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Abstract 

A set of layer equations for determining the stability of semi-collisional tearing modes in an 

axisymmetric torus, incorporating neoclassical physics, in the small ion Larmor radius limit is 

provided. These can be used as an inner layer module for inclusion in numerical codes that 

asymptotically match the layer to toroidal calculations of the tearing mode stability index, Δ . 

They are more complete than in earlier work and comprise equations for the perturbed 

electron density and temperature, the ion temperature, Ampère’s law and the vorticity 

equation, amounting to a tenth order set of radial differential equations. While the toroidal 

geometry is kept quite general when treating the classical and Pfirsch-Schlüter transport, 

parallel bootstrap current and semi-collisional physics, it is assumed that the fraction of 

trapped particles is small for the banana regime contribution. This is to justify the use of a 

model collision term when acting on the localised (in velocity space) solutions that remain 

after the Spitzer solutions have been exploited to account for the bulk of the passing 

distributions. In this respect, unlike standard neoclassical transport theory, the calculation 

involves the second Spitzer solution connected with a parallel temperature gradient, because 

this stability problem involves parallel temperature gradients that cannot occur in equilibrium 

toroidal transport theory. Furthermore, a calculation of the linearized neoclassical radial 

transport of toroidal momentum for general geometry is required to complete the vorticity 

equation. The solutions of the resulting set of equations do not match properly to the ideal 

MHD equations at large distances from the layer, and a further, intermediate layer involving 

ion corrections to the electrical conductivity and ion parallel thermal transport is invoked to 

achieve this matching and allow one to correctly calculate the layer Δ . 

1. Introduction  

A number of phenomena in tokamaks, such as the saw-tooth oscillations, 

plasma disruptions and confinement degradation, appear to involve tearing 
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mode activity. Studies of the linear tearing stability for hot plasma have 

exploited the separation of scales between a narrow ‘inner’ radial region around 

a resonant surface where reconnection processes occur and the remaining 

‘external’ region where a marginal ideal MHD model is adequate. The ideal 

MHD solution, characterised by a quantity Δ , is matched to a corresponding 

quantity  γωΔ iˆ   calculated from the inner solution in order to determine the 

mode frequency ω  and growth rate, γ . Whereas early studies of linear stability 

used a simple resistive MHD model for the inner layer, present day, hot, 

tokamaks require a much more complete physics model.  

In a previous paper (Connor et al. 2009) we presented layer equations for 

determining the stability of semi-collisional tearing modes in a toroidal plasma 

in the banana regime of collisionality ( jbeffj, ων  where 2~ tjeffj, /fνν is the 

effective collision frequency and cthjtjb /Lvfω ~  the bounce frequency of a 

particle of species j,   tf  << 1 being the fraction of trapped particles, jν  the 

frequency for 90-degree Coulomb collisions and cL  the connection length 

around the torus), therefore incorporating neoclassical physics. The semi-

collisional ordering involves the balance: ethe νvkω /~ 22

||  , where  sθ Lxkk /||  is the 

wavenumber parallel to the magnetic field ( θk  is a poloidal wavenumber, x is 

the distance from a rational surface and sL  is the magnetic shear length), thev   is 

the electron thermal speed and eν  is the electron 90-degree collision frequency, 

so that parallel transport processes compete with the mode frequency, ω .  This 

balance serves to define the semi-collisional width,  1/2222

eθsee v/kLωνδ  .   

These equations were formulated for general axisymmetric geometry, thus in 

this respect extending the work of Fitzpatrick (Fitzpatrick 1989). A consistent 

ordering for semi-collisional theory requires that, as well as the inclusion of 

parallel collisional transport processes, one should also incorporate collisional 

cross-field transport. The equations of Fitzpatrick (Fitzpatrick 1989) did indeed 

include both of these transport processes, albeit using a simplified model 

collision operator. While Connor et al. (Connor et al. 2009) discussed the role of 

cross-field transport based on a Lorentz collision operator, thus ignoring like-

particle collisions, the emphasis was on the basic semi-collisional physics and 

these effects were ignored in the bulk of the paper. The role of the present paper 
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is to rectify this limitation by providing a general axisymmetric formulation, 

including cross-field transport which can be used as a semi-collisional tearing 

mode layer module for inclusion in numerical codes that asymptotically match 

the layer to toroidal calculations of the tearing mode stability index, Δ  (Glasser 

et al. 1975). We also include some additional, relatively small, effects in the 

electron continuity and thermal equations arising from the poloidal magnetic 

drift that were ignored by Connor et al. (Connor et al. 2009). 

The model pitch-angle scattering collision operator used by Fitzpatrick 

(Fitzpatrick 1989) provides a good description for distribution functions 

localised in velocity space around the trapped particle regions, but electric fields, 

parallel pressure gradients and thermal forces due to parallel temperature 

gradients generate distortions of the whole passing particle region. Nevertheless, 

this can be circumvented by the use of the Spitzer functions (Cohen et al. 1950, 

Spitzer & Harm 1953) to account for these drives, as demonstrated by 

Rosenbluth et al. (Rosenbluth et al. 1972), Connor et al. (Connor et al. 1973) 

and Helander and Sigmar (Helander & Sigmar 2002); we shall also adopt this 

approach here. The calculation closely follows neoclassical transport theory but 

differs in one respect. In equillibrium the electron density and temperature are 

constant on a flux surface and the only parallel driving force is due to the 

toroidal electric field, resulting in a role for the Spitzer function related to 

electrical conductivity. In stability theory, however, parallel gradients of both 

density and electron temperature can persist, leading to the need to involve the 

Spitzer function describing the parallel heat flux. The calculation below makes 

one assumption, namely that the fraction of trapped particles is small. This can 

be relaxed, albeit leading to more complex algebra, but the distribution 

functions become less localised and the asymptotic accuracy of the approach is 

compromised.  The derivation of the vorticity equation calls for an expression 

for the neoclassical radial transport of toroidal momentum and we extend 

previous work by Wong and Chan (Wong & Chan 2005) to cover more general 

geometry, though needing to use a model collision operator in order to 

determine the required adjoint function. 

In Section 2 we introduce the gyro-kinetic model for electrons and ions. An 

appropriate ordering scheme is used to obtain solutions for the ion and electron 

distribution functions in Section 3. To complete these solutions, equations for 

the perturbed densities and temperature of the two species are required. These 
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·are obtained in Section 4. The numerical values of various averages of collision 

frequencies that are required in Sections 3 and 4 are listed in Appendix A.  

Section 5 develops Ampère’s law and the vorticity equation to complete the set 

of equations needed to calculate  γωΔ iˆ  . A calculation of the neoclassical 

radial transport of toroidal angular momentum for general geometry, required in 

the development of the vorticity equation, is performed in Appendix B. Section 

6 introduces a set of convenient normalisations for the set of equations.  In 

Section 7 we discuss an intermediate radial region needed to connect the 

solutions of this set of equations to the ideal MHD region where  is defined. 

Finally, we draw some conclusions in Section 8.  

 

2. The Gyro-kinetic Equation 

We describe the plasma species j by the gyro-kinetic equation (Tang et al.1980): 
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where  b is a unit vector along the magnetic field, ||v  is the particle velocity 

along the magnetic field, Φ  is the perturbed electrostatic potential, ||A  is the 

perturbed parallel component of the vector potential, ||δB  is the parallel 

component of the perturbed magnetic field and we have written the perturbed 

distribution as          

                              
j

j

j

jjj f
T

Φe
Lgfδ 0 iexp


 ,           (2) 

with perturbation time dependencies:  tωiexp   .  Here, jj Ω/L bvk . , with  

k  the wavenumber and v  the velocity perpendicular to the magnetic field, is 

the gyro-phase factor, the operation A  is a gyro-phase average over the quantity 

A, 10,J  are Bessel functions of argument: jj /Ωvkz  ,  

       χT/vmexpχT/2πmχnf jjjjjj 223/2

0   are Maxwell distributions, with χ  the 

poloidal flux, and  
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with v the particle speed, jΩ  the cyclotron frequency of species j, κ  the 

curvature vector,   the toroidal mode number of the perturbations and all 

gradients are taken at constant  vμ, , with Bvmμ j /22

  the magnetic moment, 

or  vλ,  with 22 v/mμλ j  (thus  ||signwith,1 vσλBσvv||  ).  If θ  is 

defined so that the safety factor θ /q  .. BB  , where χI  B ,  is a 

flux function, then 
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          where dq/dχqx;qmq    with sχχx  , sχ  being the resonant surface 

where  sχqm  ; prime denotes a derivative with respect to χ , or equivalently, 

x. 

Thus 
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Assuming both species are magnetised with 1 jΩ/vk , we expand  

  jj LL i1iexp   and the Bessel functions for small jz . We also introduce jh : 
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where   Ψ/ωA || i|| , so that the parallel electric field, ||E , is given by 
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Then the fundamental kinetic equations are 
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We note that relations (2) and (8) imply the perturbed density jn~  is given by 
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where jn̂  is the leading contribution to the density from jh . 

The perturbed and equilibrium quasi-neutrality conditions,  

        0
~~~ nnn;nnn ieie  ,                       (12) 

allow us to obtain 
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Similarly from eqns. (2) and (8) we can obtain the perturbed temperatures: 
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where      j

23 3/22d32ˆ hT/vm/TT jjji   v   is the contribution from  jh   etc. 

3. The Ion and Electron Solutions 

(a)  The Ion Solution 

We consider the ‘collisional’ case: ωνii  . Introducing the proton charge, e, we 

have  
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We solve this equation by introducing an ordering scheme in terms of a small 

parameter, iε , where biiθdrbiiiidr ωε~ω~ω;ωε~ν~ω 2
; we also order 

ii ε~z .   Although we shall later assume a small number of trapped particles, 

1tf , we do not order it in iε . The radial magnetic drift frequency, driω , 

exceeds the azimuthal drift frequency, θdrω , because of the narrow radial width 

of the semi-collisional layer.  

Writing .2i

2

10 ..hεhεhh iiiii  , the lowest order solution satisfies 

                             σx,λ,v,hh
θ

h
i

i
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0 0 
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while in first order we obtain 
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where we note 
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Thus   ih1  for passing particles can be annihilated by applying the operation: 

  ||/v...B : 



8 

 

 
 

   


 θR/θR...
θ

θ
/

θ

θ...
... dd

dd 22

.. BB
                                                      (19) 

since 

 
I

qRq

θ

21





 .. BB
 .             (20) 

For trapped particles we integrate along the bounce orbit, summing over σ  in 

the usual way, to obtain the constraint 
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where the integration is now between bounce points. This determines ih0 , 

yielding: 

            i

i

ii

i f
T

T
u

n

n
h 0

2

0

0

ˆ

2

3ˆ




















                                                       (22) 

where jj T/vmu 222   with  j = i. 

The equation for ih1 can then be integrated to give 
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where  iH1 remains to be determined. This can be rewritten as 
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where ii Tnp 00  , on using eqns. (13) and (14). Note that the quantities ip~
 and 

iT 
~

 thus defined, depend on ω . 
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The equation for ih2 is 
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(where, for most purposes, we can ignore the small ion – electron collisional 

term, but see Section 7 later), which provides the constraint 
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For the ions we take the model pitch-angle scattering collision operator that 

conserves momentum (Rutherford et al. 1970):  
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The constraint (26) yields an expression for iH1  and we find: 
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where   cλλH   is the Heaviside function, and 
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Using eqn. (28) and integrating over velocity space:  
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where we have defined the symbol   .....   by 
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where  tc ff 1 , with   tf  the trapped particle fraction defined by 
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Solving self-consistently for *

i||BU , substituting for (i)A1  and  (i)A2  from eqn. (24) 

and using the values of the collisional integrals from Appendix A, we obtain:     
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Then one can calculate the ion parallel flux from eqn. (28), to give                 
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It remains to address the determination of ii Tn ˆandˆ ; in̂  is already given in 

terms of n~ by eqn. (13), whereas iT̂  is obtained by applying the operator 
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32 d2... /vmi  to the next order equation,  
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since it annihilates the first term on the left by means of the flux surface average 

and the collision term,  ii hC 2 , due to its conservation properties. This will be 

elaborated in Section 4 (b). 

(b)  The Electron Solution 

For the electrons, eqn. (10) becomes  
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We employ a related ordering scheme to that of the ions in order to solve eqn. 

(38) for the electrons, introducing another small parameter, eε , where 

beeθdrebieeedr ωε~ω~ω;ωε~ν~ω 2
. However, the semi-collisional 
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electron model requires the additional ordering: ctheeeth,|| /Lvε~vk 2 , where 
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As in the case of the ions,  eh1  can be annihilated for passing particles by 

applying the operation:   ||/v...B . For trapped particles we again integrate along 

the bounce orbit, summing over σ  in the usual way. Thus we obtain the 

constraint 
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where now ee T/vmu 222   . The energy exchange term in the electron-ion 

collision operator is neglected (see eqn. (47) below), which makes the 

perturbation in the electron temperature independent of that in the ion 

temperature. 

The equation for eh1 can then be integrated to give 
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where the function eH1  remains to be determined. This result can be rewritten as 
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with e0e Tnp 0 , where again we have used eqns. (13) and (14). 

The next order equation is 
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leading to the constraint 
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which determines  σx,λ,v,H e1 . 

The electron collision operator takes the form  
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so that the constraint equation becomes 
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with 
   21

eseses hhh  . Now that the collision operator is acting on a localised (to 

the trapped and barely passing region) distribution function we can use a model 

pitch-angle scattering operator for the electron-electron collisions (Rutherford et 

al. 1970). 
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To remove the ion flow we write 
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The functions 
 21,

sh are given by (Cohen et al. 1950, Spitzer & Harm 1953): 
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          (52) 

where eei ντ 0/4π3  and (2)(1) and DD  are related to the normalised responses 

to a parallel electric field and thermal force, tabulated in Spitzer and Harm 

(Spitzer & Harm 1953) (to be precise, D/BDD/AD 2and (2)(1)   as given in 

Tables I and II of Spitzer & Harm 1953) 

So, on defining eieee ννν  ,  the constraint equation becomes 
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where 
)2()1(

sss hhh  . Thus 
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Integrating eqn. (54) in λ , we find  
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Using the definition of *

e||U  in eqn. (50) and integrating over velocity space, we 

can calculate   se

*

e|| hhU 1   self-consistently. However, as argued by Helander 

and Sigmar (Helander & Sigmar 2002), )0(fBUBU ti||

*

e||  ,  provided  

 eeit /νν0f  . Thus result (55) simplifies to  
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It remains to determine ee Tn ˆandˆ ; these are obtained in Section 4(b) by 

applying the operators   v
3d... and      v

32 d/2... vme  to the next order 

equation: 
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 .        (57)

       

4. The Perturbed Density and Temperatures 

In this Section we derive equations for the perturbed electron density and 

temperature and ion temperature in terms of the perturbed potentials Φ  and Ψ . 

The ion density perturbation can be obtained from the leading order quasi-

neutrality condition, see eqn. (12).   

The other perturbed field that these quantities depend on, is ||δB , which is 

obtained from the perpendicular component of Ampère’s law. The 

perpendicular current can be calculated from the first order in a Larmor radius 

expansion of the distribution function (2), again recalling eqns. (8), (22) and 

(42).  Introducing this result into the perpendicular component of Ampère’s law 

yields (Tang et al. 1980) 

     ieie2

||
TTnTTnp

B

pμ

B

Bδ ~~~~;
~

0
0  .                             (58) 
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In Section 5 we will discuss the parallel component of Ampère’s law and find 

that in leading order, Ψ  is independent of the poloidal angle, θ .  Since jn̂  and 

jT̂  are also independent of θ , it follows from eqns. (13) and (14) that jn~ , jT
~

  

and   Φ   are  also independent of  θ . 

(a)  The Perturbed Electron Density and Temperature 

As mentioned earlier, the determination of  ee Tn ˆandˆ  is accomplished by 

applying the annihilators        vv
323 d2...andd... /vme   to the third order 

equation (57), which both eliminate eh3 . 

The first operation results in 
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                            (59) 

Here one can recognise the first three terms on the left-hand-side as representing, 

respectively, the surface-averaged contributions to the electron continuity 

equation of the divergences of the radial flux, erΓ  (which we will see below is 

related to Pfirsch-Schlüter and neoclassical radial transport), the parallel flux,  
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e||Γ , and the ‘azimuthal flux’, 
Az

eΓ  (Fitzpatrick 1989), while the fourth 

corresponds to the contribution from classical radial transport. 

The second, the energy moment, takes the form 
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(60) 

with a similar interpretation in terms of fluxes. 

It is helpful to separate the electron and ion distributions into a Pfirsch-Schlüter-

like, PS

eh ,  and a banana neoclassical part, Ban

eh , and express the quantities 

jj Tn ˆandˆ  in terms of  jj Tn
~

and~ . Thus for the electrons we write 

      
Ban

e

PS

eese hhhh 1               (61) 

where: 
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and: 
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where we have substituted for i||U  from eqn. (36). 

Similarly, it is convenient to separate ih1  in eqn. (28) into Pfirsch-Schlüter, PS

ih , 

and banana contributions, Ban

ih ,   writing: 
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i
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Flow

ii hh hh 1 ,            (64) 

where 
Flow

ih  describes the mean flow: 
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while 
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and   
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The first term represents a drifting Maxwellian and therefore does not 

contribute to the ion-ion collision term. 

(i)  Electron Radial Fluxes 

First we consider the radial fluxes arising from classical transport. Recalling the 

definitions of  jh0  and jL  and noting the conservation of momentum in like-

particle collisions, we obtain 
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 where r represents a ‘radial-like’ co-ordinate labelling flux surfaces, rv  being 

the corresponding radial component of the velocity. We note the gyro-

correction to the scattering target ion distribution has the form 
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The velocity integral can be evaluated by observing that it involves the matrix 

elements of the collision operator between Laguerre polynomials given by 

Helander and Sigmar (Section 4.5 of Helander & Sigmar 2002). The resultant 

contribution from eqn. (68) is the familiar Braginskii expression: 

  0

0

2

2

2

2

2

~

2

3~

d

d

d

d
n

T

T

p

p

xB

χ

τe

Tm
Γ

r e

e

eei

eeC

er, 















                (70) 

A similar calculation for the classical heat flux results in  
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so that the classical energy flux, C

er,

C

er,

C

er, ΓqQ (5/2) , satisfies 
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Turning to the leading term in eqn. (59), we can eliminate eh2  by integrating by 

parts in θ  and using eqn. (45) to obtain 
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where the first term vanishes if the equilibrium is up-down symmetric, which 

we take to be the case here. Thus, finally, we recognise this contribution as the 

divergence of the neoclassical radial flux 
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Likewise, for the thermal equation, we find  
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To evaluate the velocity integrals in eqns. (74) and (75), we recall the result (33). 

Considering the Pfirsch-Schlüter and banana contributions separately, we 

introduce their respective distribution functions. From momentum conservation 

it is again clear that only e - i collisions contribute to eqn. (74) in both cases. 

For the Pfirsch-Schlüter contribution the calculation has the same structure as 

the classical case, with the substitution  ||r vv   in the distribution function. 

However, since we are now considering the difference  ese hh 1  , the scattering 

‘ion distribution’ is effectively at rest when evaluating the collisional matrix 

elements.  Recalling eqn. (62), the result is  
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For the heat flux, we obtain 
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                                     (77)                                                                                                                                                                                          

Finally, we consider the banana contribution. For the classical and Pfirsch-

Schlüter contributions we used the exact collision operator, since the 

distributions were not localised in velocity space. However, the banana 

contribution to sse hh 1  is localised and it is sufficient to use the model collision 

operator (50), which leads to        .                   
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Substituting expression (63), using result (36) and approximating 

i||

*

e|| BUBU   as discussed below eqn. (55), we obtain 
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Introducing the numerical values of the various collisional averages given by 

the integrals in Appendix A, this becomes: 
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Similarly, we find 
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leading to 
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(ii) Parallel Electron Fluxes and Plasma Current 

The contribution to eqn. (59) from the parallel flux e||Γ  is 
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The part arising from the Pfirsch-Schlüter-like part of eh1  can be calculated 

directly, but for the banana contribution we take advantage of the self-

adjointness of the collision operator to circumvent the fact that eh1  is not 

localised in pitch-angle, while still allowing us to use the model collision 

operator (Helander & Sigmar 2002). 

We first consider the parallel current, which is needed for Ampère’s equation, 

but also provides an expression for e||U . We can readily calculate PS

||j ,  the 

current arising from the Pfirsch-Schlüter-like contributions to the electron and 

ion distribution functions given in eqns. (62) and (66), obtaining: 
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which becomes 
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 To calculate the banana regime neoclassical contribution, we write 

    ese||s||s||||s|||| hhvejjjjj   1

3d v ,                     (86) 

where 

   es||i||s|| hveeUnj v
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0 d ,                       (87) 

so that 
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which reduces to 

    
 

  












e

e
e*

e

e

ee

e

e

e
eis||

T

eΨ
η

ω

ω

T

T

T

Ψ-Φe

p

p

m

T

BqR

xqI
τenj 1.341

~

0.34
~i

1.97
0

20


          (89)      

Now, recalling eqn. (48), we can write  
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Using the self-adjointness property of   1

se hC , we obtain 
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so that 
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where we have used the definitions (52) and the model electron-electron 

collision operator (50), since  
    21

1 esese hhh   is now localised. Evaluating this 

expression using result (63)  
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leading to  

     

 

 
 



























 








e

e

e

e

e*

ee

e

2

e

eiet

e

i

e

e

e

etBan

||s||

T

T

T

eΨ
η

ω

ω

T

Ψ-Φe

p

p

RmqB

τepxqIBf

T

T

T

T

p

p

B

BIpf
jj

~

0.171.171
~1i

2.58

~

1.95

~

1.19
~

1.67

0
2

0

0
2

0


             (94) 

Combining expressions (85), (89) and (94), we obtain 
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The first term is the usual Pfirsch-Schlüter current while the second term rep-

resents the effects of the parallel electron pressure gradient, the parallel electric 

field and parallel thermal force, whereas the final term is the bootstrap current. 

We can now calculate e||U  from  
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with i||U  given by eqn. (36). The contribution to the electron continuity equation 

from the divergence of the parallel flux (83) is then: 
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The energy equation involves the parallel heat flux  
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We can decompose e||Q  as  
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The Spitzer contribution is given as  
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resulting in 
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Introducing the Pfirsch-Schlüter part of eh1 , eqn. (62), we can calculate  the 

corresponding Pfirsch-Schlüter contribution to  e||Q  directly, obtaining : 
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We formulate the banana neoclassical contribution for e||q  by analogy to the 

neoclassical current, e||j , as in eqn. (92), so that it can also be evaluated using 

the localised distribution function (63): 

   
      











  ei||

e

||e

ssee||e
ei

se||e|| fU
T

vm
hhhνv

u

uD
T

τ
qq 0

21

1

2
3d

π3

4
v         (103)                       

Using expression (63), we obtain the banana contribution to  e||q :                 
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Inserting the results (94), (101), (102) and (104) into eqn. (99), we finally obtain          
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 (iii)  Azimuthal Electron Fluxes 

Finally, we require the contributions from the azimuthal drift terms that appear 

in eqns. (59) and (60).  
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This can be expressed as   
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Similarly, we also obtain 
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  (b)  The Perturbed Ion Temperature 

In the case of the ions there is no need to obtain the ion density equation for   in̂  

as it is determined by quasi-neutrality and given in eqn. (13). To obtain the 

equation for iT̂  we apply the operator    v
32 d/2... vmi  to eqn. (37).  
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Integrating the first term on the left hand side by parts and substituting for ih2  

from eqn. (25), it can be written as the divergence of the neoclassical ion heat 

flux  
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The second term is the ion azimuthal flux and the third is the ion classical heat 

flux: 
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This can be evaluated in a similar manner to the electron case, resulting in  
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where   Λe/nTmετ 3/2

iii ln4π/4π3 4
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0 .  

The calculation of the Pfirsch-Schlüter heat flux proceeds similarly to the 

electron one and yields 
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while the banana regime contribution is 
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Finally, the azimuthal drift contribution is  
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(c) Summary 

Here we collect together the above results to obtain the final form of the 

equations determining the electron density and temperature perturbations in 



34 

 

terms of the perturbed fields Φ and Ψ . The first, eqn. (59) can be written in the 

form 
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where /qB/RxqIk||

2

0 1  , θqkθ    and we have substituted eqn. (58) for ||δB .  

From eqn. (70) we have 
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From eqn. (76) 
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From eqn. (80) 
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From eqn. (97), we have defined 
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while from eqn. (107) we  have defined 

          
 

 
  0

0

22

2

2

002

1
~

11

n
T

eΨ
η

ω

ω

T

Ψ-Φe

p

p

θ

B
θχ.

RB
Bpμ

χBθeq

T
Γ

e

e

e*

ee

e

eAz

e
















































 .                 (107a) 

Similarly, for eqn. (60) we obtain 
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where, from eqn. (72), 
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from eqn. (77), 
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and from eqn. (82),  
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 while, from eqn. (105), 
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and, from eqn. (108), 
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Summarising for the ions, we can rewrite eqn. (109) as: 
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where, from eqn. (112), 
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from eqn. (113) 
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from eqn. (114) 
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and, finally, from eqn. (115): 
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5. The Field Equations 

The set of equations is completed by using the quasi-neutrality condition (to 

higher order than introduced in the previous Section) and the parallel Ampère’s 

law, as in Connor et al. (Connor et al. 2009). These will only be briefly 

discussed here, focussing on any differences from the work of Connor et al. 

(Connor et al. 2009) arising from the more complete description of the electron 

and ion continuity equations in the previous Sections and, effectively, a novel 

calculation of the neoclassical angular toroidal viscosity. 

 A convenient approach to imposing quasi-neutrality in higher order is through 

the vorticity equation, obtained by taking the charge density moment of the 

gyro-kinetic equations for both species and adding them. Setting ie nn ~~  then 

provides one relationship between Φ  and Ψ . The parallel Ampère’s law 

provides a second and hence these two equations lead to an eigenvalue 

condition on ω , provided the solutions of the various continuity equations for 

ie TT,n
~

and
~~   are expressed in terms of Φ  and Ψ . 
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(a) The Parallel Ampère’s Law 

The parallel Ampère’s Law states that 

    ||

||
jμ

x

A
χ 02

2
2

d

d
                               (119) 

We expand eqn. (119) in the localisation, x, expressing ||A  in terms of Ψ  as 

defined above eqn. (9), which we expand in the form 
    ...ΨΨΨ  10

.    In 

leading-order we have  
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while in next order 
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leading to the solubility condition 
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where, from eqn. (95), 
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 (b) The Vorticity Equation 

The vorticity equation was obtained in the previous publication (Connor et al. 

2009). Here we list the key steps in its derivation and quote the final result. The 

procedure was to add the velocity moments of the gyro-kinetic equations for the 

electrons and ions, take the long wavelength limit: 12

i

2 ρk  and exploit the 

lowest order quasi-neutrality condition: ie nn ~~   , to obtain 
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where the divergence of the parallel current has been expressed in terms of 

parallel gradients of  ,i.e., ΨA||  through Ampère’s law, eqn. (119). The 
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distribution functions  jg  in the velocity space integrations over the magnetic 

drift terms are expressed in terms of the quantities jh  and we note the final term 

vanishes for up-down symmetric equilibria. The expansions 

      ....hhhh...;ΨΨΨΨ jjjj 210

210   are introduced and the equation 

for Ψ  solved order by order. 

In leading order one finds )0(Ψ  is independent of θ , while the equation for  )1(Ψ  : 
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can be integrated, introducing a constant of integration which can in turn be 

determined through a periodicity condition in θ  on )1(Ψ . Applying the same 

periodicity condition on )2(Ψ  in second order provides the required equation for 

)()0( xΨ :          
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where we have substituted for ||δB  from eqn. (58) (which has the effect of 

replacing the B  drift by the curvature drift) and substituted for  
)1(Ψ  from the 

solution of eqn. (125).  The term involving   
j

jjjjj LgCL e 2

0

23d v   represents the 

contribution from the classical radial transport of toroidal momentum, 

calculated in eqn. (B.2) of Appendix B. 

It remains to evaluate the term involving the jh , which we do by repeated 

application of the gyro-kinetic equations for jjjj h,h,h,h 3210 and  with 

integrations by parts in θ   and noting momentum conservation in ion-ion 

collisions. The result can be expressed as 
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The first term can be recognised as involving the neoclassical radial transport of 

toroidal angular momentum: 
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where the first non-vanishing contribution is from j3h . The right-hand-side of 

expression (127) thus reduces to  
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Further use of the gyro-kinetic equation and integrations by parts in θ  implies  
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Assembling all the contributions to eqn. (126) and substituting for  i||U from eqn. 

(36), 
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Here we have introduced the quantity HFEDI  , in the notation of 

Glasser et al. (Glasser et al. 1975), and L, appearing in the work of Hahm 

(Hahm 1988), where 
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The quantity ID  plays a role in the Mercier stability criterion: 04/1 ID  

(Mercier 1960) while the combination L+H in eqn. (131) is given by 
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An expression for 
NCΠ  has been given by Wong and Chan (Wong & Chan 

2005):   22332

0 d
~

d0.19 x/Te/τfTmnΠ iiitii

NC  , where 2/iii ττ  , but we 
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generalise this in Appendix B for arbitrary axisymmetric toroidal geometry, to 

obtain the total collisional toroidal angular viscosity: 

            
NCC ΠΠΠ  ,                            (134) 

where 
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    with  

        







Max/B

λB

λBλ
λ

B

B
G

1

0 1

1
d

1

4

15

2

2
2

0 ,                            (137)           

 

 


















Max Max

MaxMin

/B /B

λ Bλ

λ

B

λB

λB
λλB

/B

λB

λλ

B
B

/B

B

λB

λB

λBB
λλ

B

G

1

0

1

1

d1

1

1
d

8

15

1

0 1

d1

16

15
1

0

1

1

1
d

4

15

3

2

2
2

2

1

 ,               (138)   



46 

 

               









Max/B

B

λB

λB

λBB
λλ

B

B
G

1

0

1

1

1
d

1

4

15

2

2
2

2  ,                                          (139) 

              
 

























Min/B

B

λB

B

λBB

B

λB

λB
λλ

B
G

1

0

111

1

1
d

4

15

2

2
2

3

         (140) 

  and 

   

























Max/B

B

λB

B

λB

B

λB

λBλB
λλ

B
G

1

0

111

1

1

1

1
d

4

15

2

2
2

4 .    (141)                                                                                                                                                                               

Insertion of the results (135) and (136) completes the form of the vorticity 

equation (131). Analytic evaluations of the coefficients in eqn. (136) in the large 

aspect ratio limit are presented in Appendix B and are consistent with those 

given by Wong and Chan (Wong & Chan 2005). 

 

6. Normalised Equations  

It is convenient to introduce a new radial co-ordinate normalised to the semi-

collisional width, eδ  (but now expressed in terms of flux co-ordinates) and a set 

of normalised parameters 
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where eδ  is the semi-collisional width in flux coordinates. As a consequence, 

the normalised electron continuity equation (116) becomes: 
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the electron thermal equation (117):       
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the ion thermal equation (118): 
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Ampère’s Law (122), with result (123) for ||j : 
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and the vorticity equation (131): 
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where         
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with  
(4)(3)(2)(1)(0) and, ,, GGGGG  given in eqns. (137) - (141), respectively. 

Because the ion thermal conductivity exceeds that of the electrons by  ei mm0 , 

the ion temperature is flattened over the semi-collisional width and one can treat 

it as constant. In particular, the terms involving the ion temperature gradients in 

the classical and neoclassical toroidal viscosity (148) can be neglected, 

simplifying it considerably.  It is only in the region    1/4

ei /mm~s  that one 

needs to solve the ion thermal differential equation. As we shall see the electron 

equations simplify in this region of large s, thus simplifying the form of the ion 

thermal equation. 

Equations (143) - (146) simplify if we ignore the classical and Pfirsch-Schlüter 

transport relative to the larger banana contribution. Furthermore, recognising 

that the azimuthal fluxes are small and that 12 2

00  /Bpμβ ee , we obtain the 

following simpler set.  The electron continuity equation (143) becomes: 
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the electron thermal equation (144) becomes:   
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the ion thermal equation (145) becomes: 
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and Ampère’s Law (146) becomes: 
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These approximations do not affect the vorticity equation (147). 
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7. Boundary Conditions and an Intermediate Region 

The purpose in solving the above layer equations is to match solutions of a 

given parity at s = 0 to the marginal ideal MHD solutions at large s, which 

involve the tearing mode parameter, Δ , in order to determine the eigenvalue 

ω̂  in terms of Δ .  In this limit, when 0,ˆ ω   0 ψE||  ,  

ψ
nTω

p
p

e 0

0

ˆ 


  and we can ignore the momentum flux, the solutions of eqn. (147) 

should behave as     I

ν Dν,s~ψ 
2

1
 in the limit s .  However, as 

they stand, they do not lead to   0ψ . In fact, it is necessary to consider an 

intermediate region consisting of two sub-layers: (i) a transition layer around 

 1/41/2

1 eit /mmf~ss  , where an ion contribution to the electrical conductivity 

enters; and another (ii), around somewhat larger values of s,  

   1/41/2

1 eii||,e||, /mm~/χχ~ss  , where parallel ion thermal transport forces 

  ωψ/η/TTt ieii
ˆ   and ensures    0ψ . Clearly 1s  and 2s  are not very 

different and we can treat them together.  

Let us first consider the simplification of the governing equations when 1s .  

The electron continuity equation (143) becomes: 
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However, this last equation is dominated by its second term, which requires:  
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A similar balance, but with different coefficients, appears in the electron 

thermal equation (144), so we can conclude that: 
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so that eqn. (153) simplifies further:  
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With the results (154), the vorticity equation (147) reduces to 
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where we have neglected the viscous term, which is valid for 

   1/23/8 ˆ
e*eei /νδ/mms  , with eδ̂  the semi-collisional width normalised to the 

plasma minor radius and e*ν  the electron collisionality parameter. Ampère’s 

law (146) retains its form. 

However, the simplified vorticity equation (157) does not reduce to the ideal 

form and we must consider the intermediate layer:  21 s,~ s s .  To address 

this. we first calculate the correction to the ion parallel velocity arising from the 

parallel ion pressure gradient     this is achieved by modifying eqn. (21) to give 

an equation for the correction to the ion distribution function  ih1
ˆ  

     iiii

||

h
Rq

xqI
hC

v

B
021

1iˆ 



.           (158) 

Using the model ion-ion collision operator (27), we can calculate the resulting 

modification to the ion velocity arising from  ih1
ˆ

 , obtaining 
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where we have used the results in eqn. (155), which are valid at large s.         

We see that in the absence of the small ion-electron collision frequency, the 

friction with trapped ions determines the bulk ion velocity. This velocity 

changes the parallel electron velocity term proportional to 
2s  appearing in the 

electron continuity equation (143). This additional contribution modifies the 

behaviour (155) at large s: 
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where, using results for the collision integrals from Appendix A, 
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In this limit, eqn. (146) reduces to 
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We can also calculate the corresponding parallel ion heat flux, finding it is 

dominated by the convective component due to the inverse dependence on the 

trapped particle fraction of the parallel ion flow in eqn. (159):  
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This modifies eqn. (145):   

 

   
  ,1.59

ˆ

21

ˆ
1

3

5

ˆ

1
1

ˆ
1

ˆ

21
1

3

5

ˆ

0.46111

d

d1

ˆ

2.63

2

2

00

2

00

2

2

2222

2

22

2

2

2

2

2

2

2

ψsδ
ω

η

T

T

B

pμ
C

ω

κ

T

T

ω

η

DT

T

ω

ψ

T

T
ηη

T

T

ω

η

T

T

B

pμ

D
ψ

ω

η

T

T
t

t
R

I

B

f

BBR

I

RB

χ

sR

I

Bτm

τm

ω

κ

D

i

i

i

ee

e

ii

e

i

e

i

ie

e

ii

e

iei

e

i

i

i

t

ie

eii








































 





































































































   

                                    (164) 

where  
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and we have again used evaluations of collision integrals given in Appendix A. 

The new terms proportional to iδ  dominate eqns. (162) and (164) when 

21 s,ss   and require  
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When all of conditions (155) and (166) are satisfied we see that eqn. (157) does 

indeed reduce to the marginal ideal MHD equation: 

                0
4

1

d

d
2

2









 ψDsψ

s
s I  .          (167) 

To discuss the transition though the intermediate region we combine eqns. (157) 

and (146), modifying the latter to take account of eqn. (160). 

 Using the expressions (155) for n and et  to express  ipp and   in terms of  

itψ, and , we obtain 
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Then eqns. (157) and (168), with it  given by eqn. (164), provide a fourth order 

system of equations for ψand  to connect the semi-collisional electron 
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layer solutions to the ideal MHD region through the region 21 s,~ s s . Their 

boundary conditions at large s are to match to the correct ratio of large and 

small solutions arising from the ideal region and ensure  0ψ  . Thus the 

jump in the ratio of large to small solutions through this layer, and hence the 

layer Δ  , can be computed. 

 

8. Conclusions 

We have derived a set of equations to describe the linear stability of semi-

collisional, neoclassical toroidal plasma in general geometry, albeit provided 

that: (i) the fraction of trapped particles is small to justify the use of a model, 

pitch angle scattering, collision operator; and (ii) that the ions are magnetised. 

The assumption that the ions are magnetised may require low magnetic shear or 

ei TT  , otherwise a non-local model for the ion response will be needed 

(Fitzpatrick 1989).  

This set of equations comprises a pair of second order radial differential 

equations for the electron density, n~  (or pressure, ep~ ) and temperature, eT
~

 

perturbations (eqns. (116) and (117)) and one for the ion temperature 

perturbation, iT
~

, eqn. (118), in terms of the perturbed electrostatic potential, Φ , 

and parallel vector potential, ||A
~

,  described by the potential Ψ , with these two 
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quantities in turn being determined by Ampère’s law, eqn. (122), with eqn. 

(123) for the parallel current, and the vorticity equation, eqn. (131).  The 

perturbed parallel magnetic field is given simply by eqn. (58). 

The analysis of neoclassical electron physics utilised the Spitzer functions 

(Spitzer & Harm 1953), where we remark that parallel gradients in perturbed 

electron temperature that have no counterpart in standard neoclassical theory 

(Helander & Sigmar 2002), necessitate the introduction of the second Spitzer 

function corresponding to parallel electron thermal conduction. The vorticity 

equation requires a calculation of radial collisional transport of toroidal angular 

momentum and we have needed to generalise the treatment by Wong and Chan 

(Wong & Chan 2005 to arbitrary geometry, as in Appendix B, although still 

assuming a small number of trapped particles. This calculation employed the 

model ion collision operator.  Analytical evaluations of the coefficients in the 

large aspect ratio limit are presented there; these are consistent with the results 

of Wong and Chan (Wong & Chan 2005). 

The introduction of general toroidal equilibria and the use of the Spitzer 

functions extend the treatment of electron neoclassical physics given by 

Fitzpatrick (Fitzpatrick 1989), as well as providing a more consistent treatment 

of the neoclassical radial transport than in the work of Connor et al. (Connor et 

al. 2009). The general geometry aspect also means we have needed to include 

classical collisional transport. 
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The resultant equations, summarised in normalised form in eqns. (143) – (148), 

are equivalent to a twelfth order system of radial differential equations if all 

effects are retained – it reduces to tenth order if we neglect the radial angular 

momentum transport.  However, the relatively large ion thermal diffusivity 

means one can treat the ion temperature as a constant over the semi-collisional 

layer. (This also greatly simplifies the expression for the radial transport of 

toroidal angular momentum given in eqn. (136).) The system of equations then 

reduces to tenth order and one only needs to solve a simplified version of the 

ion thermal equation in the intermediate region,  1/4

ei /mm~s , where the system 

reduces further to a fourth order set.  A simpler version of eqns. (143) – (146) in 

which we ignore the subdominant classical and Pfirsch-Schlüter fluxes relative 

to the banana contributions, the smaller azimuthal fluxes and effects 

proportional to 12

00  /Bp2μβ ee , is presented in eqns. (149) – (152). The 

vorticity equation (147) is unaffected by these approximations. 

The solution of these equations in the narrow radial layer around a low-order 

resonant surface needs to be matched to ‘external’ solutions of the marginal 

ideal MHD equations. However, to achieve this matching, as pointed out by 

Fitzpatrick (Fitzpatrick 1989), we need to consider the intermediate layer where 

small corrections arising from the ion contribution to the electrical conductivity 

and the parallel ion thermal diffusivity enter and ensure that the perturbed 

parallel electric field vanishes.  Since this correction is determined by the 
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friction of the passing ion population with the trapped ones, rather than the 

schematic ion sound model suggested by Fitzpatrick (Fitzpatrick 1989), we 

were able to provide an explicit form for it.  This intermediate region is 

described by a fourth order set of equations, eqns. (157) and (164) together with 

eqn. (168), that allow a proper matching to the ideal MHD region. Continuing 

the set of equations through this layer allows us to obtain a dispersion relation 

     Δ ωΔ  iˆ  ,                     (169) 

 where Δ  is the toroidal tearing mode stability parameter (Glasser et al. 1975) 

and  iˆ ωΔ  is obtained from the solution of the layer equations, allowing for 

the effect of the intermediate layer. 

Although our analysis is linear, the treatment of the semi-collisional, 

neoclassical electron physics could be generalised to describe the evolution of 

non-linear neoclassical tearing mode islands, extending the analysis given by 

Wilson et al. (Wilson et al. 1996) for magnetised ions to this more collisional 

regime, or be used in conjunction with a numerical treatment for ions when the 

width of the poloidal ion Larmor orbit is comparable to the island width (Imada 

et al. 2016). Alternatively, it could serve to incorporate neoclassical physics in 

the collisional model of Smolyakov (Smolyakov 1993). 
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Appendix A:  Some Collisional Integrals 

Here we list numerical evaluations of the various integrals, including those 

involving the Spitzer functions 
(2)(1) and DD   tabulated in Spitzer and Harm 

(Spitzer & Harm 1953) (to be precise, 2D/BDD/AD  (2)(1) and  as given in 

Tables I and II of Spitzer & Harm 1953): 
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Appendix B:  Radial Toroidal Angular Momentum Transport 

There are two contributions from the radial transport of momentum appearing in 

the vorticity equation (131): the classical one, CΠ , and the neoclassical one, 

NCΠ . We evaluate these in this Appendix: 

(a)  Classical radial angular momentum transport 

The expression for 2C x/Π dd2  involves   
j

jjjj LgCLe 2

0

23d v , where the sum is 

dominated by the ions.  Thus, substituting for ig0  from eqns. (8) and (22) and 

recalling the definition of iL below eqn. (2), we obtain 
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The collision integrals in eqn. (B.1) can be evaluated using the entropy 

functional     vv g,fS ˆˆ   (Helander & Sigmar 2002), with 

 5/22ˆandˆ 23  ii|||| T/vmvgvf . The quantity S can be easily calculated 

using Cartesian co-ordinates in velocity space, labelling the direction parallel to 

the magnetic field as the x-direction, and introducing  

    2and2 // vvwvvu  to execute the velocity space integrations. The 

result is  
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  (b)   Neoclassical radial angular momentum transport 

Equation (128) requires the evaluation of  

                       
j

jdrj||j

NC hvv
B

I
mΠ 2

3d v ,                     (B.3) 

representing the radial transport of the toroidal angular momentum arising from  

the parallel flow: /BIvRv || . Noting that it is dominated by the ion  

contribution, we express this quantity as  
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In order to avoid the need to calculate ih2 , we follow Wong and Chan (Wong 

and Chan 2005) in defining the adjoint function, g: 
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so that, using the self-adjointness of the collision operator, integrations by parts 

and the gyro-kinetic equation for  ih2 , we obtain 
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We use the gyro-kinetic equation for ih2  and eqn. (B.5) for g, which we expand 

for weak collisions, so that we can integrate it to give  

    vλ,Gf
eB

vIm
g i

||i
 02

22

2
                                        (B.7) 

where G  is given by the collisional constraint that follows from eqn. (B.5): 
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Thus 
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where the final integral is small in the trapped particle fraction. 

Performing further integrations by parts on eqn. (B.6), we finally obtain 
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where 
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and  
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where, ih1
  is given by eqn. (28).  

It is helpful to re-write eqn. (B.11) as 
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The first term can be evaluated by using the model collision operator (27) acting 

on ih1  given in eqn. (64). Since the ion-ion collision operator vanishes when 

acting on a displaced Maxwellian distribution, only the perturbed temperature 

gradient terms in expressions (66) and (67) contribute. First we consider the 

banana contribution (67). Integrating by parts in  λ ,  using the results (30), (32) 

and the evaluations in Appendix A, we obtain 
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 where 
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For the Pfirsch-Schlüter contribution we apply the collision operator directly to 

eqn. (66). The result is  
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Thus the total contribution to 
1A

NCΠ  is given by the sum of results (B.14) and 

(B.16): 
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Equation (B.13) also has a contribution from the function g, which is labelled 

2A
NCΠ . The contribution to this from the banana term in  ih1 , eqn. (67), can be 

evaluated using eqn. (B.12) for g. We employ the model collision operator, 

recalling the banana contribution to 0*

i||U , and integrate by parts in λ  twice. 

Since 
Ban

ih1  is localised, we can approximate    λg/λBvλ/λg/λv  22

||  . 

The integral term in expression (B.12) for g only contributes significantly as λ  

enters the trapping region, but remains small (i.e.,  δλ0  compared to the first 

term, where δλ  is the trapped width in λ ) and can be ignored. Finally, inserting 

expression (67) for 
Ban

ih1 , performing the velocity space integrals recalling the 

results in Appendix A, and changing the order of the  λ - integration and the 

 averaging operation, we obtain  
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where   
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The calculation of the Pfirsch-Schlüter contribution from eqn. (66) is more 

straightforward. We evaluate the collision operator acting on 
PS

ih1 ,  again 

neglect the small integral tern in g and evaluate the velocity space integrals 

using the results in Appendix A. The result is: 
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Thus the total contribution to 
A2

NCΠ  from results (B.18) and (B.20) is 
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Combining the results from eqns. (B.17) and (B.21), we finally obtain             
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 Turning to the quantity 
B

NCΠ , we first observe that the periodicity constraint 

(B.11) allows us to rewrite eqn. (B.9) as 

                     











 



 gC

B

vh

B

vh

Bf

Iv

e

Im
Π ii

||i||i

i

||i
B

NC 11

0

3d v    .                          (B.23) 

We introduce the three contributions to i
h1  from eqn. (64), use the model ion-

ion collision operator (27), substitute 
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as follows from eqn. (B.12), and integrate by parts in λ . The contribution from   

Flowh1  is: 
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where  
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 that from PSh1   is:    
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where   
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and from Banh1  is: 
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where               
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Consequently, combining results (B.25), (B.27) and (B.29), we obtain the result  
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                                                                                                                      (B.31)                                                                                                                                                                                                                                        

Finally, combining results (B.22) and (B.31), we obtain the expression for the 

neoclassical toroidal angular viscosity:  
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Result (B.32) is the expression appearing in eqn. (136). 

 It is interesting to consider the large aspect ratio limit 

with   1cos 00  r/Rε,θε1BB . Analytical evaluation of the coefficients 

in eqn. (B.32) in this limit yields  
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in agreement with Wong and Chan (Wong & Chan 2005).   

          

 

 

 

 

 


