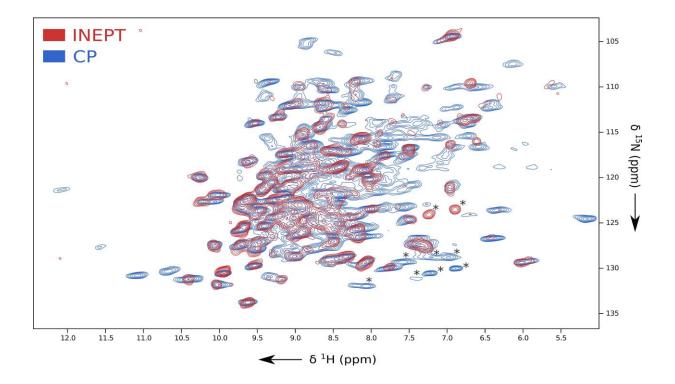
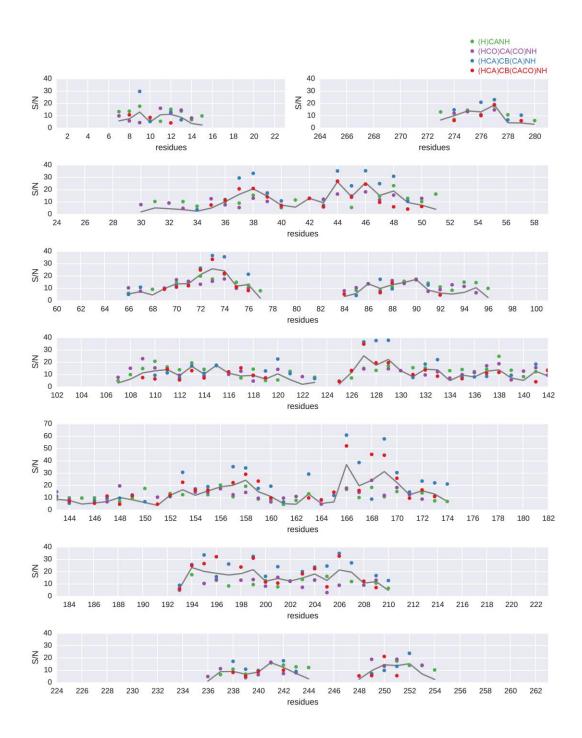

Supplementary Figure 1. Electron microscopy and diffraction data of OmpG

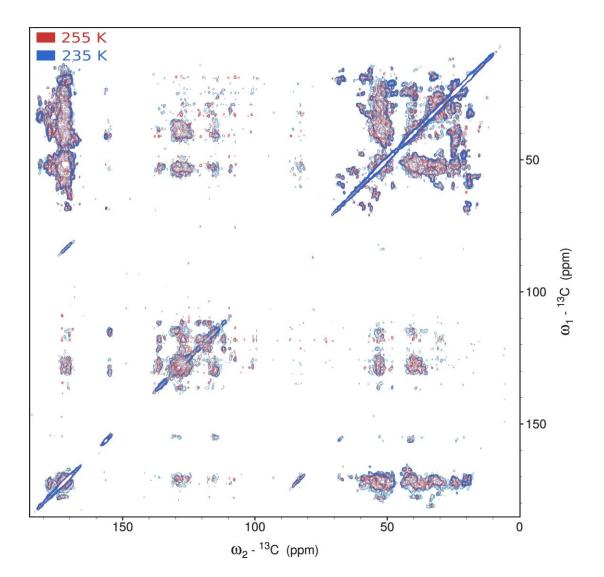
Electron microscopy of different isotopically labelled OmpG preparations after reconstitution into *E. coli* lipids and growth of 2D crystals at low magnification showing long tubes with a width of 200-300 nm. a) 2D crystals of the 1,3-OmpG [TEMPQANDSG] sample (see Fig. 1c of the main text), negative stain; b) 2D crystals of the 2-OmpG [SHLYGWAFV] sample (see Fig. 1d), negative stain; c) High magnification image of a negative stained 2D crystal of uniformly ¹³C, ¹⁵N-labelled OmpG; d) diffraction pattern of the sample shown in c.


Supplementary Figure 2. Sequence-specific assignment of OmpG

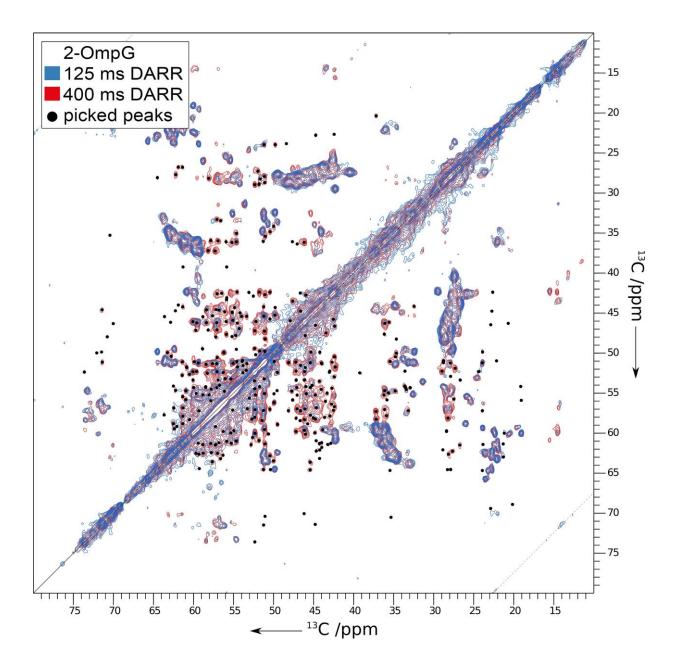
a) Superposition of a CP-based ¹⁵N-¹H correlation (blue) of OmpG in lipid bilayers and a projection of the (H)CANH spectrum (red). Asterisks indicate folded-in arginine side-chain signals. Their position in the two spectra is different since the respective spectral width in the ¹⁵N-dimension was set differently. b) ¹³C-¹⁵N-projection of the (H)CANH spectrum with assignments. The dispersion in this projection is larger than in the ¹⁵N-¹H projection. The majority of peaks is assigned (151). 31 peaks of the (H)CANH spectrum remain unassigned.


Supplementary Figure 3. Strips from 3D NMR correlation spectra of OmpG to illustrate sequence-specific assignment

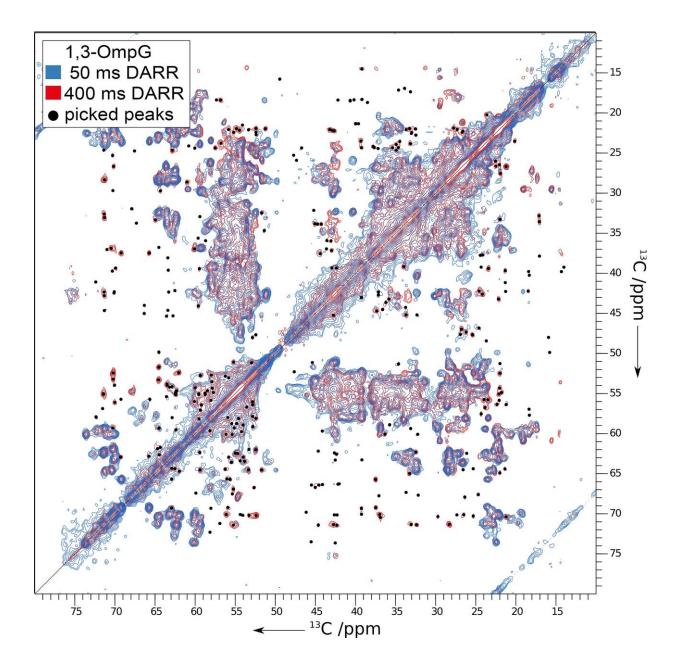
Superposition of strip plots taken from the (H)CANH, (HCO)CA(CO)NH, (HCA)CB(CA)NH and (HCA)CB(CACO)NH spectra at the ¹⁵N-chemical shifts of the residues in the subsequence tryptophan 43 to glutamine 51. Residue 42 is a proline, and cross peaks correlating its C α and C β are present in the tryptophan 43 strip of the (HCO)CA(CO)NH and (HCA)CB(CACO)NH spectra. The signal intensities of the peaks in the experiments that contain multiple polarization transfer steps [(HCA)CB(CA)NH and (HCA)CB(CACO)NH] drop off towards the end of this sequential stretch of amino acids and eventually completely disappear in the strip of glutamic acid 51, which is the last assigned residue of this β -strand.


Supplementary Figure 4. Comparison of CP-based and INEPT-based NMR experiments

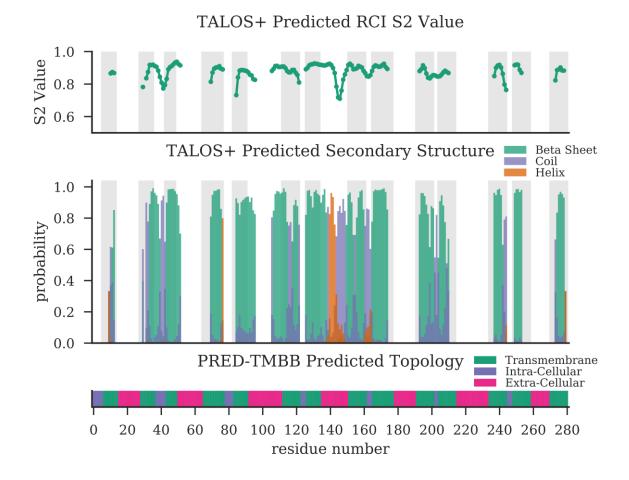
Superposition of a CP-based ¹⁵N-¹H correlation (blue) of OmpG in lipid bilayers and an INEPT-based ¹⁵N-¹H correlation (red). Asterisks indicate folded-in arginine side-chain peaks. Their position in the two spectra is different since the respective spectral with in the ¹⁵N-dimension was set differently.


Supplementary Figure 5. Comparison of cross-peak intensities in different protondetected 3D NMR experiments

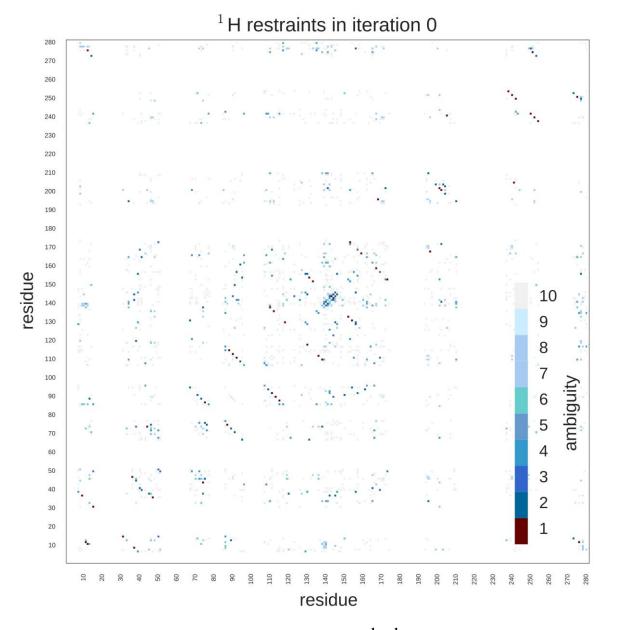
Signal intensities in the (H)CANH, (HCO)CA(CO)NH, (HCA)CB(CA)NH and (HCA)CB(CACO)NH spectra, plotted as signal-to-noise versus sequence. Every panel represents two strands in the β -sheet connected by an intracellular turn in the structure, except for the two panels on the top, which represent the first and last strand of the sequence. For all peaks, residue indices are based on the location of the excited carbon. Thus, peak intensities in the (HCO)CA(CO)NH and (HCA)CB(CACO)NH spectra correspond to strips at the ¹⁵N-¹H position of the residue with index +1. The noise level is defined as one standard deviation of noise intensity calculated within CCPN analysis by taking 10 subsets of 1000 random samples in a spectrum and choosing the smallest subset. The solid line represents a S/N average.


Supplementary Figure 6. Comparison of cross peak patterns at different temperatures

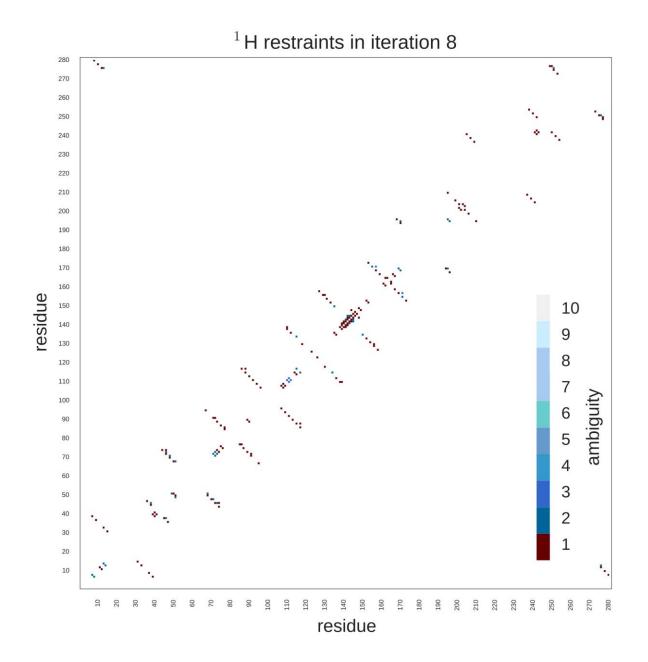
In order to check whether additional signal sets or increased signal intensity could be observed at lower temperatures, ${}^{13}C{}^{-13}C$ correlation spectra with 50 ms DARR mixing were recorded at 255 K (red) and 235 K (blue). The temperature in the latter spectrum is underneath the lipid phase-transition as monitored by a change in the 1D 1 H spectrum. No significant difference between the two ${}^{13}C{}^{-13}C$ spectra was observed.


Supplementary Figure 7. Selection of inter-residual cross peaks for distance restraints for the 2-OmpG sample

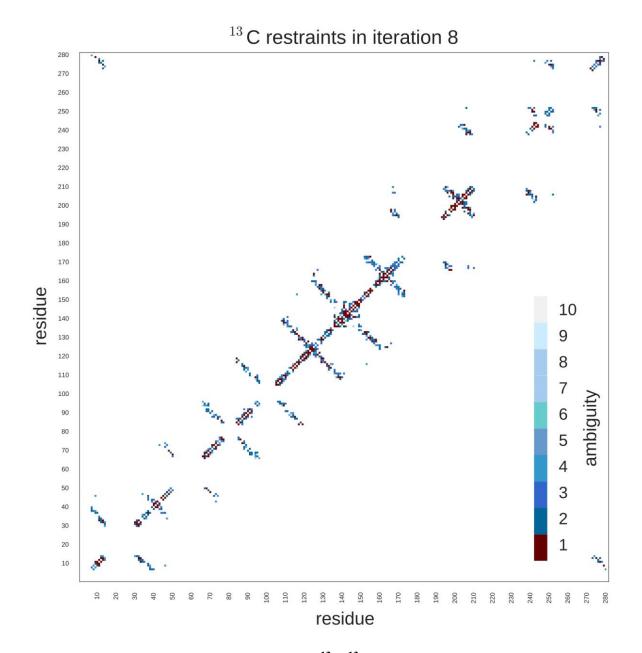
Peaks used to generate distance restraints in the ¹³C-¹³C correlation (400 ms DARR) of the 2-OmpG sample. Intra-residual peaks were avoided during peak picking. This was helpful because some intra-residual peaks can correspond to unassigned spin systems. If these peaks would be included in the shift matching procedure, restraints lacking a correct assignment option would be produced, which is highly unfavorable. To avoid such intra-residual peaks, the spectrum was compared with a spectrum recorded with a shorter mixing time. Furthermore, knowledge of the specific areas in which intra-residual peaks can be expected is used. For instance, within the C_{α} - C_{α} area close to the diagonal (50-60 ppm) no intra-residual are expected except for proline C_{α} - C_{δ} correlations and serine outliers, hence also peaks present in both short and long mixing time spectra were picked (except for the respective proline C_{α} - C_{δ} peaks).


Supplementary Figure 8. Selection of inter-residual cross peaks for distance restraints for the 1,3-OmpG sample

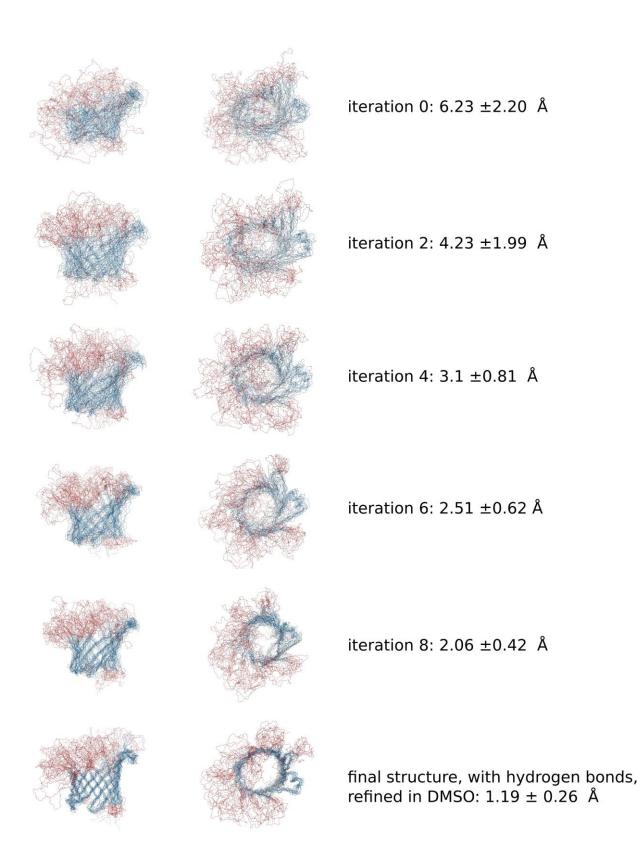
Peaks used to generate distance restraints in the ${}^{13}C{}^{-13}C$ correlation spectrum (400 ms DARR mixing) of the 1,3-OmpG sample. See also legend of Supplementary Figure 7.


Supplementary Figure 9. Secondary structure prediction

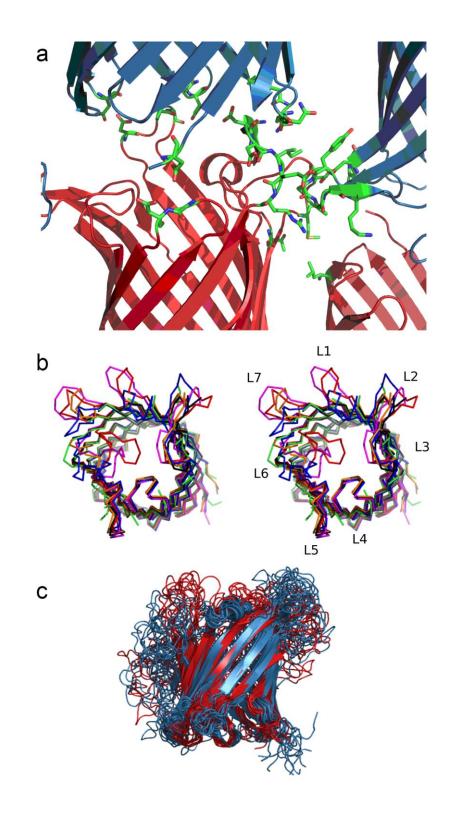
Prediction of secondary structure based on chemical shifts by TALOS+^{1,2} and PRED-TMBB³. TALOS+ uses the secondary chemical shifts of assigned residues to search a database for triplets in the sequence of high-resolution structures with similar secondary chemical shifts to predict ϕ/ψ torsion angles. PRED-TMBB is an algorithm that solely relies on the sequence and predicts which parts of the sequence are intra-cellular, extra-cellular and transmembrane, given the molecule is a transmembrane β -barrel. Grey areas in the TALOS+ plot correspond to those regions of the sequence that are predicted as transmembrane by PRED-TMBB.


Supplementary Figure 10. Interaction matrix of ¹H-¹H distance restraints before disambiguation

Residue interaction matrix for ${}^{1}\text{H}{-}{}^{1}\text{H}$ distance restraints entering the ARIA protocol (before any disambiguation by ARIA). The color indicates the ambiguity of the least ambiguous restraint present for the interaction between two residues. Interactions between two residues for which an unambiguous restraint is present are colored red. Patterns perpendicular to the diagonal, indicating anti-parallel β -sheets, can already be observed.


Supplementary Figure 11. Assignment status of ¹H-¹H ADRs after the last iteration of the ARIA protocol

The color indicates the ambiguity of the least ambiguous restraint present for the interaction between two residues. Interactions between two residues for which an unambiguous restraint is present are colored red. A clear alternating pattern can be seen for the β -sheets perpendicular to the diagonal. 11 restraints in the ¹H-¹H restraint set were left ambiguous at the end of the ARIA procedure.


Supplementary Figure 12. Assignment of ¹³C-¹³C ambiguous distance restraints in the last iteration of the ARIA protocol

The color indicates the ambiguity of the least ambiguous restraint present for the interaction between two residues. Interactions between two residues for which an unambiguous restraint is present are colored red. 488 restraints in the ¹³C-¹³C restraint set were left ambiguous at the end of the ARIA procedure.

Supplementary Figure 13. Ensembles of the 15 lowest energy structures

The 15 lowest energy structures out of 200 calculated structures are shown (from top to bottom) after iterations 0, 2, 4, 6 and 8 of the ARIA protocol, and the final structure refined with explicit hydrogen bond restraints (bottom).

Supplementary Figure 14. Comparison of the solid-state NMR-based structure with X-ray- and solution NMR-based structures

a) Crystal contacts between four protein molecules in the X-ray structure $2IWV^4$. b) Superposition of six different X-ray structures of OmpG: green: $4CTD^5$, red: $2IWW^4$, blue: $2IWV^4$, black: $2F1C^6$, magenta: $2X9K^7$, orange: $2WV^8$. c) Overlay of solid-state NMR (blue) and liquid-state NMR (red) structural ensembles.

	assigned nuclei	% within 170 assigned residues	% of whole sequence			
¹³ C-detected						
N backbone	124	73% (124/170)	44% (124/281)			
C'	117	69% (117/170)	42% (117/281)			
CA	164	96% (164/170)	58% (164/281)			
СВ	146	94% (146/156)	57% (146/254)			
C aliphatic	449	93% (449/485)	57% (449/781)			
C aromatic	58	26% (58/227)	17% (58/341)			
C carbonyl	127	62% (127/204)	35% (127/360)			
¹ H-detected						
H backbone	151	92% (151/164)	56% (151/272)			
N backbone	151	89% (151/170)	54% (151/281)			
C'	131	77% (131/170)	47% (131/281)			
CA	167	98% (167/170)	59% (167/281)			
СВ	131	84% (131/156)	52% (131/254)			

Supplementary Table 1. Comparing the extend of chemical assignment on basis of ¹³C-detected and ¹H-detected experiments

Extend of the chemical shift assignment achieved for different atom sites with regards to signals observed in ¹³C-detected experiments (on fully protonated samples) and ¹H-detected experiments (on deuterated and back-exchanged samples). The numbers of assigned chemical shifts are listed separately for the two types of samples/measurement methods because isotope shift causes the chemical shifts to be slightly different for these two types of samples. Therefore, chemical shift assignment for one type of sample does not automatically lead to the assignment in the other type of sample, and in few individual cases it was difficult to transfer the assignment. The extent of the assignment is given as a percentage of the number of nuclei (of the respective kind) in the whole protein and as a percentage of the number of nuclei within the 170 residues for which at least one nucleus is assigned (colored blue in Fig. 1a of the main text).

							25	2		ns ns		GAOO MS	0150 m	5GAOOM	56 150 M	400 ms 1150	ms	
distance restraints	311	Hide	ected	t entri	HHNH De de	ected 20mg	3400 ms	G200 ms	13.00 A00	ns 20 ms	APOAND 2.Th	in POANO	INPOAND 1.3	ELMPOAND	YGWAFY 2.5H	ADD MS 150	, ms	
input to ARIA				-						_	_	_	_					
total	2096	249	122	127	1847	355	196	312	146	131	60	234	32	216	84	81		
unambiguous	103	83	41	42	20	0	0	0	0	4	1	10	0	4	0	1		
rejected during protocol	249	8	5	3	241	14	17	34	14	18	10	51	3	51	16	13		
assignment in ARIA iteration 8																		
total	1847	241	117	124	1606	341	179	278	132	113	50	183	29	165	68	68		
distance class < 3.5 Å	139	139	66	73														
distance class < 5.5 Å	560	102	51	51	458		179		132		50		29		68			
distance class < 8.0 Å	1148				1148	341		278		113		183		165		68		
intra-residual	31	0	0	0	31	14	4	8	1	0	0	4	0	0	0	0		
sequential	1197	64	37	27	1133	236	140	193	99	79	37	131	27	94	51	46		
medium-range (2 ≤ i-j <5)	184	13	6	7	171	34	11	42	14	5	0	20	0	29	6	10		
long-range (i-j ≥ 5)	435	164	74	90	271	57	24	35	18	29	13	28	2	42	11	12		
unambiguous	1071	222	105	117	849	142	62	131	68	95	41	131	19	88	34	38		
unique	880	109	78	79	771	239	132	193	87	71	33	122	19	119	43	49		
uique long-range	215	57	44	53	158	41	20	23	11	21	9	22	2	33	7	12		
unique unambiguous long-rang	ge 132	53	42	51	79	8	6	11	5	15	7	17	2	23	5	5		
violations in dmso refined Omp	οG ^a																	
> 0.3 Å	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0		
> 0.5 Å	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
torsion angle restraints	backbo	one rm	ISd ^b				ROCH	IECK		WHATIF								
φ/ψ angles 128 (256 total)					19 ±0.2		amacha									average:		
rmsd 0.880 ± 0.098	vs. 2IW	W (x-ra	iy)	1.9	94 ±0.1		core:		3.7%			tion pac				56 ±1.201		
violation count per model		vs. 2IWV (x-ray) 1.93 ±0.19 Å allowed: 5.5%					2nd generation packing quality 1.706 ±1.403											
violations > 1° 24.9 ±3.8		vs. 2F1C (x-ray) 1.96 ±0.19 Å generous: 0.4%											99 ±0.246					
violations > 3° 5.8 ±2.0	vs. 2JQ					8 - 1 2 - 1	disallov	ved: 0	.5%			rotame		ality		47 ±0.529		
violations > 5° 1.5 ±0.7	β-sheet -		esidues		49 ±0.4							conform				17 ±0.206		
violations > 10° 0	all residues 5.29 ±0				29 ±0.5	54 A				RMS Z-scores, should be close to 1						.0:		
hydrogen bond restraints											d lengt					71 ±0.001		
										Bond angles						0.318 ±0.003 (tight)		
92 colinear restraints (184 total)												gle resti				23 ±0.035 (
violation > 0.3 Å 0												planari	-			27 ±0.026 (tight)	
							Improper dihedral distribution						0.398 ±0.007					
								Inside/Outside distribution						1.214 ±0.015 (unusual)				

Supplementary Table 2. Statistics on the restraints and quality metrics of the 15 lowest energy structures

All quality measures correspond to the structure refined in DMSO. Structure validation was performed using the iCing server⁹ from which PROCHECK¹⁰ and WHATIF¹¹ were obtained. Precise counts for specific restraint subsets were obtained using a CCPNMR Analysis macro. a) Numbers span the complete ensemble. One distance restraint violation was present in 1 of the 15 models. b) Alignment of models within the ensemble and with structures 2IWW and 2IWV⁴, 2F1C⁶ and 2JQY¹² were calculated using biopython¹³. The β -sheet extends over residues 7-15, 33-40, 43-50, 69-77, 84-94, 109-121, 126-138, 150-160, 166-174, 193-201, 204-210, 237-243, 248-254 and 273-279. Turn residues are 41-42, 78-83, 122-125, 161-165, 202-203 and 244-247.

Supplementary References

- 1. Cornilescu G, Delaglio F, Bax A. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. *J Biomol NMR* **13**, 289-302 (1999).
- 2. Shen Y, Delaglio F, Cornilescu G, Bax A. TALOS plus : a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. *Journal of Biomolecular Nmr* **44**, 213-223 (2009).
- 3. Bagos PG, Liakopoulos TD, Spyropoulos IC, Hamodrakas SJ. PRED-TMBB: a web server for predicting the topology of beta-barrel outer membrane proteins. *Nucleic Acids Research* **32**, W400-W404 (2004).
- 4. Yildiz O, Vinothkumar KR, Goswami P, Kuhlbrandt W. Structure of the monomeric outer-membrane porin OmpG in the open and closed conformation. *EMBO J* **25**, 3702-3713 (2006).
- 5. Grosse W, *et al.* Structure-based engineering of a minimal porin reveals loopindependent channel closure. *Biochemistry* **53**, 4826-4838 (2014).
- 6. Subbarao GV, van den Berg B. Crystal structure of the monomeric porin OmpG. J Mol Biol **360**, 750-759 (2006).
- 7. Korkmaz-Ozkan F, Koster S, Kuhlbrandt W, Mantele W, Yildiz O. Correlation between the OmpG secondary structure and its pH-dependent alterations monitored by FTIR. *J Mol Biol* **401**, 56-67 (2010).
- 8. Grosse W, *et al.* Structural and functional characterization of a synthetically modified OmpG. *Bioorg Med Chem* **18**, 7716-7723 (2010).
- 9. Doreleijers JF, *et al.* NRG-CING: integrated validation reports of remediated experimental biomolecular NMR data and coordinates in wwPDB. *Nucleic Acids Research* **40**, D519-D524 (2012).
- 10. Laskowski RA, Rullmann JAC, MacArthur MW, Kaptein R, Thornton JM. AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. *Journal of Biomolecular Nmr* **8**, 477-486 (1996).
- 11. Vriend G. WHAT IF: a molecular modeling and drug design program. *J Mol Graph* **8**, 52-56, 29 (1990).
- 12. Liang B, Tamm LK. Structure of outer membrane protein G by solution NMR spectroscopy. *Proc Natl Acad Sci U S A* **104**, 16140-16145 (2007).
- 13. Cock PJ, *et al.* Biopython: freely available Python tools for computational molecular biology and bioinformatics. *Bioinformatics* **25**, 1422-1423 (2009).