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In order to test predictions regarding the attentional capacity requirements of
Piaget’s stage of concrete operations, a battery of concrete operational tasks
(class inclusion, transitivity of length and of weight, multiplication of classes.
multiplication of relations) and two measures of attentional capacity (backward
digit span and the Figural Intersection Test) were administered 1o 120 first.
second. and third graders. With the exception of class inclusion, the results
supported the hypothesis that three units of capacity would be necessary for
solving each concrete operational tusk. Class inclusion was considerably casier
than the other concrete operational tasks and was solved by nearly all children.
a result which suggests that this version of the class inclusion task could possibly
be solved without operational reasoning. The data also supported the prediction
that transitivity of length and of weight. although diftering in overall difficulty.
would not differ in capacity demand. Instead. the horizontal decatage between
length and weight was explained in terms of children’s tendency to infer relative
wetght from relative size.  © 1989 Acudemic Pross. Ine

In Piaget’s first published articles on cognitive development (Piaget.
1921, 1923), he argued that a relation of mutual dependence exists between
children’s forms of reasoning and the ““breadth™ of their attention, under-
stood in terms of “‘the number of objects |of thought] capable of being
simultaneously associated in the field of attention™ (Piaget. 1923, pp.
170-171). In his words. the field of attention ‘‘conditions™ the logical
form of children’s reasoning (Piaget. 1923, p. 172) even as the logical
form “*collaborates’ in widening that field (Piaget, 1921, p. 480). Similar
ideas may be found in his later writings. although the terminology varied.
In his book on equilibration he suggested that limitations n children’s
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reasoning coincide with a narrowness in their ““field or ‘span’ of assim-
ilation’” (Piaget, 1975/1985. p. 114), and in Experiments on Contradiction
he stated that overcoming contradictions involved a widening of ““the
system of reference’” in terms of the number of concepts simultaneously
coordinated (Piaget, 1974/1980, p. 242). Although Piaget called attention
in these passages to a quantitiative dimension in children’s reasoning.
he did not conceive of it as a primary cause of cognitive development
nor did he attempt to measure this dimension separately in order to
predict performance on specific reasoning tasks.

Beginning with Pascual-Leone (1970), the prediction of children’s rea-
soning from estimates of their attentional capacity has been a major goal
of several neo-Piagetian theories of cognitive development (see also Case.
1985: Halford, 1982; McLaughlin, 1963; Pascual-Leone, 1980: reviewed
by Chapman. 1987). A common feature of these theories is the proposition
that the growth of attentional capacity is a causal factor in the development
of children’s reasoning. such that a certain level of capacity is necessary
but not sufficient for a given level of reasoning. Although substantial
evidence exists to support a general dependency of reasoning upon capacity
(see reviews by Case. 1985; Halford, 1982), the above-mentioned theories
difter with respect to (a) the nature of the capacity construct. (b) the
ways in which units of capacity are defined and measured, and (c) the
specific relations of correspondence between units of capacity and stages
or levels of cognitive development.

The general purpose of the present study is to provide a test of one
approach toward the resolution of these issues, based on Chapman’s
(1987) structural-functional model of children’s reasoning. First, the basic
assumptions of the model are stated, and then the predictions of the
model regarding the relation between concrete operations and attentional
capacity are described. The term ““attentional capacity™ is used generically
throughout the article to refer to any quantitative dimension in the contents
of immediate attention, regardless of how that dimension might be defined
in the context of specific theories.

Basic Assumptions

One of the main assumptions of the proposed model is that the phe-
nomenon to be investigated in studies of children’s reasoning is the form
of reasoning exhibited by children in justifying their judgments in problem-
solving tasks. The term “*form of reasoning’" is used to refer to the type
of inferential relation uniting children’s judgments (as the conclusions of
their inferences) with their explanations (the premises) of those inferences.
The object of investigation is conceived in terms of children's ability to
exhibit & given form of reasoning in their verbal argumentation, rather
than in terms of a mental process acting as a causal or functional antecedent
of children’s verbalizations (cf. Brainerd. 1973, 1977; Reese & Schack.
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1974). As an example of this approach. Chapman and Lindenberger (1988)
distinguished between ““functional™ and “operational”™ forms of reasoning
on a transitivity task. depending on whether children justified judgments
of length as a function of spatial orientation (**This one is longer. because
it’s on the right’”) or as the product of an operational composition (**A
is longer than C. because A is longer than B and B is longer than C7).

A second assumption is that the structure of children’s forms of reasoning
can be represented in terms of the relations among operatory variables,
understood as the aspects or dimensions of a task situation that the
subject recognizes as potentially varving (as assuming a range of possible
values), within the experiential context of the task. So defined. operatory
variables can be distinguished from operatory cosnstants: aspects or di-
mensions that the subject recognizes as invariant in the particular context.
In a typical reasoning task. both the premises and the conclusion stated
by the subject can be described structurally as expressing particular
values of different operatory variables. For example. in the Chapman
and Lindenberger (1988) study. children using functional reasoning rec-
ognized potential variation in both the relative length and the spatial
orientation of each pair of sticks to be compared (one stick could be
either longer or shorter and either to the right or to the left of the other).
Theretore. two operatory variables, corresponding to relative length and
spatial orientation, respectively. were involved.

The third basic assumption of the model is that relations of corre-
spondence exist between the structural and the functional levels of de-
scription. In particular, we propose (a) that the structural act of assigning
a value to an operatory variable corresponds to the functional consumption
of a fixed amount of attentional capacity and (b} that this fixed amount
of capacity can be considered a “"unit.”” Thus, the total capacity requirement
of a given form of reasoning is equal to the number of operatory variables
that are assigned values simultaneously in employing that torm of reasoning
in a particular task. Operatory constants (aspects of the task situation
that the subject regards as invariant) generally can be coded in long- or
intermediate-term memory and accordingly do not require capacity in
immediate attention.

Observe that this third assumption 1s consistent with both continuous
and discontinuous models of attentional capacity: all that is asserted is
that the structural process of value assignment corresponds to the functional
consumption of a fixed amount of capacity. For present purposes, it is
immaterial whether this fixed amount of capacity represents an indivisible
quantum or an arbitrary division of a continuous guantity.

Task Analvsis

The foregoing assumptions provide guidelines for the analysis of particular
reasoning tasks. First. the forms of reasoning used by children in solving
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the problems in question are determined by classifying their responses
(judgments and explanations) and ordering them developmentally by type.
Second, the structures of each form of reasoning are identified in terms
of the operatory variables involved and their interrelations. Third, the
attentional capacity demand for each form of reasoning is determined
from the number of operatory variables that are assigned values simul-
taneously in employing that form of reasoning.

Each of these three steps corresponds to a different phase in the
Piagetian or neo-Piagetian research programs. The first step corresponds
to the taxonomic aspect of Piaget's research in cognitive development:
the classification of different forms of reasoning and the seriation of these
forms into developmental sequences. (On the taxonomic character of
Piaget’s research, see Chapman, 1987, 1988.) The second step corresponds
to Piaget’s structural analyses of the thinking characteristic of different
cognitive—developmental stages in terms of operatory logic (e.g.. Piaget.
1949/1972). However, one cannot assume that Piaget’s own structural
analyses are adequate in every case. In particular. we suggest that structural
analysis must closely conform to the verbal arguments actually used by
children. In some cases, this approach will lead to results different from
those reached by Piaget (cf. the discussion of class inclusion in the
Discussion section). Finally, the third step of analysis corresponds to
the neo-Piagetian goal of determining the functional information-processing
requirements of different structurally defined developmental stages (Case.
1985; Chapman, 1987; Halford, 1982: Pascual-Leone. 1970, 1984). As
previously mentioned, little agreement exists among difterent investigators
on exactly how this project ought to be accomplished (Case. 1985; Chap-
man, 1987:. Halford, 1982; Pascual-Leone, 1970. 1980, 1984).

In the following sections. we apply this method of analysis to the tasks
exemplifying the four major groupings of concrete operations according
to Inhelder and Piaget (1959/1964): class inclusion, the transitivity of
length and of weight, the multiplication of classes, and the multiplication
of relations. Two predictions are generated by this analysis. The first
involves the attentional capacity requirements of concrete operations in
general, and the second an explanation of the typical horizontal decalage
between length and weight on the transitivity task.

Class inclusion. In the typical Piagetian class inclusion task (Piaget &
Szeminska, 1941/1952). children are shown a collection ot objects (e.g.,
wooden beads). most of which are of one color (e.g.. red) and the rest
of another color (e.g.., white). Children are asked if there are more red
beads or more wooden beads and are credited with class inclusion if
they indicate that there are more wooden beads because the red beads
are included in the total class of wooden beads. According to Piaget and
Szeminska’s structural analysis. class inclusion is characterized by an
operation of class addition having the form A + A’ = B. where A
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represents a subclass of objects defined by a particular property (e.g.,
the red beads), B represents the supraordinate class defined by some
other property (the wooden beads), and A’ is the complement of A under
B (the wooden beads that are notr red). Understanding class inclusion
thus implies understanding that a supraordinate class (B) is necessarily
equivalent to the sum of its subclasses (A and A"). Applying this operation
in a concrete task situation involves assigning particular values to the
class variables A, A, and B. Children must view (a) all the red objects
as constituting a single class. and similarly for (b) all the wooden beads
and (c) the beads that are not red. In other words, class inclusion involves
what Inhelder and Piaget (1939/1964) called the coordination of infension
(the defining properties of a class) and cxtension (the objects belonging
to that class) (see also Pascual-Leone & Smith, 1969). In our view. the
formula A + A’ = B ought not to be construed as a computational
routine by which a correct answer to the class inclusion problem is
obtained, but as an expression of the logical relations among A, A', and
B that result if intenston and extension of these classes are correctly
coordinated. With respect to the capacity requirements ot class inclusion.
the important thing is that all three class variables, A, A’, and B, must
be assigned values simultaneously. Under the assumption that each si-
multaneous value assignment requires a ~“unit™” of capacity. the operation
of class addition would require & minimum of 3 such units.

Transitivity of length and weight. 1In the transitivity of length tusk.
children are first shown two sticks A and B identified by color, such that
B is visibly longer than A (i.e.. A -7 B). Then they are shown sticks B
and C. such that B < C is also visible. Finally. they are shown A and
( together in such a way that they cannot see the difference in length
and are asked which is longer. A or (7 Children are credited with transitive
reasoning it they conclude that A <2 C because A ©~ B and B < (.
According to Piaget’s (1949/1972) operatory logic, transitive reasoning
of this kind involves an operation called the ““addition of asymmetrical
relations,”” having the form (A < B) + (B -~ () = (A < (). This operation
derives from the action of seriating objects according to a physical di-
mension such as length or weight. In terms of the present model. applyving
this operation in practice involves the cognitive construction of an ordered
series X — ¥ — Z. where X, Y. and 7 are the respective “positions™
in the series. and the sign ——"" represents the relation of succession
constituted by the operation of “"placing™ one object after another according
to some physical dimension. (On the construction of an ordered series
through operations of **placement.”” scc Piaget, 1946/1970, pp. 280-285.)
The series can be constructed from the pairwise physical comparisons
A < Band B << C. and the physical relation between A and ¢ can then
be determined by noting the relative positions of these two objects in
that series. With respect to the capacity requirements ol transitive re:-
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soning, three relational variables (X — Y, ¥ — Z, and X — Z) must be
assigned values simultaneously (A < B, B < C,and A < C, respectively).
Under the assumption that each value assignment requires 1 ““unit’ of
capacity, the total capacity demand of the task is 3 units. Moreover, the
same amount of capacity should be required regardless of the physical
dimension (e.g., length or weight) upon which objects are compared.

However, the foregoing analysis is valid only under the condition that
the values of the variables in question are simultaneously represented
in children’s immediate attention. The analysis does not apply if premise
comparisons are presented repeatedly. as in Bryant and Trabasso’s (1971)
memory-for-premises training paradigm. Repeated presentation of the
comparisons A < B and B < C allows the series A < B < (C to be
schematized in long-term memory (i.e., the relations X — Y and Y —
Z acquire the constant values A < B and B < C. respectively). Given
such a scheme. the relation between A and C can then be determined
from the series. As indicated, the values of only two variables (X — Y
and Y — Z) need be represented simultaneously in children’s immediate
attention in order to schematize the series. Thus, the Bryant-Trabasso
paradigm requires only 2 rather than 3 units of capacity. When long-
term memory is engaged, the demands on children’s immediate attention
are reduced relative to the *‘standard™ transitive reasoning task in which
premise comparisons are not presented repeatedly. Under the assumption
that 2 “"units’” of attentional capacity develop by 5-6 years on the average,
the foregoing analysis explains (a) why the Bryant—Trabasso paradigm
is easier than the “‘standard™ paradigm, and (b) why children younger
than 5 years of age are generally unable to succeed on the Bryant-
Trabasso version (Halford, 1984).

The hypothesis that 3 units of attentional capacity are necessary for
success on the standard transitive reasoning task applies regardless of
the physical content involved. In other words. the typical horizontal
decalage between the transitivity of length and the transitivity of weight
(Piaget & Inhelder, 1941/1974) is not to be explained in terms of a
difterence in capacity demand (i.e., along the same lines as Pascual-
L.eone., 1980. explained the decalage between conservation of physical
quantity and that of weight). Instead. this decalage is explained by children’s
tendency to infer weight as a function of size. even after they are capable
of the transitivity of length. Thus, Chapman and Lindenberger (1988)
found the length—weight decalage to occur only when both the size and
the weight of comparison objects were varied in an uncorrelated manner.
and not when the objects were all the same size.

Multiplication of classes and relations. In assessing the multiplication
of classes and the multiplication of relations, children were shown 2 x
2 matrices in which three of the four cells were filled with objects. In
each case. they were asked to fill in the missing cell with an object that
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completed the matrix. In the multiplication of classes task. the rows of
the matrix were defined by classes of objects differing in shape. and the
columns by classes differing in color. In the multiplication of relations
task, the rows and columns were defined by relations of shape and size.
respectively. In each case, children were credited with passing the task
if they (a) filled the empty cell with an object having the properties or
relations defined by the relevant rows and columns and (b) referred to
those properties or relations in explaining their choices. Three operatory
variables must be assigned values in solving these tasks: one variable
representing the class (or relational term) corresponding to the relevant
row. one variable representing the class (or relational term) corresponding
to the relevant column, and one variable representing the class intersection
(or compound relational term) corresponding to the cell to be filled.

Summary

The foregoing analyses demonstrate that 3 units of attentional capacity
are required for each of the concrete operational tasks considered. This
conclusion is consistent with Pascual-1.eone’s (1970, 1984) previous pre-
diction that 3 units of ““mental capacity’ are necessary for concrete
operations. In Pascual-Leone's theory. that prediction followed as a
generalization from theoretical analyses of specific concrete operational
tasks (Pascual-Leone. 1976, 1980; Pascual-l.eone & Smith, 1969). According
to the present model. the same prediction can be seen to follow as a
deductive consequence from Piaget’s (1949/1972) definition of concrete
operations as compositions of at least two transformational “elements™
leading to a third within a total system. In this model. each of the three
elements is represented by an operatory variable, and a unit of capacity
is required for assigning a value to each variable. Therefore. a minimum
of 3 units should be required for anv instance of concrete operational

reasoning.
The specific goal of this study was to test the prediction (a) that 2
units of attentional capacity should be necessary but not sufficient for

concrete operational reasoning on all tasks and (b) that these tasks should
be solved by at least some children having only 3 units of capacity (i.c..
that 4 units should not be necessary). A secondary purpose was to test
the prediction that the transitivity of length and the transitivity of weight
should have the same capacity demand. although they might difter in
overall difficulty for other reasons. Thus. 3 units of capacity should be
necessary for both tasks. and both should in fact be solved by some
children with onlvy 3 units.
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METHOD
Subjects

A total of 120 first, second. and third graders, including 20 boys and
20 girls at each grade level, were studied in two elementary schools in
a middle- to lower-middle-class neighborhood in West Berlin. Mean ages
of first, second, and third graders were 7.06 (SD = .42). 791 (SD =
42). and 8.95 (SD = .36) years, respectively. All children were given
a battery of concrete operational tasks. including class inclusion, transitivity
of length. transitivity of weight, multiplication of classes. and multiplication
of relations, in one 45-min sitting. In addition, they were given two
measures of attentional capacity: backward digit span and Pascual-Leone’s
(undated) Figural Intersection Test. Backward digit span was presented
to children at the end of the same session in which they were tested on
the concrete operational tasks. The Figural Intersection Test was ad-
ministered in another session along with several other measures unrelated
to this study.

Procedure

Concrete operations. The procedures followed for the class inclusion,
multiplication of classes. and multiplication of relations tasks were identical
to those described by Smedslund (1964), with one exception: The mul-
tiplication of relations task was given in a 2 X 2 matrix form similar to
that followed in the multiplication of classes task in order to equate the
number of cells children would have to consider on each task. (In Smed-
slund’s original multiplication of relations task. children were shown only
the linear series formed by the diagonal elements of a 3 x 3 ora 4 x
4 matrix and not the matrix as a whole.) In all three tasks. small pieces
of plastic varying in color and shape were used. In the class inclusion
task, children were shown a group of red plastic figures, 10 of which
were round and 3 of which were square. They were then asked whether
there were more “‘red ones’’ or more “‘round ones’” and why. Children
were credited with operational class inclusion if they gave a correct
judgment (more red ones), followed by one of Smedslund’s criterial
explanations (*‘Because they're all red’"; **Because there are some square
ones, t00""; “*Because the round ones and the square ones are more than
the round ones alone.”’). In the multiplication tasks, children were shown
2 x 2 matrices in which three of the four cells were occupied, and they
were asked to choose an appropriate object to fill the remaining cell.
Again, they were asked to justify their answers. They were credited with
operational multiplication of classes or relations if their choice of objects
and explanations reflected the classes or relations defining the rows and
columns of the matrices (e.g., ‘‘this one goes there. because it's both
round [referring to the columns] and big [referring to the rows]”). Following
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Smedslund’s prcedures. each of the foregoing tasks was repeated using
different objects (e.g.., white rather than red plastic figures for class
inclusion), once with the objects uncovered and once covered within
each trial. Children were credited with operational reasoning if they gave
a criterial response (judgment plus explanation) in one of the two trials.

Transitivity of length and of weight was assessed according to the
procedures described by Chapman and Lindenberger (1988) for standard
transitivity tasks. Children were shown three comparison objects identified
by color (sticks of slightly different lengths or balls of different sizes and
weights). Objects were presented two at a time with the third object
hidden out of sight. Length comparisons were demonstrated by holding
the respective sticks upright next to one another on a tabletop across
from the children being tested. Weight comparisons were demonstrated
by means of a balance scale after making sure that children understood
that the heavier of the two objects would go down. First. they were
shown that one object (A) was longer (or heavier) than a second object
(B). then that B was longer (or heavier) than a third object (). The
positions of the longer (heavier) objects to children’s right or left were
counterbalanced. Next, children were asked about the relative length or
weight of A and C'. with object B hidden out of sight. They were considered
to have demonstrated operational transitivity if they gave a correct judgment
and an explanation involving composition of relations (e.g.. ~A Is fonger
than C, because A was longer than B and B was longer than (). The
sticks used in the length task werce 14.1. 14.4, and 14.7 ¢cm in length.
The balls used in the weight task were 25 g (diameter 7.5 ¢m). 180 g
(5.5 ¢cm), and 340 g (6.5 cm).

Cuapacity measures. The backward digit span task was administered
as described by Wechsler (1974), and the Figural Intersection Test according
to Pascual-Leone (undated). A short form of the Figural Intersection
Test was used. with four items per level of capacity from level 2 (two
overlapping figures) to level 7 (seven overlapping figures). The children’s
task in this test was to place a dot in the configuration of overlapping
figures printed on the left of the page such that the dot was contained
within each of the individual figures shown separately on the right of
the page. On two of the four items of each level, all of the overlapping
figures were “‘relevant™’; that is, the dot was to be placed inside all of
them. On the remaining two items of each level. one “irrelevant™ figure.
a figure that should not contain the dot. was included. This procedure
was followed in order to prevent the use of a simple centering strategy
(i.e.. “‘place the dot toward the center of the configuration of overlapping
figures™) that could have resulted in correct answers by chance.

In the backward digit span task, units ot capacity were estimated in
terms of the number of digits children successfully reversed. and a criterion
of two successes out of three trials at each level of capacity was used
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for categorizing a child at a given level. In the Figural Intersection Test,
estimated units of capacity were equal to the number of overlapping
figures in test items successfully passed, under the assumption that 1
unit of capacity was necessary to “‘keep in mind™" each individual figure.
Children were classified at the highest capacity level for which they
solved at least three of four items successfully.

Data Analysis

The data were analyzed by means of prediction analysis (Hildebrand.
Laing, & Rosenthal, 1977). This method allows for tests of theoretically
based predictions that particular “‘error cells’ in a cross-classification
matrix should be empty, given perfect measurement. The empirical **suc-
cess’” of such predictions is evaluated by means of the DEL statistic, a
measure of proportional error reduction. The value of DEL represents
the extent to which the obtained frequency of errors deviates from the
number expected by chance, based on the marginal distributions. More
specifically, DEL is equal to 1 minus the ratio of obtained to expected
errors. Thus, a DEL value of 1.0 means that no errors were observed;
a value of .50 means that the number of errors is 50% less than that
expected: a value of zero means that the number of errors is equal to
that expected; and so on.

The statistical significance of DEL is tested by computing its estimated
variance, from which a 7 score or confidence interval can be derived.
In the present study, two statistical tests are of interest: (a) whether or
not DEL is significantly greater than zero (i.e., whether or not the frequency
of obtained errors is less than the number expected). and (b) whether
or not DEL is significantly less than 1.0 (i.e., whether or not the frequency
of obtained errors is greater than zero). In addition to the success of
one’s predictions as measured by DEL, Hildebrand et al. (1977) recommend
consideration of the precision of those predictions as measured by U,
the a priori probability of an error given the marginal distributions. Because
U is equivalent to the expected number of errors divided by the total
sample and the latter is constant (= 120) across all analyses reported in
this paper, information regarding the relative precision of those analyses
is provided in each case by the expected number of errors itself. Prediction
analyses were computed with the aid of computer programs provided by
von Eye and Krampen (1987).

RESULTS
Capacity Measures and Age

Although no specific hypotheses regarding the relations between age
and mental capacity or between the two measures of capacity used in
this study were made. an analysis of those relations provides a useful
check on the validity of the measures. Under the assumptions that capacity
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TABLE |
PERCENTAGE OF TOTAI SAMPLE RY AGE aND CAPACIHY MEASURE
Age in years
Capacity measures and Overall

units of capacity (k) 6 7 N 9 pereentage

Backward digit span

k=2 6.7 6.7 33 0.8 7.3
A =3 10.8 228 2 R S5
A =4 0.0 3.8 12.5 S0 233
k=5 (L0 0.0 1.7 1.7 34
Figural Intersection Test
k=1 (1.8 0.8 (10 (L& 2.5
h =2 Y2 5.0 6.7 25 233
k=13 AR 20.0 10.8 S 41.7
ko= 4 7 7.5 X2 3 20.8
k h 0.0 0.8 33 0.8 S0
k=6 0.0 0.8 2.5 1.7 5.0
k=7 (.0 0.0 0.0 1.7 1.7
Overall percentage {7.5 350 31.7 158 100.0

Note. N = 120,

increases with age and that both capacity measures tap the same underlying
dimension, one would expect (a) that both measures would show age-
related increases in capacity and (b) that the two measures would yield
generally the same capacity estimates. Also of interest is the extent to
which each measure yields estimates consistent with the age norms specified
in previous capacity theories.

A cross-classification of age and capacity measures is presented in
Table 1. Children in the present sample were from 6 to 9 years old. and
performance on the capacity measures is given in terms of estimated
units of capacity (k) from 2 to 4. the range of interest n this study. As
indicated in the table, estimated capacity on the backward digit span
ranged from 2 to 5 units, with the great majority of children talling
between 2 and 4 units. These results arc consistent with Pascual-1.eone’s
(1970) age norms for the growth of M-capacity (3 units at age 7-8. 4 at
age 9-10). On the Figural Intersection Test. however, capacity estimates
ranged from 1 to 7 units, a result that deviates from those age norms at
the upper end of the distribution. This result can perhaps be explained
by the fact that this task can potentially be solved through a sequential
strategy of finding the common area between two figures and then pro-
gressively reducing the common area by considering each additional
figure one at a time. Children’s use of such a strategy could result in
inflated capacity estimates (see Pascual-Leone. undated. p. 13n). The
fact that the Figural Intersection Test yields capacity estimates with too
wide a range is noted in the manual (Pascual-Leone. undated. p. 9).
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TABLE 2
PERCENTAGE OF ToTaL Sampik BY CAPACITY MEASURES

Backward digit span
Figural Intersection - B

Test k=2 k=13 k=4 A =15
A =1 0.8 1.7 0.0 0.0
k=2 10.8 9.2 33 0.0
k=13 4.2 28.3 8.3 0.8
A =4 0.8 12.5 6.7 0.8
k=5 0.0 33 1.7 0.0
k=6 0.8 0.8 2.5 0.8
k-7 0.0 0.0 0.8 0.8

Note. N = 120.

However, the use of a short version of the test in this study may also
have increased the scatter of capacity estimated relative to the original
version,

Consistent with the age norms, most children did not have 3 units of
capacity on the Figural Intersection Test until 7 years of age. In contrast,
most 6-year-olds already had 3 units of capacity on the backward digit
span, suggesting some difference in the error rates of the two measures
at the lower end of the distribution. In fact. the distributions of the
backward digit span and Figural Interaction Test scores did not differ
significantly among 6-year-olds: six children had higher scores on the
former than on the latter, and four children had the reverse (sign test
nonsignificant). Both measures were significantly correlated with age.
The Pearson correlation between backward digit span and age was n(118) =
41, p < .001: that between the Figural Intersection Test and age was
r(b18) = .33, p < .001.

The cross-classification of the two capacity measures is presented in
Table 2. The Pearson correlation between them was r(118) = 43, p <
001. With age partialed out. the two measures were still significantly
correlated: #(118) = .34, p < .001. Consistent with the observation that
capacity estimates on the Figural Intersection Test may overstate true
capacity above & = 4, much of the scatter in Table 2 results from these
high estimates: if estimates for the Figural Intersection Test are collapsed
for k£ = 4 and above, the frequencies of observations in the diagonal
cells (i.e., those cells in which estimates from the two tests agree) are
consistently greater than those in the off-diagonal cells. On the whole,
the distributions of backward digit span and Figural Intersection Test
scores did not differ significantly in the total sample: 30 children had
higher scores on the former than on the latter, and 34 had the reverse
(sign test nonsignificant). In short, the results are consistent with the
assumption that the two tests measure the same underlying dimension
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TABLE 3
PERCENTAGE OF Torat SAMPLE BY AGE anND CONCRETE OPERATIONAT TASK
Age in years Correlation

Concrete Overall between age and
operational task 6 7 ¥ 9 percentage performance
Class inclusion

Fuail 25 1.7 0.0 0.8 5.0

Pass 150 333 3.7 5.0 95.0 BR
Transttivity of length

Fail 1.7 225 16.7 33 4.2

Pass SN 12.5 5.0 2.5 458 28
Transitivity of weight

Fail 16.7 RAR 200 9.2 71.7

Pass .8 v.2 1.7 6.7 RAIR) 26
Multiplication of classes

Fail 10.8 16.7 3.8 1.7 35.0

Pass 6.7 8.3 258 14.2 65.0 39
Multiplication of relations

Fuil 8.3 9.2 6.7 33 37.5

Pass Y.2 5.8 25.0 12.5 6.5 267

Note. N = 120.
*opo 0L

of capacity, at least for the range of interest in this study (from & = 2
to k = 4).

Concrete Operations and Age

The cross-classification of age and concrete operational performance
is presented in Table 3. As shown in this table. pass rates increased with
age on all tasks except class inclusion. on which performance was nearly
perfect from the beginning. This age increase is reflected in the significant
point-biserial correlations between age and performance given in the
right-hand column of the table (again. with the exception of class inclusion).
The decalage between length and weight is manifest in the fact that more
children passed the transitivity of length task at all ages. In the total
sample, 23 children passed the length task without passing the weight
task, but only 2 children showed the reverse pattern (sign test, - = 4.00.
p < .001).

Concrete Operations and Attentional Capacity

The major predictions of this study had to do with the relation between
concrete operational performance and attentional capacity. Specifically.
the possession of 3 units of capacity was predicted to be a necessary
but not sufficient condition for passing the concrete operational tasks.
In other words, children having only 2 units of capacity should not be
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able to pass any of the concrete operational tasks. A further prediction
was that 4 units of capacity should not be necessary for concrete operational
performance: Some children with only 3 units of capacity should indeed
be able to solve the respective tasks.

In order to mimimize false negative measurement error, children’s scores
on the two capacity measures were combined. The rationale behind this
procedure was analogous to that underlying factor analysis: By combining
variables, sources of error unique to each separate measure can be min-
imized. Thus. some children may have failed to reverse three digits not
because they lacked 3 units of capacity. but because they lacked a
sufficient facility with numbers. Similarly, some children may have failed
to attain a given level of capacity on the Figural Intersection Test not
because they lacked sufficient capacity. but because they lacked a familiarity
with geometric figures. Such sources of measurement error were reduced
by classifying children at a given capacity level if they had attained that
level on one or the other of the two measures.

The cross-classification of concrete operational tasks and levels of
capacity is presented in Table 4. With respect to concrete operations.
children were divided into those passing and those failing each task, as
indicated in the rows of the table. With respect to capacity levels. two
separate analyses were conducted: In the left half of Table 4. children
were divided into those having 2 or fewer units of capacity (K = 2) on
both measures versus those having 3 or more units (K = 3) on one or
the other measure. In the right half of the table. children were divided
into those having 3 or fewer units (A =< 3) on both measures versus those
with 4 or more units (A = 4) on one or the other measure. Cross-
classification of concrete operational tasks and capacity levels resulted
in a series of 2 X 2 tables as indicated by the boxes in the body of Table
4. The frequencies of obtained errors (with expected errors in parentheses)
are shown in italics within each 2 x 2 table, and the DEL values pertaining
to those error cells are given immediately to the right of each 2 x 2
table.

According to the hypothesis that 3 units of capacity should be necessary
for solving each concrete operation task, the frequency of obtained errors
in the /eft half of Table 4 should be significantly less than those expected.
[n other words. the confidence intervals around DEL should not include
zero. As shown in this table, this condition was met for all concrete
operational tasks except class inclusion. In fact. the confidence interval
around those DEL values both excluded zero and included 1.0. In other
words, the frequency of obtained errors was significantly less than the
number expected, but not significantly greater than zero. Such a result
is precisely what would be expected under the assumption (a) that 3
units of capacity were necessary for solving the respective concrete
operational tasks and (b) that capacity was measured with low error. As
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indicated by the frequencies of expected errors (given in parentheses).
the precision of the predictions in these analyses was relatively low.
This result is attributable to the fact that few children had 2 or fewer
units of capacity on both measures.

According to the further hypothesis that some children with only 3
units of capacity should be able to solve the concrete operational tasks,
the frequency of obtained errors in the right half of Table 4 should be
significantly greater than zero. In other words, the confidence intervals
around DEL should not include /.0. As shown in the table. this condition
was met for all concrete operational tasks, significantly including transitivity
of weight. As indicated by the frequencies ot expected errors, the precision
of these analyses was high relative to that of the previous analyses. a
result of the fact that a relatively high proportion of the sample had a
capacity of & < 3 on both measures.

In order to ensure that the results shown in Table 4 were not attributable
to just one of the two capacity measures, the analyses just described
were redone for each measure separately. The results of these analyses
are presented in Tables 5 and 6 for the Figural Intersection Test and
backward digit span, respectively. The formats of these tables are identical
with that of Table 4.

Consistent with the assumption that combining capacity measures would
result in less measurement error, the DEL values shown in Tables 5 and
6 were smaller than those in Table 4. Nevertheless, the overall results
were roughly the same for each measure as for both measures combined.
For the Figural Intersection Test (Table 5). the confidence intervals
around DEL in the left half of the table excluded zero for all concrete
operational tasks except class inclusion. and the confidence intervals
around DEL in the right half of the table excluded 1.0 for all tasks. For
backward digit span (Table 6), the confidence intervals for DEL on the
left side of the table excluded zero only for transitivity of length and
multiplication of classes. but the confidence intervals for DEL on the
right side of the table excluded 1.0 for all tasks.

DISCUSSION

With the exception of class inclusion, the results clearly supported the
primary hypothesis of this study: that 3 units of attentional capacity (but
not 4) should be necessary for passing the concrete operational tasks
investigated. This conclusion followed from the findings that (a) the
number of children passing concrete operational tasks with 2 or fewer
units of attentional capacity on both capacity measures 'was significantly
less than the number expected and (with capacity measures combined)
not significantly greater than zero: (b) the number of children passing
concrete operational tasks with 3 or fewer units of capacity was indeed
significantly greater than zero. These findings are consistent with the
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general hypothesis of neo-Piagetian capacity theories that the level of
children’s reasoning is limited by their attentional capacity (Case, 1985:
Halford. 1982: Pascual-Leone, 1970. 1980). More specifically. it is consistent
with Pascual-Leone’s (1970} prediction that M-capacity of ¢ + 3 should
be necessary for concrete operational reasoning, under the assumption
that **¢ + 3" is the amount of capacity estimated by A = 3 on the
capacity measures used in this study.

The results were also consistent with the secondary hypothesis of this
study: that both the transitivity of length and the transitivity of weight
should have the same capacity demand. Although the two tasks differed
in overall difficulty, 3 (but not 4) units of capacity were necessary to
solve them both. In other words, the horizontal decalage between these
tasks cannot be explained in terms of a difference in ¢apacity demand
on the basis of this evidence.

Two aspects of these results require further explanation: (a) Why did
class inclusion not require a minimum of 3 units of capacity as did the
other concrete operational tasks? (b) How can the horizontal decalage
between the transitivity of length and the transitivity of weight be explained.
if not by a difference in capacity demand?

Class Inclusion

Perhaps the simplest explanation of the finding that class inclusion did
not require 3 units of capacity (and was accordingly much easier than
the other concrete operational tasks) is that the task used in this study
did not require a true operational understanding of class inclusion. In
Piagetian logic, this understanding is defined in terms of the operation
of “*class addition™: the recognition that a supraordinate class B is nec-
essarily equal to the sum of its subclasses A and A'. where A 1s defined
positively by a directly perceptible characteristic, and A" is defined neg-
atively as all the members of B that are nor members of A. The prediction
that 3 units of capacity would be necessary was based on the assumption
that the task would be solved with such an operation and that children
would therefore have to assign values to the three variables A. 4’ and
B. However, class inclusion performance is known to be affected by o
variety of factors, and different versions of the task have been found to
be solved by children at different ages (Winer. 1980). One is therefore
justified in asking whether some versions do not actually assess what is
intended (Smith, 1982).

For example, most researchers who have considered both judgments
and explanations in their response criteria have accepted as valid an
argument (judgment plus explanation) having the form. “"There are more
X ones. because they are all X7 (where X is the property defining the
supraordinate class). Such an explanation was accepted by Smedslund
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(1964), whose criteria and procedures were followed in this study. In
accepting such an explanation, researchers have assumed in effect that
children implicitly intended the word "“all’’ to subsume the two subclasses
involved. However, the judgment that all the objects present have a
certain property X (e.g., are “‘red’’) can be made without considering
the properties that define the subclasses (e.g., whether they are round
or square). Smedslund’s procedures in fact ensure that children will make
such a judgment as a consequence of his preparatory questions. Further,
the way in which the test question is phrased (**Are there more red ones
or more round ones?’) encourages the assumption that there are only
two possibilities to be considered: There are either more red ones or
more rotind ones. Under this restricted condition (i.e.. that the two
classes are not coextensive), the judgment of “‘more’” can be inferred
directly from the judgment of “all’’: If all the objects are red. then there
cannot be more round ones: therefore. there must be more red ones. If
the possibility that the classes are coextensive were not eliminated from
the beginning, however, then the possibility would remain that the red
ones and the round ones were equal in number so that ““more’” could
not be inferred directly from “‘all.”

In short, Smedslund’s procedures might allow children to infer a judgment
of “*‘more’ from a judgment of ““all’” without having to consider the
relation between the two subclasses and the supraordinate class which
includes them both. The understanding of that relation. however, is what
the class inclusion task is meant to assess. Our claim is not that all
children giving the explanation “‘because they are all x'’ lack a true
understanding of class inclusion, but only that this explanation is ambiguous.
Some children who give this explanation may indeed intend the word
“all” to refer to both subclasses, but other children answering in the
same way might be inferring “*more”” directly from *‘all’” in the manner
just described. Because the latter form of reasoning involves only two
operatory variables (corresponding to the supraordinate class and to the
single subordinate class with which it is compared), it would have a
capacity demand of only 2 units consistent with the results of this study.

Preliminary data from a pilot study by Drummond and Chapman (1988)
conform to this interpretation. Children were given the Smedslund (1964)
version of the class inclusion task, but explanations of the form **They
are all X7* were distinguished from explanations that contained a reference
to both superordinate and subordinate classes (e.g., “‘because they're
all red and only some are round’’). The major result was that 2 units of
capacity were sufficient for the first type of explanation, but 3 units were
necessary for the second. Although this finding must be considered pro-
visional, it suggests that one cannot assume the two types of answers
to be semantically equivalent in all cases.
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Length and Weight

The fact that 3 (but not 4) units of capacity were found to be necessary
for both transitivity of length and transitivity of weight suggests that the
horizontal decalage between these two tasks cannot be accounted for in
terms of differential capacity demands. An alternative explanation is the
following: (a) Young children tend to infer weight as a function of size
(Piaget, 1971/1974, Ch. 10), and (b) some children continue to infer
weight from size in the transitivity task even after they become capable
of operational transitivity of length because they do not realize that
weight is not always proportional to perceived size. The horizontal decalage
between length and weight is the developmental time that elapses before
children fully appreciate the implications of this fact for the transitivity
problem. Under any other hypothesis, Chapman and Lindenberger’s (1988)
finding that the fength—weight decalage does not occur when comparison
objects are all the same size is difficult to explain.

Structural-Functional Theory

This study is an example of what Chapman (1987 called o structural-
Sfunctional approach to cognitive development. Such an approach is char-
acterized by an attempt (a) to identfy children’s forms of reasoning in
terms of their structural properties. and (b) to specify functional conditions
necessary for a particular form of reasoning. In these terms. this study
has been an investigation of organismic conditions (a certain level of
attentional capacity) that make concrete operational reasoning possible.
The results are consistent with the conclusion that 3 units of capacity
as defined in this article are necessary but not sufficient for concrete
operations.
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