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Concrete Operations and Attentional Capacity 
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In P&et’s first published articles on cognitive development (P&et. 
1991. 1913). he argued that a relation of mutual dependence exists between 

children’s forms of reasoning and the “breadth” of their attention. under- 
stood in terms of “the number of ob.jccts [of thought] capable of being 
simultaneously associated in the field of attention” (Piaget. 1923. pp. 
170-171). In his words. the tield of attention “conditions” the logical 
form of children’s reasoning (Piaget, 1923. p. 172) even ;I$ the logical 

form “collaborates” in widening that field (Piaget. 1921. p. 4X0). Similar 
ideas may be found in his later writings. although the terminology varied. 
In his book on equilibration he suggested that limitation\ in children-4 
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reasoning coincide with a narrowness in their “field or ‘span’ of assim- 
ilation” (Piaget, 1975/ 1985. p. 114), and in E.\-pc~itm~tzts otz Contrrrdictiorl 
he stated that overcoming contradictions involved a widening of “the 
system of reference” in terms of the number of concepts simultaneously 
coordinated (Piaget. 1974/1980, p. 242). Although Piaget called attention 
in these passages to a quantitiative dimension in children’s reasoning. 
he did not conceive of it as a primary cause of cognitive development 
nor did he attempt to measure this dimension separately in order to 
predict performance on specific reasoning tasks. 

Beginning with Pascual-Leone ( 1970). the prediction of children’s rea- 
soning from estimates of their attentional capacity has been a major goal 
of several neo-Piagetian theories of cognitive development (see also Case, 
1985: Halford, 1983: McLaughlin. 1963: Pascual-Leone, I980: reviewed 
by Chapman. 1987). A common feature of these theories is the proposition 
that the growth of attentional capacity is a c~rrrstrl factor in the development 
of children’s reasoning. such that a certain level of capacity is necessary 
but not sufficient for a given level of reasoning. Although substantial 
evidence exists to support a general dependency of reasoning upon capacity 
(see reviews by Case. 1985; Halford, 1981). the above-mentioned theories 
differ with respect to (a) the nature of the capacity construct. (b) the 
ways in which units of capacity are defined and measured, and (c) the 
specific relations of correspondence between units of capacity and stages 
or levels of cognitive development. 

The general purpose of the present study is to provide a test of one 
approach toward the resolution of these issues, based on Chapman’s 
( 1987) structural-functional model of children’s reasoning. First. the basic 
assumptions of the model are stated, and then the predictions of the 
model regarding the relation between concrete operations and attentional 
capacity are described. The term “* ,rttentional capacity” is used generically 
throughout the article to refer to any quantitative dimension in the contents 
of immediate attention, regardless of how that dimension might he defined 
in the context of specific theories. 

One of the main assumptions of the proposed model is that the phe- 
nomenon to be investigated in studies of children’s reasoning is the,f;,rnr 
cftmr.sotzin~~ exhibited by children in justifying their judgments in problem- 
solving tasks. The term “form of reasoning” is used to refer to the type 
of inferential relation uniting children’s judgments (as the conclusions of 
their inferences) with their explanations (the premises) of those inferences. 
The ob.ject of investigation is conceived in terms of children’s ability to 
exhibit a given form of reasoning in their verbal argumentation, rather 
than in terms of a mental process acting as a causal or functional antecedent 
of children’s verbalizations (cf. Brainerd. 1973. 1977; Reese & &hack, 
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1974). As an example ofthis approach. Chapman and Lindenberger ( I%#) 
distinguished between “functional” and “operational” forms of reasoning 
on a transitivity task. depending on whether children justified judgments 
of length as a function of spatial orientation (“This one is longer. because 
it’s on the right”) or as the product of an operational composition (“A 

is longer than C. because A is longer than 13 and B is longer than C”). 
A second assumption is that the structure of children’s forms of reasoning 

can be represented in terms of the relations among c~pc~rofo,.~ ~*nriutd~~.s. 
understood as the aspects or dimensions of a task situation that the 

subject recognizes as potentially varying (us assuming a range of possible 
values), within the experiential context of the task. So defined. operatory 
variables can be distinguished from operatory c~~~~.sfrrr~r.c: aspects or d- 
mensions that the subject recognizes as invariant in the particular conteut. 
In a typical reasoning task. both the premises and the conclusion xtated 

by the subject can be described structurally as expressing particular 
values of different operatory variables. For example. in the Chapman 
and Lindenberger (1988) study. children using functional reasoning rec- 
ognized potential variation in hoth the /.c~ltrti\.c~ /PII,V~/I and the .spcrtio/ 
orietttcttiott of each pair of sticks to he compared (one stick could be 

either longer or \;horter and either to the right or to the left of the other). 
Therefore. two operatory variables, corresponding to relative length and 
spatial orientation. respectively. were involved. 

The third basic assumption of the model is that relations of tort-c- 
spondence exist between the structural and the functional level\ of de- 

scription. In particular, we propose (a) that the structural act of asxigning 
a value to an operatory variable corresponds to the functional consumption 
of a fixed amount of attentional capacity and tb) that thih tixed amount 
of capacity can be considered a “unit.” Thus, the total capacity requirement 
of a given form of reasoning is equal to I he number of operatory variablex 
that are assigned values simultaneously in employing that form of reasoning 

in a particular task. Operatory constant\ (aspects of the task situation 
that the subject regards as invariant) generally can be coded in long- OI 

intermediate-term memory and accordingI> do not rcquirc cap;icity in 
immediate attention. 

Observe that this third assumption is consistent with both continunu\ 
and discontinuous models of attentional capacity: all that is asserted is 
that the structural process of value assignment correspond5 to the functional 
consumption of a fixed amount of capacity. For present purpose\. it i\ 
immaterial whether this fixed amount of capacity represents an indivisible 
quantum or an arbitrary division of a continuous quantity. 

The foregoing assumptions provide guidelines for the analysis of particular 
reasoning tasks. First. the forms of reasoning used by children in solving 
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the problems in question are determined by classifying their responses 
(judgments and explanations) and ordering them developmentally by type. 
Second, the structures of each form of reasoning are identified in terms 
of the operatory variables involved and their interrelations. Third. the 
attentional capacity demand for each form of reasoning is determined 
from the number of operatory variables that are assigned values simul- 
taneously in employing that form of reasoning. 

Each of these three steps corresponds to a different phase in the 
Piagetian or neo-Piagetian research programs. The first step corresponds 
to the taxonomic aspect of Piaget’s research in cognitive development: 
the classification of different forms of reasoning and the seriation of these 
forms into developmental sequences. (On the taxonomic character of 
Piaget’s research, see Chapman, 1987, 1988.) The second step corresponds 
to Piaget’s structural analyses of the thinking characteristic of different 
cognitive-developmental stages in terms of operatory logic (e.g.. Piaget. 
1949/1972). However. one cannot assume that Piaget’s own structural 
analyses are adequate in every case. In particular. we suggest that structural 
analysis must closely conform to the verbal arguments actually used by 
children. In some cases, this approach will lead to results different from 
those reached by Piaget (cf. the discussion of class inclusion in the 
Discussion section). Finally, the third step of analysis corresponds to 
the neo-Piagetian goal of determining the functional information-processing 
requirements of ditTerent structurally defined developmental stages (Case. 
198.5; Chapman, 1987: Halford. 1981: Pascual-Leone. 1970. 1984). As 
previously mentioned, little agreement exists among different investigators 
on exactly how this project ought to be accomplished (Case. 1985; Chap- 
man, 1987: Halford, 1982; Pascual-Leone, 1970. 1980. 1984). 

In the following sections. we apply this method of analysis to the tasks 
exemplifying the four major groupings of concrete operations according 
to lnhelder and Piaget (1959/1964): class inclusion, the transitivity of 
length and of weight. the multiplication of classes. and the multiplication 
of relations. Two predictions are generated by this analysis. The first 
involves the attentional capacity requirements of concrete operations in 
general, and the second an explanation of the typical horizontal decalage 
between length and weight on the transitivity task. 

C’ltrss inc~lrlsiotz. In the typical Piagetian class inclusion task (P&et B 
Szeminska. 1941/1952), children are shown a collection of objects (e.g., 
wooden beads). most of which are of one color (e.g.. red) and the rest 
of another color (e.g., white). Children are asked if there are more red 
beads or more wooden beads and are credited with class inclusion if 
they indicate that there are more wooden beads because the red beads 
are incllrdrd in the total class of wooden beads. According to Piaget and 
Szeminska’s structural analysis. class inclusion is characterized by an 
operation of class addition having the form A + A’ = B. where A 
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represents a subclass of objects defined by a particular property (e.g., 
the red beads). B represents the supraordinate class defined by some 
other property (the rrwoden beads). and A’ is the complement of A under 

B (the wooden beads that are trot red). Understanding class inclusion 
thus implies understanding that a supraordinate class (B) is necessarily 
equivalent to the sum of its subclasses (A and A’). Applying this operation 
in a concrete task situation involves assigning particular values to the 
class variables A, A’. and B. Children must view (a) all the red objects 
as constituting a single class. and similarly for (b) all the wooden beads 
and (cl the beads that arc not red. In other words. class inclusion involves 
what Inhelder and Piaget ( 1959/1964) called the coordination of intc~sion 
(the defining properties of a class) and c~.\-tc~,vio~ (the objects belonging 

to that class) (see also Pascual-Leone & Smith, 1969). In our view. the 
formula A t A’ = B ought not to he construed as a computational 
routine by which a correct answer to the class inclusion problem is 
ohttrirlc,tl, but as an expression of the logical relations among A. A’, and 
B that wsrrlt if’ intension and extension of these classes are correctly 

coordinated. With respect to the capacity requirements of class inclusion. 
the important thing is that all three class variables, A. A’, and W, must 
be assigned values simultaneously. Under the assumption that each \i- 
multaneous value assignment require\ a “unit” of capacity. the operation 

oT class addition would require a minimum of 3 such units. 
Trtr~~.siti~~ify (!f‘ Irn~:f/r trtltt \l,c,i,y:lrl. In the transitivity of length task. 

children are first shown two sticks .4 and B identified by color, such that 

B is visibly longer than A (i.e.. /1 II). Then they are shown sticks 11’ 
and C. such that B c.’ C is also visible. l’inally. they are shown ,4 and 
C’ together in such a way that they cannot see the difference in length 
and are asked which is longer. A or C’? Children are credited with transitive 
reasoning if they conclude that A c C‘ because ,? R and B cS C’. 
According to Piaget’s ( 1949/ 1973) operatory logic. transitive reasoning 

of this kind involves an operation called the “addition of asymmetrical 
relations.” having the form (A CC HI t (H I C‘f z- 0-Z ” (‘1. This operation 
derives from the action of seriating ob.jccts according to ;I physical di- 
mension such as length or weight. In term\ of the present model. applying 
this operation in practice involves the cognitive constructi~~n of an ordered 
series ,Y ---f z’ -’ %. where .I.. 1.. and % arc the respective “position\” 
in the series. and the sign I’+” represents the relation of succession 
constituted by the operation of “placing” one ob.ject after another according 
to some physical dimension. (On the construction of’ an ordered series 
through operations of “placement,” 4ce F’iagct, l946/ 1970. pp. 2X0-285.) 
The series can be constructed from the pairwise physical comparison\ 
A < B and B c C‘. and the physical relation between :t ;ind C’ can then 
be determined by noting the relative positions of these two objects in 
that series. With respect to the capacity requirements of transitive rea- 
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soning, three relational variables (X - Y, Y + Z, and X + Z) must be 
assigned values simultaneously (A < B, B < C, and A < C. respectively). 
Under the assumption that each value assignment requires 1 “unit” of 
capacity, the total capacity demand of the task is 3 units. Moreover. the 
same amount of capacity should be required regardless of the physical 
dimension (e.g., length or weight) upon which objects are compared. 

However, the foregoing analysis is valid only under the condition that 
the values of the variables in question are simultaneously represented 
in children’s immediate attention. The analysis does ~)ot apply if premise 
comparisons are presented repeatedly. as in Bryant and Trabasso’s ( I97 1) 
memory-for-premises training paradigm. Repeated presentation of the 
comparisons A < B and B < c’ allows the series A < H < C’ to be 
schematized in long-term memory (i.e., the relations X - Y and 2’ - 
% acquire the constcuzt values A < B and B < C. respectively). Given 
such a scheme. the relation between A and C’ can then be determined 
from the series. As indicated, the values of only two variables (X - Y 
and Y + Z) need be represented simultaneously in children’s immediate 
attention in order to schematize the series. Thus, the Bryant-Trabasso 
paradigm requires only 2 rather than 3 units of capacity. When long- 
term memory is engaged, the demands on children’s immediate attention 
are reduced relative to the “standard” transitive reasoning task in which 
premise comparisons are not presented repeatedly. Under the assumption 
that 2 “units” of attentional capacity develop by S-6 years on the average, 
the foregoing analysis explains (a) why the Bryant-Trabasso paradigm 
is easier than the “standard” paradigm, and (b) why children younger 
than 5 years of age are generally unable to succeed on the Bryant- 
Trabasso version (Halford, 1984). 

The hypothesis that 3 units of attentional capacity are necessary for 
success on the standard transitive reasoning task applies regardless of 
the physical content involved. In other words. the typical horizontal 
decalage between the transitivity of length and the transitivity of weight 
(Piaget & Inhelder, 1941/1974) is not to be explained in terms of a 
difference in capacity demand (i.e., along the same lines as Pascual- 
Leone. 1980. explained the decalage between conservation of physical 
quantity and that of weight). Instead. this decalage is explained by children’s 
tendency to infer weight as a function of size. even after they are capable 
of the transitivity of length. Thus. C’hapman and Lindenberger (19%) 
found the length-weight decalage to occur only when both the size and 
the weight of comparison objects were varied in an uncorrelated manner. 
and not when the objects were all the same size. 

klultiplic~utiotz ~~J‘c~1r1s.s~~~ rrrrtl wlrltiotls. In assessing the multiplication 
of classes and the multiplication of relations, children were shown 2 x 
2 matrices in which three of the four cells were filled with ob.jectx. In 
each case. they were asked to fill in the missing cell with an object that 
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completed the matrix. In the multiplication of classes task, the rows of 
the matrix were defined by classes of objects differing in shape, and the 
columns by classes differing in color. In the multiplication of relations 
task, the rows and columns were defined by relations of shape and size. 
respectively. In each case, children were credited with passing the task 
if they (a) filled the empty cell with an object having the properties ot 

relations defined by the relevant row4 and columns and (b) referred to 
those properties or relations in explaining their choice\. Three operator)’ 
variables must be assigned values in solving these tasks: one variable 

representing the class (or relational term) corresponding to the relevant 
row. one variable representing the clash (or relational term) corresponding 
to the relevant column, and one variable representing the class intersection 
(or compound relational term) corresponding to the cell to be tilled. 

The foregoing analyses demonstrate that 3 units of attentional capacity 
are required for each of the concrete operational tasks considered. ‘I’hiy 
conclusion is consistent with Pascual-I,eone’s ( 1970. I9841 previous prc- 
diction that 3 units of “mental capacity” are necessary for concrete 
operations. In Pascual-Leone’x theory. that prediction followed as ;I 

generalization from theoretical analyxeh of specific concrete operational 
tasks (Pascual-Leone. 1976, 1980: Pascual-l.eone Kr Smith. 1969). According 
to the present model. the same prediction can he seen to follow ;I\ ;I 
deductive consequence from P&et’4 ( IY4c)/l9721 definition of concrete 

operation5 as compositions of at least two transformational “element\” 
leading to a third within a total system. In this model. each of the three 
elements is represented by an operatory variable, and ;I unit of capacity 
is required for assigning a value to each variable. Therefore. ;1 minimum 
of 3 units should be required for an!’ instance of concrete operational 
reasomng. 

The specific goal of this study wa\ to tat the prediction ~a) that 3 

units of attentional capacity should be necessary but not sufficient i’ol 
concrete operational reasoning on all tasks and (b) that thehe tabks should 
be solved by at least borne children having only 3 units of capacity ti.c.. 
that 4 units should riot he necessary). A \econdary purpose was to test 
the prediction that the transitivity of length and the transitivity of weight 
should have the same capacity demand. although they might differ in 
overall difficulty for other reasons. Thus. 3 units of capacity should be 
necessary for both tasks. and both should in fact be solved by some 

children with onlv 3 units. 
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METHOD 

A total of 120 first, second, and third graders, including 20 boys and 
30 girls at each grade level, were studied in two elementary schools in 
a middle- to lower-middle-class neighborhood in West Berlin. Mean ages 
of first. second, and third graders were 7.06 (SD = .43). 7.91 (SD = 
.421. and X.9.5 (SD = .36) years, respectively. All children were given 
a battery of concrete operational tasks. including class inclusion. transitivity 
of length, transitivity of weight, multiplication of classes. and multiplication 
of relations, in one 45min sitting. In addition, they were given two 
measures of attentional capacity: backward digit span and Pascual-Leone’s 
(undated) Figural Intersection Test. Backward digit span was presented 
to children at the end of the same session in which they were tested on 
the concrete operational tasks. The Figural Intersection Test was ad- 
ministered in another session along with several other measures unrelated 
to this study. 

C’oncretr operrrtions. The procedures followed for the class inclusion. 
multiplication of classes, and multiplication of relations tasks were identical 
to those described by Smedslund t 19641, with one exception: The mul- 
tiplication of relations task was given in a 2 X 2 matrix form similar to 
that followed in the multiplication of classes task in order to equate the 
number of cells children would have to consider on each task. (In Smed- 
slund’s original multiplication of relations task. children were shown only 
the linear series formed by the diagonal elements of a 3 x 3 or a 4 x 
4 matrix and not the matrix as a whole.) In all three tasks. small pieces 
of plastic varying in color and shape were used. In the class inclusion 
task. children were shown a group of red plastic figures, 10 of which 
were round and 3 of which were square. They were then asked whether 
there were more “red ones” or more “round ones” and why. Children 
were credited with operational class inclusion if they gave a correct 
judgment (more red ones), followed by one of Smedslund’s criteria1 
explanations (“Because they’re all red”; “Because there are some square 
ones. too”; “Because the round ones and the square ones are more than 
the round ones alone.“). In the multiplication tasks. children were shown 
2 x 2 matrices in which three of the four cells were occupied. and they 
were asked to choose an appropriate object to fill the remaining cell. 
Again, they were asked to justify their answers. They were credited with 
operational multiplication of classes or relations if their choice of objects 
and explanations reflected the classes or relations defining the rows and 
columns of the matrices (e.g., “this one goes there. because it’s both 
round [referring to the columns] and big [referring to the rows]“). Following 
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Smedslund’s prcedures, each of the foregoing tasks was repeated using 
different objects (e.g., white rather than red plastic figures for class 
inclusion), once with the objects uncovered and once covered within 
each trial. Children were credited with operational reasoning if they gave 
a criteria1 response (judgment plus explanation) in one of the two trials. 

Transitivity of length and of weight was assessed according to the 
procedures described by Chapman and Lindenberger ( 19X8) for standard 
transitivity tasks. Children were shown three comparison objects identified 
by color (sticks of slightly different lengths or balls of different sizes and 
weights). Objects were presented two at a time with the third ob.ject 
hidden out of sight. L,ength comparisons were demonstrated by holding 
the respective sticks upright next to one another on a tabletop across 
from the children being tested. Weight comparisons were demonstrated 
by means of ;I balance scale after making hure that children understood 
that the heavier of the two objects would go down. First. they were 
shown that one object (A) was longer (or heavier) than ;I second ob.ject 
(RI. then that H W;I~ longer (or heavier) than ;I third object (C’). The 
positions of the longer (heavier) ob.iect\ to children’\ right or left were 
counterbalanced. Next, children were asked about the relative length or 
weight of A and C’. with object N hidden out of sight. They were considered 
to have demonstrated operational transitivity if they gave :I correct judgment 
and an explanation involving composition of relations (e.g.. “A i4 longcl 
than C’, because A was longer than fj und R was longer than (“‘I. The 
sticks used in the length task were 14. I. l-1.4, and 14.7 cm in length. 
The balls used in the weight ta\k wcrc 25 g (diameter 7.S cm). IX0 g 
(5.5 cm). and 340 g (6.5 cm). 

C’trpric,ity I~I~~I.YIII’~~.Y. The backward digit span tahk was administered 
as described by Wechsler t 1974). and the I:igural Intersection Test according 
to Pascual-L,eone (undated). A short form of the Figural Intersection 
Test was used. with four items per level of capacity from level 2 (two 
overlapping figures) to level 7 (seven overlapping ligures). The children’\ 
task in this test was to place ;I dot in the configuration of overlapping 
figures printed on the left of the page such that the dot was contained 
within each of the individual figures shown separately on the right of 
the page. On two of the four items of each level, all of the overlapping 
figures were “relevant”: that is. the dot was to be pl~rd inside alI of 
them. On the remaining two items of each level. one “irrelevant” ligure. 
;I figure that should not contain the dot. was included. This procedure 
wah followed in order to prevent the use of ;I simple centering strategy 
(i.e.. “place the dot toward the center of the configuration of overlapping 
figures”) that could have resulted in correct anxwer\ by chance. 

In the backward digit span task. units of capacity were estimated in 
terms of the number of digit:, children successfully reversed. and :I criterion 
of two successes out of three trials at each level 01‘ capacitv wah used 
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for categorizing a child at a given level. In the Figural Intersection Test. 
estimated units of capacity were equal to the number of overlapping 
figures in test items successfully passed. under the assumption that 1 
unit of capacity was necessary to “keep in mind” each individual figure. 
Children were classified at the highest capacity level for which they 
solved at least three of four items successfully. 

The data were analyzed by means of prediction analysis (Hildebrand. 
Laing, & Rosenthal, 1977). This method allows for tests of theoretically 
based predictions that particular “error cells” in a cross-classification 
matrix should be empty, given perfect measurement. The empirical “sue- 
cess” of such predictions is evaluated by means of the DEL statistic, a 
measure of proportional error reduction. The value of DEL represents 
the extent to which the obtained frequency of errors deviates from the 
number expected by chance, based on the marginal distributions. More 
specifically, DEL is equal to I minus the ratio of obtained to expected 
errors. Thus. a DEL value of I.0 means that no errors were observed: 
a value of .50 means that the number of errors is 50% less than that 
expected: a value of zero means that the number of errors is equal to 
that expected; and so on. 

The statistical significance of DEL is tested by computing its estimated 
variance, from which a ; score or confidence interval can be derived. 
In the present study, two statistical tests are of interest: (a) whether or 
not DEL is significantly greater than zero (i.e., whether or not the frequency 
of obtained errors is less than the number expected). and (b) whether 
or not DEL is significantly less than I .O (i.e., whether or not the frequency 
of obtained errors is greater than zero). In addition to the success of 
one’s predictions as measured by DEL, Hildebrand et al. (1977) recommend 
consideration of the prc~cision of those predictions as measured by I/, 
the a priori probability of an error given the marginal distributions. Because 
U is equivalent to the expected number of errors divided by the total 
sample and the latter is constant ( = 120) across all analyses reported in 
this paper, information regarding the relative precision of those analyses 
is provided in each case by the expected number of errors itself. Prediction 
analyses were computed with the aid of computer programs provided by 
von Eye and Krampen (1987). 

RESULTS 

Although no specific hypotheses regarding the relations between age 
and mental capacity or between the two measures of capacity used in 
this study were made. an analysis of those relations provides a useful 
check on the validity of the measures. Under the assumptions that capacity 



246 CHAPMAN AND I,INI>ENBEKGl-;I< 

0.0 
0.0 
0.0 

17.5 

(I.7 i.: 
,, 5 --. 14.1 

5.X 12.5 
0.0 I .7 

0.x 0.0 
5.0 6.7 

20.0 10.x 
7.5 X.1 
0.X :..: 
0 s 2.5 
0.0 O.(l 

7i.o 11.7 

li 

‘7. ‘, 

II.’ 
20.X 

5.0 
5 0 
I .: 

IOO.0 

increases with age and that both capacity measures tap the same underlying 
dimension, one would expect (al that both measures would shob: age- 

related increases in capacity and tbl that the two measures would yield 
generally the same capacity estimates. Also of interest is the extent to 
which each measure yields estimates consistent with the age norms specified 
in previous capacity theories. 

A cross-classification of age and capacity measures is presented in 
Table I. Children in the present sample were from 6 to 9 years old. and 

performance on the capacity measures is given in terms of estimated 
units of capacity tX) from 2 to 4. the range of interest in this study. As 
indicated in the table, estimated capacity on the backward digit span 
ranged from 2 to 5 units, with the great majority of children falling 
between 3 and 4 units. These results ;irc consistent with Pascual-Leone’4 
(1970) age norms for the growth of M-capacity (3 units at age 7-X. -1 at 
age 9-101. On the Figural Intersection Test. however. capacity estimates 
ranged from I to 7 units, a result that deviates from those age norms at 
the upper end of the distribution. This result can perhaps he explained 
by the fact that this task can potentially be solved through a sequential 
strategy of tinding the common area between two figures and then pox- 

grexsively reducing the common area by considering each additional 
figure one at a time. Children’s use of such a strategy could result in 
inflated capacity estimates (see Pascua-Leone. undated. p. 13nl. The 
fact that the Figural Intersection Test yields capacity estimates with too 
wide a range is noted in the manual (Pascual-12eone. undated. p. 9). 
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However, the use of a short version of the test in this study may also 
have increased the scatter of capacity estimated relative to the original 
version. 

Consistent with the age norms, most children did not have 3 units of 
capacity on the Figural Intersection Test until 7 years of age. In contrast, 
most 6-year-olds already had 3 units of capacity on the backward digit 
span. suggesting some difference in the error rates of the two measures 
at the lower end of the distribution. In fact. the distributions of the 
backward digit span and Figural Interaction Test scores did not differ 
significantly among 6-year-olds: six children had higher scores on the 
former than on the latter, and four children had the reverse (sign test 
nonsignificant). Both measures were significantly correlated with age. 
The Pearson correlation between backward digit span and age was r( 118) = 
.41, p < .OOl: that between the Figural Intersection Test and age was 
I.(IIX) = .33. p < ,001. 

The cross-classification of the two capacity measures is presented in 
Table 2. The Pearson correlation between them was Y( 118) = .43. p < 
.OOl. With age partialed out. the two measures were still significantly 
correlated: I’( 118) = .34, p < ,001. Consistent with the observation that 
capacity estimates on the Figural Intersection Test may overstate true 
capacity above k = 4, much of the scatter in Table 2 results from these 
high estimates: if estimates for the Figural Intersection Test are collapsed 
for k = 4 and above, the frequencies of observations in the diagonal 
cells (i.e., those cells in which estimates from the two tests agree) are 
consistently greater than those in the off-diagonal cells. On the whole, 
the distributions of backward digit span and Figural Intersection Test 
scores did not differ significantly in the total sample: 30 children had 
higher scores on the former than on the latter, and 34 had the reverse 
(sign test nonsignificant). In short, the results are consistent with the 
assumption that the two tests measure the same underlying dimension 



27.5 

12.5 

3.x 

Y.2 

16.7 

IX.3 

19.2 

15.X 

5.0 

95.0 

54.2 

45.x 

of capacity. at least for the range of interest in this study (from 1, = 2 
to ft = 4). 

The cross-classification of age and concrete operational performance 

is presented in Table 3. As shown in this table. pass rates increased with 
age on all tasks except class inclusion, on which performance was nearly 
perfect from the beginning. This age increase is reflected in the significant 
point-biserial correlations between age and performance given in the 
right-hand column of the table (again. with the exception of class inclusion). 
The decalage between length and weight is manifest in the fact that more 
children passed the transitivity of length task at all ages. In the total 
sample, 23 children passed the length task without passing the weight 
task, but only 2 children showed the reverse pattern (sign test. ; T 4.00. 
p < .OOl). 

The major predictions of this study had to do with the relation between 
concrete operational performance and attentional capacity. Specifically. 
the possession of 3 units of capacity was predicted to be a necessary 
but not sufficient condition for passing the concrete operational tasks. 
In other words, children having only 2 units of capacity should not be 
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able to pass any of the concrete operational tasks. A further prediction 
was that 4 units of capacity should ~of be necessary for concrete operational 
performance: Some children with only 3 units of capacity should indeed 
be able to solve the respective tasks. 

In order to minimize false negative measurement error, children’s scores 
on the two capacity measures were combined. The rationale behind this 
procedure was analogous to that underlying factor analysis: By combining 
variables, sources of error unique to each separate measure can be min- 
imized. Thus. some children may have failed to reverse three digits not 
because they lacked 3 units of capacity. but because they lacked a 
sufficient facility with numbers. Similarly, some children may have failed 
to attain a given level of capacity on the Figural Intersection Test not 
because they lacked sufficient capacity. but because they lacked a familiarity 
with geometric figures. Such sources of measurement error were reduced 
by classifying children at a given capacity level if they had attained that 
level on one 01’ rhr otlwr. of the two measures. 

The cross-classification of concrete operational tasks and levels of 
capacity is presented in Table 4. With respect to concrete operations. 
children were divided into those passing and those failing each task. as 
indicated in the rows of the table. With respect to capacity levels. two 
separate analyses were conducted: In the left half of Table 4. children 
were divided into those having 2 or fewer units of capacity (r! s 2) on 
both measures versus those having 3 or more units (h 2 3) on one or 
the other measure. In the right half of the table. children were divided 
into those having 3 or fewer units (I, G 3) on both measures versus those 
with 4 or more units (/\ 3 4) on one or the other measure. Cross- 
classification of concrete operational tasks and capacity levels resulted 
in a series of 2 x 2 tables as indicated by the boxes in the body of Table 
4. The frequencies of obtained errors (with expected errors in parentheses) 
are shown in italics within each 2 x 2 table, and the DEL values pertaining 
to those error cells are given immediately to the right of each 2 x 2 
table. 

According to the hypothesis that 3 units of capacity should be necessary 
for solving each concrete operation task, the frequency of obtained errors 
in the l~fr half of Table 4 should be significantly less than those expected. 
In other words. the confidence intervals around DEL should not include 
;CYO. As shown in this table, this condition was met for all concrete 
operational tasks except class inclusion. In fact. the confidence interval 
around those DEL values both excluded zero and included 1.0. In other 
words, the frequency of obtained errors was significantly less than the 
number expected, but not significantly greater than zero. Such a result 
is precisely what would be expected under the assumption (a) that 3 
units of capacity were necessary for solving the respective concrete 
operational tasks and (b) that capacity was measured with low error. As 
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indicated by the frequencies of expected errors (given in parentheses). 
the precision of the predictions in these analyses was relatively low. 
This result is attributable to the fact that few children had 2 or fewer 
units of capacity on both measures. 

According to the further hypothesis that some children with only 3 
units of capacity simtld be able to solve the concrete operational tasks, 
the frequency of obtained errors in the r.i,qht half of Table 4 should be 
significantly greater than zero. In other words, the confidence intervals 
around DEL should not include 1.0. As shown in the table. this condition 
was met for all concrete operational tasks, significantly including transitivity 
of weight. As indicated by the frequencies of expected errors, the precision 
of these analyses was high relative to that of the previous analyses. a 
result of the fact that a relatively high proportion of the sample had a 
capacity of k G 3 on both measures. 

In order to ensure that the results shown in Table 4 were not attributable 
to just one of the two capacity measures, the analyses just described 
were redone for each measure separately. The results of these analyses 
are presented in Tables 5 and 6 for the Figural Intersection Test and 
backward digit span, respectively. The formats of these tables are identical 
with that of Table 4. 

Consistent with the assumption that combining capacity measures would 
result in less measurement error, the DEL values shown in Tables 5 and 
6 were smaller than those in Table 4. Nevertheless, the overall results 
were roughly the same for each measure as for both measures combined. 
For the Figurdl Intersection Test (Table .S), the confidence intervals 
around DEL in the left half of the table excluded zero for all concrete 
operational tasks except class inclusion. and the confidence intervals 
around DEL in the right half of the table excluded 1.0 for all tasks. For 
backward digit span (Table 6), the confidence intervals for DEI, on the 
left side of the table excluded zero only for transitivity of length and 
multiplication of classes. but the confidence intervals for DEL on the 
right side of the table excluded 1 .O for all tasks. 

DISCUSSION 

With the exception of class inclusion, the results clearly supported the 
primary hypothesis of this study: that 3 units of attentional capacity (but 
not 4) should be necessary for passing the concrete operational tasks 
investigated. This conclusion followed from the findings that (a) the 
number of children passing concrete operational tasks with 2 or fewer 
units of attentional capacity on both capacity measures’was significantly 
less than the number expected and (with capacity measures combined) 
not significantly greater than zero: (b) the number of children passing 
concrete operational tasks with 3 or fewer units of capacity was indeed 
significantly greater than zero. These findings are consistent with the 
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general hypothesis of neo-Piagetian capacity theories that the level of 

children’s reasoning is limited by their attentional capacity (Case, 1985: 
Halford. 1981: Pascual-Leone. 1970. 1980). More specifically, it is consistent 
with Pascual-Leone’s (1970) prediction that M-capacity of (3 + 3 should 
he necessary for concrete operational reasoning, under the assumption 
that “C + 1” is the amount of capacity estimated by I, 3 on the 

capacity measures used in this study. 
The results were also consistent with the secondary hyp~~thesis rtt‘ this 

study: that both the transitivity of length and the transitivity of weight 
should have the same capacity demand. Although the two tasks differed 

in overall difficulty. 3 (but not 4) units of capacity were necessary to 
solve them both. In other words. the h~~l-i~~)nt~~l decalage between these 
tasks cannot be explained in term:, of ;t difference in capacity demand 
on the basis of this evidence. 

Two aspects of these results require further explanation: (a) Why did 
class inclusion not require a ininimum of 3 units of capacity as did the 

other concrete operational tasks’? tb) How can the hori/.ontal decalage 
between the transitivity of length and the transitivity of weight be explained. 
if not by a difference in capacity demand’? 

C’1t1.s.s Irlc~lli.sic)ll 

Perhaps the simplest explanation of the hnding that class inclusion did 
not require 3 units of capacity (and was ~~cc~)rdillgly much easier than 
the other concrete operational tasks) is that the task used in this study 
did not require a true operational understanding of class inclusion. In 

Piagetian logic, this understanding is defined in terms of the operation 
of “‘class addition”: the rec~~gnition that ;I supraordinatc class B is nec- 
essarily equal to the sum of its subclasses ,A and A’. where A is defined 
positively by a directly perceptible characteristic, and A’ is defined neg- 
atively as all the members of B that are rrof members of/\. The prediction 
that 3 units of capacity would be necessary was based on the as~tlrnpti~~1~ 
that the task would be solved with such an operation and that children 

would therefore have to assign values to the three variables A. ,,I ‘. and 
B. However, class inclusion performance is known to he affected by a 
variety of factors, and different versions of the task have been found to 
be solved by children at different ages (Wirier. 1980). One is therefore 
justified in asking whether some versions do not actually assess what is 
intended (Smith. 1989). 

For example, most researchers who have considered both judgments 
and explanations in their response criteria have accepted as valid an 
argument (judgment plus explanation) having the form, “There are more 
X ones. ht~.cirrsc~ thy CII’(’ ~$11 .\“’ (where ,Y is the property defining the 
supraordinate class). Such an explanation was accepted by Smedslund 
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(1964). whose criteria and procedures were followed in this study. In 
accepting such an explanation, researchers have assumed in effect that 
children implicitly intended the word “all” to subsume the two subclasses 
involved. However, the judgment that all the objects present have a 
certain property X (e.g., are “red”) can be made without considering 
the properties that define the subclasses (e.g., whether they are round 
or square). Smedslund’s procedures in fact ensure that children will make 
such a judgment as a consequence of his preparatory questions. Further, 
the way in which the test question is phrased (“Are there more red ones 
or more round ones?“) encourages the assumption that there are only 
two possibilities to be considered: There are either ~MW red c~tzrs or 
vzow ro:rnd ones. Under this restricted condition (i.e.. that the two 
classes are not coextensive), the judgment of “‘more” can be inferred 
directly from the judgment of “all”: If all the objects are red, then there 
cannot be more round ones: therefore. there must be more red ones. If 
the possibility that the classes are coextensive were not eliminated from 
the beginning, however, then the possibility would remain that the red 
ones and the round ones were equal in number so that “more” could 
not be inferred directly from “all.” 

In short, Smedslund’s procedures might allow children to infer a judgment 
of “more” from a judgment of ” all” without having to consider the 
relation between the two subclasses and the supraordinate class which 
includes them both. The understanding of that relation, however, is what 
the class inclusion task is meant to assess. Our claim is not that all 
children giving the explanation “because they are all .r” lack a true 
understanding of class inclusion. but only that this explanation is ambiguous. 
Some children who give this explanation may indeed intend the word 
“all” to refer to both subclasses. but other children answering in the 
same way might be inferring “more” directly from “all” in the manner 
just described. Because the latter form of reasoning involves only two 
operatory variables (corresponding to the supraordinate class and to the 
single subordinate class with which it is compared), it would have a 
capacity demand of only 2 units consistent with the results of this study. 

Preliminary data from a pilot study by Drummond and Chapman (1988) 
conform to this interpretation. Children were given the Smedslund ( 1964) 
version of the class inclusion task. but explanations of the form “They 
are all x” were distinguished from explanations that contained a reference 
to both superordinate and subordinate classes (e.g., “because they’re 
all red and only some are round”). The major result was that 2 units of 
capacity were sufficient for the first type of explanation, but 3 units were 
necessary for the second. Although this finding must be considered pro- 
visional. it suggests that one cannot assume the two types of answers 
to be semantically equivalent in all cases. 
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The fact that 3 (but not 4) units of capacity were found to be necessary 
for both transitivity of length and transitivity of weight suggests that the 

horizontal decalage between these two tasks cannot be accounted for in 
terms of differential capacity demands. An alternative explanation is the 
following: (a) Young children tend to infer weight as a function of size 
(Piaget, 1971/1974. Ch. IO), and tbl some children continue to infer 

weight from size in the transitivity task even after they become capable 
of operational transitivity of length because they do not realize that 
weight is not always proportional to perceived size. The horizontal decalage 
between length and weight is the devc~~~prnent~~l time that elapses before 

children fully appreciate the implications of this fact for the transitivity 
problem. Under any other hypothesis, Chapman and Lindenberger’s ( 198X) 
finding that the length-weight decalage does not occur when comparison 
objects are all the same size is difficult to explain. 

This study is an example of what Chapman (1987) called ;I .sttxc~t~~r.trl- 
,#~{~~~,~~~~?~~~I approach to cognitive development. Such an approach is char- 
acterized by an attempt (a) to identify children‘s forms of reasoning in 

terms of their structural properties. and (b) to specify functional conditions 
necessary for a particular form of reasoning. In these terms. this study 
has been an investigation of organismic conditions (a certain level of 
attention~~l capacity) that make concrete operational reasoning possible. 
The results are consistent with the conclusion that 3 units of capacity 

as defined in this article are necessary but not sufficient for concrete 
operations. 
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