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The properties of a non-relativistic magnetised low beta electron-positron plasma in
slab geometry are investigated. The two species are taken to be drift-kinetic while we
retain Larmor radius effects in quasi-neutrality, and inertia in Ohm’s law. A linear anal-
ysis shows that, for small magnetic perturbations, Alfvénic perturbations travel at the
electron Alfvén speed, which is based on the electron mass. We discuss the role of the
displacement current when Larmor scales and Debye scales effects are both retained. We
predict the existence of a kinetic electron Alfvén wave which connects to the K-modes of
Mishchenko et al. (2017) in the electrostatic limit. It is found that linear drift waves are
not supported by the system if the two species have the same temperature. Tearing modes
can be driven unstable by equilibrium current density gradients. Also in this case, the
characteristic time is based on the electron Alfvén speed. Nonlinear hybrid fluid-kinetic
equations are also derived. It is shown that each species is described, to leading order, by
the Kinetic Reduced Electron Heating Model (KREHM) kinetic equation of Zocco and
Schekochihin [Physics of Plasmas 18, 102309 (2011)]. The model is extended to retain
first order Larmor radius effects. It supports collisionless dispersive waves, which can
greately impact nonlinear magnetic reconnection. Diamagnetic effects enter the nonlin-
ear equations via the first order magnetic compressibility. A minimal nonlinear model for
2D low-frequency isothermal pair plasmas is derived.

1. Introduction

Electron positron plasmas have played a crucial role in the theory of magnetic reconnec-
tion. By exploiting the similarities of a simple fluid model [Chacón et al. (2008)] and elec-
tron magnetohydrodynamics (EMHD) with electron inertia [(Chacón et al. 2007; Zocco
et al. 2008, 2009)], Chacón et al. (2008) have shown that dispersive waves are not the
cause of fast magnetic reconnection. This result came as a confirmation of ealier particle-
in-cell simulation results [(Bessho & Bhattacharjee 2005; Daughton & Karimabadi 2007)].
Non-relativistic electron positron plasmas, however, are not merely models which are use-
ful to settle controversies among theoreticians. There is now great excitement about the
creation of a laboratory electron positron plasma [(Pedersen et al. 2012; Saitoh et al.

2014)] which, by itself, justifies new investigations in this field.
In this article we revisit some fluid equations similar to those of Chacón et al. (2008),

but in the framework of gyrokinetics for magnetic reconnection [(Zocco & Schekochihin
2011; Loureiro et al. 2013; Zocco et al. 2015; Zocco 2015; Loureiro et al. 2016)]. The new
aspect here introduced is in the quasineutrality equation. The smallest kinetic scale that
enters the quasineutrality equation is taken to be the Larmor scale, ρe = vthe/Ωc, which
is assumed to be much smaller than the intertial scale de = ρe/

√
β, where β is the ratio of

kinetic to plasma pressure, and Ωc = eB/(mc) is the cyclotron frequency. The inclusion
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of the Debye length is avoided [(Helander 2014; Helander & Connor 2016)], as this would
require a covariant treatment. However, the possible effects of the displacement current
are discussed. Some considerations on linear waves and reconnecting instabilities are
in Sec. (2). In Section (3), we propose an adaptation of the Kinetic Reduced Electron
Heating Model (KREHM) equations [(Zocco & Schekochihin 2011)] to low-beta pair
plasmas. Particular attention is devoted to its isothermal limit. Conclusions are in Section
(4).

2. Linear analysis

In our system, density fluctuations are calculated by taking the zeroth moment of
perturbed distribution function δfe∓ = −e±ϕF0/T0+ he∓ , where the non-adiabatic part
of δf satisfies the electromagnetic gyrokinetic equation of Frieman & Chen (1982)

dhe∓

dt
+ v‖b̂ · ∇he∓ =

e∓F0

T0
J0 (k⊥ρev̂⊥)

∂

∂t

(

ϕ− v‖

c
A‖

)

− c

B0
ez · ∇

(

ϕ− v‖

c
A‖

)

×∇F0 +

(

dhe∓

dt

)

coll

,

(2.1)

where d/dt = ∂t +B−1
0 {J0ϕ, }, b̂ · ∇ = ∂z −B−1

0 {J0A‖, }, {A,B} = ∂xA∂yB− ∂yA∂xB,
v‖ is the particles velocity in the z−direction, parallel to the guide field of modulus B0,
F0 is the Maxwellian equilibrium, x and y are Cartesian space co-ordinates orthogonal
to z, and J0 is the Bessel function. The result is the familiar continuity equation

d

dt

δne∓

n0
= −b̂ · ∇u‖e∓ − iω∗e∓

e∓ϕ

T0
, (2.2)

where we are using the local approximation

vE · ∇n0

n0
= −iω∗e∓

e∓φ

T0
(2.3)

for the background density gradient, which introduces effects associate with the diamag-
netic frequency ω∗e∓ = ∓ivthe/(2Ln)ρe∂y, where ∇n0/n0 ≈ −L−1

n , and (∂h/∂t)coll is
the collisional operator, and k⊥ρe ≪ 1.

Poisson’s equation for the electrostatic potential, ϕ, is derived from the quasineutrality
condition

∫

d3vδfe− =

∫

d3vδfe+. (2.4)

We consider he =
(

e∓ϕ/T0 + δne∓/n0 + 2v‖u‖e∓/v
2
the

)

F0e∓ + ge∓ , where
∫

d3vge∓ =
∫

d3vv‖ge∓ ≡ 0. Then

2
T0

e

(

δne+

n0
− δne−

n0

)

= −ρ2
e∇2ϕ, (2.5)

where we see that
δne+

n0
− δne−

n0
∼ β

eϕ

T0
≪ eϕ

T0
, (2.6)

if k⊥de ∼ 1, with de = c/ωpl, ω
2
pl = 4πn0e

2/(cme), β = 8πn0T0/B
2 ≪ 1, and

de ≫ ρe ≫ λD, (2.7)

guarantees balance in Eq. (2.5). Equation (2.5) is valid, stricly speaking, only if per-
pendicular temperature fluctuations, associated with finite Larmor radius effects, are
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neglected. We consider this regime for the moment, and leave a more rigorous treatment
of temperature fluctuations for the following Section which is concern with nonlinear
physics. Before proceeding, however, we notice that Eq. (2.5) is similar to the quasineu-
trality condition used in Ref. Helander (2014) where the Debye length is replaced by
the Larmor scale. This is a fundamental requirement to avoid the otherwise awkward
condition de ∼ λD, which would imply vthe ∼ c.

We calculate the v‖−moment of Eq. (2.1), to obtain

d

dt

(

A‖ +
mc

e∓
u‖e∓

)

= −c
∂ϕ

∂z
− T0c

e∓
b̂ · ∇

(

δne∓

n0
+

δT‖e∓

T0

)

+ iω∗e∓ (1 + ηe)A‖ +
mc

e
ν
(

u‖e− − u‖e+
)

,

(2.8)

where ηe = n0∇T0/(T0∇n0), ν a constant collision frequency, δT‖e∓ = n−1
0

∫

dv‖2v̂
2
‖he∓

and a simple Lenard-Bernstein collisional model operator has been used [Lenard & Bern-
stein (1958); Zocco & Schekochihin (2011)]. Parallel Ampère’s law gives

e

mc
d2e∇2A‖ = u‖e− − u‖e+ . (2.9)

Equation (2.2), if we take into account of Eq. (2.5), implies that

ω ∼ k‖vA,e and
vthe
c

A‖ ∼
√

βϕ, (2.10)

where vA,e = B/
√
4πmen0 is the Alfvén speed based on the electron mass. The system is

closed with an equation for the parallel temperature fluctuations, derived using a highly
collisional fluid closure, ν ≫ ω, for the flux of energy [Zocco & Schekochihin (2011);
Zocco et al. (2015)]

d

dt

δT‖e∓

T0
=

v2the
2ν

(

b̂ · ∇
)2 δT‖e∓

T0
− i

v2the
2ν

b̂ · ∇ηe∓ω∗e∓
e∓A‖

T0

− iηe∓ω∗e∓
e∓ϕ

T0
− 2b̂ · ∇u‖e∓ .

(2.11)

This is just a choice that falicitates the forthcoming discussion. More precisely, we are
considering the semi-collisional limit [Drake & Lee (1977)]

1 ≪
√

ν

ω
∼ k‖vthe

ω
≪ ν

ω
, (2.12)

with(i) ω ∼ ω∗e. Electron thermal conduction effects are negligible for

1 ≪ k‖vthe

ω
≪
√

ν

ω
, (2.13)

then Eq. (2.11) becomes

d

dt

δT‖e∓

T0
≈ −iω∗e∓

e∓ϕ

T0
− 2b̂ · ∇u‖e∓ . (2.14)

The system could easily be left completely kinetic, then Eq. (2.11) would couple to higher
order moments. However, each of these moments would follow a universal equation when
projected on the basis of Hermite polynomials which allow for an efficient treatment of
the non-isothermal case δT‖ 6= 0 [Zocco & Schekochihin (2011); Loureiro et al. (2013);

(i) The numerical factor does not coincide with the one evaluated by Braginskii (1965), since
we are using a collision operator model.



4 Alessandro Zocco

Zocco et al. (2015); Zocco (2015); Schekochihin et al. (2016)]. In the truly collisionless
case the hierarchy of Hermite moments generates a plasma response which was proven
to be equivalent to the collisionless response evaluated via Landau contour integration
[Zocco (2015)]. The isothermal approximation instead, δT‖ ≡ 0, would be described by
the electron response of the nonlinear model of Schep et al. (1994). In the context of linear
magnetic reconnection, the presence of temperature fluctuations is a technicality that has
an impact on the transition from collisional to collisionless regimes, but it is irrelevant
when one wants to estimate reconnection rates for very small but finite collisionality.
The inclusion of the resonant electron response (i.e. Landau resonance) is not necessary
to obtain corret reconnection rates in the collisionless limit, since the relevant condition
to transition into a collisionless reconnection regime is that the inertial scale exceeds the
resistive one, and this can occur even when collisions are finite (ii). For this reasons, we
are justified to use Eq. (2.11) and yet consider a collisionless limit for linear magnetic
reconnection. Nonlinearly, the role of high order moments that couple to the equation for
temperature fluctuations is very important, as it was showed by Loureiro et al. (2013).

2.1. Waves

2.2. High thermal conductivity

We consider the approximation of high thermal conductivity, therefore

d

dt

δT‖e∓

T0
≈ −iω∗e∓

e∓ϕ

T0
− 2b̂ · ∇u‖e∓ . (2.15)

We use Eq. (2.15) in Eqs. (2.8), we then add the parallel moment equations (2.8) of the
two species, to notice that diamagnetic effects cancel exactly. Thus, we obtain

A‖ −
k‖c

ω
ϕ =

ν

iω

(

1− i
ω

2ν
− 3

4

k2‖v
2
the

iων

)

k2⊥d
2
eA‖. (2.16)

On the other hand, Poisson’s equation (2.5), after using the continuity equations and
Ampère’s law (2.9), becomes

ϕ =
1

2βe

k‖vthe

ω

vthe
c

A‖. (2.17)

By combining Eq. (2.16) and (2.17), we obtain

ω2 =
1

2

k2‖v
2
A,e

1 +
(

1 + i 2νω
)

k2⊥d
2
e/2

, (2.18)

where we are taking the limit

k2⊥ρ
2
e ∼ β ≪ 1. (2.19)

Thus, we find no drift wave, a result also obtained by Helander (2014). In the “collision-
less” regime (ω ≫ ν) we find the dispersive waves

ω2 =
1

2

k2‖v
2
A,e

1 + k2⊥d
2
e/2

, (2.20)

(ii) See, for istance, [Zocco et al. (2015)] where the truly collisoinless electron conductivity,
evaluated via Landau contour integration, is reproduced vey well by a truncated continued
fraction solution generated by a Hermite expansion of the electron distribution function.
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which, at long wavelengths, becomes a shear Alfvén wave,

ω2 ≈
k2‖v

2
A,e

2
, (2.21)

where the factor of 2 in the denominator stems from from unconventional definition of
vA after Eq. (2.10), which only involved half the density.

In the presence of collisions, electron thermal conduction induces a damping at short
wavelengths

ω ≈ −i

2k2⊥d
2
e

k2‖v
2
A,e

ν
. (2.22)

Perhaps not surprisingly, Eq. (2.22) defines the semicollisional scale introduced by Drake
& Lee (1977).

Had we retained the Debye length instead of the Larmor radius in Eq. (2.5) (ρ2e → k2⊥),
we would have found two waves travelling at the speed of light, which we prefer not to
allow for, because the displacement current has been neglected in Ampère’s law (2.9).
This would have been true also in the isothermal limit (δT‖ = 0). Then, Eq. (2.18) would
have been

ω = ±k‖c√
2
, (2.23)

which, again, cannot be accepted. Had one retained the whole hierarchy of moments
coupled to Eq. (2.11), valid for arbitrary collisionality, they would still have entered the
dispersion relation via the k2⊥λ

2
D term and yielded a wave travelling at the speed of

light. We conclude that the collisionless electromagnetic limit must be at least Lorentz-
Poincaré invariant. As already anticipated, the reason is more apparent if one ponders
the consequences of allowing the electrostatic potential to vary on the Debye scale, while
letting the current varying on the inertial scale, de. This implies

λD ∼ de → vthe ∼ c, (2.24)

which demands a relativistic description. An electromagnetic gyrokinetic theory that
retains Larmor radius effects seems to suffer from a similar problem, since in this case

λD ∼ ρe → vA,e ∼ c, (2.25)

where ρe is the Larmor radius and vA,e the Alfvèn speed. However, while Eq. (2.24) is
a condition on the kinetic energy of particles, which can be met in extreme conditions,
Eq. (2.25) is simply stating that Alfvén waves must be allowed to travel at the speed of
light. This is a perfectly acceptable physical requirement provided Maxwell’s equations
are kept consistent with a covariant description, therefore including the displacement
current in Ampère’s law. Some of these aspects have also been pointed out by a recent
work of Stenson et al. (2017).

2.3. Alfvén waves

We could insist on keeping a finite Debye length in our electromagnetic equations. In
this case, the displacement current in Ampère’s law should be retained, since it plays a
crucial role in establishing charge neutrality and generating Langmuir waves. In this case
our model equations will indeed suitable for a covariant formulation. Thus, we consider
a modified version of Eqs. (2.3b) of Helander & Connor (2016) where the diplacement
current has been added
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(

∇2 − 1

c2
∂2

∂t2

)

A‖ −
1

c

∂

∂t
∇‖ϕ =

4πn0e

c

(

u‖e− − u‖e+
)

. (2.26)

Poisson’s law, since we are using the radiation (Coulomb) gauge, ∇ · A = 0, does not
change. Let us first show that the collisionless isothermal response derived using our Eqs.
(2.2) and (2.8) gives the same result of Eq. (3.7) of Helander & Connor (2016) for d−1

e ≪
k⊥ ≪ λ−1

D , which is the regimes of interest of the future APEX experiment Pedersen

et al. (2012); Saitoh et al. (2014) . Now quasineutrality Eq. (2.5)(with ρe →
√
2λD) and

Ohm’s law Eq. (2.8) (with ν → 0) become

1

4

k‖c

ω

[(

k2⊥ − ω2

c2

)

A‖ +
ω

c
k‖ϕ

]

= k2⊥ϕ, (2.27)

and

ω

k‖c

{

A‖ +
d2e
2

[(

k2⊥ − ω2

c2

)

A‖ +
ω

c
k‖ϕ

]}

=
(

1 + k2⊥λ
2
D

)

ϕ. (2.28)

For λ−1
D ≫ k⊥ ≫ d−1

e , when λD ≪ de, we obtain a dispersive Langmuir wave

ω2 ≈
k2‖

2k2⊥
ω2
pl, (2.29)

where ωpl is the plasma frequency. Equation (2.29) indeed coincides with the high fre-
quency limit of the electrostatic wave that solves Eq. (3.7) of Helander & Connor (2016).
For the range of wavelengths of interest, the displacement current does not seem to have
an effect. A full kinetic treatment would damp this wave [See Mishchenko et al. (2017)]

We now turn our attention to Alfvénic perturbations, which should connect to the wave
just found in the electrostatic limit, λD ≫ ρe. We rewrite Poisson’s law and Ampère’s law
for the collisionless drift-kinetic case [Eq. (3.3) and (3.4) of Helander & Connor (2016)]

(

a11 a12
a21 a22

)(

ϕ
vthe

c A‖

)

= 0. (2.30)

where the coefficients were evaluated by Helander & Connor (2016): a11 = 1 + λ2
Dk2⊥ +

xZ(x), a22 = −x2 [1 + xZ(x)] + k2⊥d
2
e, a21 = −a12 = x [1 + xZ(x)] , with x = ω/(k‖vthe),

and Z is the plasma dispersion function Fried et al. (1968). When Eq. (2.26) is used
instead of Eq. 2.9, we have that

k2⊥d
2
e → k2⊥d

2
e

(

k2⊥ − ω2

c2

)

, (2.31)

and

a21 → x [1 + xZ(x)] + xk2‖λDde. (2.32)

For alfvenic perturbations we must expand the plasma dispersion function for large ar-
guments(i), since

x =
ω

k‖vthe
=

ω√
βk‖vA,e

∼ 1√
β

≫ 1. (2.33)

Setting to zero the determinant of the matrix of Eq. (2.30), for k⊥λD ∼ k⊥ρe ∼
√
β ≪ 1,

(i) Notice that Helander & Connor (2016) keep x ∼ 1.



Pairs with KREHM 7

then gives

ω2

k2‖v
2
A,e

= β
d2e

(

k2⊥ − ω2

c2

)

(k2⊥ρ
2
e + k2⊥λ

2
D)
[

1 + 2d2e
(

k2⊥ − ω2

c2

)]

+ k2‖λDde
, (2.34)

which is a kinetically modified Alfvén wave. Since

ω

k⊥c
=

ω

k‖vA,e

vA,e

c
ǫGK ≪ 1, (2.35)

we have
ω2

k2‖v
2
A

= β
d2ek

2
⊥

(k2⊥ρ
2
e + k2⊥λ

2
D) [1 + 2d2ek

2
⊥] + k2‖λDde

. (2.36)

When (k2‖/k
2
⊥)vA,e/c ≡ ǫ2GKvA,e/c ≫

√
β, for ρe ∼ λD, the k2‖λDde in the denominator

is dominant, and we have

ω2 ≈ k2⊥ρ
2
e

v2A,e

λDde
. (2.37)

When ǫ2GKvA,e/c ≪
√
β, the same term is negligible, and we have

ω2

k2‖v
2
A

= β
d2ek

2
⊥

(k2⊥ρ
2
e + k2⊥λ

2
D) [1 + 2d2ek

2
⊥]

, (2.38)

which, in the subsidiary d2ek
2
⊥ → ∞ limit, for λD ≫ ρe gives

ω2 ≈
k2‖

2k2⊥
ω2
pl. (2.39)

This result agrees with (2.29) and with the high frequency solution of Eq. (3.7) of He-
lander & Connor (2016). Our results suggest that, in a low-beta gyrokinetic theory, the
displacement current can be neglected only if

ǫ2GK

vA,e

c
∼ ǫ2GK

λD

ρe
≪
√

β. (2.40)

2.4. Tearing instability

When considering a sheared slab, in the neighbourhood of a resonant surface, we have

k‖ ≈ ky
x

Ls
, (2.41)

where Ls is the shear length. Poisson’s law and Ohm’s law become, respectively

ρ2e
∂2ϕ

∂x2
= −kyvthe

2ω

vthe
c

x

Ls
d2e

∂2A‖

∂x2
, (2.42)

and

A‖ −
kyc

ω

x

Ls
ϕ =

(

i
ν

ω
+

1

2
− 3

4

k2yv
2
the

ω2

x2

L2
s

)

d2e
∂2A‖

∂x2
, (2.43)

which can easily be cast in the form presented in Ref. [(Zocco & Schekochihin 2011)].
Now, we have

−x

δ

(

A‖ −
x

δ
ϕ̃
)

σ
(x

δ

)

= 2ρ2e
∂2ϕ̃

∂x2
, (2.44)

and

−x

δ
d2e

∂2A‖

∂x2
= 2ρ2e

∂2ϕ̃

∂x2
, (2.45)
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where δ = Lsω/(kyvthe), ϕ̃ = (c/vthe)ϕ, and

σ
(x

δ

)

=
1

i νω + 1
2 − 3

4
x2

δ2

. (2.46)

Since we are always assuming ρe ≪ de ∼ δ, we are effectively in a one-fluid limit,
the ultralow-beta discussed in Ref. [(Zocco & Schekochihin 2011)]. We report on the
collisionless case, the results apply to the collisional case in a straightforward manner.
The analysis is known but we reproduce some key steps for the sake of clarity. One can
introduce the function χ(ξ) = ξA′

‖ − A‖, where ξ = x/δin, and δin =
√

4δρ2e, to obtain

one equation for χ̃ = −1 + χ/χ0,

ξ2
d

dξ

[

1

ξ2
+ α2G

]

χ̃′ −
(

ξ2 + λ2
)

χ̃ = λ2, (2.47)

where λ2 = 4δρe/d
2
e, α =

√

2ρ/δ, G = (δ2/x2)(σ−1 − 2), and χ0 is a constant of
integration. The dispersion relation for the rescaled eigenvalue λ2 is then

∫ ∞

0

dξ
χ̃′

ξ
= −∆′δin

2
, (2.48)

where ∆′ is the parameter that measures the discontinuity of the derivative of AMHD
‖

across the reconnection layer, and AMHD
‖ is the stable solution found in the ideal MHD

region, x → ∞ s.t. E‖ → 0.[(Furth et al. 1963)]. As already pointed out in Ref. [(Zocco
& Schekochihin 2011)], there is no need to solve Eq. (2.47) to derive scaling laws for
reconnection rates. We can apply to our case Eq. (B47) that the authors suggest, and
obtain

γ

kyvthe
∼ (∆′de)

2 d2e
ρeLs

. (2.49)

This is the equivalent of the collisionless result found for electron-ion plasmas by Drake
& Lee (1977), where the Alfvén speed is based on the electron mass. The collisional
counterpart is recovered by replacing de →

√

νd2e/γ, to obtain the traditional result of
Furth et al. (1963) (but based on the electron Alfvèn speed). When ∆′δin ≫ 1, the
current is limited by the scale δin, so that ∂2

xA‖ ∼ A‖/δ
2
in. Then the dispersion relation

becomes λ2 ∼ 1, which yields [Basu & Coppi (1981)]

γ

kyvthe
∼ d2e

ρeLs
, (2.50)

which gives the scaling γ ∼ (νd2e)
1/3 of Coppi et al. (1976) in the collisional limit.

3. Improved nonlinear model

The inclusion of the Larmor scale in Eq. (2.5), instead of the Debye length, allowed us
to avoid a covariant treatment. The use of the drift-kinetic model of Zocco & Schekochihin
(2011) helped us, but we did not exploit its full nonlinear potential yet. For this, fields
amplitudes must be ordered more carefully. Equation (2.1), in fact, is nothing more
than a drift-kinetic equation that one could have cosidered regardless of the results of
Zocco & Schekochihin (2011). If one wants to consider the nonlinear E × B frequency
ω ∼ (c/B0)k

2ϕ and the streaming term, after using Eq (2.5), we find that

δn

n0
∼
√

βǫGK . (3.1)
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So, a nonlinear electromagnetic gyrokinetic theory that retains inertial effects must be
developed to first order in a small Larmor radius expansion. This also implies that mag-
netic compressibility now must be retained to first order, since

δB‖

B0
∼ β

eϕ

T0
∼
√

βǫGK ∼ δn

n0
. (3.2)

Perpendicular magnetic fluctuations are ordered by balancing the electrostatic and the
vector potential amplitudes of the gyrokinetic potential χ = ϕ− (v‖/c)A‖, then

δB⊥

B0
∼ u⊥

vA,e

1√
β
, (3.3)

where u⊥ ∼ ck⊥ϕ/B0. In many relevant situations, the spatial variation of all quantities
along the exact magnetic field is required, then k⊥δB⊥ ∼ k‖B0, which implies

u⊥

vA,e
∼
√

βǫ → k⊥ρe ∼
√

β, (3.4)

and is naturally consistent with our fundamental ordering k⊥de ∼ 1. We therefore use

δB⊥

B0
∼ǫGK , (3.5)

which is different from what the continuity equation (2.2) would have implied

δB⊥

B0
∼βǫGK . (3.6)

Having completed the amplitude orderings, in order to obtain fluid-like equations, one
can separate the first two moments of the perturbed distribution function, but considering
first order terms

he∓ =





e∓
(

ϕ(0) + ϕ(1)
)

T0
+

(

δn
(0)
e∓

n0
+

δn
(1)
e∓

n0

)

+ 2
v‖

(

u
(0)
‖e∓ + u

(1)
‖e∓

)

v2the



F0

+ g(0) + g(1) +O(k4⊥ρ
4
e),

(3.7)

where
∫

d3vg ≡
∫

d3vv‖g ≡ 0 to all orders in k2⊥ρ
2
e ∼ β ≪ 1. When magnetic compress-

ibility is retained, the gyrokinetic potential on the RHS of Eq. (2.1) becomes

ϕ− v‖

c
A‖ → ϕ− v‖

c
A‖ +

T0

e
v̂2⊥

δB‖

B0
≡ χ, (3.8)

where
δB‖

B0
= −β

∑

∓

∫

d3vv̂2⊥he∓ . (3.9)

We notice that, due to its parity in velocity space, the new δB‖ term enters in the
equation for density fluctuations. Let us evaluate the density moment of Eqs. (2.1) after
using Eq. (3.8), and subtract the two results obtained, one for each species. To leading
order we have

b̂ · ∇d2e∇2A
(0)
‖ = 0. (3.10)

To next order, Eq. (2.4) gives
(

δn
(1)
e+

n0
− δn

(1)
e−

n0

)

= −ρ2
e∇2

2

eϕ(0)

T0
− ρ2

e∇2

4

(

δT
(0)
⊥e+

T0
− δT

(0)
⊥e−

T0

)

, (3.11)
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which now proves our previous statement on the validity of Eq. (2.5), since here

δT⊥e±

T0
=

1

n0

∫

d3vv̂2⊥ge± (3.12)

are the perpendicular temperature fluctuations. As usual, they drive parallel magnetic
compressional perturbations

δB
(1)
‖

B0
= −βe

2





δn
(0)
e+

n0
+

δn
(0)
e−

n0
+

δT
(0)

⊥,e−

T0
+

δT
(0)

⊥,e+

T0



 , (3.13)

which have to be taken into account in the first order continuity equation. The electro-
static potential is determined by the difference of the first order density fluctuations of
the two species. We then subtract the two first order continuity equations, and obtain
the generalised vorticity equation

d

dt

[

ρ2e∇2 eϕ
(0)

T0
− ρ2e∇2

4

(

δT
(0)
⊥e−

T0
− δT

(0)
⊥e+

T0

)

− βe

(

δT
(0)
⊥e−

T0
+

δT
(0)
⊥e+

T0

)]

=

− b̂ · ∇
[ e

mc
d2e∇2A

(1)
‖ + βe

(

u
(0)
‖e− + u

(0)
‖e+

)]

+
1

B0

{

A
(1)
‖ +

ρ2e∇2

4
A

(0)
‖ ,

e

mc
d2e∇2A

(0)
‖

}

− cT0

B0e







ρ2e∇2

4

eϕ(0)

T0
+

δB
(1)
‖

B0
,
δT

(0)
⊥e−

T0
− δT

(0)
⊥e+

T0







+
vthe
B0

{

ρ2e∇2

4
A

(0)
‖ ,

1

n0

∫

d3vv̂‖v̂
2
⊥

(

g
(0)
e− − g

(0)
e+

)

}

,

(3.14)

where the terms multiplying an explicit βe come from (3.13). We now evaluate all the
terms of the RHS. To zeroth order, Eq. (2.8) is valid, and we have

d

dt

(

u
(0)
‖e+ + u

(0)
e−

)

= −v2the
2

b̂ · ∇





δn
(0)
e+

n0
+

δn
(0)
e−

n0
+

δT
(0)
⊥,e−

T0
+

δT
(0)
⊥,e+

T0





+
v2the
Ln

(1 + ηe)
∂yA

(0)
‖

B0
,

(3.15)

where we see that diamagnetic effects do not cancel. The sum δn
(0)

e+ + δn
(0)

e− can be
evaluated by using the zeroth order continuity equations

d

dt

(

δn
(0)
e+

n0
+

δn
(0)
e−

n0

)

= −b̂ · ∇
(

u
(0)
‖e+ + u

(0)
e−

)

− vthe
Ln

ρe∂y
eϕ(0)

T0
. (3.16)

To first order, only the difference u
(1)

‖e− − u
(1)

‖e+ = (e/mc)d2e∇2A
(1)
‖ enters the vorticity
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equation, thus we obtain

d

dt

(

A
(1)
‖ − d2e∇2

2
A

(1)
‖ +

ρ2e∇2

4
A

(0)
‖

)

= −cb̂ · ∇ϕ(1)

cT0

2e
b̂ · ∇





δn
(0)
e−

n0
− δn

(0)
e+

n0
+

δT
(1)

‖e−

T0
−

δT
(1)

‖e+

T0





+
c

B0







ϕ(1) +
ρ2e∇2

4
ϕ(0) +

T0

e

δB
(1)
‖

B0
,
d2e∇2

2
A

(0)
‖







− cT0

eB0







A
(1)
‖ ,

δT
(0)
‖e−

T0
−

δT
(0)
‖e+

T0







− cT0

eB0

{

ρ2e∇2

4
A

(0)
‖ ,

1

n0

∫

d2vv̂2‖ v̂
2
⊥

(

g
(0)
e− − g

(0)
e+

)

}

+
c

B0







ρ2e∇2

4
ϕ(0) +

T0

e

δB
(1)
‖

B0
,
mc

2e

1

n0

∫

d3vv‖v̂
2
⊥

(

g
(0)

e− − g
(0)

e+

)







− cm

2en0

∫

d3vv‖
∑

s

(

∂hs

∂t

)

coll

.

(3.17)

An equation for g(0) is derived by subtracting Eqs. (2.2) and (2.8) from the gyrokinetic
equation, and using Eq. (3.7). The result is

d

dt
g
(0)
e∓ + v‖b̂ · ∇



g
(0)
e∓ −

δT
(0)
‖e∓

T0
F0



− C[g
(0)
e∓ ] =

(

1− 2
v2‖

v2the

)

b̂ · ∇u
(0)
‖e∓F0

− cT0

eB0

∂y
LT





(

v̂2 − 3

2

)

eϕ(0)

T0
−
(

v̂2 − 5

2

)

v‖

c

eA
(0)
‖

T0



F0,

(3.18)

where

C[g
(0)
e∓ ] =

(

∂h
(0)
e∓

∂t

)

coll

− 2
v‖F0

v2then0

∫

d3v

(

∂h
(0)
e∓

∂t

)

coll

.

Equation (3.18) is the extension of the Kinetic Reduced Electron Heating Model equation
[(Zocco & Schekochihin 2011)] to the case of finite density and temperature gradients
[(Zocco et al. 2015; Loureiro et al. 2016)]. For the evolution of the fields, again, the
important quantities are the difference and the sum the electron and positron equations.
From the difference we obtain

d

dt

(

g
(0)
e− − g

(0)
e+

)

+v‖b̂ ·∇



g
(0)
e− − g

(0)
e+ −





δT
(0)
‖e−

T0
−

δT
(0)
‖e+

T0



F0



 = C[g
(0)
e∓ −g

(0)
e+ ], (3.19)

where we used the fact that b̂ · ∇∇2A
(0)
‖ = 0, and the diamagnetic cancellation. On the
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other hand, the sum gives

d

dt

(

g
(0)
e− + g

(0)
e+

)

+ v‖b̂ · ∇



g
(0)
e− + g

(0)
e+ −





δT
(0)
‖e−

T0
+

δT
(0)
‖e+

T0



F0



 = C[g
(0)
e+ + g

(0)
e− ]

(

1− 2
v2‖

v2the

)

b̂ · ∇
(

u
(0)
‖e− + u

(0)
‖e+

)

F0

− 2
cT0

eB0

∂y
LT





(

v̂2 − 3

2

)

eϕ(0)

T0
−
(

v̂2 − 5

2

)

v‖
c

eA
(0)
‖

T0



F0

(3.20)

and the diamagnetic contribution does not cancel. It remains to specify the collisional
operator. We notice that, for sufficiently large collisionality, temperature fluctuations
must isotropize, that is δT⊥ = δT‖. This is achieved with the simple collision operator
model
(

∂he∓

∂t

)

coll

= ν

{

1

2

∂

∂v̂‖

(

∂

∂v̂‖
+ v̂‖

)

he∓ + 2
v‖u‖,e±

v2the
+
(

1− 2v̂2‖

) δT⊥,e∓

T0
F0

}

. (3.21)

Finally, with the equation for g
(1)
e∓ , we can close our system. This is obtained from

∂h
(1)
∓

∂t
+ v‖

∂h
(1)
∓

∂z
+

c

B0

{

χ(0), h
(1)
∓

}

+
c

B0

{

χ(1) + v̂2⊥
ρ2e∇2

4
χ(0), h

(0)
∓

}

=

e∓F0

T0

∂

∂t

(

χ(1) + v̂2⊥
ρ2e∇2

4
χ(0)

)

− cn0

B0Ln
∂y

(

χ(1) + v̂2⊥
ρ2e∇2

4
χ(0)

)[

1 + ηe∓

(

v̂2 − 3

2

)]

F0

+

(

∂h
(1)
∓

∂t

)

coll.

,

(3.22)

where the equations for all the fields have already been derived. We leave this expression
implicit, and proceed considering the limiting case of collisionless isothermal species. This
is the limit in which the KREHM equations [(Zocco & Schekochihin 2011)] reduce to the
Schep Pegoraro and Kuvshinov two-fluid model [(Schep et al. 1994)]. However, now we
expect a new result. Indeed, even if our quasineutrality equation, Eq. (3.11), looks similar
to a long-wavelength electrostatic ion response

δne− − δne+ → δne = δni ∝ ∇2ρ2iϕ, (3.23)

its physical content is rather different. This is due to the fact that positrons, which
must provide charge neutrality, possess a compressional dynamics that will manifest and
generate a qualitatively different set of equations from the equivalent electron-ion ones.
Let us derive this new set of nonlinear equations for collisionless magnetic reconnection
and turbulence in magnetised isothermal pair plasmas.

We introduce the field-line-following co-ordinate, l, and integrate Eq. (3.10) along the
perturbed field lines. Since, for l→ ±∞, the solution must decay to zero, we set to zero
the resulting constant of integration. The electric field, therefore, to zeroth order satisfies
the ideal MHD equation

∂

∂t
A

(0)
‖ + cb̂·∇ϕ(0) = 0, (3.24)
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with

∇2A
(0)
‖ = 0. (3.25)

We are considering the isothermal response, thus, ge∓ ≡ 0. By inspecting Eqs. (3.18)
and (3.22), we observe that they are homogeneous, and therefore consistent with these
solutions, only if Ln → ∞. We consider this limit.

Then, the generalised Ohm’s law reduces to

d

dt

(

A
(1)
‖ − d2e∇2

2
A

(1)
‖

)

= −cb̂ · ∇ϕ(1) +
cT0

2e
b̂ · ∇ρ2e∇2

2
ϕ(0), (3.26)

while the vorticity equation gives

d

dt
ρ2e∇2 eϕ

(0)

T0
= −b̂ · ∇

[ e

mc
d2e∇2A

(1)
‖ + βeV

(0)
‖

]

. (3.27)

Due to finite magnetic compressibility, this is coupled to the equations for the total

density 2δn(0) = δn
(0)
e− + δn

(0)
e+ and the velocity V

(0)
‖ = u

(0)
‖e− + u

(0)
‖e+

d

dt
V

(0)
‖ = −v2theb̂ · ∇δn(0)

n0
, (3.28)

2
d

dt

δn(0)

n0
= −b̂ · ∇V

(0)
‖ . (3.29)

We found a set of six equations for the six unknown A
(0)
‖ , ϕ(0), A

(1)
‖ , ϕ(1), V

(0)
‖ , and

δn(0). We see that compressible effects enter the vorticity equation (3.27) through βe

because quasineutrality is valid to first order in the small Larmor radius expansion.

The new term, proportional to V‖ = u
(0)
‖e− + u

(0)
‖e+ , couples the electromagnetic system of

equations for ϕ(1) and A
(1)
‖ to the fluid equations (3.28) and (3.29). It is easy to show that

these equations support the compressional sound wave ω = vthek‖/
√
2, which is linearly

strongly damped in the electrostatic limit [Helander & Connor (2016); Mishchenko et al.

(2017)]. In the low-frequency limit ω ≪ kyvthe(∂xA
(0)
‖ /B0) ∼ kzvthe, such damping is

neglible. Thus, Eqs. (3.24)-(3.29) are valid for sub-Alfvénic instabilities, ω ∼ kyvA,eλ,
with λ ≪ √

βe ≪ 1, provided non-linear collisionless heating is negligible (ge± ≡ 0). This
is definitely true for the reconnecting instabilities presented in Section 2.4.

4. Conclusion

We presented a simple study of non-relativistic electron-positron plasmas in a mag-
netised sheared slab. The two species were described by using the drift-kinetic model.
Linear results are presented for nearly electrostatic perturbations, δB⊥/B0 ∼ βǫGK ≪
eϕ/T0 ∼ ǫGK , where ǫGK = k‖/k⊥ is the small expansion parameter of gyrokinetic the-
ory, k‖ and k⊥ are the wave vectors for perturbations parallel and perpendicular to the
equilibrium magnetic field, B0, and β is the ratio of kinetic to magnetic plasma pressure.
We emphazised the role of the electron Alfvén wave. This is supported by the system and
connects, in the electrostatic limit, to high frequency K-modes. Current driven instabil-
ities are described by a formalism equivalent to that of an electron-ion plasma, but with
the Alfvén speed based on the electron mass. A non-linear electromagnetic model is also
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presented. Here magnetic fluctuations are allowed to be of the same order of electrostatic
ones, δB⊥/B0 ∼ ǫGK . The resulting hybrid fluid-kinetic model is an extension of the
Kinetic Reduced Electron Heating Model (KREHM) of Zocco & Schekochihin (2011),
where finite Larmor radius effects are retained. The specific case of isothermal species is
derived in detail, and its limitations are discussed. This constitutes a new set of equations
for nonlinear electromagnetic phenomena in magnetised pair plasmas.

I am grateful to Michael Barnes, Jack Connor, Per Helander, Alexey Mishchenko,
Alex Schekochihin, and Thomas Sunn Pedersen for valuable discussions that helped me
understand many aspects of this work. Part of this work was presented at the first
conference "Frontiers in Plasma Physics", held at the Abbey of the Holiest Trinity of
Spineto (Sarteano, Italy) under the auspices of the Journal of Plasma Physics (Cambridge
University Press).
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