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Abstract

It is shown that numerical modelling of edge plasma physics may be successfully

parallelized in time. The parareal algorithm has been employed for this pur-

pose and the SOLPS code package coupling the B2.5 finite-volume fluid plasma

solver with the kinetic Monte-Carlo neutral code Eirene has been used as a test

bed. The complex dynamics of the plasma and neutrals in the scrape-off layer

(SOL) region makes this a unique application. It is demonstrated that a signif-

icant computational gain (more than an order of magnitude) may be obtained

with this technique. The use of the IPS framework for event-based parareal im-

plementation optimizes resource utilization and has been shown to significantly

contribute to the computational gain.
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1. Introduction

One of the biggest challenges in computational science is often to find the

optimum balance between feasible wallclock time and the complexity of the sim-
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ulation. Modern supercomputers with ever increasing number of cores require

codes that sufficiently scale to maximize resource utilization. Parallelizing these

computations is an option - and traditional techniques of parallelization, such

as space parallelization indeed reduce the computational time, but leave a lot

of room for further improvement. This is often because the computational gain

reaches saturation and increasing the number of processors does not necessarily

improve the gain beyond a certain point. There are also parts of the code-

packages where standard parallelization does not have a large impact and hence

act as bottlenecks in terms of computational time. Code packages for multi-

ple species solving a set of equations serve as an example. While some species

may be treated in parallel at every timestep, there might exist inter-dependency

among other species preventing parallelization and thereby eventually becoming

bottlenecks in the parallelization process. This acts as a motivation to explore

another dimension for parallelization which is time. Moreover, it must be clar-

ified that temporal parallelization is not a replacement for any existing form of

parallelization, but may be added to them to further, often significantly, im-

prove performance. Temporal parallelization using the parareal algorithm was

originally proposed in [1] in 2001, and has been applied to a variety of problems

from relatively simple ones [2, 3, 4, 5, 6, 7, 8] to ones with complex dynamics

[9, 10, 11, 12].

This work explores the application of the parareal algorithm in an area in

fusion plasma. Simulations involving the edge and divertor regions of fusion de-

vices are extremely challenging due to their complex physics as well as require-

ments for large wall-clock times. These computations involving the plasma edge

are important for modeling plasma surface interactions along with designing the

wall of fusion devices. The dynamics is complex at the scrape-off layer (SOL) -

which is the region between the device wall and the Last Closed Flux Surface

(LCFS). Impurities, which may originate primarily from plasma interactions

with the materials of the wall, may greatly dilute the plasma and negatively

affect the plasma heating. The presence of impurities is also necessary, to some

extent, for radiative cooling of the divertor region to mitigate the very high heat
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and particle fluxes onto the divertor targets, thereby achieving (partial) plasma

detachment. A comprehensive modelling of the SOL is one of the greatest

challenges of magnetically confined fusion plasmas. The SOL is characterized

by open field lines. In addition to dominant parallel flows along these field

lines, perpendicular flows become important in this region of the plasma. Also,

alongside charged particle transport, neutral particle transport is dominant in

some parts of the SOL. Neutral particles are externally introduced into the

plasma through neutral beam injection, gas puffs and outgassing and removed

by pumping. Processes within the plasma like recycling, sputtering and volume

recombination are also hugely responsible for the presence of neutrals at the

plasma edge of a fusion device [13, 14], and processes like ionization contribute

to reducing their number. A range of codes, such as BOUT[15, 16], UEDGE[17],

DIVIMP[18], ERO-JET[19], ASCOT[20], Edge-SOL[21], SOLPS[22, 23], EMC3-

Eirene[24] and EDGE2D-Nimbus[25], SOLEDGE-2D[26] with varied degrees of

complexity have been used to study different aspects of the plasma edge. Incor-

porating optimum physics into these simulations is often a challenge due to the

computational cost. With simulations targeting more ITER-like plasmas, the

wallclock time may often exceed weeks or months. An example of such cases

are studies involving particle-balance in the simulations [27, 28, 29].

Exploring the advantages of the parareal algorithm in edge plasma simu-

lations is different in many ways from previous applications. Fully developed

turbulence simulations in the steady state where the statistical study of prop-

erties such as the probability distribution function, vorticity and velocity are

relevant are dealt with in [9, 10]. Although such an application is challenging

due to the very high Reynolds number and Lyapunov exponent, the individual

solutions per simulation are less important than their statistical behaviour. The

case investigated in [9] involved a single cold fluid representation for all charged

ion species, thus neglecting any interaction between them. Moreover, from the

viewpoint of fusion plasma simulations, this was a case dealing with core-plasma

turbulence, where there were no neutral species.

[11] sees the application of the parareal algorithm to the Corsica code which
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is a scenario modelling tool for tokamak plasmas. It simulates burning plasma

scenarios but the details of the physics of the edge involving impurities and neu-

tral transport are not given significant importance. Corsica is by itself a com-

plex workhorse combining various codes/modules to compute different plasma

dynamics such as equilibrium, transport, etc. However, the simulations are

restricted within the separatrix or the last closed flux surface allowing one to

neglect parallel transport. The Grad-Shafranov equation is solved to compute

the MHD equilibrium. In simpler terms, Corsica models the (almost) whole of

the plasma using simplified models for individual dynamics.

This work studies the application of the parareal algorithm to SOL simula-

tions using the SOLPS-Eirene package [22]. It is shown that if the algorithm is

optimally applied, a speed-up of more than a factor of ten may be achieved for

the cases studied here. The SOLPS-Eirene code package has been extensively

used for existing tokamaks[22, 23, 29] as well as island divertor configurations

[30, 31] and is also being used at ITER [29, 32]. This application is significantly

different from previous applications. SOLPS focuses on a relatively detailed

study of a single region (edge) of the plasma. As already mentioned, the edge

has open field lines, so transport is 2 dimensional (both parallel and radial).

Also, the impact of the presence of neutral particles in this region of the plasma

makes these computations more challenging and complex. The application to

the SOLPS-Eirene package is unique and promising as it allows the possibility

of applications to core-edge coupled codes for efficient simulations of ITER-like

plasmas. The parareal implementation was performed using the IPS framework

developed at ORNL, USA, as part of the SWIM project [33, 34]. The frame-

work allows the use of ’event-based parareal’ [35] which significantly improves

performance and is discussed in more detail in sections 2.3 and 3.4.

This paper is organized as follows. Section 2 describes the parareal algo-

rithm and the techniques employed for its application. Section 2.1 gives a brief

summary of the model employed for the parareal application. The results are

described in section 3 and the findings are summarized in section 4.

4



2. Parareal algorithm

With increasing demands for reducing wallclock time and improving the scal-

ing of computational gains with cores on modern supercomputers, parallelization

of simulations has gained tremendous importance. Spatial parallelization is a

common approach although the technique often reaches saturation preventing

optimum resource usage. Exploiting the time domain allows one to utilize more

cores and further speed up the code. Temporal parallelization is non-intuitive as

it apparently violates causality. However, a number of predictor-corrector ap-

proaches to achieve time-parallelization (PITA [36], PFASST [37], parareal [1])

have been proposed which have garnered increasing attention in recent years.

There has also been some work on combining time parallelization with space

parallelization [38, 39]. The technique of the parareal algorithm has been dis-

cussed in detail in [1, 9]. It involves dividing a time series into slices which are

solved in parallel. This is illustrated in fig. 1, where individual time slices may

be considered as t0 to t1, t1 to t2, t2 to t3 and so on. Each individual time slice

is solved in parallel by different processors represented by P0, P1, P2, etc in the

figure. The algorithm requires a coarse predictor (G) which is computationally

fast but gives only a coarse estimate of the solution. The fine (F) solver or

the corrector is computationally slower but generates a solution with a higher

accuracy. A parareal iteration is represented by k each of which comprises of

a G and F run. The coarse solver is always applied serially across processors,

while the fine computation is performed in parallel, leading to a computational

speed-up. At k = 1, G is applied to give each processor an initial value. Then, F

is applied to that (wrong) initial value in parallel across every time slice. At the

start of each subsequent parareal iteration, k, the parareal correction is applied

to the initial value across each processor (or time slice, i) and this correction is

given by eq.1.

λki+1 = F (λk−1i ) +G(λki )−G(λk−1i ) (1)

λki+1 is the initial state for the (i +1)th time slice at the kth iteration. At
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the kth iteration λki is evolved to λki+1 using F(λki ) and G(λki ).

The coarse and fine calculations are repeated across a number of parareal

iterations until convergence is achieved. Parareal convergence across a processor

is said to have been achieved when the ’defect’ in two successive fine calculations

(k and k − 1) across that processor is below a tolerance value. The sum of this

defect in solutions across a time chunk between ti and ti−1 is defined by

ζki =

∫ ti

ti−1

∣∣λk(t)− λk−1(t)
∣∣

|λk−1(t)|
dt. (2)

The solution is then converged for time slice i if,

ζki < tol, ∀i ≤ I. (3)

2.1. SOLPS-Eirene code package

The interactions between the plasma and the wall in tokamaks and other

fusion devices play an important role in the success of the experiment. The

region of interest for this purpose is known as the scrape-off layer or SOL. The

SOL is bounded by the wall of the machine and the last closed flux surface

as shown in fig.2. The charged particles travel along the field lines and reach

the divertor or target plates. A variety of configurations may be possible, two

of which have been explored in this work. Depending on the number of null

points or x-points in the magnetic field, a tokamak may have single, double or

multiple (snowflake) null geometry. One of the tokamaks explored in this work

for parareal simulations in the SOL is MAST with double null geometry and

two sets of upper and lower divertors, illustrated in fig.2. DIII-D is the other

fusion device simulated here and it has single null geometry and only lower

divertors. The purpose of this paper was demonstrating the effectiveness of the

parareal algorithm in simulations of two separate machines thus paving the way

to broadening of the areas of application. In the SOL, the plasma may be treated

as a fluid while the neutral particles may be simulated as Monte-Carlo histories.

The SOLPS (Scrape Off Layer Plasma Simulator) code package consists of the

2D multifluid transport code B2.5 coupled with a neutrals transport model. The
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Figure 1: The parareal algorithm involves a coarse(G) and a fine(F) solver. The combination

of a single F and a single G computation constitutes each parareal iteration, k. The simulation

starts with the 1st G which is a sequential process. This is followed by the 1st F. F is solved

in parallel over multiple time slices (t0 − t1, t1 − t2, ..., tn−1 − tn ). Each time slice is solved

by individual processors P0, P1, ..., Pn. After several iterations or k, the parareal solution

approaches that achieved by serial computation (given in black).
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B2.5 model is based on the Braginskii equations [40] in magnetically aligned

curvilinear orthogonal coordinates. The set of equations include the continuity

and momentum conservation equations for each ion species, current continuity

equation and the energy balance equations for both ions and electrons, which are

described in detail in [22, 41]. Electron density is determined via quasineutrality.

In the cases explored in this work, the E × B and diamagnetic drifts [42] are

absent.

The transport of neutrals is modelled using the Eirene package[23]. Eirene

uses Monte-Carlo treatment of neutral particle transport solving the Boltzman

equation for distribution functions for neutrals. The kinetic model is detailed in

physics and computationally robust but is expensive in terms of wall-clock time.

In fact, Eirene is often responsible for significantly slowing SOLPS simulations.

2.2. Coarse solvers for SOLPS

As has been discussed in [9, 10, 11], a variety of choices may be employed to

achieve shorter wallclock time accompanied by coarseness in the solution. How-

ever, the choice is certainly non trivial. A coarse solver that is computationally

fast may actually deviate the solution very far away from the fine computation,

which may lead to a high number of parareal iterations to achieve convergence

or convergence may not be achieved at all. On the other hand, the solver may be

relatively slower, but the solution may be corrected quickly to approach the fine

solution requiring fewer parareal iterations. The condition of the ’coarseness’ of

the fast solver has been outlined in [1], but it is almost impossible to translate

that for a complex physics problem.

Two coarse solvers or G of the solution have been explored in this work for

various implementations of the parareal algorithm to the SOLPS code package.

As already mentioned in section 2.1 the fine or F version of SOLPS utilizes

B2.5 along with Eirene for calculating the neutral transport in the plasma.

Since Eirene is computationally expensive, replacing it by a fluid neutrals model

simplifies the computation. As an example, the source term, Sn in the continuity

equation in its most general form given by eq.4 is computed differently in the
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two models.

∂n

∂t
+∇ · ~flux = Sn (4)

The reduced model as well as the Monte-Carlo technique are discussed in

detail in [22, 43, 44, 45]. Modifying the transport coefficients (and eventually

boundary conditions) for the neutrals (and ion energy equation) to improve

the coarse estimate reduced the number of parareal iterations required for con-

vergence. The results of using the neutral fluid model in place of Eirene are

discussed in section 3.1. The second coarse solver is implemented using a coarse

mesh yielding very interesting results. The technique of converting between

coarse and fine grids is discussed in detail in [46]. It has been observed that

the Monte-Carlo method in the Eirene code for computing the physics of the

neutral particles imposes a limitation on the size of the time step [23, 29, 47].

Using a coarser mesh in space increases the number of Monte-Carlo particles

per cell, thereby reducing the noise. This allows one to take bigger timestep

sizes and still achieve the desired numerical accuracy and is very useful in signif-

icantly speeding up the computation. The results are discussed in section 3.2.

The two coarse solvers studied in this work are independently implemented. A

combination of the two is likely to yield the most computational gain.

2.3. Event-based parareal with IPS framework

The parareal implementation of SOLPS was achieved using MPI paralleliza-

tion via the IPS (Integrated Plasma Simulator) framework. The IPS framework

written in Python [33, 34, 35] launches an event-based parareal application us-

ing MPI. In the traditional, sequential technique, for every parareal iteration k,

all processors need to undergo ’mpi-wait’ until computations for every time slice

is completed for a given k. This significantly increases wall-clock time. This

room for improvement was originally addressed in all implementations such as

pipelined [48], scheduled [49] and event-based. The event based framework fur-

ther extends the concepts of [48] and [49] by exploiting a data driven work-flow
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where processors are assigned tasks that are independent of a previously com-

puted task by the same processor. This maximizes resource utilization thereby

significantly improving the computational gain. This feature is described in

detail in [33, 34, 35].

The ’event-based parallelism’ makes optimum use of resources possible. Here,

for any iteration k, if the coarse calculation has been completed for a time slice,

i = α (say), the fine computation may be done on all time slices with i ≤ α,

while the coarse calculation may be carried out simultaneously on slices i > α.

The positive impact of the event-based approach on the parareal gain and effi-

ciency is discussed in section 3.4. Moreover, the IPS framework simplifies the

implementation of the algorithm in comparison to a traditional MPI approach

to any code. Unlike a standard MPI application which involves introducing

significant changes to the original serial code, there was no rewriting of the

underlying physics codes in case of the IPS framework.

3. Results

With the purpose of exploiting the parareal algorithm in edge plasma simu-

lations, our studies involved two tokamaks with different geometries. MAST is

a spherical tokamak with double null geometry as described in fig. 2.The other

machine used as a testbed for our simulations is DIII-D, which has a single

x-point and hence single null geometry. Fig. 3 shows the fine mesh for SOLPS

parareal simulations which is the same as the one used for serial computations.

The cases explored in this work had low density at the targets and the

temperature of the plasma at the targets were (∼ 40eV ) in MAST [41] and (∼

10eV ) in DIII-D. For both machines, the plasma species consisted of Deuterium

and Carbon ions. The primary variables of the code are ion density (na, m−3),

electron density (ne, m−3), electron (te, eV) and ion temperatures (ti, eV),

parallel velocity (u‖, m/s) and electrostatic potential (φ, V ). The parareal

correction, given by eq.1 was applied to these six variables at the beginning

of a time slice for a given parareal iteration, k. The maximum total power
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Figure 3: The fine grid layout of the DIII-D tokamak used for SOLPS simulations. This grid

of size 96×36 was used for serial computations as well as the ’fine’ or F run of the parareal

implementation.
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fluxes (W/m2), pwmxip and pwmxap, on the inboard and outboard divertor

respectively were chosen as convergence metrics and are represented by λ in eq.2.

After eq.2 is applied to both these variables, convergence at a given iteration k

is said to be achieved when the defects for both these variables satisfy eq.3. The

choice of tol in eq.3 was based on the values of the residuals of the equations

solved. The SOLPS code package implicitly solves every equation leaving a small

residual. The attempt was made to ensure that the parareal solution had the

same residual as compared to a serial (fine, F) solution. A series of simulations

with test cases were run for this purpose. One such case, where the evolution

of the values of the normalized residuals for the parareal solution gradually

approaching the serial value, is demonstrated in fig.4. Fig.4 shows that the

values of the normalized residuals decrease with increasing parareal iterations,

k and at k = 8 approach the values as obtained in the fine (F) simulation (fig.5).

It was observed that when tol in eq.3 was 5×10−2, the residuals of the parareal

solution were in acceptable agreement with those of the serial or fine run, which

is demonstrated in fig.5. So, in the simulations, parareal convergence is said to

have been achieved when the defect in successive solutions, ζ for both pwmxip

and pwmxap are ≤ 5× 10−2. Using a metric as in eq.2 allows continuity across

various time slices which is often a cause of concern in parareal simulations.

However, incorporating its dependence on the residuals of the solutions also

ensures a steady solution.

As has been mentioned in section 2, the parareal algorithm divides the entire

time domain into multiple time slices. We define each time slice as the physical

time (in seconds) simulated by each processor and denote it as tslice. For numer-

ical time-stepping, each tslice is divided into ntim timesteps, and each timestep

is of size dt seconds. So, for clarity, it may be stated that tslice = ntim · dt.

In the parareal implementation, each time slice is simulated by an individual

processor. Therefore, if there are N processors, the total physical time that is

simulated is (N · tslice) seconds. It may also be noted that the size of a time

slice may be varied by varying either or both of ntim and dt.

Since each time slice is discretized, the values of pwmxip and pwmxap are
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(a) Parareal iteration, k = 1.
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(b) Parareal iteration, k = 3.
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(c) Parareal iteration, k = 6.
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(d) Parareal iteration, k = 8.

Figure 4: The norm of the residuals for equations solved across a given time slice decrease

with increasing parareal iterations, k.
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Figure 5: The norm of the residuals for the equations as computed by the SOLPS code

package for a serial or fine (F) simulation. The tolerance of the parareal computation is

chosen in such a way so that the residual for the parareal calculation agrees with those of the

fine (F) simulation.
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stored at the end of each time step of size dt. Therefore, at the end of a given

parareal iteration k, the number of values of each of pwmxip and pwmxap that

are stored for a processor is equal to ntim. These ntim values are then used to

compute the integral in eq.1.

It must be noted that all computational gain is calculated with respect to

the wallclock time of a serial run, which in this case is the fine (or, F) run. With

the fine and parareal run times given by TF and TPR respectively, over the same

simulation length (N · tslice), the computational gain is defined as

gain =
TF
TPR

(5)

3.1. Coarse solver using neutral fluid model

Replacing the kinetic model in Eirene with the neutral fluid model speeds

the simulation by approximately 49 times but the accuracy of the solution is

compromised. For example, the outer (nesepm1) and inner (nesepm2) midplane

separatrix densities for the electrons are shown in figs. 6a and 6b, where the

final desired fine computation is significantly different from the initial coarse

estimate. This coarse predictor with simplified physics was used in simulations

of MAST. For every time slice solved, the time-step size (dt), and hence the

number of timesteps (ntim), were the same for both the fine and coarse runs.

Using the case of fig.6 as a coarse predictor, the fine solution may be re-

covered in much shorter wall-clock time using the parareal algorithm. With

increasing parareal iterations, k, the solution approaches the value that is typi-

cally obtained using a serial computation with the fine solver (as in fig.6a). The

evolution of the parareal solution for the density at the separatrix (nesepm)

across iterations is illustrated in fig.7. Figs. 8a, 8b, 9 demonstrate that the

parareal solution (in this case, the maximum total power flux at the outer di-

vertor) is identical to the serial solution, despite starting the simulation with

the coarse computation in fig. 8a. Since MAST has two sets of divertors (upper

and lower) resulting from the double null configuration shown in fig. 2, in the
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(a) Fine computation using the SOLPS-Eirene package.
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(b) Coarse solution (Eirene replaced by fluid neutral model).

Figure 6: The midplane density (nesepm1 for outer and nesepm2 for inner) varies when

computed by the fine (F) and coarse (G) propagators.
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Figure 7: The plot of density at the separatrix plotted for various parareal iterations, k. At

the final iteration, k = 12, the solution matches that of the fine solver in fig.6a.

plots figs. 8a, 8b, 9, pwmxap1 refers to the lower outer divertor target while

pwmxap2 represents the value at the upper outer divertor target.

A gain of 12.58 was obtained with 240 processors for the case just discussed,

where each processor solved a time slice consisting of number of time-steps,

ntim = 10, with dt = 1E − 4. Convergence was achieved after k = 12 parareal

iterations in this case. It was interesting to explore if the size of the time slice,

i.e, tslice had an impact on the parareal convergence. For this purpose, dt was

kept constant and the number of time-steps per slice, ntim was varied. It was

observed that ntim = 10 was optimum. Parareal convergence was not attained
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(a) Coarse (G) solution.
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Figure 8: Maximum total power flux are given by pwmxap1 (lower) and pwmxap2 (upper) at

the outer divertors. A fluid model was used in the coarse (G) computation for the transport

of neutral particles while a Monte-Carlo method was used for the fine (F).
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Figure 9: The final parareal solution matches the serial solution showin in fig.8b. pwmxap1

and pwmxap2 are the maximum total power flux at the lower and upper outer divertors

respectively.
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when the number of time-steps solved on each time slice was ≤ 5 or ≥ 40. For

slices with ntim ≤ 5, it is likely that the simulation per processor was not long

enough to attain the fine values before it was restarted with a new initial value

for the next iteration. This is illustrated in fig.10 where even after k = 11

parareal iterations, the defect in solutions at k = 11 and k = 10 is not below

5E − 2.

It was also observed that an unlimited increase of the size of the time slice

solved per processor by increasing ntim may negatively impact convergence.

This is likely because the coarse solution is allowed to deviate very far from

the fine solution which essentially violates the condition for parareal correction

to rectify the solution as formulated in [1]. A similar behaviour with parareal

simulations has been observed and studied in [9, 10].

3.2. Coarse solver using reduced grid and bigger timesteps

Increasing the timesteps size or dt in the simulation allows faster compu-

tation but may introduce inaccuracy, as discussed in section 2.2. The second

coarse solver explored in this work is using a reduced grid with bigger timesteps

size for faster computations. The parareal implementation was carried out in

simulations on both MAST and DIII-D cases. The grid size in a simulation is

given by nx×ny where nx is the mesh size in the poloidal direction and ny is

that in the radial direction. The fine computation for MAST used a grid given

by 150 × 36, while for DIID simulations, the grid was of size 96 × 36. Various

coarse grids were explored for both cases. For coarse computations of MAST

simulations, grids of size 150× 18, 76× 36 and 76× 18 were used. Grids 48× 36

and 48× 18 were explored for the same purpose in DIII-D simulations. Using a

reduced grid implies bigger spatial step sizes, which allows bigger time-steps (dt)

without compromising on numerical inaccuracy. It must be noted, however, that

the size of the time slice is same for both fine and coarse computations. Hence,

if dtF and dtG are the sizes of the time-steps in coarse and fine computations

respectively, for a given simulation,

tslice = NTIMG · dtG = NTIMF · dtF (6)
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Figure 10: When the coarse solver used the fluid neutral model in place of Eirene, parareal

convergence was not obtained when the size of the time slice per processor was ≤ 5. The

solutions never settle at a steady value even at large k (parareal iteration) until k = i where

i is the processor number or time slice.
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The technique of using the reduced grid model for coarse (G) computations

yielded excellent results for both MAST and DIII-D studies. For DIII-D simu-

lations, a coarse grid size of 48×36 and dtG = 30dtF generated a computational

gain (given by eq. 5) of 21.8 using 96 processors. A reduced grid of 150×18 and

dtG = 8dtF similarly yielded a parareal gain of 15.9 with 64 processors in MAST

simulations. dtF and dtG are the fine (F) and coarse (G) time-steps respectively.

The evolution of the solution in case of MAST with increasing parareal iteration

k is illustrated as an example in fig.11. ’pwmxip’ is the maximum total power

flux impinging on the upper inboard divertor.

However, it was once again observed as in section 3.1 that the size of the

time slice (tslice) strongly influenced the number of parareal iterations required

for convergence. As a test case in DIII-D with 16 processors, fig. 12 illustrates

this point. NTIMF and NTIMG are the number of timesteps solved on each

processor for fine (F) and coarse (G) computations, respectively. It may be ob-

served that there is a ’sweet spot’ in the relation between NTIMF and NTIMG

where the performance is best. Although the ratio of NTIMF : NTIMG may

stay constant, the computational gain changes depending on the exact values of

NTIMF and NTIMG. The dependence of the parareal iteration, k on the size

of the time slice was studied for MAST simulations as is illustrated in fig. 13.

Here, the parareal iteration k required for convergence depended on NTIMF .

dtF and NTIMG were kept constant, while dtG was varied along with NTIMF

to satisfy eq. 6.

Finally, a scaling study further supports the above points. DIII-D cases are

used as examples for this case. For the weak scaling, the size of a time slice

(tslice) per processor is fixed but the number of time slices are varied by vary-

ing the number of processors (N). Hence, the total simulation length, given by

N · tslice varies with N. The performance with weak scaling is demonstrated

in fig. 14 with NTIMF = 450 and NTIMG = 15 per processor. TF in eq.5

increases with increasing simulation length, thus leading to the initial rise in

gain in fig. 14. However, with increasing N, the number of parareal itera-

tions required for convergence also eventually increases leading to a flattening
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Figure 11: The parareal algorithm converges in 4 iterations for this case where the coarse

model is a reduced grid. The defect in solutions (as defined in eq.2) for the total power fluxes

at the inboard divertor for iterations k = 3 and k = 4 is below 5E − 2.
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Figure 12: The parareal gain depends on the number of timesteps (NTIMF for fine and

NTIMG for coarse) solved per processor.
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Figure 13: For the same number of timesteps solved per processor for the coarse computation,

the parareal iteration k required for convergence depends on the number of timesteps used for

the fine computation (NTIMF ).

of the computational gain. The gain can always be maximized by optimizing

NTIMF /NTIMG.

In case of strong scaling, the total simulation length is fixed while the number

of processors (N) is varied. dtF and dtG are also kept constant. Thus, both

NTIMF and NTIMG vary with the number of processors, N. The strong scaling

is shown in fig. 15 in a case where NTIMF

NTIMG
= 12.5. For high processor count

(N), the time slice solved per processor (and hence NTIMF and NTIMG) is

significantly reduced. The reduction in the values of NTIMF and NTIMG

reduces the gain reflecting the observations in fig. 12. It may also be noted

that the performance using the coarse solver with reduced grid was more robust

than the one in section 3.1 as a wider range of time slices were allowed where

parareal convergence was achievable.

3.3. Parallel efficiency and energy cost

The simulations were performed on the Eurofusion facility ITM-gateway at

Garching, Germany. The typical power consumption per node on this ma-
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Figure 14: Weak scaling studies. Here NTIMF = 450 and NTIMG = 15.

Figure 15: Strong scaling studies. The gain decreases at high processor count when the size

of the time slice solved per processor is significantly reduced.

27



chine was 186.88 W. With 16 cores per node, the energy consumption per core

was 11.68 W. For a case of computational gain of 15.9 with 64 processors, the

parareal version uses about 4.03 times more energy than the serial run for the

same task. A measure of the energy consumption may also be obtained by

computing the inverse of the efficiency of the parallelism. Efficiency is defined

as:

Efficiency =
computational gain

processor count
(7)

So, with a gain of 15.9 for 64 processors, the efficiency is 24.8%.

3.4. Parareal gain with IPS framework

The IPS (Integrated Plasma Simulator) framework was used to carry out the

parareal implementation in this work. This allowed an event-based approach

which positively impacted the computational gain.

For a long time series divided into N slices using N processors, let tG be

the time taken to perform the coarse(G) computation on a single time slice and

let tF be the same for a fine computation on a single time slice as well. If at

iteration k, nc slices have converged then nk = N − nc slices remain to perform

a G and F calculation. In a traditional, sequential MPI implementation, with

G being a serial process and F being performed in parallel, the wallclock time

required per iteration k can then be stated as:

tk = tG ∗ nk + tF (8)

If K is the total number of iterations required for convergence of all N time

slices, then summing across all iterations gives the total time for a traditional

parareal implementation using MPI.

Ttrad =

K∑
k=1

tk (9)

The computational gain for sequential implementation of the parareal algo-

rithm using MPI may then be stated as:
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gaintrad =
TF
Ttrad

=
tF ∗N
Ttrad

(10)

The fact that the event-based approach significantly improves performance

is illustrated in fig.16 where the plot for the event-based implementation using

IPS (in red) is generated by actual simulation results discussed in section 3.1.

The other plot (in black) is a theoretical estimate using eq.(10) of the sequential

MPI implementation of the algorithm. It may be added that the theoretical cal-

culation of computational gain in fig.16 ignores MPI communication overheads.

This clearly demonstrates the efficiency of the framework, where the computa-

tional gain grows almost linearly, while with traditional MPI, the gain would

have flattened at a much smaller value.

As already mentioned in section 2.3, the implementation of the parareal

scheme to any case is simplified by the use of the framework. There are no

massive changes to the original physics code (SOLPS) that are required, and

the user can focus on varying and optimizing the coarse solvers instead of the

numerics of the scheme.

4. Conclusion

This work has shown that time parallelization greatly contributes to speeding

up of edge plasma simulations. The parareal algorithm has been applied to the

SOLPS-Eirene code package and a gain larger than 20 has been achieved which

is significant for edge simulation in plasmas. It has also been shown that the

use of event-based parareal via the IPS framework has a very strong impact on

the computational gain. The parareal approach was explored on simulations

of two different machines performing experiments of magnetic fusion - namely

the DIII-D and MAST tokamaks. Both studies generated promising results.

The parareal algorithm, which uses a predictor-corrector technique, requires a

coarse and a fine solver. The fine solver uses SOLPS B2.5 and Eirene code

packages and is relatively computationally intensive. The choice of the coarse

solver as in any work involving the parareal algorithm, is non trivial. Two
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Figure 16: The computational gain is significantly larger when the event-based parareal is ap-

plied using the IPS framework. A theoretical estimate of the gain using traditional, sequential

MPI implementation shows a much lower value and quick saturation with processor numbers.
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coarse solvers have been explored in this work. The Eirene package, which

solves the Boltzman equation for a kinetic treatment of neutral particles, has

been replaced by a simpler fluid neutral model to serve as a coarse predictor.

This has allowed significant speed-up of the code, but a strong sensitivity to

the size of the time slice (number of simulation time steps solved per processor)

has been observed. A size of 10 appears to be the optimum value for the cases

considered. The second coarse solver uses a reduced grid model accompanied

by bigger simulation time steps (dt). This coarse solver appears to have a more

robust performance than the one discussed earlier and it, too, leads to significant

computational gain. Scaling studies have also been performed. It was observed

that the computational gain using the parareal algorithm depends on the size of

time slices solved on each processor. The computational gains obtained may also

be further improved by combining the two coarse solvers along with additional

levels of parallelism, such as, space parallelization. The idea of the coarse solvers

explored in this work may be expanded to other areas of computational physics.

A reduced mesh for the coarse domain may be explored wherever applicable

although limitations to their extent may be expected. Using reduced physics

for the coarse model should be attempted with care, as has been done here, to

ensure that the parareal correction at every iteration prevents the solution from

deviating from the fine simulation.
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Simulation of the Neoclassical Plasmas, Journal of Comp. Phys. 173 (2)

(2001) 527.

[21] O. E. Garcia, N. H. Bian, Bursting and large-scale intermittency in turbu-

lent convection with differential rotation, Phys. Rev. E 68 (2003) 047301.

[22] R. Schneider, X. Bonnin, K. Borrass, D. P. Coster, H. Kastelewicz, D. Re-

iter, V. A. Rozhansky, B. J. Braams, Plasma Edge Physics with B2-Eirene,

Contrib.Plasma Phys. 46 (1-2) (2006) 3.

[23] P. B. D. Reiter, M. Baelmans, The EIRENE and B2-EIRENE Codes, Fu-

sion Science and Technology 47 (2) (2005) 172.

[24] Y. Feng, F. Sardei, J. Kisslinger, P. Grigull, K. McCormick, D. Reiter, 3D

Edge Modeling and Island Divertor Physics, Contrib. Plasma Phys. 44 (1)

(2004) 57.

[25] R. Simonini, G. Corrigan, G. Radford, J. Spence, A. Taroni, Models and

Numerics in the Multi-Fluid 2-D Edge Plasma Code EDGE2D/U, Con-

trib.Plasma Phys. 34 (2-3) (1994) 368.

[26] H. Bufferand, G. Ciraolo, L. Isoardi, G. Chiavassa, F. Schwander, E. Serre,

N. Fedorczak, P. Ghendrih, P. Tamain, Applications of SOLEDGE-2D code

to complex SOL configurations and analysis of Mach probe measurements,

Journal of Nuclear Materials 415 (1, Supplement) (2011) S589S592.

34



[27] A. S. Kukushkin, H. D. Pacher, Divertor modelling and extrapolation to

reactor conditions, Plasma Phys. Control. Fusion 44 (6) (2002) 931.

[28] A. Loarte, et al., Power and particle control, Nucl. Fusion 47 (2007) S203.

[29] A. S. Kukushkin, H. D. Pacher, V. Kotov, G. Pacher, D. Reiter, Finaliz-

ing the ITER divertor design: The key role of SOLPS modeling, Fusion

Engineering and Design 86 (12) (2011) 2865.

[30] G. Herre, P. Grigull, R. Schneider, B2-Eirene code modelling of an island

divertor, Journal of Nuclear Materials 266-269 (1999) 1015–1019.

[31] X. Bonnin, R. Schneider, D. Coster, V. Rozhansky, S. Voskoboynikov, Elec-

tric fields and currents in an island divertor configuration, Journal of Nu-

clear Materials 829835, 14th Int. Conf. on Plasma-Surface Interactions in

Controlled Fusion Devices (2001) 7.

[32] R. A. Pitts, A. Kukushkin, A. Loarte, A. Martin, M. Merola, C. E. Kessel,

V. Komarov, M. Shimada, Status and physics basis of the ITER divertor,

Physica Scripta 2009 (2009) T138.

[33] W. Elwasif, D. Bernholdt, A. Shet, S. Foley, R. Bramley, D. B. Batche-

lor, L. A. Berry, The Design and Implementation of the SWIM Integrated

Plasma Simulator, in: Distributed and Network-based Processing (PDP),

Pisa, Italy, 2010.

[34] W. R. Elwasif, S. Foley, D. Bernholdt, L. A. Berry, D. Samaddar,

D. E. Newman, R. Sanchez, A dependency-driven formulation of parareal:

parallel-in-time solution of PDEs as a many-task application, in: MTAGS

’11 Proceedings of the 2011 ACM international workshop on Many task

computing on grids and supercomputers, ACM New York, NY, USA, 2011,

p. 15.

[35] L. A. Berry, W. R. Elwasif, J. Reynolds-Barredo, D. Samaddar, R. Sanchez,

D. E. Newman, Event-based parareal: A data-flow based implementation

of parareal, Journal of Comp. Phys. 231 (17) (2012) 5945.

35



[36] C. Farhat, M. Chandesris, Time-decomposed parallel time-integrators: the-

ory and feasibility studies for fluid, structure, and fluid-structure applica-

tions., Int. J. Numer. Meth. Engng. 58 (9) (2003) 1397.

[37] M. Emmett, M. L. Minion, Toward an efficient parallel in time method

for partial differential equations, Communications in Applied Mathematics

and Computational Science 7 (1) (2012) 105.

[38] R. Speck, D. Ruprecht, M. Emmett, M. Bolten, R. Krause, ”A space-time

parallel solver for the three-dimensional heat equation., in: Advances in

Parallel Computing, Volume 25: Parallel Computing: Accelerating Com-

putational Science and Engineering (CSE), 2014.

[39] A. J. Christlieb, R. D. Haynes, B. W. Ong, A parallel space-time algorithm,

SIAM Journal on Scientific Computing. 34 (5) (2012) C233–C248.

[40] S. I. Braginskii, Transport Processes in a Plasma, Vol. 1, Consultants Bu-

reau, New York, 1965, p. 205.
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