic region
and also to compute the integral quantities occurring
in the dissipation source function. Tests with an f~°
tail indicated that the model was not sensitive to the
precise form of the diagnostic tail. The contribution to
the total energy from the diagnostic tail is normally
negligible.

The model has been implemented and tested in re-
gional versions with %° X 2° latitude-longitude res-
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olution for the North Atlantic and the Gulf of Mexico
and has been run globally with 3° X 3° resolution.
The model is fully vectorized. In the deep-water
mode, using the first-order propagation scheme, the
model requires about 5 sec CPU-time per time step on
a single processor CRAY-XMP or a CYBER 205. For
the global 3° X 3° grid, this corresponds to 6 CPU-
minutes per model day integration for a 20 minute
(source function) integration time step. The shallow
water mode requires about 40% more computer time.

3. Extension to shallow water

To generalize the deep-water transport equation
(2.1) to shallow water, the source function (2.7) needs
to be extended to include an additional source function
Sps representing the energy loss due to bottom friction
and percolation. The other terms of the transport
equation must also be suitably modified to allow for
the dependence on the depth D of the finite depth dis-
persion relation

w = (gk tanhkD)'/2,

Specifically, the following changes were made:

3.1

e The additional bottom friction term was taken
from the JONSWAP Study (Hasselmann et al. 1973)

T w?
Spr= ?mF 3.2) .
with T' = constant = 0.038 m? s>,
¢ The infinite depth group velocity v = jw/k in the

propagation equations (2.2)-(2.4) was replaced by the
corresponding expression for finite depth D,

kD
h2kD) 3.3

e In the expression (2.9) for the wind input 8 factor,
the phase velocity ¢ in the term (u,/c) was replaced
by the appropriate value for finite depth.

e Assuming that the white capping-dissipation is
controlled primarily by the wave slope, the source
function Sy, was rewritten in terms of wavenumbers
rather than frequencies (except for a residual factor w
providing the dimension needed for a time derivative),

172 ‘
v=———(ktanth) (1 +

~

a

A 2
Su = —(2.36- 10-5)5,(-’,{)(&——) F (34
) PM
where

k= (E“ f F(k)k‘”’dk)_z (3.5)

&=Ek? (a—>aforkD—> ). (3.6)

e On the basis of the exact numerical computations
of Hasselmann and Hasselmann (1981), the nonlinear
transfer for finite depth was taken as identical to the
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deep water transfer rate for a given frequency-direction
spectrum, except for a scaling factor R,

S,; (finite depth) = R(kD)S,, (deep water). (3.7)

The exact computations could be closely reproduced
in the range kD > 1.0, for which the simple scaling
relation (3.7) is applicable using the scaling factor

R(x)=1 +2(1 __56_x) exp(—STx). (3.8)

¢ Following the dimensional arguments of Zakharov
and Zaslavskiy (1982), Kitaigorodskii (1983) and oth-
ers, the f* high- frequency tail defined by (2.22) was
replaced by the expression

0= (E) )t tor 1> s

3.9)

This is identical to (2.16) for deep water but yields a
wavenumber rather than frequency power law for finite
depth waves (the one-dlmensmnal wavenumber spec-
trum becomes proportional to k=2°).

e The great circle refraction term (2.4) [denoted in
(3.10) by Bgc] was augmented to include the refraction
8p due to variations of the water depth (cf. Phillips
1977),

0=08,+6bp (3.10)
where
, 1 dw aD cosﬂ oD
= — — [sind — —]. @3.11
b = & aD( 3¢ cosé ax) (3.11)

In the finite depth WHIST hindcast studies presented
in section 6, however, the depth-dependent angular re-
fraction term (3.11) was generally ignored, although
the shoaling effect, i.e., the depth dependence of v in
Eq. (3.3), was retained. This was based on the finding
in JONSWAP and other studies that on larger scales
finite depth angular refraction is generally dominated
by statistical subgrid-scale refractive scattering (“scin-
tillation™) rather than by deterministic large-scale ray
bending. In one WHIST hindcast test, the depth-de-
pendent angular refraction was included (Gao 1986),
and the effect of the deterministic large-scale ray bend-
ing was indeed found to be quite small. A realistic
treatment of refractive scattering effects on the scales
of these hindcasts requires either a higher resolution
grid and bottom topography than was available for
these studies or a separate statistical treatment.

For more extensive applications of the shallow water
model to particular geographical regions, it will prob-
ably be necessary to tune the bottom friction source
function (3.2), which was appropriate for the JON-
SWAP site, to the locally varying bottom conditions
(sand grain size, influence of percolation, interaction
with local currents, etc., of Shemdin et al. 1978). How-
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ever, the provision of a shallow water version of the
third generation model, even in the present general
form, was regarded as a high priority item in the de-
velopment of the model, since the inherent spectral
shape restrictions of second generation models cannot
be readily justified for shallow-water waves. The first-
order equilibrium and scaling arguments put forward
for deep-water waves ( Hasselmann et al. 1976) do not
carry over to the shallow water case (cf. the SWIM
Group 1985).

4. Numerical implementation

Different numerical techniques and time steps were
used to integrate the source functions and the advective
terms of the transport equation.

a. Implicit integration of the source functions

An implicit scheme was introduced for the source
function integration to enable the use of an integration
time step that was greater than the dynamic adjustment
time of the highest frequencies still treated prognosti-
cally in the model. In contrast to first and second gen-
eration wave models, the energy balance of the spec-
.trum is evaluated in detail in the present model up to
a high cutoff frequency. The high-frequency adjustment
time scales are considerably shorter than the evolution
time scales of the energy-containing frequency bands
near the peak of the spectrum, in which one is mainly
interested in modeling applications. Thus, in the high-
frequency region, it is sufficient to determine the quasi-
equilibrium level to which the spectrum adjusts in re-
sponse to the more slowly changing low-frequency
waves, rather than the time history of the short time-
scale adjustment process itself. A time-centered implicit
integration scheme whose time step is matched to the
evolution of the lower frequency waves meets this re-
quirement automatically: for low-frequency waves, the
integration method yields essentially the same results
as a simple forward integration technique (but is of
second rather than first order), while for high frequen-
cies the method yields the (slowly changing) quasi-
equilibrium spectrum. .

The implicit second-order, centered difference
equations (leaving out the advection terms) are given
by

At
Fo=F, +'_2_(Sn+l +Sn) (41)

where At is the time step and the index 7 refers to the
time level.

If S,., depends linearly on F,.;, Eq. (4.1) could
be solved directly for the spectrum F,,, at the new
time step. Unfortunately, only the input source func-
tion is linear. For this term we write

L'ZH = ﬁn+1Fn+l = 6n+1AF+ ﬁn+1Fn
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where
Bur1 = B(uy"), 4.3)
AF = F,,, — F,. (4.4)
For the remaining source function
w = Sh + S, 4.5)
we introduce a Taylor expansion
rest
et =8, + a—f;"F— AF + « - -, 4.6)

The functional derivative in (4.6) (numerically, a
discrete matrix M, ) can be divided into a diagonal ma-
trix A, and a nondiagonal residual N,,,

aSn rest
oF

Substituting (4.2), (4.6), and (4.7) into (4.1), we
obtain .

=M,=A,+N,. 4.7

[1 - %t' (An + N, + ﬁn+l)]AF

= At[(————ﬂ" +2'ﬁ”+')F,, + S,,m‘] . @8)

If the nondiagonal terms are not too large, the matrix
on the left-hand side can be inverted by expanding
with respect to the nondiagonal contributions, yielding

AF(f,6) = A(f, 0)

+ 2 B(f, 0,1, )4/, 8)+ - -+,  (49)
re

where the diagonal term is given by

AUWF{P”mZ%”ﬂ+&m]

xp—%Mﬁwmf} @.10)

o)
and the first nondiagonal matrix in the expansion takes
the form
At
Na(f, 6,17, 6) 5

At
1—7Mmeﬂ
.0

B(f,0,f',0)= [ 4.11)

The matrix M, can be readily determined in the
course of computing the source functions S,” and S,%".
The inclusion of the diagonal contributions (4.10) then

requires little more computing time per time step than

an explicit scheme. Significantly more calculations are
involved, however, in the evaluation of the nondiagonal
contributions. Fortunately, a number of trial compu-
tations indicated that the off-diagonal contributions
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were generally small if the time step was not too large.
For a typical test case, good agreement was obtained
between an explicit integration with a time step of 3
minutes and the implicit scheme with only diagonal
terms for time steps up to about 20 minutes.

b. Propagation

Two alternative propagation schemes were imple-
mented in the model: a first-order upwind scheme

n+l _ n__ - = ny
Fj F; % Axr cosh, [(u cospF™);
—(ucos¢pF"); ] (4.12)
and a second order leapfrog scheme
At
Fp+l = F'n-l — n
s / Zk: 2Axy cOsQ; [(u cos¢F™)s,
— (u cospF");_] + diffusion. (4.13)

In equations (4.12), (4.13) the index 7 refers to the
time level and the indices k_, k, to the neighboring

40+

’o_‘ T T T T T T T
— 60 180 h A
w
[m] L -
D
=
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|
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grid points in the upstream and downstream propa-
gation directions, respectively, relative to the reference
grid point j. The index k runs over the three propa-
gation directions A\, ¢ and 6, and u;, Ax, denote the
velocity component (A, ¢, #) and grid spacing, respec-
tively, in the relevant direction.

The first-order scheme is characterized by a higher
numerical dispersion, with an effective diffusion coef-
ficient D ~ Ax?/At. For numerical stability, the time
step must satisfy the inequality At < Ax/v, so that D
> Axv. The advection term of the second-order scheme
has a smaller inherent numerical dispersion, but suffers
from the drawback that it generates unphysical negative
energies in regions of sharp gradients. This can be al-
leviated by including explicit diffusion terms, as indi-
cated in Eq. (4.13). In practice, the explicit diffusion
required to remove the negative side lobes in (4.13) is
of the same order as the implicit numerical diffusion
in (4.12), so that the effective dispersion is generally
comparable for both schemes. The details of the dif-
fusion scheme are given in appendix B.

Figures 1 and 2 show examples of the propagation
and dispersion of wave packets along various great cir-
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FIG. 1. Propagation of wave packets along various great circle paths for an initial é-function pulse for first-order propagation scheme.
Crosses mark theoretical position of a nondispersed pulse.
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FIG. 2. As in Fig. 1 but for a second-order propagation scheme with additional explicit diffusion (cf. appendix B for details).

cle paths for the first and second order propagation
schemes. The initial distributions were é-functions (i.e.,
concentrated within a single grid cell with respect to
A, ¢ and ). The Courant number (at the equator) was
setas vAt/Ax = vAt/RA¢ = 0.16 (a rather low Courant
number for typical wave frequencies is unavoidable in
wave models in order to remain within the stability
limit for the lowest frequencies). The mean propaga-
tion and dispersion properties are similar for both
schemes and are in order of magnitude agreement with
the dispersion appropriate for the present wave model
with a frequency resolution Af/ f = 0.1 and an angular
resolution Af = 30°. An advantage of the second-order
scheme is that the lateral dispersion is less dependent
on the propagation direction than in the first order
scheme, which shows significant differences in the dis-
persion characteristics for waves traveling due north-
south or east-west compared with directions in be-
tween. :

The main motivation for considering the second-
order scheme in addition to the first-order scheme was

not to reduce the dispersion, but to be able to control
it. In contrast to most other numerical advection prob-
lems, an optimal propagation scheme for a spectral
wave model is not designed to minimize the numerical
dispersion, but rather to match it to the finite dispersion
associated with the finite frequency-direction spectral
resolution of the model (SWAMP, appendix B, 1985).
The dispersion due to the different propagation veloc-
ities of the different wave components within a finite
frequency-directional bin increases linearly with re-
spect to propagation time or distance, whereas most
propagation schemes yield a spreading of the wave
groups, which increases at the root of the propagation
time or distance. However, it has been shown by Booij
and Holthuijsen (1987) that linear spreading rates can
be achieved by introducing a variable diffusion coef-
ficient proportional to the “wave age.” Although this
has not yet been implemented, the second-order
scheme with explicit diffusion provides a framework
for testing the Booij—Holthuijsen method.

All results presented in this paper were obtained with
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the upwind first-order scheme (4.12). In general, the
differences between the model results using the first-
or second-order propagation methods were small.

5. Fetch-limited wave growth

Figures 3 and 4 show the growth of the nondimen-
sional wave energy E* = Eg?/u$ and peak frequency
S1 = fous/g as a function of fetch for the case of a
uniform wind blowing orthogonally offshore for deep
water waves. Also shown are the growth curve bands
for the JONSWAP data and various wave models in-
vestigated in the SWAMP (1985) Study.

The corresponding growth curves for the one-di-
mensional frequency spectrum are shown in Fig. 5. An
overshoot is present but is somewhat less pronounced
than in the corresponding simulations with a model in
which the nonlinear transfer integral was computed
exactly (cf. Hasselmann and Hasselmann, chapter 24
in SWAMP 1985). This presumably represents a
shortcoming of the discrete interaction approximation
of the nonlinear transfer.

Figure 6 shows the angular spread parameter s for
the fully developed spectrum, where s is determined
by a least-squares fit of the directional distribution
[E(f, 8)/E(f)] to the model directional distribution

6— ('))
2

and N(s) is a normalization constant. The frequency

dependence of s agrees remarkably well with the form

derived by Hasselmann et al. (1980) from directional
buoys.

S = N(s) coszs( (5.1

10% . : : . . —— T

E* | .
103 4
102+
101 ! 1 f (. i i L
105 108 107 108

x ¥

FIG. 3. Wave energy as a function of fetch for uniform wind, fetch-
limited wave growth. Also shown are growth curve bands for JON-
SWAP and various first and second generation wave models (from
SWAMP 1985).
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FiG. 4. As in Fig. 3 but for the peak frequency.

The growth curves for the finite (uniform) depth
case are shown in Figs. 7 and 8. The effect of the ad-
ditional bottom friction source function is to restrict
the development of the long waves (kD < 1.0). The
sinh?kD factor in (3.2) acts as a very sharp, low-fre-
quency cutoff filter.

In Fig. 9 a comparison is made with results from
various second generation models (BMO, GONO and
HYPA), which were compared in the SWIM project,
(the SWIM Group 1985), and with a recent simulation
by a one-dimensional model (NL shallow) in which
the nonlinear transfer was computed by complete nu-
merical integration of the Boltzmann integral (Weber
1988). The quantity selected for the comparison in
Fig.9ais EY(D,)/ EZ(o0), where EJ is the total di-
mensionless variance obtained at the largest fetch con-
sidered and D, = Dg/u3. It is known that different
second generation finite depth models exhibit rather
different fetch growth properties, and this is well illus-
trated by the figure. (One should bear in mind, how-
ever, that a flat, shallow bottom and infinite fetch sel-
dom occur in practice.) The results of the WAM model
lie more or less in the middle and are close to the results
of the “exact” one-dimensional model, NL shallow.
Figure 9b shows the effect of depth limitation on the
frequency. For the WAM model the mean frequency
has been considered; for the other models the peak
frequency has been taken. In either case, the ratio of
the depth-limited value at infinite fetch to the corre-
sponding deep water value is shown, for which the
choice of peak or mean frequency is not so critical.
The resulting picture is the same as in Fig. 9a: fairly
large differences between different second generation
models, with the WAM curve lying somewhere in the
middle.
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FIG. 5. Evolution of one-dimensional frequency spectrum for fetch-limited wave growth.

After the model had been tuned to simulate satis-
factorily the standard infinite-depth, fetch-limited
~ growth case and had been extended to finite depth, the
model was applied without further adjustments to a
series of hindcast cases involving strongly variable wind
fields. These provided a test of the model for complex
wave spectra, which were strongly influenced by direc-
tional relaxation processes, cross-spectral interactions,
and pronounced spatial inhomogeneities.

/—WAM

D.Hasselmann .
et al. (1980)

f/fm

FIG. 6. Directional spreading parameter for a
fully developed spectrum.
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6. Six hindcast studies of North Atlantic-North Sea
(WHIST) storms

~In preparation for an extensive hindcast study to
compile wave statistics for the North Atlantic and
North Sea over a 20-year period (the NESS project),
wind fields for six storms characteristic for this region

‘were analyzed by Francis et al. (1985). The wave fields -

for all six storms were computed using the shallow wa--
ter, first-order propagation model and compared
against wave measurements taken at 11 stations in the
North Sea. Tables 1 and 2 give listings of the storms
and station positions, respectively.

All runs were performed on a fine mesh, %° latitude,
15° longitude grid covering part of the North Atlantic,
the Norwegian Sea, and the North Sea. The propaga-
tion time step was set at 15 minutes, within the stability
limits of the first order, upwind advection scheme.

The wind fields for the storms were kindly provided
by the Meteorological Office in Bracknell (BMO). The
wind speed U was transformed to friction velocity fields
u, according to

uy = UVCp(U)

where the drag coefficient Cp(U) = Cp(Uj,) is given
by

1.28751073, U<7.5ms™!
Co(U) = -3 -1
(0.8 +0.065U)107°, U=75ms™.
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e [ 3 0600 UTC 4 January 1983 is shown in Fig. 10. This
u ] figure also shows a map of the stations, the model re-
F ] gion, and the grid.
- 001.0° ] T hg significant wave heights an_d mean propagatiqn
oL i directions of the wave field for this time are shown in
F 3 Fig. 11 as a Custer diagram (a field of vectors whose
- 4 % length is proportional to the wave height pointing in
- the mean wave propagation direction) with superim-
| %‘1— 2 J posed wave height isolines.
e The wave height and direction fields provide only a
E g_ general picture of mean wave field properties, without
ﬁ ] information on the detailed two-dimensional frequency
2 and directional distribution of the local wave spectrum.
B - An indication of the evolution of the full two-dimen-
R T A W T AT sional spectrum is given by the series of spectra for the
10° 10° 107 x* station Statfjord (Fig. 12) for storm 1 on 3-4 January
o 1983. The wave field is clearly nonstationary, with rap-
idly changing directional distributions. The energy gap
between the northward and eastward propagation di-
rections, which is evident in several panels (e.g., 4 Jan-
- 4 uary at 0600 UTC), may be attributed to sheltering
o015 + 001.0* ] by the Shetland Islands. The sheltering effects of islands
1 \‘ i can also be clearly seen in the wave height map,
_ ] Fig. 11.
- 2 In general, the model performed well, especially for
0010 s the stations in the southern and central part of the
i 2 7 North Sea, as may be inferred from the time series in
I 7 Fig. 13. At the northern stations Utsira, Brent, and
- “ : x105 T T I/' T T T T T
10° 108 107 x* & o1el [ \ D* 1
FIG. 7. (a) Wave energy as a function of fetch for fetch-limited - l \ — 2x00
wave growth on water of constant finite dimensionless depth D* ; \ -—= 4 x00
= Dg/u3. (b) As in (a) but for mean frequency. 161 J l —— 16 x0.01 7
Wl _
This choice of the expression for the drag coefficient i l l
was found to be crucial in resolving some remarkable P
differences between wave growth datasets collected in 2T ‘
the North Sea (Janssen et al. 1987). No further cor- i '
rections, for example for atmospheric stability, were 1.04
applied. N
The results of only two storms are discussed here )
briefly. A more complete account of the results may 087 .
be found in Bertotti et al. (1986). B
The first storm, storm 1, occurred in the period 3- 0.6
4 January 1983. A low center moved northeast during s
3 January from (58°N, 12°W) at midnight to (65°N, oul
0°E) 24 hours later. The associated wind fields affected ’
the central and northern areas of the North Sea, being i
southerly at first and then veering to southwesterly. 0.24—
Maximum wind speeds were around 25 m s~! at
northern platforms. At the location of the buoys off o

central Norway ( Haltenbanken and Traenebanken ) the 0
winds backed as the depression approached, maximum

. = iy
strengths reaching about 20 ms = at midnight on 4 FIG. 8. Fully developed finite depth frequency spectrum
January. As an example, the wind field for storm 1 at for different values of D,.
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F1G. 9. (a) E*(D,)/ E*(o0) as a function of D, for five different
models, where E*(D,) is the total dimensionless variance at di-
mensionless depth D, and at the largest fetch considered. (b) f°(D,)/
S® () as a function of D, for five different models. Here (D, )
denotes the mean frequency for the WAM model and the peak fre-
quency for the other models. In both cases f®(D,) refers to the
value obtained for finite depth at the largest fetch considered.

Statfjord, an underestimate of the peak wave heights
is found. Inspection of the isoline map in Fig. 11 in-
dicates that, due to the presence of the Shetlands, a
considerable sheltering occurs in this region. Possibly
the gap between the Shetlands is represented as too
narrow in the model grid, resulting in too much shel-
tering.

TABLE !. WHIST storms.

Storm Date

3-4 January 1983
6~7 January 1983
9-10 January 1983
18-19 January 1983
1-2 February 1983
1-4 January 1984

(- WV I NV S ]
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TABLE 2. Stations used for WHIST hindcast verification. Source
key: KNMI, Royal Netherlands Meteorological Institute; 1KU,
Continental Shelf Institute; DHI, German Hydrographic Institute;

and NH, Norsk Hydro.

Name Position Source

01. Euro O 52.0°N, 3.6°E KNMI
02. Ijmuiden | 52.6°N, 4.1°E KNMI
03. K-13 K 53.2°N, 3.2°E KNMI/Shell
04. FPN F 54.7°N, 7.2°E DHI

05. Ekofisk E 56.5°N, 3.2°E NH

06. Utsira U 59.3°N, 4.8°E NH

07. Brent B 61.0°N, 1.5°E Shell

08. N. Cormorant C 61.2°N, 1.2°E Shell

09. Statfjord S 61.3°N, 1.9°E NH

10. Haltenbanken H 65.0°N, 7.5°E IKU

I1. Traenebanken T 66.3°N, 9.5°E IKU

As a second storm, we consider storm 6 of the
WHIST study, which occurred during the period 1-4
January 1984. Strong southwest winds (in the south)
and west winds (in the north) prevailed over the North
Sea during 1 and 2 January, arising from a low pressure
area in the Norwegian Sea. A new depression moved
rapidly from the south of Iceland at 1200 UTC 2 Jan-
uary, reaching the Skagerrak at midnight 4 January.
The wind fields were generally very strong, especially
in the south early on 3 January (20-25 m s ™! southwest,
veering to west-southwest by 0600 UTC) and in the
central North Sea around midday on 3 January (up to
30 m s~! from the southwest). A complete veering to
northwesterly had occurred in northern and central
regions by midnight on 4 January, and in southern
regions 6 hours later.

At the location of the Norwegian buoys, the model
achieved a reasonable match for the peak values oc-.
curring on 2 January (cf. Fig. 14). The peak at the
North Cormorant platform on 4 January is simulated
rather well, and there is also a good agreement between
the model and the measurement at Statfjord.

With respect to the peak values, the agreement be-
tween model and measurement