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Abstract

We present a novel framework for addressing the nonlinear Landau collision
integral in terms of finite element and other subspace projection methods. We
employ the underlying metriplectic structure of the Landau collision integral and,
using a Galerkin discretization for the velocity space, we transform the infinite-
dimensional system into a finite-dimensional, time-continuous metriplectic system.
Temporal discretization is accomplished using the concept of discrete gradients. The
conservation of energy, momentum, and particle densities, as well as the production
of entropy is demonstrated algebraically for the fully discrete system. Due to the
generality of our approach, the conservation properties and the monotonic behavior
of entropy are guaranteed for finite element discretizations in general, independently
of the mesh configuration.
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1 Introduction

Any simulation addressing the Vlasov—Maxwell-Landau system, that is the system that
consists of the Vlasov equation, the Maxwell equations and the Landau collision inte-
gral [1-3], should respect the basic laws of physics: total energy should remain constant
and entropy a monotonic function in time, regardless of the total lapse of the simulation.
While the existence of these properties in the continuous equations is straightforward
to demonstrate, no algorithm, at the time of writing, exists that would retain the same
fundamental properties after spatial and temporal discretizations. Constructing such an
algorithm is one of the outstanding problems in the topic of numerical simulation of
plasmas.

If Coulomb collisions are neglected altogether, recent work on Vlasov—Poisson, Vlasov—
Maxwell and related systems has provided algorithms that satisfy energy conservation and
also preserve other invariants present in the system, such as the momentum and charge
conservation, and the divergence-free nature of the magnetic field. For algorithms in
the particle-in-cell framework see for example [1-16], for discontinuous Galerkin methods
see [17-25] and for other grid-based methods see [26-29]. Realistic kinetic simulations
of plasmas, expanding to macroscopic time scales, however, require also the effects of
Coulomb collisions. The purpose of this paper is to deliver an algorithm for addressing
this issue. We prove algebraically that our algorithm for discretizing the Landau collision
integral in both space and time conserves the energy, the momentum, and the particle
densities exactly, as well as retains the entropy a monotonic function in time.

While we base our algorithm on an important recent observation, namely that the
discretization of the weak formulation of the Landau collision integral with a finite el-
ement or any other subspace-projection method with at least second order basis func-
tions delivers exact conservation laws for energy, momentum, and particle densities [30],
the new approach is very different from any previous work on the subject. We employ
the less-familiar representation of the Landau collision integral in terms of the so-called
metriplectic framework. Similarly as dissipationless Hamiltonian systems can be described
in terms of an energy functional and an antisymmetric Poisson bracket, the dissipation
in metriplectic systems can be described in terms of an entropy functional and a sym-
metric, metric bracket. It is the existence of this framework that ultimately facilitates
the so-called metriplectic discretization of the Landau collision integral, and allows us to
construct an algorithm with the desired numerical properties.

Metriplectic dynamics is not a commonly encountered topic in the realms of plasma
physics. The first occurrence of a metric bracket for a single species Landau collision
integral, though, dates back to the pioneering work of Morrison [31]. To bridge the
gap, we start, in Sec. 2, by reviewing the concepts of the metriplectic framework, and
outlining a derivation of a metric bracket for the multispecies Landau operator. The
metric formulation of the collision integral is then used in conjunction with the more
familiar Hamiltonian description of the Vlasov-Maxwell system to layout a metriplectic
formulation for the kinetic plasma theory. Our discretization of the metric bracket is
discussed in Sec. 3 and, although given only for the single-species operator, is extensible
to multiple species in a straightforward way. The discretization employs a generic finite
element method with arbitrary meshing of the velocity space and is likely extensible to
other subspace-projection techniques such as the discontinuous Galerkin approach. After
the spatial discretization is demonstrated, we suggest a temporal discretization based
on the concept of discrete gradients and prove algebraically the numerical conservation



laws and the H-theorem. Numerical implementation and the extension to discontinuous
Galerkin discretizations is left to be addressed in a future publication.

2 Metriplectic Dynamics

Metriplectic dynamics [31-38] provides a convenient framework for the description of
systems that display both Hamiltonian and dissipative dynamics, such as the Vlasov—
Maxwell-Landau system. The Hamiltonian evolution of the system is determined by a
Poisson bracket {-,-} and the Hamiltonian functional H, usually the total energy of the
system, and the dissipative evolution is determined by a metric bracket (-,-) and some
functional S that is to be monotonic in time, usually entropy or a generalization thereof.

In this section, we present the metriplectic formulation of the Vlasov—Maxwell-Landau
system. We first address the general framework, then derive a metric bracket for the
multi-species Landau collision integral, and discuss its generalizations. Finally, the metric
bracket is used in conjunction with the Hamiltonian description of the Vlasov—Maxwell
system to provide a metriplectic framework for the kinetic theory in high temperature
plasmas.

2.1 General framework

Let us denote by u(t,z) = (ul, u?, ..., u™)T the field variables, defined over the domain
) with coordinates z, and let & be an arbitrary functional of the field variables. The
domain §? is the tensor product of position space 2, and velocity space €2,. While €2, is
usually some bounded domain, possibly periodic in one or more dimensions, the velocity
space €2, = R? with d = dim . The evolution of U is given by

du
=TI+ W) 1)

with F = H—S a generalized free energy functional, analogous with the Gibb’s free energy
from thermodynamics, {-,-} a Poisson bracket, and (-,-) a metric bracket. The Poisson
bracket, describing the Hamiltonian evolution, is a bilinear, anti-symmetric bracket of the
form

(A B} — / L T —dz 2)

where A and B are functionals of u and §.4/du’ is the functional derivative, defined by

0A
o /5ul vidz. (3)
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The kernel of the bracket, J(u), is an anti-self-adjoint operator, which has the property
that
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ensuring that the bracket {-,-} satisfies the Jacobi identity,
{{A. B}, CH+ {{B.C}, A} + {{C, A}, B} = 0, (5)

for arbitrary functionals A, B,C of u. Apart from that, J(u) is not required to be of any
particular form, and most importantly it is allowed to depend on the fields u. If J(u) has
a non-empty nullspace, there exist so-called Casimir invariants, that is functionals C for
which {A,C} = 0 for all functionals 4. The monotonic entropy functional S is usually
one of these Casimir invariants.

The metric bracket (-, -), describing dissipative effects, is a symmetric bracket, defined
in a similar way as the Poisson bracket by

) 0
(AB) = [ 5 dx )
Q
where G(u) is now a self-adjoint operator with an appropriate nullspace such that (H, F) =
0. All Casimirs C of the Poisson bracket should be Casimirs also of the metric bracket,
except the functional & which is explicitly required not to be a Casimir of the metric
bracket.

In this paper, we choose a convention that dissipates the free energy, conserves the
Hamiltonian, and produces entropy. Other conventions are equally possible, but we stick
with the concepts familiar from thermodynamics, so that the equilibrium state is reached
when free energy is at minimum. For this framework and our conventions to be consistent,
it is essential that (i) H is a Casimir of the metric bracket, (ii) S is a Casimir of the Poisson
bracket, and that (iii) the metric bracket is negative semi-definite. With respect to these
choices, we then have

dH

& =T+ (. F) = {H. =S} =0, (7)
X (8P S F) = (5820 (8)
%T — (F.F}+ (F.F) = (F.F) <0, (9)

reproducing the First and Second Laws of Thermodynamics and dissipation of free energy.

For an equilibrium state u.,, the time evolution of any functional U stalls, the free-
energy functional reaches its minimum, and entropy production stops. If the metriplectic
system has no Casimirs, the equilibrium state satisfies an energy principle, according to
which the first variation of the free energy vanishes, 0.F[u.,] = 0, and its second variation
is strictly positive, 62F [ue,] > 0 (for details see e.g. Holm et al. [39]). If Casimirs C; exist,
the equilibrium state becomes degenerate, and the energy principle must be modified to
account for the existing Casimirs. This leads to the so-called energy—Casimir principle [10].
In this case the the equilibrium state satisfies

0F [teq) + > NidCilueg) =0, (10)

where \; act as Lagrange multipliers and are determined uniquely from the mass, mo-
mentum and energy of the initial conditions for u. Lastly, for each z € ) the equilibrium
state of the free-energy functional F is unique. This can be accomplished by employing
a convexity argument, namely if {2 is a convex domain and F is strictly convex, then F



has at most one critical point (see e.g. Giaquinta and Hildebrandt [11] for details). This
is the case if

O(F 4+ MCi) >0, (11)
for the non-vanishing field ..

2.2 Metric bracket for Multi-species Landau Collision Integral

In high-temperature plasmas, collisional evolution of the distribution function £ of species
s due to collisions with multiple other species s’ (including s) can be described by the
Landau collision integral

afs O[](]( ) Z Css’ 2 . / U(U,’U/) . JSS/(U,’U/) d’Ul, (12)

mg Ov
Qy

which is a nonlinear integro-differential operator in velocity space. The antisymmetric

vector Jgg(v,v") = —Jygs(v',v) in the operator depends on fs and fy and is defined as
Jo (V) 0fs(v) — f(v) Of (V')
N — J—
Jasr(v,0) = ms  Ov my OV (13)

and the symmetric parameter cgy is given by

InA
o — L I0A (14)
8mel
with ¢; and m, the charge and mass of particles of species s, ¢y the vacuum permittivity,
and In A the Coulomb logarithm. The Landau tensor U(v,v’), valid at non-relativistic
energies, is a scaled projection matrix of the relative velocity v — v’ between the colliding
particles,

1
Uii(v,0") = ——— | 0;; — 15
O (15)
Let us multiply with a function g5 and integrate over the infinite velocity space. Carrying
out an integration by parts provides us with the expression

/ ( 8][5 Z 76,: aﬂs -/U(v,v') } JSS,@’U/) do’ do. (16)
o "0, Q.

Exchanging the species indices, we may similarly write for another species

afs / Cgs/ aﬂs ) / / / /
/gs dv Z v U(v,v") - Jsg(v,0") dodo’, (17)

Q, Qo

where the symmetry of ¢,y and U(v, v’ ) and the antisymmetry of Jsy (v,v’) were used. If
we then sum over the different species, we obtain

L soga=xs [ G w)

-U(v, 0 ) : JSSI(U,U )do' dw. (18)




It is straightforward to verify that if g,(v) = m,{1, v, |v|*} the integral on the right-hand
side vanishes identically. Since the left-hand side then presents the total collisional rate
of change in time of mass density, kinetic momentum density, and kinetic energy density
in the plasma, the above calculation verifies that these three quantities are invariants of
the Landau collision operator.

Starting from the weak formulation, that is Equation (16) with g interpreted as a test
function, the steps to derive a metric bracket for the collision integral are straightforward.
We introduce the functionals

S = —TZ/fs(t,v) In £(t, v) do, (19)

SQU

6-30. 6.- [at) it (20)

Qo

where T is a normalization constant in units of energy density. The above functionals
allow us to formally rewrite the vector Jyy(v,v’) according to

ﬂﬂ&%iié_li“) (21)

Jss’ ) N =-
(v, ) T ms Ovdfs  my OV Ofy

Following the requirement for the metric bracket to be negative semi-definite, the above
definitions allow us to re-express (18) in the form

oG

5 = (0.-5) (22)

where the symmetric bracket is defined according to
Css 1 06A 1 0 6A4
AB= //(Emfs o

/ / 1 858 1 a 58 !
U(U,U)s'(v)fs@)'(;%ﬁ mf%(Sf’> dvd

(23)

and is readily identified as the metric bracket for the Landau collision integral (cf. Ref. [31]).
It is straightforward to verify that inserting (19) and (20) into (22) leads to a weak for-
mulation of equation (12). Further, defining the mass, momentum and kinetic energy
functionals by

MS:mS/fg(t,v)dv, P = st/vfstv dv, &= Z /]v\fstv
Qy
(24)
it is straightforward to verify that the bracket satisfies
(M, A) =0, (P,A) =0, (&€,A) =0, (25)

for arbitrary functionals A. Thus M, P, and £ are Casimir invariants of the bracket (23).
Restricting our attention only to the velocity space, for now, we may then conclude that



the collisional dynamics of a given functional A, consistent with the Landau collision
integral, follow from
dA
dt

where the free-energy functional is given by F = & — S. This formulation satisfies the
basic principles of thermodynamics, i.e., dF/dt < 0, d€/dt = 0, and dS/dt > 0. The
equilibrium state obeys the energy-Casimir principle (10), which in this case provides

((58 IM oP 55)

= (A,F), (26)

+A—+ Ap- + e =0, foralls, (27)
0fs 0fs of. 0fs /| o=t

and leads to the following condition for the equilibrium distribution functions

—T(1+1Inf;eq(t,0)) + Asms + Ap - myv + /\g%|v|2 =0, foralls. (28)

The equilibrium distributions with respect to collisional dynamics are thus identified as
Maxwellians with each species having common temperature and flow velocity but possibly
different densities.

2.3 Metric Bracket for General Collision Operators

The fact that the single-species Landau collision operator, as well as other small-angle
Coulomb collision operators relevant for plasmas, can be obtained from a general metric
bracket was demonstrated by Morrison already in 1986 [31]. Morrison’s bracket can easily
be generalized to the multi-species case,

= Z //FS/S// (A; 2/, 2") - Tan (25 2") - Ty (B; 2/, 2") d2" d2”, (29)
S/ S// Q

where the three-component vector 'y (A; 2/, 2”) is defined as

10 SA 1 9 GA
mg OV Ofy(2')  mgn OV §fsn (")’

and Ty (2';2") = Wyen(2';2")0(a" — 2”) with Wysn a symmetric, positive or negative
semi-definite matrix with an eigenvector v’ — v” corresponding to a zero eigenvalue. The
choice between positive and negative depends on the choice of dissipating either the free
energy or entropy. Different collision operators follow from different choices for the matrix
Wy e and the entropy functional S, which is restricted to be of the form

S = Z/s(fs)dz, (31)
50

with s an arbitrary function of #, and required to be a Casimir of the Poisson bracket.

For kinetic systems, such as the Vlasov-Maxwell system, the total energy and mo-
mentum are typically given in terms of the kinetic energy and momentum of the plasma
particles and some field energy Hgelqs and momentum terms Pregs according to

:Z%/ |U‘2ﬁ(t,z>dz+ﬂﬁe]ds, (32)
s Q

Pysn(A; 2", 2") = (30)

Z ms/ Ufs t Z) dz 4 Phelas- (33)

Q



Even if the field-energy and field-momentum were not independent of £, the total Hamil-
tonian H and momentum P will be Casimirs of the symmetric bracket as long as their
functional derivatives are such that the conditions

OH  my oP

5fs 2 Sfs
are satisfied. Similarly, a generalized mass will be a Casimir of the metric bracket as long
as 0M /6f; = ms. These results follow directly from the conditions

Ly (M;2',2") =0, Tguw(P;2',2")=0, Tgw(H;2',2") Wau(Z',2")=0. (35)

o], ms v, (34)

One may thus define a free-energy functional 7 = H + As S, and, to conclude, that the
collisional evolution of any functional U/ is determined by

(%—i’)c = (U, F). (36)

Maxwell-Boltzmann statistics and the Landau collision integral, for example, are obtained
by choosing A\s = —1, s(f) = =TfInf, and

— U (0 0) Mfo(2) MU (=), (37)
with M(f) = f, while Fermi-Dirac statistics and the relevant collision operator follow
from choosing s(f) = =T (fInf + (1 — f)In(1 — £)) and M(f) = f(1 — f), as discussed
by Morrison [31]. Following the energy-Casimir principle, the general equilibrium condi-
tion is obtained from

Ws’s”,ij('zla Z”) =

oS oM, 5P oH B
<5_][s+>\s—6]{s +Ap5—ﬂ+)\ﬂ(5ﬁ)‘fﬂq =0, (38)
which leads to
5 (Fueq) + AsTs + Ap - mgv + AH%W ~ 0. (39)

Since the second variations of My, P, and ‘H with respect to £ all vanish, the equilibrium
is unique as long as 6°S < 0. This is certainly true for both the Maxwell-Boltzmann and
Fermi—Dirac entropies.

It is worth pointing out that these results are fully general and hold for all choices
of Wygr, which satisfy the assumptions that Wy is symmetric, positive or negative
semi-definite, depending on the convention, and have a zero eigenvector v' — v”, i.e.,

Ws’s”,ij(z/v Z”) = Ws/s”,ji('zla Z”)a (403)
Ws’s”,ij(zly Z”) = Ws’s”,ij (lea Z,)a (40b)
(U; — ’Ug,) Wsls//ﬂ'j = 0 (40C)

Hence the equilibrium state only depends on the choice of the entropy functional & but
not on the choice of Wy . In particular, it turns out that there is no strict need for a
compatibility condition between M in (37) and the function s in (31) or its derivatives as
mentioned in [31, 412]. However, the freedom to choose M often has to be used to regularize
the collision operator. One often finds the distribution function in the denominator of the
second derivative of the entropy function sgz. In order to avoid singularities, M can be
chosen appropriately to cancel such denominators. In other cases, it might also be possible
to choose M in order to simplify the bracket, e.g., to reduce the degree of the nonlinearity
in the distribution function f and therefore improve the computational tractability.

9



2.4 Metriplectic Vlasov-Maxwell-Landau System

The Vlasov—Maxwell-Landau system of equations is given by the set

a S S

8]; +U-Vx]§—|—7i—(E—|—vxB)-VUf;:C’[]@](v), (41a)

1 0F :
20t curl B = —poj, (41b)

B
%—t + curl £ =0, (41c)
dive =2, (41d)
€0

divB =0, (41e)

where ¢ = \/Eofip~ " is the speed of light, 110 the vacuum permeability, ey is the vacuum
permittivity, £ and B denote the electric and magnetic fields, p is the charge density and
j the current density, defined in terms of the distribution functions £ according to

p:ZqS £ dv, j:qu vfs dv. (42)
- -

This system of equations can be obtained alternatively from a metriplectic system as

ou
o = UF}+ WU, F), (43)

described by a noncanonical Poisson bracket [13-17],

{A,B}V,E,B]zg//wi B;l gﬂ drde

qs 5.A 58 oB dA
+€szs//fs< v s Vv(sfs 6E> dodv

Qu Q0
qs dA oB
s B- b =
+Zm§//ﬁ <Vv5fs><vv6f8)dxdv
Qe Q
1 0A 0B B oA
- (curl SE 3B curl 5E 5—3) dz, (44)

x

a symmetric, negative semi-definite metric bracket
= Z //FS/S// (A; 2/, 2") - Tan (25 2") - Ty (B; 2/, 2") d2" d2”, (45)
S/,S// Q Q

a Hamiltonian functional H, given by the sum of the kinetic energy and the electric and
magnetic field energies, namely

Hiy BBl =3 [ [ gy dedo s 5 [ (2l + ! B ) do. (16)

10



an entropy functional
Sl =-1Y" / £(2) nfi2) ds, (47)
50

where T is the temperature, and a free-energy functional

The canonical single-particle Poisson bracket, present in the functional Poisson bracket,
is

[fa g] = fo : va - VCCg : vaa (49)

and the vector I'ys(A; 2/, 2”) and the matrix Ty (2'; 2”), present in the metric bracket,
are

Vy 6A Vo 0A

oy i
FSISN(A, Z,Z ) = _ms/ 5]{.9,(2:/) Mg (5]%//(2”)7 (50)
/i Csl s / " roon / "
Ty (527) = = 0(a" = a YU, 07) for () fr (27). (51)

The sign conventions are chosen so that free energy is dissipated, dF/dt < 0, total energy
is conserved, dH /dt = 0, and entropy is produced dS/dt > 0.
The total momentum, consisting of the kinetic and field contributions,

Plf,E,B] = st//vfsdxdv—l—ao/Edex (52)

Qe Qy 92

is a Casimir of the metric bracket but not of the Poisson bracket. It is conserved, though,
given that the Poisson equation for the electric field is satisfied. The only Casimirs of this
full system are the species-wise mass functionals,

M, =my /fs(z) dz, (53)
Q
and the equilibrium state is obtained from the modified energy—Casimir principle,
oS oM oH OH
5]—"+Z)\ SM, Z(dfs 57" + A 5f)5]geq 55 Ot 55 0By = 0. (54)

For arbitrary variations 0f; ¢4, 0 Eeq and 0B,,, the principle leads to
~T(141nf,) = %W A, Ey(z) =0, Bey(z) =0, (55)

and describes Maxwellian distribution functions with zero flow and equal uniform tem-
perature. The numbers \; are uniquely determined from the initial conditions by

[ fateds = [ Lot iz

11



3 Spatial Discretization

In the following, we will restrict our attention to the spatial and temporal discretization of
the metric part of the system. The distribution function f(¢, v) is considered as a function
of time and velocity only. The full Vlasov—Maxwell-Landau system will be considered in
subsequent publications [18, 19]. We shall also clarify the discussion assuming only one
species and using normalized units. The metric bracket addressed in this section can then
be expressed as

A //(id?‘ - e ) MU V) M)

o B 0 6B\ ., ,
(%Wwfvwmw)w®'“®

Let us note, though, that the generalisation to multiple species is straightforward.

Our approach for the spatial discretization is a combination of the ones presented
in [50] and [30]. We will consider a finite dimensional space Q,(2) C L?(2), which is a
subset of all square integrable functions, defined on the domain 2. The discrete domain
has a tensor product structure, similar to the continuous domain, but in contrast to the
continuous velocity space the discrete velocity space is often bounded. We denote the
basis functions in this space by ¢;(v), so that an element f, € Q,(Q2), approximating the
distribution function f € L*(Q), can be expressed as

=Y f ), (57)

where the ﬁ(t) denote the degrees of freedom. The configuration of the system at a given
point in time is then determined by f(t) = (fi(t), ..., fx(t))T € RY.

3.1 Discrete Functional Derivatives

Consider some functional A of the distribution function f. Its functional derivative with

respect to f is defined by
A 0A
=), = [ o
Q

Here, 4 is an element of the same space as f, that is g € L*(€2), while the functional
derivative §.4/df is an element of the dual space of L?(€2), and (-, -) denotes the L? inner
product. When we apply the functional A to the Galerkin approximation of £, it becomes

d
aA [f —+ Eg}

a function A of the degrees of freedom f ,

Alp) = A(f). (59)
In order to obtain a discrete version of the metric bracket, the functional derivative 6.4/6f

needs to be replaced with a partial derivative A /0 f . To do so, we require that the pairing
in (58) be equal to some finite-dimensional equivalent, that is

SAlf) > :<a_ﬁ > 04
< of M) Nof Y e Zaﬁg” (60)

i=1

12



where §(t) = (g1(t), ..., gn(t))" denotes the degrees of freedom of g, so that

= Zgz‘(t) @i(v). (61)

Let us denote the dual basis to (v) = (p1(v), ..., on (V)T in L2 by ¢ (v) = (¥1(v), ..., N ()T,

so that
/wi(v) p;j(v)dv=12¢;; for 1<4,57<N. (62)

In the dual basis, the functional derivative in (60) can be written as

AL 5™ 0, 0), (63)

of =
where the degrees of freedom a; are still to be determined. Using (60) and (62) for
G=1(0,...,0,1,0,...,0)" with 1 at the i-th position and 0 everywhere else, so that
gh = i, we find that
0A
a; = ) (64)
afi
and can thus write
SAIf] <N A
a/NE SN} (65)

of = of,

Expressing the dual basis 1 in terms of the primal basis ¢ as

v) = ZAij w;(v), (66)

this becomes

SAL] _ - 04

of i,j=1 Af;

In order to determine the unknown coefficients A;;, let us compute the L, inner product
of (66) with ¢y,

/% v) pr(v dU—/ZAw ©0;(v) pr(v ZJ:: / or(v) do. (68)

Denoting by M the mass matrix of the basis functions ¢,

Mji = / @i (v) pr(v) dv, (69)
Q

and using (62), we obtain the relation | = AM with | the N x N identity matrix, so that
A =M~! and therefore

Aij pj(v). (67)

SAlf] o~ 0A
o _ijz—la_fi(M )ij ;3 (v). (70)

This is the relation we have sought for, expressing the “continuous” functional derivative
8A/8f in terms of the “discrete” partial derivative 9A/9 .

13



3.2 Discrete Bracket and Semi-discrete Equations of Motion

In order to obtain a discrete version of the metriplectic bracket, we restrict (56) to the
space of functionals on Q(£2). This allows us to replace the functional derivatives with
partial derivatives as in (70) and compute the remaining integrals, which leads to

L Noo9A . OB
A, B), = 4L ) 71
(A, B)n m%:l o7 (M) Lin(f) M1k HoF (71)

The symmetric matrix L( f ) is given by

Li;(f) = —%Q/Q/ (a‘g‘g}’) B 89;;1(;//))

MG U M) - (258 - 280 a2

It remains negative semi-definite, with a sufficient but not necessary condition provided
by the positive semi-definiteness of M(#,). This property will be used later on to prove
the second law of thermodynamics. The action of the discrete metric bracket on two
functionals, A(f) = A[f,] and B(f) = B[f], can now be expressed as

(A, B), = VATG(f) VB, (73)

where the gradient V is to be taken with respect to the degrees of freedom f and the
matrix operator G is given by

G(f) =M"'L(f )M, (74)

Inserting A(f) = f and B(f) = F(f) into the bracket, with F(f) = F[f] denoting the
discrete free energy, the equations of motion for f become

— =G(f) VE = (f,F)a, (75)

in direct analogy with the continuous case.

3.3 Semi-discrete Conservation Laws

The mass, M, momentum, P, and kinetic energy, &, carried by the distribution function
f are defined in terms of the functionals

M= [, P = [or@an e =7 [k (@)

Q
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Analogously, the mass, momentum and kinetic energy carried by the discrete distribution
function f#, are

Mszmeﬁ/w@®, (77a)

P(f) = Plfi] = ﬁ/v%wma (77h)
=1 Q
B(f) =l =53 / o i) do. (77¢)

If Qn(Q) is such that {1,v,v*} € Q,(), which is the case e.g. for quadratic Lagrange
finite elements, we can find coefficients © and £, so that

N N
Z Vipi(v) = v, Zéicpi(v) =% (78)
i=1 i=1

In terms of these coefficients, the discrete quantities (77) become

~ A ~ ~ A . A ~ A m . A

M(f)y=1"Mf,  P(f)=0o'Mf, E(f) =5 ™, (79)
where 1 denotes the vector in RY with all elements being 1. The mass, momentum and
kinetic energy carried by f are then Casimirs, and thus invariants of motion, of the discrete
metric bracket (73) since, for arbitrary A, we have

(M, A), =1"MG(f) VA =1TL(/IM"'VA =0 (80a)
(P, A), = 0"MG(f) VA = o"L(f)IM'VA = 0, (80D)
(E,A), = ™™G(f) VA ="L(/)IM'VA =0 (80c)
This follows directly from the properties of the Landau matrix L, namely
TL(f) =0, for any f, (81a)
ATL(f) =0, for any f, (81b)
ETL(f) =0, for any f. (81c)

Note that here we only consider the kinetic energy £ instead of the whole Hamiltonian
H. However, the metric bracket does not act on the electric and magnetic field, therefore
the discussion of the current and the next section does not change when replacing one
with the other.

3.4 Semi-discrete H-Theorem

We now want to reproduce the discussion of Section 2.1 on the discrete level, focusing
however on the metric case. The time evolution of the discrete entropy S(f) = S[fn] is
given by

~

dsS PUPS ~
i (S, F)p =—(5,8), >0, (82)
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~ A

where F = E(f) — S(f) with E(f) = &[fn], and we used the fact that the kinetic energy
E is in the nullspace of the discrete bracket. The last inequality follows from the fact that
L(f), and thus the discrete bracket, is negative semi-definite as long as M(f,) remains
positive semi-definite. Thus the discrete entropy evolves monotonically in time under the
action of the discrete metric bracket.

As in the continuous case, the equilibrium state is determined by the energy-Casimir
method, that is by requiring

05(feq) + 6> NiCilfeg) =0, (83)
or, specifically, for the discrete Casimir invariants as given in (79),
<5§+ At 6(ATM f) + Xp 6(0"M f) + Az 5(% =M f)) ‘ = 0. (84)
f:feq

With the discrete entropy functional given by
() = st = [[s(Z hoo)) av (55)
Q J
we obtain the following condition for the discrete equilibrium state feq,

~ A N m ~ £
Z |:V1S<feq) =+ Z ()\M Mji + )\]3 Uiji + 5)\@ ngji):| (5feq,i = O, (86)
J

(3

where the gradient of the discrete entropy function,
VS = [ 605y (X fuss) o (57)
Q J

corresponds to a projection of s¢(f;,) onto the finite-dimensional space Q(£2). In order to
obtain the discrete equilibrium state, we have to solve

V?(feq)+/\MMl+)\IsM@+%AEMé:O, (88)

and by matching the mass, momentum and kinetic energy of the equilibrium and the initial
condition, we can determine the multipliers A\j;, A\p and Az, respectively. Uniqueness of
the discrete equilibrium state feq follows from the same convexity argument as in the
continuous case.

4 Temporal Discretization

For the temporal discretization, we consider so-called discrete gradients. We briefly sum-
marize the essence of these methods and then prove the conservation laws for the fully
discrete system. Finally, we rearrange the resulting nonlinear equations into a sparse form
that is suitable for standard algorithms addressing large nonlinear systems.
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4.1 Discrete Gradients

Discrete gradients [51-51] constitute discrete analogues of the gradient of a function,
and generalizations thereof. These methods can be applied to any system of ordinary
differential equations in the form

du
— = S(u) VF(u), (89)
dt
where S(u) can be an anti-symmetric matrix for conservative systems, a symmetric matrix
for dissipative systems, or a combination thereof for metriplectic systems. This obviously
resembles the structure of (75). This system of ordinary differential equations is dis-
cretized by

Up41 — Up -

At - §(un7 unJrl) VF(UTH un+1)7 (90)

where S(uy,, Un41) is any symmetric or anti-symmetric matrix that approaches S(u) in the
limit of w1 — u, and At — 0, so that S(u,, u,) = S(uy,), and VF (u,, u,;1) is a discrete
gradient. Given a differentiable function F' : R™ — R, a discrete gradient VF(u,, t,11)
is a vector valued continuous function of (u,, u,1), satisfying

(unJrl - un) : vF(un, un+1) = F(unJrl) - F(un)a

_ (91)
VF (up,u,) = VF(uy).

Several such discrete gradients are known. One may consider for example the midpoint
discrete gradient by Gonzalez [55],

VF(tn, upg1) = VF(Upi1/2)
F(ung1) — F(un) = (Ung1 — up) - VF(UTL+1/2)

+ (Ung1 — ) 2 , (92)
|un+1 - un|
with 4170 = %(un + up41), or the average discrete gradient by Harten et al. [50],
1
VE(Up, tUpy1) = /VF((l — &y, + EunH) dg. (93)

0

Higher-order time integrators can be constructed following Cohen and Hairer [57].

4.2 Discrete Conservation Laws

Using the concept of discrete gradients for the temporal discretization allows us to prove
momentum and energy conservation as well as the correct monotonic behavior of the
entropy. For definiteness, we consider a midpoint discretization for S, i.e.,

fot for

§(fna fn-‘rl) = S(fn+1/2)7 where fn+1/2 = 9 ) (94)

but let us note that other choices work just as well. For the discrete metric system, the
matrix S is given by the matrix operator G in (74), that is

S(f) =M'L(f )M, (95)
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and F corresponds to the discrete free energy F(f) = E(f) — S(f). Assuming a discrete
gradient time stepping algorithm (90), the difference of the energy at consecutive points
in time is obtained from

éTM(fn-I—l - fn) = AtéT Mg(fna fn—&-l)vﬁ(fna fn+1)
= AtETMM T L(foy1)2) MTEVE(fo, fagn)- (96)

The right-hand side vanishes exactly since EZMML( f,, 1 2) = ETL( Frst s2) = 0. Therefore

we have that éTM fnﬂ =¢Tm fn, stating that the energy at time ¢, ; equals the energy at
time t,,. The momentum and density conservation are proved in full analogy.

4.3 Discrete Entropy Production

The monotonic increase of entropy can be shown as follows. The difference of the entropy
at two consecutive points in time is

8(fus1) = S(f) = (E(fas1) = F(fur)) = (E(fa) = F(f), (97)

where the discrete energy function E is conserved, so that E(f,s1) = E(f,). Using
property (91) of the discrete gradient, we have

S(far1) = S(fa) = =(F(far1) = F(fa))
= _AtVﬁT(fm fn-‘rl) M_l L(fnJrl/Z) M_l vﬁ(.ﬁw fn-i—l)
> 0, (98)

as both L is symmetric negative semi-definite matrix and M is a symmetric matrix.

4.4 Sparsification for Nonlinear Solver

The introduction of discrete gradient methods for temporal discretization results in a
nonlinear system of equations for the degrees of freedom fnﬂ. Such systems are typi-
cally solved with Jacobian-free quasi-Newton methods accompanied with Krylov-subspace
iteration to solve the resulting linear system at each quasi-Newton step.

The time and space discrete system involves the Landau matrix, L( f), and the in-
verse of the mass matrix, M1, which are both dense matrices for typical finite element
discretizations. Storing such matrices could quickly require extensive memory resources,
rendering the matrix-vector products, that are required for the Krylov-subspace con-
struction, expensive and slow. To facilitate an efficient implementation of the algorithm,
a formulation involving only sparse matrices is thus desirable.

This can be accomplished by first multiplying the discrete system for an with the

mass matrix from left according to

M (fas1 = fu) = AtL(far12) MV E(fo, frs), (99)
and then rearranging the right-hand side of the above equation into
L(fas1/2) MT NV E(fos fsr) = ClLas fust) frtijos (100)
so that the final system of equations for an reads
M (fos1 = fn) = ALC(fos fai1) fusaje: (101)
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The matrix C is sparse and given by

000 s (D) o N
C(fn,fn+1)=/ %i;u) 'D(fnafn+1>'( @55/71)(“/' 1)k€V£F(fnafn+1)> pi(v) dv
Q
[ 22 G hr) i) a0 (102
Q

where the tensor D and the vector K, required to construct C, are functions of the velocity
coordinate and determined according to

Do foss) = / U, 0") fumrja(0”) dof”, (103)

Q
K(fmfn+1) = /U(Ulavll)ﬁz,n+1/2(7)//) : (a%k—v(,l,))(Ml)kzvéﬁ(fn,an)) dv”. (104)
Q

In its new form, (101), all matrices in the nonlinear system of equations for the time
advance are sparse. A numerically estimated Jacobian for any quasi-Newton method will
be sparse, and the matrix-vector products for constructing the Krylov subspace become
feasible. The sparse form has the same structure as in [30] were the solvability was
demonstrated numerically, although the formulation in general was not based on the
metriplectic formulation.

5 Summary and Outlook

In this work, a general framework for metriplectic Galerkin discretizations of the Lan-
dau collision integral was presented. The discretization proceeded in two steps. First,
a semi-discretization of the metriplectic bracket for the collision integral was obtained,
which preserves the Casimirs of the metric bracket and guarantees entropy to be a mono-
tonic function of time. The semi-discrete system is thus a finite-dimensional metriplectic
system. Then, the system was discretized in time by employing discrete gradient meth-
ods, still retaining exact conservation of Casimirs and the monotonic behavior of entropy.
Therefore the resulting method corresponds to one of the rare instances of a genuine
metriplectic integrator.

One of the advantages of our approach is that the conservation laws and entropy
behavior are not manufactured or forced into the scheme “by hand” but follow auto-
matically from preserving the underlying metriplectic structure of the Landau collision
integral. Another advantage is the generality of the spatial discretization, allowing one to
employ the full power of finite element discretizations and non-structured meshes.

While numerical demonstrations are left for future work, we discuss in detail how
to convert the initially dense nonlinear system of equations into a sparse form that is
suitable for Jacobian-free Newton-Krylov methods. The numerical implementation and
the metriplectic discretization of the full Vlasov-Maxwell-Landau system are currently
under investigation and will be addressed in future publications.

Due to the flexibility of both the metriplectic formalism and our discretization ap-
proach, many potential generalizations are possible. Obviously, other collision operators
that fit into the metriplectic framework are immediately treatable. The fact that for
any desired equilibrium state there is some freedom in the construction of the bracket
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might also turn out to be useful, e.g., for the design of more refined numerical algorithms,
that use this freedom to improve efficiency or efficacy. Further, it might be possible to
construct discrete metric brackets that relax the system to more complicated equilibrium
states, which might be useful for constraint relaxation problems or for the dissipation of
small scale structures by choosing an evolving equilibrium that corresponds, e.g., to a
coarse grained solution of the current distribution function.
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