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Gyrokinetic theory is a popular and efficient approach to study low-frequency phenomena in magnetized
plasmas. Its applicability is rooted in the invariance of a charged particle’s magnetic moment. We calculate the
maximum non-conservation of this magnetic moment in various elementary combinations of electromagnetic
fields. The situation is ameliorated by introducing magnetic moments that account for the drift behavior of
the guiding center. Based on these results, we discuss the limitations of gyrokinetics on a quantifiable basis.

I. Introduction

Gyrokinetic theory1 is a popular approach to inves-
tigate phenomena in magnetized natural or laboratory
plasmas whose dynamics is subject to the so-called gy-
rokinetic ordering.1 Originally developed for fusion ap-
plications, gyrokinetics has also been employed to study
a wide range of problems in basic or space plasma
physics, including guide field reconnection2–6 and solar
wind turbulence.7–10 It nicely complements other kinetic
approaches like fully kinetic models or hybrid kinetic-
fluid models.11

Although gyrokinetics provides an efficient descrip-
tion of magnetized plasmas, it is somewhat challenging
to characterize its range of validity beyond the general
scalings implied by the gyrokinetic ordering. To make
progress on this front, we therefore focus on one of the
fundamental assumptions of gyrokinetic theory, namely
magnetic moment conservation. In the absence of strong
electric fields, the magnetic moment µ of a charged par-
ticle in a magnetic field is an adiabatic invariant if the
magnetic field changes slowly in time and space.12 If this
adiabatic invariant is not conserved appropriately, the
validity of gyrokinetics comes into question. Here, we
investigate the validity of gyrokinetics by explicitly cal-
culating the perturbation of the magnetic moment of a
single charged particle in several elementary combina-
tions of prescribed electromagnetic fields. This will allow
us to clearly quantify some of the limitations of gyroki-
netics in transparent ways.

Historically, µ has been defined as the ratio of the
transverse kinetic energy to the magnetic field. We main-
tain that definition here:

µ1 =
1

2

mv⊥
2

B
. (1)

Here, m is the mass of the particle, B = Bb̂ is the mag-

netic field where b̂ is the unit vector denoting the direc-
tion of the magnetic field, v is the velocity of the particle,
and the subscript ⊥ denotes that we take the component
that is perpendicular to the magnetic field. In addition,
the subscript ‖ will denote that we take the component
parallel to the magnetic field. For the discrimination
from alternative definitions, to be introduced below, we
attach the ‘1’ subscript. We note that this conception
of µ does not take into consideration any drift-motion of
the gyrocenter.

We propose further definitions of the magnetic mo-
ment, which account for the drift-motion of the guid-
ing center in various ways. These definitions provide
varying degrees of generality and conservation. Qin and
Davidson have previously showed that there is an ex-
act magnetic moment invariant for a homogeneous time-
dependent magnetic field.13 Our goal is to find an invari-
ant that experiences strong conservation but is also not
computationally costly.

In this paper, we utilize a definition of the gyroradius,
ρ, to account for the motion of the guiding center:

µρ =
1

2

m (v − vgc)
2
⊥

B
. (2)

The meaning of vgc becomes clear in the following:

rgc = r− ρρρ = r +
v × b̂

Ω
, (3)

vgc = ṙgc, (4)

Ω =
qB

mc
. (5)

We define r as the instantaneous position of the particle
q as the charge of the particle, c as the speed of light,
and Ω as the cyclotron frequency. We suppose that this
correction should lead to a more robust magnetic moment
conservation. Furthermore, this definition requires no
information about the perturbing electromagnetic fields
other than the cyclotron frequency dominated by B.

We also define a magnetic moment that has been cor-
rected for the the instantaneous E × B drift velocity,
evaluated at the guiding center position:

µE =
1

2

m (v⊥ − vE)
2

B
, (6)

vE =
E× cB
B2

. (7)

The vector E denotes the electric field of the system.
Again, we suppose that this correction should lead to
stronger µ conservation. In contrast to Eq. (2), this def-
inition requires explicit information about a perturbing
field. We also note that if B is constant and uniform and
if E is not spatially dependent, then µρ = µE .

Throughout the paper, we will develop further defini-
tions of the magnetic moment that take into considera-
tion the drift velocities particular to certain field config-
urations. These definitions lose generality for the sake of
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µ conservation. We also define a characteristic scale for
the magnetic moment,

µ0 =
q

2c
Ω0ρ

2
0 where Ω0 =

qB0

mc
. (8)

ρ0 refers to a length scale for the gyroradius, while B0

and Ω0 characterize the magnetic field and cyclotron
frequency for the system in question. For convenience,
throughout the paper we assume B0 > 0 and ρ0 > 0;
thus, µ0 > 0.

We also refer to four dimensionless parameters that
characterize the breaking of µ conservation. These pa-
rameters are used in treatments of gyrokinetics such as
Refs. 1 and 14 to carry out the gyrokinetic ordering:

εω =

∣∣∣∣ ωΩ0

∣∣∣∣ , (9)

εB =

∣∣∣∣ρth

LB

∣∣∣∣ , (10)

ε⊥ = |k⊥ρth| , (11)

εδ ∼
∣∣∣∣ vEvth

∣∣∣∣ =

∣∣∣∣ E⊥cB0vth

∣∣∣∣ = ε⊥

∣∣∣qϕ
T

∣∣∣ . (12)

Here, ω is the characteristic frequency of explicitly time
dependent fields, LB is the length scale of magnetic field
variations, ρth is the thermal Larmor radius, k⊥ is the
wavenumber of perpendicular electric field variations, vth

is the thermal velocity, and T is the temperature. E⊥
refers to the fluctuating electric fields perpendicular to
the magnetic field, while ϕ is the fluctuating electric po-
tential.

When the charged particle is subject to a magnetic
field of the form B = B(x, y, t)ẑ, we analyze the prob-
lem two-dimensionally and ignore all motion parallel to
the magnetic field. The variables x, y, and z represent
standard Cartesian coordinates, while t represents time.
In addition, we take ρth ∼ ρ0 and vth ∼ u = ρ0Ω0

when we subject the particle to initial conditions. Subse-
quent sections of the paper analyze specific electromag-
netic field configurations. We examine uniform time de-
pendent magnetic fields in Section II, then we analyze
spatially dependent magnetic fields in Section III. Sec-
tion IV includes a time dependent electric field superim-
posed on top of a constant, uniform magnetic field. We
then analyze a spatially dependent electric field together
with a constant and uniform magnetic field in Section V.
Section VI of the paper then summarizes our results and
relates them to standard gyrokinetic theory. We also per-
form calculations that connects Littlejohn’s guiding cen-
ter theory to the work in this paper; they are contained
within the appendix.

II. Time Dependent Magnetic Field

We first consider the motion of a charged particle in
a spatially uniform but time dependent magnetic field
pointing in the ẑ direction. This system physically corre-
sponds to that of an infinitely long solenoid with a time
dependent current that changes quasi-statically. The
magnetic field is assumed to satisfy∣∣∣∣ 1

B

dB

dt

∣∣∣∣� |Ω| . (13)

The changing magnetic field creates an induced electric
field which curls around the center of the solenoid, per-
pendicular to the magnetic field. We also assume that
|B(t)| > 0 for all time. Then, we can use the WKB
approximation to obtain equations of motion for the
charged particle. An introduction to the WKB approxi-
mation can be found in Ref. 15.

Using WKB theory, Kulsrud demonstrates in Ref. 16
that if the natural frequency of a harmonic oscillator is
initially constant, varies, and then returns to constancy
after some finite amount of time, then there is no overall
change in the adiabatic invariant of this system before
and after the variation. Kruskal extends the results of
Kulsrud’s work to the case of the magnetic moment of a
charged particle in Ref. 17 using the fact that the mo-
tion of a gyrating particle and of a harmonic oscillator are
intrinsically linked. What Kulsrud and Kruskal do not
consider, however, is how much the adiabatic invariant is
perturbed from its initial value in the intermediate stage.
Using WKB theory, we show explicitly that the magnetic
moment returns to its initial value, and we also calculate
a first order expression to determine the maximum per-
turbation of the magnetic moment as the magnetic field
is changing.

A. WKB Approximation

The vector potential for this system is

A =
1

2
B(t) (xŷ − yx̂) , (14)

where the origin of our coordinate system is at the center
of the solenoid. This produces the following electromag-
netic fields:

B = ∇×A = B(t)ẑ, (15)

E = −1

c

∂A

∂t
= − Ḃ(t)

2c
(xŷ − yx̂) . (16)

The two-dimensional Lagrangian for this system is

L =
1

2
mv2
⊥ +

q

c
v⊥ ·A, (17)

where v⊥ = ẋx̂+ẏŷ. From the Euler-Lagrange equations
we obtain

ẍ = Ωẏ +
1

2
Ω̇y, ÿ = −Ωẋ− 1

2
Ω̇x. (18)
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We decouple these ODEs by defining new variables u and
v to be

u = x+ iy, v = x− iy. (19)

The decoupled equations are

ü = −i
(

Ωu̇+
1

2
Ω̇u

)
, v̈ = i

(
Ωv̇ +

1

2
Ω̇v

)
. (20)

We cast these ODEs into normal form by defining the
following transformations:

u(t) = f(t) exp

(∫ t

− i
2

Ω(t′) dt′
)
, (21)

v(t) = g(t) exp

(∫ t i

2
Ω(t′) dt′

)
. (22)

Plugging these transformations into Eq. (20), we obtain

f̈(t) +
1

4
Ω(t)2f(t) = 0, g̈(t) +

1

4
Ω(t)2g(t) = 0. (23)

Eq. (13) is satisfied, then we can apply the WKB ap-
proximation to Eq. (23). The WKB solutions are

f(t) =

C1 exp

(∫ t i

2
Ω(t′) dt′

)
+ C2 exp

(∫ t

− i
2

Ω(t′) dt′
)

√
|Ω(t)|

,

(24)

g(t) =

C3 exp

(∫ t i

2
Ω(t′) dt′

)
+ C4 exp

(∫ t

− i
2

Ω(t′) dt′
)

√
|Ω(t)|

,

(25)

where each Ci is a constant determined by the initial
conditions. Finally, we invert our transformations and
apply the following initial conditions:

x(t0) = x0, y(t0) = y0, ẋ(t0) = vx0, ẏ(t0) = vy0.
(26)

We also define Ω(t0) = Ω0. The equations of motion are
then

x(t) =√
Ω0

Ω(t)

(
vx0

Ω0
sin(θ(t))− vy0

Ω0
cos(θ(t)) + x0 +

vy0

Ω0

)
,

(27)

y(t) =√
Ω0

Ω(t)

(
vx0

Ω0
cos(θ(t)) +

vy0

Ω0
sin(θ(t)) + y0 −

vx0

Ω0

)
,

(28)

where θ(t) =
∫ t
t0

Ω(t′) dt′ is the elapsed phase.

We now restrict the problem to the case where instan-
taneously at t = t0, the particle is circling around a cen-
ter point R0 = Rx0x̂ + Ry0ŷ with radius ρ0 and speed
|Ω0ρ0|. To simplify the problem, without loss of gener-
ality, we set vx0 = 0. The equations of motion are then
the following:

x(t) =

√
Ω0

Ω(t)
(ρ0 cos(θ(t)) +Rx0) , (29)

y(t) =

√
Ω0

Ω(t)
(−ρ0 sin(θ(t)) +Ry0) . (30)

B. Magnetic Moment Conservation

Before calculating the magnetic moment, we first cal-
culate the E×B velocity:

vE(x, t) = − Ḃ

2B
(xx̂ + yŷ) . (31)

We next correct for the guiding center motion of the par-
ticle by evaluating vE at the guiding center position R.
To calculate R, we average the position of the particle
over one gyration:

R = 〈r⊥〉 =
1

2π

∫ π

−π
r⊥ dθ. (32)

Here, r⊥ is the position of the particle in the xy-plane.
We note that since the cyclotron frequency is a slowly
varying function of time, we may simply treat it as con-
stant during the averaging procedure.18 Thus, the posi-
tion of the guiding center is

R =

√
Ω0

Ω(t)
R0. (33)

With this in mind, we can easily compute the standard
magnetic moment of the particle µ1 using the approxi-
mate equations of motion. The expression is

µ1(t) = µ0

(
1 +

Rx0 sin(θ(t)) +Ry0 cos(θ(t))

ρ0

Ω̇

Ω2

+

(
1

4
+
R2
x0 +R2

y0

4ρ2
0

+
Rx0

2ρ0
cos(θ(t)) −Ry0

2ρ0
sin(θ(t))

)
Ω̇2

Ω4

)
.

(34)

We note that terms like (R0/ρ0)(Ω̇)/(Ω2) are character-
istic of the E×B drift. Thus, the perturbation is O(εδ),
and is determined by εω as well as the initial guiding
center R0. If the particle’s guiding center is initially far
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from the center of the solenoid, then it will experience a
large drift velocity that will break µ conservation unless
εω is small enough to compensate. We also notice that
after the magnetic field has stopped changing, µ1 returns
to its initial value.

We next evaluate the E × B velocity at this position
and calculate µE to be

µE(t) =
m

2B(t)
(v(t)− vE(R, t))

2
. (35)

To simplify the calculation, we prescribe a magnetic field
such that Ḃ(t = t0) = 0. Plugging in our equations of
motion, we find that the corrected magnetic moment is

µE(t) = µ0

(
1 +

Ω̇2

4Ω4

)
. (36)

We note that µE is predicted by Littlejohn’s guiding cen-
ter theory to be better conserved than µ1. Furthermore,
the maximum perturbation of the magnetic moment is
small due to Eq. (13). For R0 = 0, µ1 = µE . Thus, µE
will be conserved to higher order than µ1.

Next we prescribe an example magnetic field and find
the maximum perturbation. We define the magnetic field
to be

B(t) = B0

(
1 +

αB
1 + e−ωt

)
, B0, αB , ω > 0. (37)

This magnetic field has an initial value of B0, and slowly
increases to a final value of (1 +αB)B0 with a character-
istic frequency ω. To satisfy Eq. (13), we require that∣∣∣∣∣ Ω̇(t)

Ω(t)2

∣∣∣∣∣� 1. (38)

For our specified magnetic field,

max

(∣∣∣∣∣ Ω̇(t)

Ω(t)2

∣∣∣∣∣
)

=

∣∣∣∣ ωΩ0

∣∣∣∣ αB
4(1 + αB)

. (39)

Thus, we require

εωαB
4(1 + αB)

� 1. (40)

For our prescribed magnetic field, the condition in
Eq. (40) is satisfied for even large values of αB as long as
εω is small.

For this system, we define the maximum perturbation
the corrected magnetic moment,

∆µE = |max(µE)−min(µE)| . (41)

To calculate this quantity we maximize the function
Ḃ(t)2/B(t)4. We find that

∆µE
µ0

=
ε2ωα

2
B

64(1 + αB)2
� 1, (42)

where the inequality is due to Eq. (40). We note here
that as long as εω � 1, the perturbation is small even for
large values of αB .

Finally, we present another way to calculate a cor-
rected magnetic moment. We take R0 = 0 so that the
particle is circling around the originf and note that this
is equivalent to first correcting for vE(R, t). We then
calculate µB using the equations of motion to obtain

µρ(t) = µ0

(
1 +

Ω̇4

4Ω8

)
. (43)

Thus, we have gained higher order magnetic moment con-
servation, because now the perturbation depends on even
higher time derivatives than previously. Plugging in our
defined magnetic field, we calculate that the maximum
perturbation is

∆µρ
µ0

=
ε4ωα

4
B

1024 (1 + αB)4
� 1. (44)

C. Adiabatic Invariant

We now calculate the adiabatic invariant for this sys-
tem, following a slightly modified approach to Taylor
in 19. We define our adiabatic invariant to be

I =

∮
pr dr =

2

∫ rmax

rmin

√
2mH⊥ −

(
pφ
r
− mΩr

2

)2

dr,

(45)

where we integrate over the region where the integrand is
real. Here, r is the perpendicular distance away from the
cylindrical axis of symmetry, φ is the azimuthal angle,
H⊥ = mv2

⊥/2 is the two-dimensional Hamiltonian, pr =
mṙ is the canonical momentum associated with r, and
pφ = mr2φ̇ + (qBr2)/(2c) is the canonical momentum
associated with φ. We note that even when the magnetic
field is changing in time, pφ is an exact constant of motion
due to the cylindrical symmetry of the system. H⊥ is a
constant of motion is the magnetic field is static. The
integral can be computed exactly:

I = πmin

(
2mH⊥

Ω
,

2mH⊥
Ω

+ 2pφ

)
. (46)

We note that since pφ is an exact constant of motion even
in a time dependent magnetic field, the term 2πpφ can
simply be subtracted to get a new adiabatic invariant.
We can then write the magnetic moment based off of
this invariant:

µI =
q

mc

I

2π
=
H⊥
B

= µ1. (47)

The adiabatic invariant for this system is simply the un-
corrected magnetic moment µ1, a well known result. As
seen above, while µ1 does fluctuate over time, its pertur-
bation is proportional to εω, as to be expected from an
adiabatic invariant.
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D. Summary

In summary, we used the WKB approximation to show
that for a magnetic field that changes slowly in time, all
three of our defined magnetic moments return to their
original value after the magnetic field has stopped chang-
ing. In addition, if the rate at which the magnetic field
changes is small compared to the cyclotron frequency,
then the perturbation of the magnetic moment is small
regardless of how much the magnetic field changes in
magnitude. If the change of magnitude of the magnetic
field is small, then naturally the perturbation will be even
smaller. By correcting for the guiding center motion, we
can attain higher order µ conservation. Finally, we note
that the above use of the WKB approximation only ap-
plies for magnetic fields that do not become exactly zero
or change sign. If the magnetic field does indeed change
sign, then the use of Airy functions is required to properly
apply the WKB approximation. We now examine mag-
netic moment conservation in spatially dependent mag-
netic fields without any electric fields.

III. Spatially Dependent Magnetic Field

A. Straight Magnetic Field

The next system we consider is one already analyzed by
Brizard in Ref. 20. We define our nonuniform magnetic
field to be

B(x) = B0(1− x/LB)ẑ, B0, LB > 0, (48)

where LB is the gradient length scale of the magnetic
field. We also subject our particle to the following initial
conditions:

x(0) = ρ0, ẋ(0) = 0, y(0) = 0, ẏ(0) = −Ω0ρ0 = −u.
(49)

Here, ρ0 ∼ ρth is the characteristic length of the gyromo-
tion while u = Ω0ρ0 ∼ vth is the characteristic velocity.
We also assume that ρ0 > 0.

1. Equations of Motion

The ODEs for this system are

ẍ = Ω0ẏ (1− x/LB), (50)

ÿ = −Ω0ẋ (1− x/LB). (51)

As Brizard demonstrates, x(t) is periodic and varies be-
tween ρ0 and −ρ0. In addition, because magnetic fields
do no work, the kinetic energy is conserved.

We first follow Brizard’s approach in reducing our
ODEs from second order to first order. We note that

the right-hand side of Eq. (51) is a total derivative, and
thus we can integrate the equation to obtain

ẏ = Ω0

(
1

2LB

(
x2 − ρ2

0

)
− x
)
. (52)

Here, we can explicitly see the grad-B drift term −uεB/2.
Next, we plug this into Eq. (50), and note that

ẍ(2ẋ) =
d

dt
(ẋ2). (53)

We integrate the result and obtain

(ẋ)2 = Ω2
0

[
− εBρ0(y − ρ0) +

(
ε2B
2
− 1

)(
y2 − ρ2

0

)
+

1

LB

(
y3 − ρ3

0

)
− 1

4L2
B

(y4 − ρ4
0)

]
.

(54)

Brizard then uses these equations to finally obtain the
equations of motion:

x(t) = ρ0

(
2

εB
− 1− 2

εB

(
1− εB

1− εB sn2(Ω0t/2|ε2B)

))
,

(55)

y(t) = ρ0

(
−Ω0t

εB

(
1− E(ε2B)

K(ε2B)

)
+

2

εB
Z
(
am(Ω0t/2|ε2B)|ε2B

)
− 2 sn(Ω0t/2|ε2B) cn(Ω0t/2|ε2B) dn(Ω0t/2|ε2B)

1− εB sn2(Ω0t/2|ε2B)

)
.

(56)

The solutions are expressed in Jacobi elliptic functions
sn, cn, and dn, complete elliptic integrals E and K, the
Jacobi amplitude function am, and the Jacobi zeta func-
tion Z.

2. Magnetic Moment Conservation

We now calculate the magnetic moment as a function
of x; one finds:

µ1(x) =
µ0

1− x/LB
. (57)

This function oscillates between a maximum at x = ρ0

and a minimum at x = −ρ0. Due to the oscillation, we
define the magnetic moment deviation to be the differ-
ence between the maximum and minimum divided by 2.
The deviation is then

∆µ1

µ0
=

εB
1− ε2B

. (58)
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For εB � 1, the perturbation is εB + ε3B +O(ε5B).
Next, we correct for the lowest order grad-B drift ve-

locity, which Brizard calculates to be,

v∇B = −uεB
2

ŷ. (59)

To do so, we define the corrected magnetic moment to be

µ∇B =
1

2

m(v − v∇B)2

B(x)
. (60)

Carrying out the calculation by substituting in the equa-
tions for ẋ2 and ẏ, we obtain µ∇B as a function of x:

µ∇B(x) = µ0

(
1

2L2
B

x2 − ρ2
0/2

1− x/LB
+ 1

)
. (61)

We next find the extrema of this function within the do-
main −ρ0 ≤ x ≤ ρ0 and calculate the deviation. A local
maximum exists at x = −ρ0, a global maximum at x =

ρ0, and a global minimum at x = LB

(
1−

√
1− ε2B/2

)
.

We calculate the deviation of the corrected magnetic mo-
ment using the global maximum:

∆µ∇B
µ0

=
ε2B

8(1− εB)
+

1−
√

1− ε2B/2
2

. (62)

For εB � 1, this is equal to ε2B/4 + ε3B/8 +O(ε4B). Thus,
by correcting for the lowest order grad-B drift, we have
gained an extra order in magnetic moment conservation.
This is consistent with Littlejohn’s result, which predicts
that a grad-B correction will lead to higher magnetic
moment conservation.

Finally, from the equations of motion it is clear that
the exact drift is

vD = −ρ0Ω0

εB

((
1− E(ε2B)

K(ε2B)

))
ŷ. (63)

We can then correct for this drift when calculating the
magnetic moment:

µD =
1

2

m (v⊥ − vD)
2

B0(1− x/LB)
. (64)

The maximum deviation of this magnetic moment is de-
fined to be

∆µD =
1

2
|max(µD)−min(µD)| . (65)

This is done numerically, and the results are plotted in
Fig. 1, with the deviation in magnetic moment scaled
to µ0. It is evident that correcting for the exact drift
exhibits the same quadratic scaling as correcting for the
lowest order grad-B drift. The exact correction and the
approximate correction agree to a high degree of accuracy
for small εB . For example, for εB = 0.2, ∆µ∇B is only
5.05% lower than ∆µD.

10−3 10−2 10−1 100
εB

10−6

10−4

10−2

100

102

Δμ
Δμ

0

μ1 μ∇B μμ

FIG. 1. Plot of the deviation of magnetic moment normalized
to µ0 vs. εB . µ1 exhibits linear scaling while both µ∇B and
µD exhibit quadratic scaling. Eventually, as εB → 1, the
magnetic moment deviations diverge. This is consistent with
the period of the motion diverging as well as εB → 1.

3. Adiabatic Invariant

Finally, we calculate an adiabatic invariant for the sys-
tem, following the approach in Ref. 19 more directly.
First, we define our vector potential to be

A = B0

(
x− x2

2LB

)
ŷ. (66)

As long as parameters such as LB change slowly in time
compared to the cyclotron frequency, then the following
quantity will be approximately conserved:

I =

∮
px dx =

2

∫ ρ0

−ρ0

√
2mH⊥ −

(
py −mΩ0

(
x− x2

2LB

))2

dx.

(67)

Here, H⊥ = mv2
⊥/2 is the two-dimensional Hamiltonian,

while px = mẋ and py = mẏ + qAy/c are the canonical
momenta. H and py are constants of motion. Using
a change of variables s = x/ρ0, and using our initial
conditions to plug in values for H and py, we simplify
the integral:

I

2mΩ0L2
B

=∫ εB

−εB

√
1

4
(s− εB)(s+ εB − 2)(s− εB − 2)(s+ εB) ds.

(68)
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We use Ref. 21 to transform the integral:

I

16mL2
B

=

ε2B(1− ε2B)

∫ K(εB)2

0

sn2(u) cn2(u) dn2(u)

(1− εB sn2(u))
4 du.

(69)

Byrd and Friedman demonstrate how this may be sim-
plified further into complete elliptic integrals, which will
not be included here for brevity. Taylor expanding the
final result reveals that

µI =
q

mc

I

2π
= µ0(1− ε2B

8
+O(ε4B)). (70)

We next calculate an approximate drift that would cor-
respond to this magnetic moment.

µI =
1

2

m (v − vI)
2

B0(1− x/LB)
≈ µ0

1− (vI ẏ)/(u2)

1− x/LB
(71)

Here, we have assumed that vI/(ρ0Ω0) is small and can
be neglected to attain an approximate drift. We obtain
that

vI ≈
2u2

ẏ

(
1− µI

µ0

)
(1− x/LB) . (72)

We have analytically shown that requiring εB � 1 for
this magnetic field results in good magnetic moment con-
servation, and that correcting for the grad-B drift results
in even higher µ conservation. In addition, the exact drift
and the grad-B drift do not appreciably differ in terms
of magnetic moment conservation. To lowest order in εB ,
the adiabatic invariant of this system corresponds to µ1

evaluated at x = 0. Next, we examine magnetic moment
conservation for the magnetic field of a wire, which has
both a gradient and curvature.

B. Magnetic Field of a Wire

To study the coupled effects of the grad-B drift and
the curvature drift, we consider the necessarily three-
dimensional case of the magnetic field of an infinite wire.
While single particle motion in arbitrary axisymmetric
fields is well studied in the literature22, we restrict our-
selves to the simplest case of the magnetic field of a wire.
By choosing the magnetic field to have unit strength at
a normalized distance, we have in cylindrical coordinates
the following form for the magnetic field:

B ∼ 1

s
φ̂φφ. (73)

Here, s is the perpendicular distance away from the wire,
and φ is the azimuthal angle around the wire. We nu-
merically integrate the motion of a charged particle the
following initial conditions:

x0 = 1 + εB , y0 = 0, z0 = 0, (74)

vx0 = 0, vy0 = ζ, vz0 = εB ,

where the parameters εB and ζ are given by

εB ≡
ρ0

R0
, ζ ≡

v‖

v⊥
. (75)

R0 is the initial radial distance of the guiding center from
the wire. For convenience, we choose R0 = 1. We do not
consider cases in which εB or ζ exceed unity.

1. Further Magnetic Moment Definitions

We are motivated to introduce definitions for the mag-
netic moment, akin to Eq. (6), that account for the guid-
ing center drifts associated with spatially dependent mag-
netic fields.

To separate the effects of the grad-B and curvature
drifts, we first define moments that are independently
corrected:

µ∇B =
1

2

m(v⊥ − v∇B)2

B
, (76)

v∇B =
1

2

mv2
⊥

qB

cB×∇B
B2

, (77)

and

µRc
=

1

2

m(v⊥ − vRc
)2

B
, (78)

vRc
=
mv2
‖

qB

Rc × cB
R2
cB

. (79)

We note that due to the circular geometry of our mag-
netic field, the radius of curvature vector Rc of the mag-
netic field is equal to the radial position vector s. We can
combine these definitions to simultaneously account for
both drifts.

µB(x) =
1

2

m(v⊥ − v∇B − vRc
)2

B
(80)

We note that this is exactly the same expression one
obtains for a corrected magnetic moment by following
Littlejohn’s guiding center theory. Thus, we expect
higher magnetic moment conservation by correcting for
the above drifts.

2. Magnetic Moment Conservation

We use the fourth-order Runge-Kutta method to nu-
merically integrate our system of equations, scanning
over the parameters εB and ζ to measure the maximum
relative change of the magnetic moment. As expected,
the traditional definition of the magnetic moment fails
to conserve well. We find that µ1 ∼ εB with a prefactor
of order unity. This is the case for all relevant values of
ζ.

Fig. 2 shows the behavior of the magnetic moments
for the edge case, ζ = 1, in which the grad-B drift and
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10−4 10−3 10−2 10−1
εB

10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1

Δμ
/μ

0

μ1 μ∇B μμc μBΔx)

FIG. 2. Plot of the dependencies of the maximum perturba-
tion on εB for each of the magnetic moment definitions. The
extreme case of ζ = 1 is shown to highlight the differences in
behaviors.

the curvature drift are on equal footing. Note that both
µ∇B and µRc

retain the linear εB scaling, but experience
a small reduction (less than an order of magnitude) of the
prefactor. However, µB(x) scales as ε2B , representative of
a more robust conservation.

Since ζ is an explicit measure of the relative impor-
tance of the curvature drift to the grad-B drift, we ex-
pect µRc

−−−→
ζ→0

µ1 and µ∇B −−−→
ζ→0

µB(x). Since the former

primarily constitutes a change in the prefactor, we only
illustrate the latter’s behavior in Fig. 3. µ∇B behaves
in a piecewise manner about a critical value of εB . For
εB less than this critical value, the scaling remains lin-
ear. For εB greater than the critical value, the scaling
becomes quadratic. Essentially, the gradient drift is the
dominant drift for large εB . We find that the critical
value scales as ζ2.

In the case of a curved spatially-dependent magnetic
field, the basic definition of the magnetic moment fails as
an invariant when the length scale of the gyromotion is
comparable to the magnetic field’s inherent length scale,
εB ∼ 1. Non-conservation can be abated by correcting
for the drift-motion of the particle, namely the grad-B
and curvature drifts. The relative importance of these
two effects can be measured by the parameter ζ, and
in particular regions of ζ-space one can obtain sufficient
conservation by correcting only for the gradient drift.

C. Summary

For both the straight and curved non-uniform mag-
netic fields analyzed, µ1 is conserved to O(εB); there-
fore, requiring εB � 1 guarantees adequate magnetic
moment conservation. In addition, correcting for both
grad-B and curvature drifts conserves the magnetic mo-

10−4 10−3 10−2 10−1
εB

10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1

Δμ
Δμ

0

ζ=1 ζ=10−1 ζ=10−2 ζ=10−3

FIG. 3. Plot of the dependencies of the maximum pertur-
bation of µ∇B on εB for varying values of ζ. There is a ζ
dependent critical value of εB for which the scaling changes.
For εB less than this value, the scaling is linear. And for εB
greater than this value, the scaling is quadratic.

ment up to O(ε2B). Including these magnetic drifts im-
proves magnetic moment conservation for the magnetic
fields considered, and we expect similar results for gen-
eral non-uniform magnetic fields. We next examine how
a time dependent electric field breaks µ1 conservation.

IV. Time Dependent Electric Field

We consider the motion of a charged particle in a static
and uniform magnetic field with a perpendicular oscillat-
ing electric field:

B = B0ẑ, B0 > 0, (81)

E = E0 cos(ωt)x̂. (82)

The frequency of this oscillation ω is taken to be small
compared to the cyclotron frequency Ω = Ω0. We ignore
any induced magnetic fields and take them to be small
compared to B0. We also set sgn(ω) = sgn(Ω) without
loss of generality.

A. Equations of Motion

From Newton’s laws we write down the ODEs for this
system:

mẍ = q

(
ẏ

c
B0 + E0 cos(ωt)

)
, (83)

mÿ = −q ẋ
c
B0. (84)
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We define the parameter α = cE0/B0 and obtain

ẍ = Ωẏ + αΩ cos(ωt), (85)

ÿ = −Ωẋ. (86)

We use the initial conditions

x(0) = x0, ẋ(0) = vx0, y(0) = x0, ẏ(0) = vy0, (87)

and solve for the equations of motion:

x(t) =
vx0

Ω
sin(Ωt)− vy0

Ω
cos(Ωt)

− α

Ω

1

1− ε2ω
(cos(Ωt)− cos(ωt)) + x0 +

vy0

Ω
,

(88)

y(t) =
vy0

Ω
sin(Ωt) +

vx0

Ω
cos(Ωt)

− α

Ω

1

1− ε2ω

(
− sin(Ωt) +

sin(ωt)

εω

)
+ y0 −

vx0

Ω
.

(89)

We note that if we take the limit that ω → 0, the equa-
tions of motion reproduce the same result as if the electric
field were E = E0x̂.

Next, we subject the particle to the initial conditions
in Eq. (49). The equations of motion then simplify to the
following:

x(t) =

1

Ω

(
u− α

1− ε2ω

)
cos(Ωt) +

α

Ω

1

1− ε2ω
cos(ωt),

(90)

y(t) =

− 1

Ω

(
u− α

1− ε2ω

)
sin(Ωt)− α

Ωεω

1

1− ε2ω
sin(ωt).

(91)

Thus, the velocity of the particle is

vx(t) = −
(
u− α

1− ε2ω

)
sin(Ωt)− α

1− ε2ω
εω sin(ωt),

(92)

vy(t) = −
(
u− α

1− ε2ω

)
cos(Ωt)− α

1− ε2ω
cos(ωt). (93)

B. Magnetic Moment Conservation

Now, we Taylor expand the factor of 1/
(
1− ε2ω

)
cor-

responding to sin(ωt) and cos(ωt), and to zeroth order
obtain that

µ1(t) =µ0

[(
α

u(1− ε2ω)
− 1

)2

− 2α

u

(
α

u(1− ε2ω)
− 1

)
cos(ωt) cos(Ωt)

+
(α
u

)2

cos2(ωt)

]
+O(εω).

(94)

We next calculate an upper bound for the maximum de-
viation of the magnetic moment from the center of its
oscillation:

∆µ1

µ0
= 2εδη + ε2δ +O(εω), (95)

where

η =

∣∣∣∣1− α

u(1− ε2ω)

∣∣∣∣ . (96)

Thus, in the limit that |εω|, εδ � 1, then η ≈ 1 and
∆µ1/µ0 ≈ 2εδ.

Now, suppose we wish to take into account the guiding
center motion when calculating the magnetic moment.
To do this, we first take into account the E×B drift,

vE(t) = −α cos(ωt)ŷ, (97)

by subtracting it from the velocity of the particle before
calculating the magnetic moment:

v1 = v − vE . (98)

Then, the corrected magnetic moment is

µE(t) = µ0

[(
α

u(1− ε2ω)
− 1

)2

−2α

u
εω

(
α

u(1− ε2ω)
− 1

)
cos(ωt) cos(Ωt)

]
+O(ε2ω).

(99)

We note that in this case µE = µρ. By correcting for
the E × B drift, the time dependence of the corrected
magnetic moment is O(εω), and the upper bound for the
deviation is

∆µE
µ0

= 2εωεδη +O(ε2ω). (100)

We can further correct for drift motion by also taking
into account the polarization drift,

vp(t) =
cĖ⊥
ΩB

= −αεω sin(ωt)x̂. (101)

Then, the corrected magnetic moment is

µp(t) =µ0

[(
α

u(1− ε2ω)
− 1

)2

−2α

u
ε2ω

(
α

u(1− ε2ω)
− 1

)
cos(ωt) cos(Ωt)

]
+O(ε3ω).

(102)

Now, the deviation is O(ε2ω), and the upper bound of the
deviation can be written as

∆µp
µ0

= 2ε2ωεδη +O(ε3ω). (103)
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This is consistent with Littlejohn’s result in Ref. ( 23),
which predicts that a polarization drift correction leads
to higher order magnetic moment conservation.

If we correct for even higher order drifts, then the mag-
netic moment will be conserved to higher order. We label
the nth drift as vD,n, where n is a natural number, and
the nth corrected magnetic moment as µD,n. The guid-
ing center experiences an acceleration aD,n = v̇D,n. In
the non-inertial frame of the guiding center, a fictitious
force Fn = −man is felt. This produces a general force
drift,

vD,n+1 =
c

q

Fn ×B

B2
. (104)

For an example of this method, if vD,1 = vE , then

F1 = −mv̇E =
−mĖ× cB

B2
, (105)

vD,2 =
1

q

F1 × cB
B2

=
−mc2

qB4
((Ė×B)×B), (106)

=⇒ vD,2 =
cĖ⊥
ΩB

= vp. (107)

This process can be repeated indefinitely, and for this
system we obtain that

vD,n =


−ω

n−1

Ωn−1
α cos(ωt)ŷ if n is odd,

−ω
n−1

Ωn−1
α sin(ωt)x̂ if n is even.

(108)

We then define the nth corrected velocity vector to be:

vn = v −
n∑
j=1

vD,j . (109)

This allows us to calculate the corrected velocity:

vn,x(t) =


−
(
u− α

1−ε2ω

)
sin(Ωt)− α

1−ε2ω
εnω sin(ωt)

if n is odd,

−
(
u− α

1−ε2ω

)
sin(Ωt)− α

1−ε2ω
εn+1
ω sin(ωt)

if n is even,

(110)

vn,y(t) =


−
(
u− α

1−ε2ω

)
cos(Ωt)− α

1−ε2ω
εn+1
ω cos(ωt)

if n is odd,

−
(
u− α

1−ε2ω

)
cos(Ωt)− α

1−ε2ω
εnω cos(ωt)

if n is even.

(111)

Then, the corrected magnetic moment is

µD,n(t) = µ0

[(
α

u(1− ε2ω)
− 1

)2

−2α

u
εnω

(
α

u(1− ε2ω)
− 1

)
cos(ωt) cos(Ωt)

]
+O(εn+1

ω ).

(112)

Therefore, by subtracting n drifts, the magnetic moment
becomes conserved up through order O(εn+1

ω ). The max-
imum deviation is,

∆µD,n
µ0

= 2εnωεδη +O(εn+1
ω ). (113)

Thus, for every higher order drift that we correct for,
our corrected magnetic moment is conserved up through
another order of εω. Meanwhile, for εδ � 1, all of our
perturbations are to lowest order linear in εδ.

For the given system, we can actually calculate the
sum of all the drifts:

vD,∞ =

∞∑
n=1

vD,n. (114)

To do so,we note that since |εω| < 1,

1

1− ε2ω
=

∞∑
n=0

ε2nω . (115)

Therefore,

vD,∞ = − α

1− ε2ω
(εω sin(ωt)x̂ + cos(ωt)ŷ). (116)

If we correct for vD,∞, then

v∞ = v − vD, (117)

v∞,x(t) =

(
α

1− ε2ω
− u
)

sin(Ωt), (118)

u∞,y(t) =

(
α

1− ε2ω
− u
)

cos(Ωt). (119)

Thus, after for correcting for every drift, the corrected
magnetic moment is perfectly conserved and stays at the
value µ0η

2, and the corrected velocity traces out a perfect
circle.

C. Adiabatic Invariant

Finally, we calculate the adiabatic invariant associated
with this system. We choose the following potentials:

A = B0xŷ, (120)

ϕ = −E(t)x. (121)

The adiabatic invariant is

I =

∮
px dx

= 2

∫ xmax

xmin

√
2mH⊥ −

(
py −

q

c
B0x

)2

+ 2qmE(t)x dx,

(122)

where we integrate over the domain in which the in-
tegrand is real. H⊥ = mv2

⊥/2 − qE(t)x is the two-
dimensional Hamiltonian while px = mẋ and py =
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mẏ + qB0x/c are the canonical momenta. We assume
E(t) is slowly varying compared to the cyclotron fre-
quency, so that H, along with py, can be considered con-
stants of motion while carrying out the integral:

m

qc

I

2π
=

1

B0

(
H⊥ +

1

2
mv2

E −mvEvy − vE
q

c
Bx

)
.

(123)
Here vE = −cE(t)/B0. Plugging in the expression for
the Hamiltonian, we finally obtain that

µI =
q

mc

I

2π
=

1

2

(v⊥ − vE)
2

B0
= µE . (124)

Thus, the adiabatic invariant is precisely the magnetic
moment calculated in the frame of the E×B velocity.

D. Summary

In short, we have demonstrated how to generate higher
order drifts that further conserve the magnetic moment
when εω < 1. For each drift, the perturbation picks up
an additional power of εω. Meanwhile, the deviations
are always linear in εδ. Therefore, εδ � 1 guarantees
good magnetic moment conservation. Additionally, the
adiabatic invariant corresponds exactly to µE . Now, we
turn to the case of a spatially dependent electric field.

V. Spatially Dependent Electric Field

Finally, we consider a single charged particle subject
to a spatially dependent electric field perpendicular to a
constant and uniform magnetic field. The electric field
is sinusoidal with an arbitrary phase φ and wavenumber
k = k⊥:

B = B0ẑ, B0 > 0, (125)

E = E0 sin(kx+ φ)x̂. (126)

We assume k > 0 for simplicity, and subject our particle
to the initial conditions in Eq. (49):

ẍ = Ωẏ + αΩ sin(kx+ φ), (127)

ÿ = −Ωẋ. (128)

We next integrate the y-component of the acceleration:

ẏ = −Ωx+ vy0 + Ωx0 = −Ωx. (129)

We then plug this into the x-component of the accelera-
tion:

ẍ = −Ω2x+ αΩ sin(kx+ φ). (130)

The following analysis is split up into three sections.
In the first section, we linearize the electric field for small
values of |kx| to find approximate equations of motion.
Then, we consider the full nonlinear problem analytically
and then computationally.

A. Long-Wavelength Approximation

If |kx| � 1 for all time, then using the small angle
approximation, then we approximate the electric field as

Ẽ = E0(sin(φ) + kx cos(φ))x̂. (131)

1. Equations of Motion

Using the above linearization instead of the exact elec-
tric field, we obtain

ẍ = −Ω2x+ αΩ(sinφ+ kx cosφ). (132)

This is simply the differential equation for simple har-
monic motion. Given our initial conditions, the solution
is

x(t) =

(
ρ0 −

αΩ sinφ

ω2
eff

)
cosωefft+

αΩ sinφ

ω2
eff

, (133)

where the frequency of the oscillation is

ωeff =
√

Ω2 − αkΩ cosφ = |Ω|η. (134)

Here, we have defined for convenience that

η =

√
1− α

u
ε⊥ cosφ. (135)

We note that for our assumption of small oscillations to
be valid, the effective frequency of the oscillation must be
real (and thus, η2 must be positive). This implies that

α

u
ε⊥ cos(φ) < 1 (136)

must be true for the our linearization to be valid. Phys-
ically, this means that εδε⊥ < 1 for the linearization
to hold for all values of the phase φ. In the limit that
εδε⊥ � 1, η ≈ 1 and |ωeff/Ω| ≈ 1.

We can simplify x(t) and integrate the ODE for y(t)
to obtain:

x(t) =
1

Ω

(
u− α sinφ

uη2

)
cosωefft+

α sinφ

Ωη2
, (137)

y(t) = − 1

ωeff

(
u− α sinφ

uη2

)
sinωefft−

α sinφ

η2
t. (138)

We note that the particle undergoes an overall drift in
the y-direction. The drift velocity is

vD = −α sinφ

η2
ŷ = vDŷ. (139)

This is the gyro-averaged E×B drift velocity. This can
be seen by explicitly averaging the electric field,〈

Ẽ
〉

=
1

T

∫ T

0

E0(sin(φ) + kx cos(φ))x̂ dt

= E0(sin(φ) + k 〈x〉 cos(φ))x̂.

(140)
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We calculate 〈x〉 = (α sinφ) /
(
Ωη2

)
explicitly using

the equations of motion, and plugging the result into
〈vE〉 gives us

vD = 〈vE〉 =

〈
Ẽ
〉
× cB

B2
. (141)

In this case, gyroaveraging the electric field is equivalent
to evaluating the electric field at the gyrocenter. In ad-
dition, we note that for our linearization to be valid, not
only do we require that ε⊥ � 1, but we also require that
εδε⊥| sin(φ)| � 1.

B. Magnetic Moment Conservation

We define the constant dimensionless constant λ to be

λ = 1− α sinφ

ρ0Ωη2
= 1 +

vD
u
. (142)

Note that in the limit that |vD/u| � 1, then λ ≈ 1. Now,
we can write our equations of motion as:

x(t) = ρ0λ cos (ωefft) +
vD
Ω
, (143)

y(t) = −ρ0Ω

ωeff
λ sin (ωefft)− vDt. (144)

We next correct for the drift velocity when calculating
the magnetic moment, and obtain

µD(t) =
m

2B0
(ẋ2 + (ẏ − vD)2)

= µ0λ
2

(
1− αk

Ω
cos(φ) sin2(ωefft)

)
= µ0λ

2

(
1− αk

2Ω
cos(φ) (1− cos(2ωefft))

)
.

(145)

We next extract the amplitude of µD’s oscillation:

∆µD
µ0

=
λ2

2
εδε⊥ � 1. (146)

We note that when φ = 0, π, the drift velocity, which
goes as sin(φ), becomes 0. In these cases, correcting the
magnetic moment is not necessary to obtain the above
result, and µ1 = µD. Otherwise, the perturbation of µ1

will be linear in εδ, but it will also go as ε0⊥. Thus, in the
linearized case µE is conserved to higher order.

1. Adiabatic Invariant

We next calculate the adiabatic invariant for our lin-
earized system. Our potentials are:

A = B0xŷ, (147)

ϕ(x) = −E0 sin(φ)x− 1

2
E0k cos(φ)x2. (148)

The adiabatic invariant is

I =

∮
px dx

= 2

∫ xmax

xmin

√
2mH⊥ −

(py
m
− Ωx

)2

− 2qmϕ(x) dx,

(149)

where we integrate over the domain in which the inte-
grand is real. If we do so, and express H⊥ and py in
terms of our initial conditions, then our final expression
is

µI =
q

mc

I

2π
= η

1

2

m (v0 − vD)
2

B0
= µ0ηλ

2, (150)

where v0 = −uŷ is the initial velocity of our particle.
Note that

µI − µD = µ0λ
2

(
η − 1 +

αk

Ω
(1− cos(2ωefft))

)
. (151)

Thus, in the limit that |vD/u| � 1, then we have µI ≈
µD. We now consider the fully nonlinear problem using
the same initial conditions.

C. Fully Nonlinear Analysis

1. Effective Potential and Magnetic Moment
Conservation

We can repeat the first few steps of the above deriva-
tion again with the same initial conditions to obtain

ẍ = −Ω2x+ αΩ sin(kx+ φ), (152)

ẏ = −Ωx. (153)

The ODE for x(t) can be rewritten using an effective
potential. We write that

mẍ = −dVeff

dx
, (154)

where

Veff(x) =
1

2
mΩ2x2 +mα

Ω

k
cos(kx+ φ). (155)

The effective potential is that of a harmonic oscillator
perturbed by the spatially dependent electric potential.

It may be the case that Veff(x) has multiple local min-
ima, and thus multiple wells that the particle could be
trapped in. In that case, the oscillatory behavior would
be sensitive to initial conditions, as changing x(0) could
result in the particle becoming trapped in a different po-
tential well. To simplify the analysis we restrict ourselves
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to the case where there is only one potential well near the
center of the parabola, and thus only one point where the
derivative of the effective potential is zero. The condition
is

εδε⊥ < 1. (156)

Before considering arbitrary phase φ, we study the case
of φ = 0 (the case of φ = π is essentially equivalent).
Here, the effective potential is an even function of x, and
thus the two turning points are ρ0 and −ρ0. Knowing
the turning points and that the particle passes through
x = 0 (since the turning points are of opposite sign), we
can use conservation of energy to determine how µ1(t)
oscillates:

1

2
mv2
⊥ + qϕ = H⊥ =

1

2
mρ2

0Ω2 +
qE0

k
cos(kρ0), (157)

where

ϕ(x) =
E0

k
cos(kx). (158)

Then, writing the magnetic moment as a function of x,

µ1(x) =
H⊥
B0
− qα

ck
cos(kx). (159)

In the case that ε⊥ ≤ π, the magnetic moment oscillates
between µ(x = 0) and µ(x = ρ0). Thus, the amplitude
of oscillation is

∆µ1 =
∣∣∣ qα
2ck

(cos(kρ0)− 1)
∣∣∣ =

∣∣∣∣µ0
α

u

1

ρ0k
(cos(kρ0)− 1)

∣∣∣∣ ,
(160)

∆µ1

µ0
=
εδ
ε⊥
|cos(ε⊥)− 1| . (161)

Here, we calculate the amplitude by taking the difference
between the maximum and minimum values of the mag-
netic moment and dividing by 2. For ε⊥ � 1, we can
Taylor expand to obtain

∆µ1

µ0
≈ εδε⊥. (162)

This is exactly the same perturbation we obtained using
the small angle approximation before with φ = 0.

However, if ε⊥ > π, then the amplitude of oscillation
is instead

∆µ1

µ0
=

1

2
εδε⊥. (163)

From this, we can say that for small ε⊥, the perturbation
the magnetic moment is approximately linear in εδε⊥. As
εδ ∼ 1 increases, the amplitude becomes nonlinear in k
and is still linear in εδ. Then, when the bound satu-
rates the amplitude of the perturbation is proportional
to εδ/ε⊥.

The same analysis approximately generalizes for arbi-
trary phase. For small ε⊥, the amplitude of oscillation of

the magnetic moment is linear in εδ, and as we saw ear-
lier is also linear in ε⊥ if we properly correct for the drift
velocity of the particle, and otherwise is of order ε0⊥. As
ε⊥ increases, the amplitude of oscillation is still linear in
εδ but nonlinear in ε⊥, until finally the bound saturates.
When the bound saturates, the perturbation is propor-
tional to εδ/ε⊥. Thus, we conclude that if ε⊥ � 1 and if
εδε⊥ � 1, and if we correct for the gyro-averaged E×B
drift, then ∆µ1/µ0 � 1. Meanwhile, if ε⊥ � 1 and if
εδ/ε⊥ � 1, then ∆µ/µ0 � 1, where in this case we do
not correct for any drifts.

2. Equations of Motion

Ideally, one would hope to exactly solve for the equa-
tions of motion, and then calculate the exact magnetic
moment. Unfortunately, one obtains an integral that is
analytically intractable. We consider again the equation

mẍ = −dVeff

dx
. (164)

We can multiply by ẋ and write the equation as a total
derivative.

mẋẍ = m
d

dt

(
ẋ2

2

)
= −dVeff

dt
= −ẋdVeff

dx
. (165)

Therefore, since ẋ(0) = 0 and x(0) = ρ0, we can integrate
and obtain

m

2
ẋ2 = Veff(ρ0)− Veff(x). (166)

This can also be integrated. If ρ0 is the rightmost turning
point, then

t =

∫ x

ρ0

−dx′√
2
m (Veff(ρ0)− Veff(x′))

for 0 < t <
T

2
. (167)

If ρ0 is the leftmost turning point, then the sign in the
integral is flipped.

To find the period, one must solve for the other turn-
ing point, x∗. If φ = 0, π then the other turning point
is simply x∗ = −ρ0, but for arbitrary phase one must
numerically solve a transcendental equation. Once the
other turning point is obtained, the period can be nu-
merically calculated:

T = 2

∣∣∣∣∣∣
∫ ρ0

x∗

dx√
2
m (Veff(ρ0)− Veff(x))

∣∣∣∣∣∣ . (168)

Note that since x(t) is bounded and periodic, it can be
expanded as a Fourier series. Because x(t) is even, we
can write

x(t) = a0 +

∞∑
n=1

an cos
2πnt

T
. (169)
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If we plug this into ẏ = −Ωx, not only do we notice that
ẏ is periodic (and thus the magnetic moment is periodic
as well), but also that −Ωa0 is an overall drift! If we were
to integrate ẏ to get y(t), then one of the terms would
be −Ωa0t. To obtain it, we note that if we integrate x(t)
over the entire period,∫ T

0

cos
2πnt

T
dt = 0 for integer n. (170)

Therefore, we can integrate x(t) to find the drift velocity,
and abuse a change in variables:

vD = −Ωa0 =
−Ω

T

∫ t=T

t=0

x(t) dt =
−Ω

T

∫ t=T

t=0

x
dt

dx
dx

=
−Ω

T

∫ t=T

t=0

x

ẋ
dx

=
2

T

∫ x=x∗

x=ρ0

Ωx dx√
2
m (Veff(ρ0)− Veff(x))

.

(171)
Here it is assumed that x = ρ0 is again the rightmost
turning point and x = x∗ is the leftmost turning point.
Otherwise, the sign in the integral flips. While this inte-
gral cannot be done analytically, it be calculated numer-
ically.

Interestingly, when φ = 0, π, the calculation is inte-
grating an overall odd function from ρ0 to −ρ0 since Veff

becomes an even function of x and x∗ = −ρ0, . Thus,
when φ = 0, π, vD = 0, and there is no overall drift
velocity.

Meanwhile, the gyro-averaged E × B velocity can be
calculated by gyro-averaging the electric field:

〈E〉 =
1

2π

∫ π

−π
E(X + ρρρ) dθ = J0(kρ)E(X). (172)

Here, J0 is a Bessel function of the first kind, X is the
gyrocenter, and ρρρ is the gyroradius. In our case, the
gyro-averaged electric field is

〈E〉 = E0 sin(kX + φ)J0(kρ)x̂. (173)

This can then be substituted into the equation for the
E×B velocity.

3. Adiabatic Invariant

We next calculate the adiabatic invariant. Taylor ana-
lyzes the same electromagnetic field configuration, so we
utilize his method in Ref. 19. The invariant is

I =

∮
px dx =

2

∫ xmax

xmin

√
2mH⊥ −

(
py −

q

c
B0x

)2

− 2qmϕ(x) dx.

(174)

For small values of the electric potential, which occurs
for large k, we can Taylor expand the integrand,

I

2
≈
∫ xmax

xmin

√
2mH⊥ − (mΩx− py)2 dx

− qmE0

k

∫ xmax

xmin

cos(kx+ φ)√
2mH⊥ − (mΩx− py)2

dx.

(175)

The first integral is elementary, while the second integral
can be written in terms of a Bessel function of the first
kind:

µI =
q

mc

I

2π
=
H⊥
B0
− qα

ck
J0(ka) cos(kx+ kvy/Ω + φ).

(176)
Here, a =

√
2mH⊥/(mΩ) ≈ ρ0. Therefore, the differ-

ence between this magnetic moment and the standard
magnetic moment is

µI − µ1 =
qα

ck
(cos(kx+ φ)− J0(kρ0) cos(φ)). (177)

Here, we have substituted in x+ vy/Ω = py/m = 0 from
our initial conditions. We then calculate an approximate
drift that would give us this adiabatic invariant:

µI =
1

2

m (v − vI)
2

B0
≈ µ1 − 2µ0

ẏvI
u2

. (178)

Thus, we can write the drift as

vI ≈ −
αΩ

kẏ
((cos(kx+ φ)− J0(kρ0) cos(φ)) . (179)

Noting that many of the above integrals cannot be
done analytically, we turn to computational methods for
more detailed analysis.

D. Simulation Results

We conclude by simulating the orbit of a charged par-
ticle in the electromagnetic fields given by Eq. (126). We
use the initial conditions found in Eq. (49), and use the
fourth-order Runge-Kutta method to integrate our sys-
tem of equations. Natural expressions for the fields and
the system’s parameters arise. We consider the case in
which the effect of the electric field is thought of as a
perturbation,εδε⊥ � 1.

1. Magnetic Moment Definitions

In addition to the magnetic moments defined in the in-
troduction, we are theoretically motivated to consider the
behavior of a magnetic moment that has been corrected
for a modified E × B drift. We can explicitly calculate
the drift motion of the guiding center using Eqs. (168)
and (171). Fortunately, we can avoid this integral form of
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FIG. 4. Plot of Eq. (171) for various values of ε⊥ compared
to J0(ε⊥), rescaled to remove sensitivity in magnitude to εδ.

the drift by taking advantage of our region of parameter
space, εδε⊥ < 1.

We can see in Fig. 4 that vD only appreciably deviates
in form from J0(ε⊥) for εδε⊥ > 1. Since these values are
explicitly omitted from our considerations, we substitute
vD ∼ vJ = −α sin(φ)J0(ε⊥) into our regime without con-
sequence. This gives us a highly motivated definition for
the magnetic moment:

µJ =
1

2

m (v⊥ − vJ)2

B
, (180)

vJ = −α sin(φ)J0(ε⊥)ŷ. (181)

According to the definition of µJ , µJ(φ = 0) = µE(φ =
0) = µ1. We also note that at the zeros of the Bessel
function, the result is indistinguishable from the φ = 0
calculation.

2. Magnetic Moment Conservation

Our analytical calculations have established that the
non-conservation of µ scales linearly with the strength of
the electric field, εδ. Here we scan over the parameter ε⊥
and observe the maximum relative change of the mag-
netic moment to probe the impact of the relative length
scales on µ conservation. As theoretically predicted, the
behavior changes when |∇E/E| becomes comparable to
1/ρ0. As Fig. 5 shows, each definition exhibits two scal-
ings: one for ε⊥ < 2π and another for ε⊥ > 2π.

We first inspect the sensitivities of the first three def-
initions to ε⊥. For nontrivial phase φ, each of these
moments fail to conserve well for either large or small
values of ε⊥. The fact that these definitions fail for en-
tire regions of parameter space provides further motiva-
tion to use the fourth definition. Fig. 4 indicates that
this definition is conserved well for both ε⊥ � 2π and
ε⊥ � 2π. By inspecting Fig. 6, we can see that the scal-
ings for 0 < φ < π/2 are bounded between ε⊥ and ε2⊥

10−1 100 101
ε⟂

10−5

10−4

10−3

10−2

Δμ
Δμ

0

μ1 μρ μμ μJ

FIG. 5. Plot of the dependencies of the maximum perturba-
tion on ε⊥ for each of the four magnetic moment definitions.

φ = π/4 ε⊥ � 2π ε⊥ � 2π

∆µ1max ∼ ε0⊥ ∼ ε−1
⊥

∆µρmax ∼ ε⊥ ∼ ε0⊥
∆µEmax ∼ ε⊥ ∼ ε0⊥

TABLE I. Summary of scalings for different definitions of µ.

for ε⊥ � 2π and between ε−1
⊥ and ε

−1/2
⊥ for ε⊥ � 2π.

In other words as ε⊥ departs from unity, we find increas-
ingly well-conserved µJ . These scalings are sensitive to
φ in a non-trivial fashion; only the behaviors for extreme
φ are easily readable. For ε⊥ > 2π, the magnetic mo-
ment will scale with, at worst, the ε⊥-scaling of the en-
velope that is insensitive to the J0’s zeroes. For ε⊥ such
that J0(ε⊥) ∼ 0, the scaling improves. Fig. 7 shows the
envelope-scalings for arbitrary values of φ.

As we correct for the drift-motion of the guiding cen-
ter, we obtain approximate invariants that are conserved
in differing regions of parameter space. The closer the
correction matches the true motion of the guiding cen-
ter, the larger the region of parameter space in which the
approximate invariant is conserved well. As was found
in the case of the stochastic heating of ions, the mag-
netic moment is maximally perturbed when the field’s
wavelength is on the same scale as the gyroradius.24

∆µJmax ε⊥ � 2π ε⊥ � 2π

φ = 0 ∼ ε⊥ ∼ ε−1
⊥

φ = π/2 ∼ ε2⊥ ∼ ε−1/2
⊥

TABLE II. Summary of scalings for µJ .
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FIG. 6. A closer look at the behavior of µJ for differing values
of φ. The solutions converge where J0(ε⊥) = 0.
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FIG. 7. Plot of the peak-envelope scalings for µJ for differing
phase.

E. Summary

If the long-wavelength approximation is assumed, then
∆µ1/µ0 is at worst linear in εδ but does not scale with
ε⊥. Meanwhile, correcting for the gyro-averaged E ×
B velocity results the perturbation being linear in εδε⊥,
and thus better magnetic moment conservation for long-
wavelengths. For ε⊥ � 1, the perturbation of µ1 scales as
εδ/ε⊥ and is therefore well conserved. Correcting for the
gyro-averaged E×B velocity sometimes results in worse µ
conservation in the short-wavelength regime. For ε⊥ ∼ 1,
correcting for any drifts does not significantly change the
maximum perturbation, and we require that εδ � 1 for
adequate µ conservation.

B(t) B(x)

ε2ω � 1 εB � 1

E(t) E(x), ε⊥ � 1 E(x), ε⊥ ≈ 1 E(x), ε⊥ � 1

εδεω � 1 εδε⊥ � 1 εδ � 1 εδ/
√
ε⊥ � 1

TABLE III. Conditions necessary for ∆µE/µ0 � 1 for each
system. The first table outlines the results of Sections II and
III, while the second table does so for Sections IV and V.

VI. Conclusions

In this paper, our goal was to shed light on the lim-
itations of gyrokinetic theory by investigating the non-
conservation of the magnetic moment in elementary elec-
tromagnetic fields. By calculating the perturbation of
the magnetic moment under various conditions, we have
determined quantitatively which parameters control the
degree to which the magnetic moment is conserved.

In standard gyrokinetic theory, µ1 is considered the
lowest-order approximation of the true adiabatic invari-
ant, the gyrocenter magnetic moment µ̄. In Ref. 25,
Krommes shows that one obtains higher-order approx-
imations of µ̄ if one evaluates the magnetic moment in a
frame of reference moving with the local E×B velocity,
in line with standard gyrokinetics,by performing calcu-
lations in the long-wavelength limit. Our calculations
confirm this finding, showing that in almost all of our el-
ementary field configurations, µE is conserved to higher
order than µ1. Precise scalings for a robust conserva-
tion of µE in terms of the small parameters εδ, εω, and
εB (introduced in Section I) are given in Table III. Our
calculations are also consistent with Littlejohn’s guiding
center theory; for the fields examined in this paper, Lit-
tlejohn’s corrections to the magnetic moment correspond
exactly to guiding center drifts.

We note that depending on the field configuration,
different small parameters impact the non-conservation
of the magnetic moment in different ways. Conse-
quently, assuming, e.g., εB � εδ instead of εB ∼ εδ,
will result in distinct sets of reduced Vlasov-Maxwell
equations.26 Derivations with general orderings can be
found in Refs. 27 and 28.

Clearly, in the presence of fast spatial changes (com-
pared to the gyroradius) of the background magnetic field
and/or high-amplitude electric field perturbations, mag-
netic moment conservation can break to a significant de-
gree. In the present work, we have provided quantitative
expressions for these violations, which should help to as-
sess the validity of gyrokinetics in specific physical situ-
ations. In general, one can always achieve higher-order
µ conservation by taking into account additional drifts
(beyond the E × B velocity). The integration of these
effects into an existing theoretical framework would be
able to extend the applicability of gyrokinetic theory.
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Appendix: Calculations using
Littlejohn’s Guiding Center Theory

We now apply Littlejohn’s guiding center theory as
outlined in Refs. 23 and 29 to the electromagnetic field
configurations examined in this paper, and demonstrate
a direct correspondence between guiding center theory
and our proposed magnetic moment corrections.

In Ref. 29, Littlejohn applies the method of Lie trans-
forms to obtain expressions for guiding center variables
in terms of particle variables. We only analyze the first
order results, which Littlejohn helpfully provides. While
Littlejohn includes an asymptotic parameter ε to keep
track of orderings, we set the term equal to 1 to obtain
physical results. He writes that the guiding center mag-
netic moment is

µ̄ =
1

2

mv2
⊥

B
+
mv⊥c

B2

[
−E · â

+
mv⊥v‖

4q

(
3
(
â · ∇b̂

)
· ĉ−

(
ĉ · ∇b̂

)
· â
)

+
mv2
‖

q

((
b̂ · ∇b̂

)
· â
)

+
mv2
⊥

2qB
(â · ∇B)

]
+H.O.T.,

(182)

where we define

B = Bb̂, (183)

v · b̂ = v‖, (184)

v⊥ = v − v‖b̂ = v⊥ĉ, (185)

â = b̂× ĉ, (186)

and where H.O.T. denotes neglected higher order terms.

Thus, â, b̂, ĉ form an orthonormal triad of unit vectors.
We now examine Eq. (182) in different field configura-
tions. We note that in the absence of an electric field,
the above expression corresponds exactly to Brizard and
Hahm’s calculations in Ref. 1.

Uniform Magnetic Field

We first demonstrate that the E×B velocity is man-
ifestly present in Eq. (182) by simplifying the equation.
We use the field configuration

B = B(t)ẑ, (187)

E 6= 0. (188)

In a uniform magnetic field, b̂ and B have no spatial
dependence. Therefore, Eq. (182) becomes

µ̄ =
1

2

mv2
⊥

B
− mv⊥c

B2
(E · â) +H.O.T. (189)

We rewrite the dot product in the second term,

E · â = E ·
(
b̂× ĉ

)
= ĉ ·

(
E× b̂

)
. (190)

Substituting in our expression for v⊥ and B, we now have

µ̄ =
1

2

mv2
⊥

B
− mv⊥ · vE

B
+H.O.T. (191)

We note that by assuming εδ � 1, we may add the ex-
pression (mv2

E)/(2B) as a higher order term without af-
fecting the expression. Therefore,

µ̄ =
1

2

m (v⊥ − vE)
2

B
+H.O.T. = µE +H.O.T. (192)

We conclude that in the absence of magnetic field inho-
mogeneities, to first order the guiding center magnetic
moment is simply µ1. In the case that the electric field is
spatially dependent, we gyroaverage vE as done in Sec-
tion V to obtain better conservation. Now that it is clear
that the guiding center magnetic moment contains an
E × B correction, we proceed to examining the case of
inhomogeneous magnetic fields without curvature.

Straight, Spatially Dependent Magnetic Field

We examine the field configuration

B = B(x, y)ẑ, (193)

E = 0. (194)

Because our magnetic field is straight, b̂ is not spatially
dependent. Thus, Eq. (182) simplifies to

µ̄ =
1

2

mv2
⊥

B
+
m2v3

⊥c

2qB3
(â · ∇B) . (195)

The dot product can be rewritten as

â · ∇B = (∇B) ·
(
b̂× ĉ

)
= −ĉ ·

(
b̂×∇B

)
. (196)

We plug this in and simplify to obtain

µ̄ =
1

2

mv2
⊥

B
− m2v2

⊥
2qB4

v⊥ · (cB×∇B) +H.O.T. (197)

=
1

2

mv2
⊥

B
− mv⊥ · v∇B

B
+H.O.T. (198)

The grad-B drift is now manifest in Littlejohn’s equation
for µ̄. If we assume εB � 1, then (mv2

∇B)/(2B) would
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be considered a higher order term. Therefore, we may
rewrite µ̄ as

µ̄ =
1

2

m (v⊥ − v∇B)
2

B
+H.O.T. = µ∇B +H.O.T. (199)

It is now clear that, to first order, the guiding center
magnetic moment in the absence of curvature or electric
fields is µ∇B . We now turn analyze the magnetic field
of a wire to determine the basic effects curvature has on
the guiding center magnetic moment.

Magnetic Field of a Wire

The electromagnetic fields are

B =
A0

s
φ̂φφ, (200)

E = 0. (201)

Here, A0 is a constant such that the expression has the
correct units. We note that for any vector C that

C · ∇φ̂φφ = −C · φ̂φφ
s

ŝ. (202)

Using this identity, as well as the fact that b̂ = φ̂φφ,
Eq. (182) simplifies to

µ̄ =
1

2

mv2
⊥

B
− mv⊥ · v∇B

B
−
m2v2

‖v⊥c

qB2s2
(â · s) +H.O.T.

(203)
We manipulate the rightmost dot product to show that

â · s = s ·
(
b̂× ĉ

)
= ĉ ·

(
s× b̂

)
. (204)

We note that due to the magnetic field geometry that
s = Rc, the radius of curvature vector for the magnetic
field. Substituting this, as well as the above vector ma-
nipulation, we obtain

µ̄ =
1

2

mv2
⊥

B
− mv⊥ · v∇B

B
−

m2v2
‖

qB3R2
c

(v⊥ · (Rc × cB))

+H.O.T.

=
1

2

mv2
⊥

B
− mv⊥ · v∇B

B
− mv⊥ · vRc

B
+H.O.T.

(205)

Now, both the grad-B and the curvature drifts are
present in the guiding center magnetic moment. If
εB � 1, then any terms involving squared drift veloc-
ities would be considered higher order terms. Then, µ̄
can be rewritten as

µ̄ =
1

2

m (v⊥ − v∇B − vRc
)
2

B
+H.O.T. = µB(x) +H.O.T.

(206)
The first order correction for the guiding center magnetic
moment corrects for the grad-B drift and the curvature
drift for the magnetic field of a wire. We now apply
Littlejohn’s theory as outlined in Ref. 23 to the case of a
time dependent electric field.

Time Dependent Electric Field

We consider the following field configuration:

B = B0ẑ, (207)

E = E(t)x̂. (208)

To derive a higher order correction, we use the guiding
center theory found in Ref. 23. For the sake of brevity we
simply substitute our fields into Littlejohn’s calculations
and find that

µ̄ =
1

2

mw2

B
+
mcw

qB2
ŵ ·
(
∂vE
∂t
× ẑ

)
+H.O.T. (209)

where we have for convenience defined

w = v⊥ − vE . (210)

From the definition of the polarization drift, we then note
that this expression can be rewritten as

µ̄ =
1

2

mw2

B
− mw · vp

B
+H.O.T. (211)

If εδ � 1 and εω � 1, then terms quadratic in the polar-
ization drift are higher order terms, and µ̄ simplifies as
follows:

µ̄ =
1

2

mw2

B
− mw · vp

B
+
mv2

p

2B
+H.O.T.

=
1

2

m (w − vp)
2

B
+H.O.T. = µp +H.O.T.

(212)

As expected, µ̄ is simply the magnetic moment in the ref-
erence frame of the E-cross-B drift and the polarization
drift.

To summarize, all of the basic corrected magnetic mo-
ments proposed in this paper can be derived directly from
Littlejohn’s guiding center theory. As long as the dimen-
sionless parameters discussed in this paper are sufficiently
small, we can more accurately approximate µ̄ with these
corrections and obtain better magnetic moment conser-
vation.
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