L T

/

1\

=y

Check for
updates

Mapping local and global variability in plant

trait distributions

Ethan E. Butler*'?, Abhirup Datta®"2, Habacuc Flores-Moreno®‘, Ming Chen?, Kirk R. Wythers?, Farideh Fazayelid,
Arindam Banerjee?, Owen K. Atkin®, Jens Kattge®", Bernard Amiaud’, Benjamin Blonder!, Gerhard Boenisch?,

Ben Bond-Lamberty®, Kerry A. Brown', Chaeho Byun™, Giandiego Campetella”, Bruno E. L. Cerabolini°,

Johannes H. C. Cornelissen®, Joseph M. Craine?, Dylan Craven™, Franciska T. de Vries®, Sandra Diaz"",

Tomas F. Domingues", Estelle Forey", Andrés Gonzalez-Melo*, Nicolas Gross¥*3, Wenxuan Han""<, Wesley

N. Hattingh?®?, Thomas Hickler®>®, Steven Jansen??, Koen Kramer"™i, Nathan J. B. Kraft/, Hiroko Kurokawa**,

Daniel C. Laughlin", Patrick Meir*™™, Vanessa Minden™, Ulo Niinemets®®, Yusuke Onoda®®, Josep Pefiuelas®®",
Quentin Read®, Lawren Sackil, Brandon Schamp®, Nadejda A. Soudzilovskaia", Marko J. Spasojevic*, Enio Sosinski"",
Peter E. Thornton™, Fernando Valladares?, Peter M. van Bodegom"", Mathew Williams™™, Christian Wirthoh?,

and Peter B. Reich®?%

Edited by William H. Schlesinger, Cary Institute of Ecosystem Studies, Millbrook, NY, and approved October 18, 2017 (received for review May 31, 2017)

Our ability to understand and predict the response of ecosys-
tems to a changing environment depends on quantifying vege-
tation functional diversity. However, representing this diversity at
the global scale is challenging. Typically, in Earth system models,
characterization of plant diversity has been limited to grouping
related species into plant functional types (PFTs), with all trait vari-
ation in a PFT collapsed into a single mean value that is applied
globally. Using the largest global plant trait database and state of
the art Bayesian modeling, we created fine-grained global maps
of plant trait distributions that can be applied to Earth system
models. Focusing on a set of plant traits closely coupled to photo-
synthesis and foliar respiration—specific leaf area (SLA) and dry
mass-based concentrations of leaf nitrogen (Np,) and phospho-
rus (Pm), we characterize how traits vary within and among over
50,000 ~50 x 50-km cells across the entire vegetated land surface.
We do this in several ways—without defining the PFT of each
grid cell and using 4 or 14 PFTs; each model’s predictions are eval-
uated against out-of-sample data. This endeavor advances prior
trait mapping by generating global maps that preserve variability
across scales by using modern Bayesian spatial statistical model-
ing in combination with a database over three times larger than
that in previous analyses. Our maps reveal that the most diverse
grid cells possess trait variability close to the range of global
PFT means.

plant traits | Bayesian modeling | spatial statistics | global | climate

odeling global climate and the carbon cycle with Earth sys-

tem models (ESMs) requires maps of plant traits that play

key roles in leaf- and ecosystem-level metabolic processes (1-
4). Multiple traits are critical to both photosynthesis and respi-
ration, foremost leaf nitrogen concentration (N,,) and specific
leaf area (SLA) (5-7). More recently, variation in leaf phos-
phorus concentration (P,,) has also been linked to variation in
photosynthesis and foliar respiration (7-12). Estimating detailed
global geographic patterns of these traits and corresponding
trait—environment relationships has been hampered by limited
measurements (13), but recent improvements in data coverage
(14) allow for greater detail in spatial estimates of these key traits.
Previous work has extrapolated trait measurements across
continental or larger regions through three methodologies: (i)
grouping measurements of individuals into larger categories that
share a set of properties [a working definition of plant func-
tional types (PFTs)] (4, 15), (ii) exploiting trait-environment
relationships (e.g., leaf N,,, and mean annual temperature) (1,
16-20), or (iii) restricting the analysis to species whose pres-
ence has been widely estimated on the ground (21-24). Each of
these methods has limitations—for example, trait-environment
relationships do not well explain observed trait spatial patterns
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(1, 25), while species-based approaches limit the scope of extrapo-
lation to only areas with well-measured species abundance. More
critically, the first two global methodologies emphasized estimat-
ing a single trait value per PFT at every location, whereas both
ground-based (5, 14) and remotely sensed (26) observations sug-
gest that at ecosystem or landscape scales traits would be better
represented by distributions. Here, we use an updated version of
the largest global database of plant traits (14) coupled with mod-
ern Bayesian spatial statistical modeling techniques (27) to cap-
ture local and global variability in plant traits. This combination
allows the representation of trait variation both within pixels on a
gridded land surface and across global environmental gradients.

Information is lost when the range of measured trait values
is compressed into a single PFT (Fig. 1). We observe that the
global range of site-level SLA values for a single PFT such as
broadleaf evergreen tropical trees (Fig. 1 A and C) is quite large
(2.7-65.2 m*-kg™'). Even after limiting the scope to a single

Significance

Currently, Earth system models (ESMs) represent variation in
plant life through the presence of a small set of plant func-
tional types (PFTs), each of which accounts for hundreds or
thousands of species across thousands of vegetated grid cells
on land. By expanding plant traits from a single mean value
per PFT to a full distribution per PFT that varies among grid
cells, the trait variation present in nature is restored and may
be propagated to estimates of ecosystem processes. Indeed,
critical ecosystem processes tend to depend on the full trait
distribution, which therefore needs to be represented accu-
rately. These maps reintroduce substantial local variation and
will allow for a more accurate representation of the land sur-
face in ESMs.
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Fig. 1. Trait data. (A) Global locations and values of specific leaf area measurements for the PFT tropical broadleaf evergreen trees. (B) Locations and values

of specific leaf area measurements for the tropical broadleaf evergreen trees in Panama. The square in the center indicates a 0.5° x 0.5° pixel containing
the Barro Colorado Island sites (see Fig. 5). These points have been jittered up to 0.05° to highlight the density of measurements. (C) The full distribution of
specific leaf area values for all species classified as evergreen broadleaf tropical trees. The blue line is the global data while black is the local pixel, and the

dashed vertical lines are the respective means.

well-measured 0.5° x 0.5° pixel within Panama (Fig. 1 B and C),
there is still a wide range of SLA values (4.7-37.7 m?kg~') with
a local mean of 15.7 m*-kg™! and a local standard deviation of
5.4 m?.kg~'—over one-third of the local mean. By contrast, the
mean SLA value of all species associated with broadleaf ever-
green tropical trees is 13.9 m*-kg™', over 10% lower than the
local average (Fig. 1C). Thus, single trait values per PFT fail to
capture variability in trait values within or among grid cells, i.e.,
over a wide range of spatial scales.

Transitioning from a single trait value per PFT (within or
among grid cells) to a distribution may lead to significantly dif-
ferent modeling results (20) as critical plant processes, such as
photosynthesis, are nonlinear with respect to these traits (28).
This is reinforced by recent modeling studies that have begun
to incorporate distributions of traits at regional (29, 30) and
global (31) scales. It has been shown that using trait distribu-
tions leads to different estimates of carbon dynamics (32) and
that higher-order moments of trait distributions contribute to
sustaining multiple ecosystem functions (33). While species-level
mapping (21, 23, 24) does capture trait distributions, it has been
limited geographically and restricted to subsets of functional
groups.

Even the largest plant trait database offers only partial cover-
age across the globe in terms of site-level measurements. Hence,
gap-filling approaches need to be adopted to extrapolate trait
values at regions with no data coverage. Here, we overcome
data limitations through PFT classification, trait-environment
relationships, and additional location information to develop a
suite of models capable of estimating trait distributions across
the entire vegetated globe. The simplest one is a categorical
model, which assigns traits to maps of remotely sensed PFTs.
Every species, with its corresponding trait values, is associated
with a PFT and these trait distributions are extrapolated to the
satellite-estimated range of the PFT (SI Appendix, Figs. S1 and
S2). The second one is a Bayesian linear model that comple-
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ments the PFT information with trait-environment relationships.
The third one is a Bayesian spatial model that, in addition to
PFTs and the trait-environment relationships, leverages addi-
tional location information via Gaussian processes (Materials and
Methods). The use of a spatial Gaussian process in this context is
unique and model evaluation reveals the superior predictive per-
formance of this model.

Each of these methods interpolates (and extrapolates) both
mean trait values and entire trait distributions across space (i.e.,
across grid cells on a global map). These models are further strat-
ified by three different levels of PFT categorization: (i) PFT-free,
all plants in a single group (i.e., no PFTs); (i) broad, 4 groups
based on growth form and leaf type; and (iif) narrow, 14 groups
based on further environmental, phenological, and photosyn-
thetic categories (Materials and Methods). The PFT-free cate-
gorization groups all plants into a single class, while the broad
grouping (4-PFT) is similar to the vegetation classification used
in the Joint UK Land Environment Simulator land surface (34),
and the narrow (14-PFT) category is equivalent to the classifica-
tion used in the Community Land Model (CLM) (4, 15, 35).

The abovementioned methods allow for a representation of
global vegetation that enables a more accurate formulation of
functional diversity than the single-trait value per PFT paradigm
that is widely used (4). The traits studied here—SLA, N,,, and
P,,—are central to predicting variation in rates of plant photo-
synthesis (5, 6, 9, 11) and foliar respiration (10, 36). The impor-
tance of these traits and the more advanced representation of
functional diversity developed here may be used to better cap-
ture the response of the land surface component of the Earth
system to environmental change.

Results and Discussion

Model Evaluation. Given the full suite of nine models proposed,
we conducted extensive model evaluation (Table 1) to determine
the trade-offs associated with each methodology and resolution
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Table 1. Model evaluation

Model ps-R?, % RMSPE CP, %

SLA
Ccf NA 8.13 91.2
Cb 16.9 7.13 94.7
Cn 26.0 6.66 95.8
Lf 4.6 7.99 91.3
Lb 234 6.93 94.0
Ln 30.7 6.53 95.2
Sf 45.5 7.54 93.6
Sb 58.5 6.31 97.7
Sn 60.2 6.13 97.7

Nm
Ccf NA 7.16 93.3
Cb 12.5 6.95 93.2
Cn 19.4 6.47 92.7
Lf 5.2 7.28 93.2
Lb 16.7 6.71 94.3
Ln 241 6.42 94.6
Sf 44.2 7.19 93.6
Sb 53.7 6.36 96.1
Sn 54.8 6.18 96.1

Pm
Cf NA 0.86 90.5
Cb 5.3 0.86 90.5
Cn 28.1 0.78 91.1
Lf 25.6 0.84 87.2
Lb 32.8 0.85 85.3
Ln 354 0.82 87.0
Sf 62.0 0.83 90.7
Sb 66.7 0.81 92.0
Sn 67.6 0.80 91.3

Shown are the pseudo-R? (ps-R?), RMSPE, and CP statistics for all nine
models, for each of the three traits. The entries in boldface type correspond
to the model producing highest ps-R?, lowest RMSPE, or CP closest to 0.95.
The categorical PFT-free model (Cf) produces a constant estimate and hence
ps-R? is not defined. Each model is indicated by a two-letter abbreviation: C,
categorical (no regression); L, linear (linear regression); and S, spatial (linear
regression with spatial term) and the accompanying PFT resolution: f, PFT-
free (no PFT information); b, broad (4-PFT); and n, narrow (14-PFT).

of PFT. We assessed the predictive capability of the models,
using the root-mean-square predictive error (RMSPE) based on
out-of-sample data (SI Appendix, section S6). Among the nine
models, the spatial narrow 14-PFT model emerged as the best
predictor of mean trait values for SLA and N,, and the second
best for P,,, (Table 1). However, the spatial broad 4-PFT model
performed nearly as well (Table 1). The models’ abilities to cor-
rectly estimate the spread of the trait distributions were assessed
using the out-of-sample coverage probabilities (CPs)—the pro-
portion of instances the model-predicted 95% confidence inter-
vals contained the observed trait values. Most of the models pro-
vided adequate coverage (CP of around 90% or more). See S/
Appendix, section S4, for more detailed definitions of the model
comparison metrics.

The improvement in prediction afforded by the inclusion of (i)
a spatial term and (if) PFT information (Table 1) invites further
examination. First, the spatial term in our model likely incorpo-
rates some of the finer-scale variation that is unavailable given
the relatively large grid cell size of the environmental covariates
used in global studies. Thus, the spatial term allows for adjust-
ment of trait values among neighboring or regional grid cells
that the relatively coarse environmental metrics are not able to
capture. Finer-scale studies that can evaluate local variations in
climate, soil, or other relevant abiotic or biotic covariates may
see less improvement from the inclusion of a spatial term, as

Butler et al.

they may directly measure local sources of variation. Second,
the use of PFTs greatly improves the models, perhaps for sim-
ilar reasons involving the degree of variation the raw data fail to
incorporate. The greatest decrease in RMSPE occurs between
the PFT-free grouping (a single category for all plants) and the
broad (4-PFT) grouping across each of the models tested. If
our trait data were perfectly predicted by environment, there
would be no usefulness to including PFTs in mapping traits.
That this is not so implies that the broad PFTs, based primar-
ily on growth form and leaf type, offer superior predictive skill
than environmental covariates on their own (19). However, the
extra information in the narrow (14-PFT) grouping does fur-
ther improve the fit and produces the most accurate predicted
trait surface.

Global Maps. We selected two sets of maps to describe, in broad
strokes, how trait distributions vary across the land surface: the
narrow 14-PFT spatial model and its categorical counterpart.
The narrow 14-PFT spatial model is the best predictor of mean
trait values and provided adequate coverage probability (Figs.
2 A and B, 3 A and B, and 4 A and B). For comparison, we
also include the 14-PFT categorical model, which is most simi-
lar to maps currently used in ESMs (Figs. 2 C and D, 3 C and
D, and 4 C and D). Maps for the other models can be found in
SI Appendix, Figs. S8-S16. The mean and SD are presented as
a summary of the full log-normal distribution within each pixel,
but there are full distributions estimated in each pixel (Case
Studies).

The SD maps (Figs. 2 B and D, 3 B and D, and 4 B and D)
compared with the mean maps (Figs. 24 and C, 3 4 and C, and
4 A and C) highlight one of the central results of this analysis—
the local SDs of trait values are of similar magnitudes to their
respective means. Generally, we observed that the local SD is
close to half the local mean value but can approach the global
range of the trait mean values; e.g., N,,, (Fig. 3) has a maxi-
mum local SD of 9 mg N/g, and the global mean range is only
~10 mg N/g. The maps of the trait SDs follow similar pat-
terns to the means, although there are several regions where
the mean varies more markedly than the SD, such as SLA in
the southeast United States and China in the categorical model
(Fig. 2 C and D) and similarly for N,, in the spatial model
across the Sahel in sub-Saharan Africa (Fig. 3 4 and C). The
lack of variation in the SD is most clear in the categorical
model for N,, while both models show relatively modest vari-
ation in P,,.

For each of the three traits, the broad features of both the cat-
egorical and spatial models are similar, but there are numerous
marked differences across regional and fine spatial scales (Figs.
2-4). The shared broad features of the maps from both models
include SLA (Fig. 2) and P,, (Fig. 4) increasing from the trop-
ics to the poles, while N,, (Fig. 3) has more modest variation,
except that it tends to be lower in regions dominated by needle-
leaved trees. Some of the notable differences between the mod-
els include the spatial model’s greater range and more marked
variability of SLA within equatorial regimes (e.g., Brazil or cen-
tral Africa); it also captures the low SLA of most of arid Australia
better than the categorical model (Fig. 24) and more strongly
highlights the gradient of P,,, from the tropics to the Arctic (16)
(Fig. 44).

The most consistent estimates between the categorical and
spatial models are in the boreal regions dominated by needle-
leaved trees; the measurements in this region are relatively
sparse, which may have limited the ability of the spatial model
to capture differences. On the other hand, broad-leaved trees
span a wide range of environments, but a large portion of the
measurements come from the tropics (66%), where there is a
limited range of values among the climate covariates and there-
fore little variation with which to estimate a correlation. The
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Fig. 2. SLA maps. (A and B) Narrow (14-PFT) Bayesian spatial model pixel mean and SD estimates, respectively. (C and D) Narrow (14-PFT) categorical model
pixel mean estimates and SD estimates, respectively. For clarity, the color bars have been truncated at the compound 5th and 95th percentiles of both
models. Latitude tick marks indicate the equator, tropics, and Arctic Circle and longitude is marked at 100°W, 0°, and 100°E.

grasses and shrubs have the largest SDs of the four broad PFTs
(SI Appendix, Table S4) and dominate wide swaths of the land
surface, but have fewer measurements—shrubs are the least
measured of the broad PFTs in the database, and this appears
to reduce the accuracy of the categorical model more than
that of the spatial model (Table 1). The fact that shrubs are
assumed to dominate in arid and boreal environments, which
also tend to be undersampled, also likely contributes to these
differences.

Our results also suggest that the breadth of functional niche
space is reduced in both boreal and tropical biogeographic
regions. The low variation across all three traits within the boreal
forest implies that there is strong filtering and smaller niche
space available in this relatively harsh environment. Surprisingly,
despite the high species diversity in tropical forests, we also find
that SLA and P,, have relatively low variation in these forests—
suggesting that in this environment the trait space is reduced.
This could be, in part, an artifact of the Earth system model PFT
classification omitting herbaceous species. Conversely, grass-
lands and savannahs exhibit large variation in total trait space,
suggesting these environments permit a wider range of strategies
than in both the boreal and tropical regions. Most broadly, both
the data and the spatial model suggest (SI Appendix, Figs. S24
and S25) lowest leaf nitrogen values in temperate climates that
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increase in both cooler and warmer regions; this may indicate
a more complicated leaf biochemistry—temperature relationship
than has previously been suggested (16).

Case Studies. We conducted two regional case studies to provide
a more in-depth analysis of the true and predicted shapes of trait
distributions than can be provided by the SD maps and coverage
probability. In these case studies trait data were pooled over an
area to construct full trait distributions and then formally com-
pared with the model predicted distributions.

We considered two areas with substantially different environ-
mental conditions to evaluate the trait distributions obtained
from the spatial and categorical models. We chose a single pixel
that contained a highly studied site with numerous measure-
ments of tropical trees, Barro Colorado Island (BCI), Panama;
and a collection of pixels in an arid environment in which the
mean estimates for SLA of the spatial and categorical models
substantially disagreed, the southwestern United States. These
areas were in the training data, and this analysis constituted a
more detailed analysis of the models’ fit to the observed distri-
bution of these locations. Here, the focus was on the structure of
the full distribution of traits predicted at these sites; SI Appendix,
Fig. S17 is a map of the measurements that comprised these loca-
tions and other sites included in this analysis. Both areas offer

Butler et al.
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Nitrogen (mass) maps. (A and B) Narrow (14-PFT) Bayesian spatial model pixel mean and SD estimates, respectively. (C and D) Narrow (14-PFT)

categorical model pixel mean estimates and SD estimates, respectively. For clarity, the color bars have been truncated at the compound 5th and 95th
percentiles of both models. Latitude tick marks indicate the equator, tropics, and Arctic Circle and longitude is marked at 100°W, 0°, and 100°E.

further insight into the structure of the distributions estimated
by the categorical and spatial models.

In the pixel containing BCI, the categorical and spatial mod-
els broadly agreed for all three traits (Fig. 5 A, C, and E),
although the spatial model means were only half as distant
from the observed means for SLA and N,, (4% vs. 8% and
5% vs. 10%, respectively). There were only two PFTs present
in this pixel: tropical broadleaf evergreen and deciduous trees.
Despite the general similarity of the shapes of the distribu-
tion, the spatial model appears capable of capturing some sub-
tle features. This is clearest for leaf nitrogen, where the peak
of the distribution was quite broad. This is neatly captured in
the narrow PFT model, and the pattern was detectable through
the Kolmogorov—Smirnov (K-S) statistic, which evaluates the
similarity of two full distributions. Indeed, the superiority of
the spatial model was reinforced by a closer match for the
Bayesian spatial model across all traits at BCI, although for P,,
it was the PFT-free spatial model that fitted best (SI Appendix,
Table S6).

The differences between the trait distributions of the cate-
gorical and Bayesian spatial models were stark in the south-
western United States, although the mean estimates for N,
and P,, were close (Fig. 5 B, D, and F). This may be a result
of the topographic complexity of this region and the result-

Butler et al.

ing difficulty of aggregating climate and soil covariates at the
0.5° pixel scale and the sparser sampling than at BCI. To get
enough data to approximate a distribution, we aggregated 18 pix-
els with nine PFTs including every temperate category, although
many of them are only marginally present. The inclusion of so
many PFTs produced a noisier distribution in the categorical
model than suggested by the data and estimated by the spa-
tial model. Neither of the models produced distributions that
matched as well with the observations; however, it is notable
how close the mean values for both models matched the obser-
vations for N,, and P,,, and the spatial model did well for the
mean SLA.

Environmental Covariates and the Spatial Term. The improvement
in prediction from the linear model to the spatial model is
partially explained by weak trait-environment relationships (S/
Appendix, Tables S1-S3). The magnitude of spatial variation
explained by the Gaussian process model is comparable to that
of the unexplained trait variation. For most of the spatial mod-
els, the estimated spatial range was around 300 km; this suggests
a strong spatial effect and implies that the spatial model can pro-
vide more precise information about the trait distribution near
the locations where we have data. This was largely borne out
in the case studies and is illustrated more explicitly in Fig. 6
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Phosphorus (mass) maps. (A and B) Narrow (14-PFT) Bayesian spatial model pixel mean and SD estimates, respectively. (C and D) Narrow (14-PFT)
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where the predicted trait SD for the spatial model was up to
50% lower than for the linear nonspatial model near locations
with trait measurements. The spatial model leverages local infor-
mation to reduce the uncertainty of trait estimation near data
locations and may provide guidance for future data collection by
identifying high-uncertainty regions.

Applications for Trait Distributions. Plant traits vary across a range
of spatial scales, and the spatial model best captures changes
across large spatial gradients (such as in Amazonia and Aus-
tralia) as well as the subtleties within pixels. Maps for all of the
models highlight how much information about local variability is
lost when representing plant traits with a single value and suggest
that a first application of these maps will be for ESMs to incorpo-
rate these scales of variability. For process-based ESMs, the sim-
plest model to incorporate will likely be the categorical model as
it is closest to the current PFT approach, but this model is also
the least flexible. The more sophisticated models developed here
provide more accurate large-scale variation and may be used to
infer new trait values in a novel climate by perturbing the cli-
matic covariates (37). However, given the likelihood of nonlin-
ear trait-environment relationships, the spatial sparsity of the
data, and the possibility of alternate strategies within a PFT that
may alter the trait-environment relationship in a future climate
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some caution is called for when using these models for extrapola-
tion. Future ecosystem models could also integrate the leaf-level
variation in these maps with canopy-scale changes in leaf display
traits—leaf angle, azimuth, and total area.

We have emphasized the quality of the Bayesian spatial model
with narrow PFTs, but there is an intriguing possibility opened
by the PFT-free model (SI Appendix, Figs. S8, S11, and S14)—
that being the representation of vegetation without reference to
PFTs (1). In this case the representation of vegetation would rely
entirely on the structure of trait distributions at various land-
scape scales (1). Such a representation eliminates the need to
separately model the future locations of PFTs (or species) when
inferring the future distribution of traits; hence, the output of
a model like that developed here could be updated with future
environmental covariates, with the caveats that “out of sample
prediction” may entail. At the same time, this method would
allow for greater functional diversity than multiple PFTs with
single-trait values, as is currently used in most ESMs. Adopt-
ing this approach does, however, raise the issue of how to deal
with the paucity of surface observations in some regions, as evi-
denced by the greater errors associated with estimating out of
sample values with this model (Table 1). Complementary work
has retrieved leaf trait maps from a global carbon cycle model
fused with Earth observations (38), providing another method
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gen, and E and F show leaf phosphorus. Each panel depicts the distribution
of the data in solid black, the categorical model in blue, and the Bayesian
spatial model in red. The dashed vertical lines indicate mean values.

that could be used for direct comparison against the trait maps
produced here. While the methodology outlined in our analysis
brings the possibility of a PFT-free land surface closer, we remain
several steps away from being able to make such maps as accu-
rately as we do using PFT characterizations for trait prediction.
Several actions can bring us closer to that goal. First, incorpora-
tion of additional information (such as phylogenetic relatedness
and trait—trait covariance) will likely improve trait maps, even
using existing observations. Second, as the current level of obser-
vations is extremely sparse in some regions and sparse in most
regions, expanded trait databases will also aid in development of
PFT-free trait maps.

Conclusions

SLA and N,, are essential inputs into the land surface compo-
nents of Earth system models, and while phosphorus has not
yet been as widely incorporated into ESMs, it has been shown—
particularly across the tropics—to be important to photosynthe-
sis (9, 11, 39-42) and respiration (11, 12, 36). The maps and
trait—environment relationships presented here may be used by
existing land surface models that use similar categories to clas-
sify vegetation. However, it should be noted that PFT-dependent
models often have many other parameters that have been cal-
ibrated to historical estimates of particular trait values (4).
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Thus, the values developed here, while likely drawing from
a larger pool of measurements than has been done previ-
ously, cannot necessarily be adopted without further modifi-
cation of other model elements (37, 43). Nonetheless, these
results can be incorporated into a wide class of models with rel-
ative ease. We can now provide global trait distributions at the
pixel scale.

The global land surface is perhaps the most heterogeneous
component of the Earth system. Reducing vegetation to a col-
lection of PFTs with fixed trait values has been the preferred
method to constrain this heterogeneity and group similar bio-
chemical and biophysical properties; however, this has been
at the expense of functional diversity. This analysis quantifies
the substantial magnitude of this ignored trait variation. The
approach and methods presented here retain the simplicity of
the PFT representation, but capture a wider range of functional
diversity.

Materials and Methods

Data. The TRY database (www.try-db.org) (14) provided all data for leaf
traits and the categorical traits to aggregate PFTs (TRY-Categorical Traits
Dataset, https://www.try-db.org/TryWeb/Data.php#3, January 2016) used in
the analysis. The TRY data may be requested from the TRY database custodi-
ans. See S/ Appendix, section $10 for a complete list of the original publica-
tions associated with this subset of TRY. The extract from TRY used here has
just under 45,000 measurements of individuals from 3,680 species with mea-
surements of at least one of SLA, leaf nitrogen per dry leaf mass (N,), and/or
leaf phosphorus per leaf dry mass (Pp). The number of individual measure-
ments varies from 32,315 for SLA on 2,953 species to 19,282 for N, on 3,053
species down to 8,052 for P, on 1,810 species; see S/ Appendix, Table S4 for
the number of unique measurements and species found in all categoriza-
tions used in the analysis. The species taxonomy was standardized using The
Plant List (www.theplantlist.org/). Measurements were associated with envi-
ronmental categories through Képpen-Geiger climate zones (44). All envi-
ronmental variables are on a 0.5° x 0.5° grid. Climate variables use 30-y
climatologies from 1961 to 1990 as estimated by the Climate Research
Unit (45, 46). Soil variables are from the International Soil Reference and
Information Center-World Inventory of Soil Emission Potentials (ISRIC-WISE)
(47). The spatial extent of PFTs has been previously estimated through
satellite estimates of land cover around the year 2005 (48), and these
estimates have been refined into climatic categories (15, 35). While TRY,
and thus the data used here, represents the largest collection of plant
traits in the world, most of the measurements come from a subset of
global regions: North America, Europe, Australia, China, Japan, and Brazil.
There are still large sections of the planet with extremely sparse mea-
surements, notably much of the tropics outside of the Americas, large
swaths of Central Asia, the Russian Federation, South Asia, and much
of the Arctic (S/ Appendix, Fig. S17). Improving data collection in these
regions will greatly improve future modeling efforts. Until observations
are more complete there remains the possibility of spurious patterns,
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although we have found little evidence to suggest their presence in this
analysis, even in comparison with detailed regional studies (S/ Appendix,
Fig. S26) (49).

Classification of PFTs and Categorical Model. We used three nested levels of
PFT classification. In the first level, all plants are categorized into a single
group ("PFT-free”). In the second level (“broad”), all plants are categorized
into PFTs based on categorical traits associated with growth form (grass,
shrub, tree) and leaf type (broad and needle-leaved), leading to the follow-
ing four PFTs: grasses, shrubs, broad-leaved trees, and needle-leaved trees
(SI Appendix, Fig. S1). In the third level (“narrow”), the broad PFTs are fur-
ther refined by their climatic region—tropical, temperate, boreal—as well as
leaf phenology and, for the grasses, photosynthetic pathway (C; or Cy4). This
produces 14 PFTs (S/ Appendix, Fig. S2), which correspond exactly to those
found in the CLM (4). Note that these PFT classifications exclude nonwoody
eudicots (“herbs”), which were excluded from the analysis, on account of
their lack of dominance within these PFT categories (50) and therefore, on
account of being widely measured could overly influence the structure of
the trait distributions if they were included. Satellite estimates of the PFT
abundance that correspond to the narrow PFT categories defined above
have already been calculated (15, 48) and we used these to assign a per-
centage of each 0.5° x 0.5° pixel to each PFT present according to the
fraction of the land surface within that pixel occupied by the PFT. The broad
PFT fractions are calculated by summing the narrow PFT categories within
each broad classification.

The categorical model uses the PFT categories and averages trait values
for each species across individual measurements at each measured location.
This defines the PFT as the interspecies range of trait values and ignores all
local environmental factors. The results of the categorical model are summa-
rized by the mean and SD of each PFT’s trait values (S/ Appendix, Table S4)
for all three resolutions of the model. Note that in the PFT-free case where
no PFT information is used, the categorical model produces a constant trait
distribution across the entire vegetated world. The categorical model and
the Bayesian models described in the following section all use location-
specific species mean values to estimate trait distributions. We assume no
intraspecific variation in trait values. However, in regions dominated by a
small number of species this may lead to biased predictions. The hyperdom-
inance of a small group of species in the Amazon has recently been demon-
strated (51) and thus serves as a case study to evaluate our assumption of
equal species weighting (S/ Appendix, section S8, Fig. $23). We found that
equal weights (species means) produced trait distribution estimates closest
to those of the hyperdominant trait abundances and this reinforces the use
of this assumption globally. Further, as noted above, the omission of herba-
ceous species from tropical regions in this analysis (and ref. 51) may unduly
limit trait diversity and calls for further research.

Bayesian Models. A more fine-tuned depiction of geographical or spatial
variation of plant trait values within each PFT can be achieved by leverag-
ing environmental and location information, which allows trait values to
adjust based on local conditions. Data for 17 climate- (45, 46) and soil-based
(47) environmental predictors were available at the 0.5° x 0.5°-pixel res-
olution used to create the trait maps. To avoid overfitting and collinearity
issues, these 17 predictors were screened (S/ Appendix, section S7) based on
correlations among predictors, based on their individual correlation with
the traits, and to include climate covariates along different axes of envi-
ronmental stress and both chemical and physical soil covariates. We finally
selected 5 predictors—mean annual temperature (MAT), total annual radia-
tion (RAD), moisture index (precipitation/evapotranspiration) (MI), percent-
age of hydrogen (aqueous) (pH), and percentage of clay content (CLY).
Remote-sensing data products, such as Normalized Difference Vegetation
Index (52), are not used as covariates, to allow for inference outside of
the historical observation period through perturbations of environmental
covariates.

We used environment-trait relationships to obtain predictions of trait
values (1, 16-18, 37, 43) in a linear regression setup. The formal details of
the initial model are as follows. We denote log-transformed trait values at
a geographical location s as y.,i:(s). This set of five predictors at a location
s is denoted by the vector x(s) = (x1(s), x2(s), ..., Xs(s))". A linear regression
model relating the trait to the environmental predictors is specified as

Yirait(s) = bo + b1x1(s) + baxa(s) + ... + bsxs(s) + €(s), [1]

where b; are the regression coefficients and ¢(s) is the error term explain-
ing residual variation. Estimation of model parameters and prediction were
achieved with a fully Bayesian hierarchical model. This enables inclusion of
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prior information and prediction of full trait distributions instead of rep-
resentative values (like mean or median), thereby ensuring that the uncer-
tainty associated with the estimation of model parameters is fully propa-
gated into the predictive trait distributions.

We then generalized the above model into a Bayesian spatial linear
regression model that borrows information from geographically proximal
regions to capture residual spatial patterns beyond what is explained by
environmental predictors. A customary specification of a spatial regression
model is obtained by splitting up the error term €(s) in Eg. 1 into the sum of
a spatial process w(s) and an error term n(s) that accounts for the resid-
ual variation after adjusting for the spatial effects w(s). The underlying
latent process w(s) accounts for local nuances beyond what is captured by
the environmental predictors and is often interpreted as the net contribu-
tion from unobserved or unusable predictors. Gaussian processes (GPs) are
widely used for modeling unknown spatial surfaces such as w(s), due to
their convenient formulation as a multivariate Gaussian prior for the spa-
tial random effect, unparalleled predictive performance (53), and ease of
generating uncertainty-quantified predictions at unobserved locations. We
use the computationally effective nearest-neighbor GP (27), which nicely
embeds into the Bayesian hierarchical setup as a prior for w(s) in the second
stage of the model specification. All technical specifications of the Bayesian
spatial model are provided in S/ Appendix, section S1.

The linear regression models used in previous studies (1, 16-18) and both
the spatial and nonspatial Bayesian models described above assume a global
relationship between the traits and environment. Given the goal of pre-
dicting trait values for the entire land surface, the assumption of a univer-
sal trait-environment relationship may be an oversimplification (54). More-
over, if there is significant variation in plant trait values among different
PFTs, the estimated parameters will be skewed toward values from abun-
dantly sampled PFTs, such as broad-leaved trees. Additional information
about plant characteristics at a specific location, if available, can poten-
tially be used to improve predictions. As mentioned earlier, we have PFT
classifications for each observation of the dataset used here and satellite
estimates of PFT abundance at all pixels. The global regression approaches
described above ignore this information and can yield biased predictions at
locations dominated by PFTs poorly represented in the data, such as shrubs.
Hence, we also incorporate the PFT information in these regression models
by allowing the trait-environment relationship to vary between different
PFTs. Finally, the PFT-specific distributions from the Bayesian models were
weighted by the satellite-based PFT abundances to create a landscape-scale
trait distribution, thereby enabling straightforward comparison between all
three categorizations of PFT. Details of the PFT-based Bayesian models are
provided in S/ Appendix, section S2. The use of a GP-based spatial model as
well as the Bayesian implementation of the regression models was unique
to this application of plant trait mapping and, as results indicated, were
critical to improving model predictions as well as properly quantifying trait
distributions.
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Supplementary Materials: Mapping local and global

variability in plant trait distributions

S1 Bayesian Spatial Model Details

In this section we present the details of the Bayesian spatial model described in the main text. For
illustrative purposes we use SLA to define all the models, the models for N,,, and P,, are identical.
Let y(s) denote the log-transformed value of SLA response observed at a location s. Additionally,
let x(s) denote the 5 x 1 vector of the environmental predictors used in the regression model at
the location s i.e. x(s) = (MAT(s),RAD(s), MI(s), pH(s), CLY(s))’. The Bayesian spatial linear

regression model relating the response to the covariates at the location s is given by
y(s) = a+x(s)’B + w(s) + €(s) (1)

In the above equation, o denotes the intercept, 8 = (Baar, Bumr, Brap, Bpr, Bory)' denotes the
regression coefficients, w(s) denotes the spatial random effect to be specified later and e(s) denotes
independent and identically distributed noise which explains the residual variation after accounting
for the predictors and the spatial effect. Note that we used species specific averages of raw trait
values at each location as observations to eliminate species level sampling bias. So, if a trait
measurement is recorded for r species at a given location, we have r observations for that location,

one for each species. Let y denote the n x 1 vector stacking up all the observations of SLA.



Similarly we denote the full design matrix as X, the full spatial vector as w and the noise vector
as €. Since, some locations have multiple observations, these sets of observations will share the
same spatial random effect w(s). We denote this smaller set of ny unique locations by S and the
corresponding vector of spatial random effects as ws. Thus we have w = Mwg where M is a
n X ng binary matrix mapping each observation to its unique spatial location. Gaussian Processes
are widely used as priors for spatial random effects. We use the recently proposed Nearest Neighbor
Gaussian Process (NNGP) prior (Datta et al. 2016) due its computational efficiency i.e. we assume
w(s) ~ NNGP,,(0,C(-,- |62, $,v)) where C denotes the NNGP covariance function derived using
m nearest neighbors from a Matérn covariance function C' (Cressie and Wikle 2011) with marginal
variance o2, decay parameter ¢ and smoothness v. Following the data analysis in Datta et al.
(2016), we used m = 5 neighbors to construct the NNGP and chose v = 0.5 corresponding to the
exponential covariance function. This implies that the spatial effect vector wg follows a Normal
distribution with zero mean and NNGP covariance matrix 63. We also assume normality of the
residual errors i.e. € ~ N(0,72I). The full Bayesian model specification is completed by adding
priors for the regression and covariance parameters. We assume conjugate Normal priors for the

2

regression coefficient and Inverse-Gamma (IG) priors for the variances ¢? and 72. The range

parameter ¢ was assigned an uniform (Unif) prior. The full model specification is thus given by:

N(y | X8 +Mws, 7°I) x N(ws|0,Cs) x N(B| pg, Vi) (2)

IG(0? | ay,b,) x IG(7% | ar,b,) x Unif(é]|ag,by).

We used a flat prior for 8 with pg = 0 and Vgl = 107°I. We chose the Inverse Gamma shape
parameters a, = a, = 2 and the rate parameters b, = 0.2 and b, = 0.1. This implies that a priori
we have E(0?) = 0.2, E(7%) = 0.1 and Var(c?) = Var(r?) = oco. The lower and upper limits
for the Uniform prior on ¢ were chosen to be 50 and 2000. This implies that the effective range
(radius within which spatial correlation is greater than 0.05) varies widely from 10 to 384 kilometers.

Posterior distributions of all the parameters and spatial random effects were obtain using a Markov



Chain Monte Carlo sampler outlined in Datta et al. (2016).

S2 PFT based model

We incorporate the available information about Plant Functional Types into the Bayesian spatial
model through two different models.

Broad PFT based model: Each observation is classified as belonging to one of the four broad
PFT groups — Needleleaf (N), Broadleaf (B), Shrubs (S) and Grasses (G). Subsequently we have
4 vectors of observations yy, yp, Yg and y. with dimensions ny, np, ng and ng respectively
where ny + ng + ng + ng = n. In this Broad PFT based approach, we assume that the regression
coefficients differ for each PFT. Consequently we denote the design matrix for the group z as X,

and the corresponding regression coefficient vector as 3, where x = N, B, S, G. We also assume

PFT specific spatial random effects for the model. Let S(x) denote the set of unique locations
where some data was observed for the broad PFT x and w®)(s) denote the corresponding spatial

process where v = N, B, S, G. Finally, if M, denotes the binary matrix mapping the location of *

observation in y, to S(z), then the regression model is specified as:
y, =N (XJC,BI - me‘(;()x),ng for x € {N, B, S,G} (3)

The priors for the spatial random effects, covariance and regression parameters are similar to the
specifications in Section S1 except that each parameter is replaced by a set of four parameters one
corresponding to each broad PFT.

Narrow PFT based model: Within each broad PFT, each observation can be further classified
into narrow PFTs. For the broad PFT classification, we estimated the spatial regression model
parameters, described in Section S1, within each of the four PFT categories. Adoption of a similar
approach for the narrow PFT classification was thwarted by a lack of data within each of the

fourteen PFTs. For example, the TRY dataset has observations in 922 distinct pixels for Pm.



However, some of the fourteen narrow PFTs had fewer than 10 pixels. Such low sample sizes are
inadequate to estimate the six regression coefficients (including the intercept) let alone the spatial
process parameters. Instead, the model incorporates a PFT specific intercept for each narrow
PFT to allow for variation in the overall trait level between these 14 PFTs. The slope parameters
representing the trait-environment relationships were assumed to be the same for all narrow PFTs
within each of the four broad PFTs, circumventing the low sample size. Let broad PFT group z
contain narrow PFTs 1,2,... k. Further, let I;(s) denote the binary indicator if an observation
y@(s) from broad PFT group x at location s belongs to the narrow PFT k. Then the narrow PFT

based model is given by:
k
YW () = D Luls) +x@(s) B + w(s) + €(s) for @ € {N, B, S, G} (4)
i=1

where aﬁ””) denotes the PFT specific intercept. All parameters are assigned priors similar to the

PFT-free and broad PFT models.



Table S1: Parameters estimates (posterior median and 95% confidence intervals in braces) from
the narrow spatial model for SLA. The means and standard deviations for the five environmental
predictors used to derive the respective Z-scores are as follows: MAT (8.4 + 14), RAD (1616 +
525), MI (0.95 + 0.7), pH (6.3 & 0.9) and CLY (23.5 6.7).

Needleleafs Broadleafs Shrubs Grasses
PFT1 1.609 (1.468, 1.763) NA NA NA
PFT2 1.719 (1.571, 1.874) NA NA NA
PFT3 2.08 (1.689, 2.467) NA NA NA
PFT4 NA 2.4 (2.197, 2.608) NA NA
PFT5 NA 2.242 (2.142, 2.336) NA NA
PFT6 NA 2.514 (2.305, 2.727) NA NA
PFT7 NA 2.684 (2.586, 2.772) NA NA
PFT8 NA 2.797 (2.711, 2.885) NA NA
PFT9 NA NA 2.138 (2.001, 2.274) NA
PFT10 NA NA 2.634 (2.488, 2.775) NA
PFT11 NA NA 2.719 (2.589, 2.858) NA
PFT12 NA NA NA 2.778 (2.312, 3.277)
PFT13 NA NA NA 2.833 (2.708, 2.929)
PFT14 NA NA NA 2.901 (2.761, 3.017)
MAT 0.12 (-0.216, 0.451) | -0.056 (-0.209, 0.107) | 0.037 (-0.245, 0.32) 0.085 (-0.16, 0.333)
RAD 0.052 (-0.163, 0.285) | -0.111 (-0.227, -0.01) | -0.182 (-0.373, 0.008) | -0.191 (-0.393, 0.01)
MI 0.053 (-0.024, 0.132) | 0.018 (-0.019, 0.053) | 0.029 (-0.027, 0.086) | 0.001 (-0.069, 0.069)
pH -0.049 (-0.172, 0.086) | -0.046 (-0.106, 0.019) | -0.155 (-0.25, -0.062) | -0.069 (-0.187, 0.049)
CLY 0.081 (-0.039, 0.206) | 0.042 (-0.014, 0.106) | 0.104 (-0.007, 0.217) | 0.055 (-0.067, 0.178)
72 0.053 (-0.024, 0.132) | 0.018 (-0.019, 0.053) | 0.029 (-0.027, 0.086) | 0.001 (-0.069, 0.069)
o? 0.118 (0.072, 0.185) 0.088 (0.07, 0.112) 0.099 (0.065, 0.145) 0.136 (0.095, 0.195)
10) 58 (50, 117) 131 (52, 948) 978 (623, 1959) 61 (51, 116)
range 332 (164, 382) 146 (20, 370) 20 (10, 312) 313 (166, 380)




Table S2: Parameters estimates (posterior median and 95% confidence intervals in braces) from
The means and standard deviations for the five environmental
predictors used to derive the respective Z-scores are as follows: MAT (8.4 + 14), RAD (1616 +
525), MI (0.95 £ 0.7), pH (6.3 £ 0.9) and CLY (23.5+ 6.7).

the narrow spatial model for N,,.

Needleleafs Broadleafs Shrubs Grasses
PFT1 2.456 (2.399, 2.513) NA NA NA
PFT2 2.532 (2.484, 2.58) NA NA NA
PFT3 2.569 (2.433, 2.704) NA NA NA
PFT4 NA 2.823 (2.701, 2.95) NA NA
PFT5 NA 2.726 (2.653, 2.794) NA NA
PFT6 NA 2.931 (2.805, 3.057) NA NA
PFT7 NA 2.938 (2.873, 3.003) NA NA
PFT8 NA 3.092 (3.026, 3.158) NA NA
PFT9 NA NA 2.63 (2.512, 2.751) NA
PFT10 NA NA 2.917 (2.79, 3.046) NA
PFT11 NA NA 3.12 (3.008, 3.226) NA
PFT12 NA NA NA 2.965 (2.584, 3.37)
PFT13 NA NA NA 2.848 (2.776, 2.918)
PFT14 NA NA NA 2.677 (2.591, 2.76)
MAT 0.138 (0.031, 0.25) 0.118 (0.017, 0.226) | 0.205 (-0.007, 0.415) | 0.099 (-0.035, 0.225)
RAD -0.066 (-0.142, 0.01) | -0.124 (-0.193, -0.05) | -0.114 (-0.266, 0.033) | -0.13 (-0.252, 0.005)
MI -0.021 (-0.05, 0.006) | -0.002 (-0.032, 0.027) | -0.012 (-0.089, 0.065) | -0.03 (-0.084, 0.021)
pH -0.006 (-0.049, 0.034) | 0.051 (0.004, 0.089) | 0.046 (-0.049, 0.136) | 0.044 (-0.035, 0.123)
CLY 0 (-0.04, 0.04) 0.005 (-0.033, 0.049) | 0.032 (-0.051, 0.118) | -0.007 (-0.075, 0.062)
72 0.032 (0.028, 0.038) 0.068 (0.065, 0.071) 0.081 (0.068, 0.097) 0.081 (0.073, 0.09)
o? 0.021 (0.015, 0.028) 0.041 (0.034, 0.051) 0.06 (0.041, 0.089) 0.073 (0.054, 0.099)
10) 53 (50, 67) 52 (50, 63) 65 (50, 1325) 55 (50, 83)
range 365 (286, 383) 367 (303, 383) 296 (14, 381) 349 (232, 383)




Table S3: Parameters estimates (posterior median and 95% confidence intervals in braces) from
The means and standard deviations for the five environmental
predictors used to derive the respective Z-scores are as follows: MAT (8.4 + 14), RAD (1616 +
525), MI (0.95 = 0.7), pH (6.3 &£ 0.9) and CLY (23.5% 6.7).

the narrow spatial model for P,,.

Needleleafs Broadleafs Shrubs Grasses
PFT1 0.127 (0.014, 0.235) NA NA NA
PFT2 0.195 (0.113, 0.282) NA NA NA
PFT3 0.155 (-0.064, 0.381) NA NA NA
PFT4 NA 0.263 (0.034, 0.511) NA NA
PFT5 NA 0.202 (0.061, 0.338) NA NA
PFT6 NA 0.405 (0.173, 0.655) NA NA
PFT7 NA 0.467 (0.334, 0.599) NA NA
PFT8 NA 0.557 (0.435, 0.681) NA NA
PFT9 NA NA -0.174 (-0.476, 0.11) NA
PFT10 NA NA 0.284 (-0.024, 0.581) NA
PFT11 NA NA 0.661 (0.47, 0.851) NA
PFT12 NA NA NA 0.265 (-0.351, 0.841)
PFT13 NA NA NA 0.373 (0.247, 0.49)
PFT14 NA NA NA 0.469 (0.318, 0.613)
MAT -0.115 (-0.302, 0.075) | -0.224 (-0.425, -0.017) | -0.087 (-0.512, 0.331) | 0.019 (-0.207, 0.248)
RAD -0.098 (-0.24, 0.053) 0.019 (-0.121, 0.16) 0.09 (-0.229, 0.427) | -0.208 (-0.437, 0.027)
MI -0.056 (-0.108, -0.004) | -0.083 (-0.143, -0.025) | 0.108 (-0.123, 0.334) | -0.105 (-0.23, 0.015)
pH -0.079 (-0.155, -0.002) | 0.002 (-0.084, 0.089) 0.033 (-0.178, 0.23) -0.052 (-0.211, 0.11)
CLY 0.005 (-0.069, 0.082) | -0.028 (-0.104, 0.052) | 0.035 (-0.15, 0.219) | 0.056 (-0.067, 0.182)
72 0.057 (0.046, 0.072) 0.115 (0.109, 0.123) 0.181 (0.136, 0.245) 0.174 (0.15, 0.204)
o? 0.071 (0.048, 0.099) 0.121 (0.094, 0.154) 0.149 (0.082, 0.245) 0.145 (0.093, 0.227)
10) 55 (50, 81) 61 (50, 114) 939 (64, 1940) 822 (79, 1955)
range 348 (237, 382) 316 (169, 381) 20 (10, 299) 23 (10, 244)




S3 Model Summary Statistics

The typical summary statistics for the log-normal distribution are the location, u and shape o pa-
rameters which correpond to the mean, m, and standard deviation, s calculated on a log-transformed

normal distribution. However, the un-transformed parameters are closely related:

p=mn| —— |, (5)
1+ 2

m2

and similarly

o= ln(1+;—z>. (6)

So, for consistency with prior work we present m and s as a full description of the distribution.
Furthermore we note in the limit of a true log-normal distribution p is the median of the un-
transformed values. Neither set of summary statistics are as satisfying for the log-normal as the
mean and standard deviation are for a standard normal distribution, which is why we recommend
analysis on the full distribution. Below, we report the means and standard deviations for the

categorical models reported in the manuscript.



Table S4: Mean, Standard Deviation, and number of species within each classification: PFT-free,
broad PFTs, and narrow PFTs. Abbreviations indicate each of the narrow PFTs which are pre-
ceded by their respective broad PFTs as indicated by square brackets.

[Needleleaf trees] NETte: Needleleaf Evergreen Tree, temperate; NETh: Needleleaf Evergreen Tree,
boreal; NDTb: Needleleaf Deciduous Tree, boreal;

[Broadleaf trees] BETtr: Broadleaf Evergreen Tree, tropical; BETte: Broadleaf Evergreen Tree,
temperate; BDTtr: Broadleaf Deciduous Tree, tropical; BDTte: Broadleaf Deciduous Tree, tem-
perate; BDTh: Broadleaf Deciduous Tree, boreal;

[Shrubs| BESte: Broadleaf Evergreen Shrub, temperate; BDSte: Broadleaf Deciduous Shrub, tem-
perate; BDSb: Broadleaf Deciduous Shrub, boreal;

[Grasses| C3ar: C3 arctic grass; C3: C3 grass; C4: C4 grass.

PFT Category (# individuals/species) | SLA [m?kg™'] | N,,, [mg N g7 '] | P,,, [mg P g™ !]
PFT-free (44645/3680) 14.547.5 20.1£7.1 1.3£0.8
Needleleaf Trees (4758/124) 6.3£3.5 12.5+3.4 1.2+0.6
Broadleaf Trees (29582/3061) 14.246.9 20.7+6.9 1.240.7
Shrubs (3315/312) 13.8£8 20.5%8.6 1.7+1.1
Grasses (6990/503) 18.6+£9.4 18+6.8 1.840.9
NETte (2051/62) D.7+2.6 11.8£3.5 1.240.8
NETb (2625/56) 6.7£4.2 1343.1 1.340.4
NDTb (82/6) 9.5+0.3 14.64+4.4 1.440.5
BETtr (15759/1739) 13.9+6.2 20.24+6.7 1+0.5
BETte (2609/548) 10.8£5.9 18.547.2 1.340.8
BDTtr (2413/288) 16.2£6.3 23.5%7 1.2+0.6
BDTte (4540/319) 1748.5 21.8+7 1.841
BDTb (4261/167) 18.5£8.2 24.1£5.3 240.7
BES (1076/154) 10£5.5 18.249.2 1.1£0.7
BDSte (1353/95) 16.548.6 992,447 1.841.2
BDSh (886/63) 17.448.2 22.548.4 2.241
C3ar (78/19) 17.547.4 19.446.4 1.440.7
O3 (5283 /274) 19.249.9 19.947.1 1.840.9
C4 (1629/210) 17.548.6 15.6£5.8 1.7£0.9




S4 Evaluation Metrics

The coefficient of determination (R?) is a widely used regression statistic to determine the goodness
of fit in linear models. The R? statistic provides, on a scale of 0 to 1, a quantitative estimate of the
improvement achieved by introduction of predictors in a classical regression setup relative to the
baseline (constant mean) model. However, this classical definition of the R? is meaningful only for
evaluating linear least squares models. In the Bayesian paradigm, an equivalent statistic does not
exist. Popular Bayesian model selection methods include Deviance Information Criterion (DIC —
(Spiegelhalter et al. 2002)) as well as the scoring rules proposed by Gelfand and Ghosh (1998) and
Gneiting and Raftery (2007). These metrics are typically not confined to any particular range and
are hence difficult to interpret in absolute terms. Moreover, they are only applicable for Bayesian
models, whereas we sought a common platform to evaluate the fits from the categorical model and
the posterior means from the Bayesian model. To this end, we resorted to an alternative interpre-
tation of R?, where under certain model assumptions, it is equivalent to the squared correlation
between the observed values and the model fitted values. This definition can be used to generate
an R? statistic for any model output. It is important to note that posterior estimates from the
Bayesian models typically do not conform to the assumptions required for the equivalent definition
to hold. Nonetheless, the new definition is very interpretable on its own and values close to one
still imply a good fit to the training data. Moreover, it provides the desired common platform for
comparing the frequentist approach for the categorical model and the Bayesian spatial model. We
refer to this variant of R? as pseudo-R? to differentiate it from its classical analogue.

The R? statistic has been widely criticized for its predilection for more inclusive and complex
linear models. Spiess and Neumeyer (2010) demonstrated, via extensive simulation experiments,
how R? (or even adjusted R?) performs very poorly in this regard. It is easy to illustrate, both
theoretically and empirically, that linear models with large number of predictors tend to yield high
R? despite little or no association with the response of interest. Hence, a close fit to the training

data does not necessarily correlate with good predictive performance. The pseudo-R? defined above
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also inherits the same pitfalls. Since our main goal is to create predictive maps of plant traits, we
evaluated the predictive performance of all the models using Root Mean Square Predictive Error,
RMSPE (Yeniay and Goktas 2002). The RMSPE calculation proceeds by holding out a randomly
selected part of the data and using the predictions from the estimated model for the holdout dataset

to assess the predictive performance. Formally it is defined as:

n

1
RMSPE = , | — i — Uni)? 7
DBUEED )
where (yYn1,Yna, - - -, Ynn) denotes the holdout data, and (9u1, Yo, - - - , Unn) are the corresponding fits

from the model estimated from the training data. RMSPE is at the same scale as the trait value
and can thus be interpreted as the expected prediction error when predicting at a new location.
Unlike R?, RMSPE does not necessarily favor more complex models. Models with lower RMSPE
tend to have better predictive performance.

The Bayesian approach generates the posterior distributions of plant traits at every location.
This transition from mean estimation to distribution estimation seamlessly delivers inference about
plant trait variance, skewness, tail behavior and any other interesting aspect of the full trait distri-
bution. The models ability to accurately predict trait distributions was evaluated with the Bayesian
predictive credible intervals. We use the same hold out locations used for computing RMSPE to
calculate the predictive Coverage Probability (CP). CP is defined as the percentage of holdout
locations covered by the respective 95% Bayesian credible intervals. Formally, for every hold out
observation yy;, let m and @, denote the lower and upper 2.5% quantiles from the posterior
predictive sample for y;;. Then, the interval (Yn;iom — Uniup) constitutes a 95% posterior credible
interval for yp,;. If the posterior sample provides a good estimate of the trait density at this location,

then vy, is expected to lie within a 95% posterior confidence interval with 95% probability. CP is
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defined as the coverage probability averaged over all the holdout data i.e.,

1 ¢ Vi T
CP = o Z I(Yni € (Yni,iow Yniup)) ®)
=1

where I denotes the binary function indicating the inclusion or exclusion of yy,; in its credible interval.
A CP value close to 95% indicates good coverage. CP values close to one indicate too wide credible
intervals resulting from overestimation of the tail while low CP values indicate overfitting to the

training data and thereby underestimating the trait variance.
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S5 Additional data analysis results

Here are the goodness of fit metrics from 20 different holdout sets, but only 100 samples in each pixel.
The average model metrics and their respective standard deviations (parentheses) are presented in
Table S5. The overall pattern is similar to Table 1 of the main article. The Kolmogorov-Smirnov

statistics from the case studies are then summarized in Table S6.

Table S5: Each model is indicated by a two letter abbreviation: C=Categorical, L=Linear,
S=Spatial and the accompanying PF'T resolution: f=PFT-free, b=broad, n=narrow.

Model [ pseudo-R* | RMSPE | CP
SLA
Cf | NA (NA) [8.21 (0.697) [ 0.93 (0.014)
Cb 0.19 (0.009) | 7.62 (0.664) | 0.95 (0.013)
Cn | 0.28 (0.012) | 7.3 (0.623) | 0.94 (0.012)
Lf | 0.05 (0.006) | 8.12 (0.626) | 0.92 (0.018)
Lb | 0.25 (0.007) | 7.51 (0.56) | 0.92 (0.015)
Lo | 0.33(0.01) | 7.27 (0.578) | 0.93 (0.015)
St | 0.46 (0.008) | 7.79 (0.703) | 0.94 (0.015)
Sb | 0.6 (0.008) | 7.13 (0.636) | 0.94 (0.009)
Sn | 0.61 (0.009) | 6.99 (0.653) | 0.94 (0.012)
N
Cf | NA (NA) | 7.3 (0.404) [ 0.95 (0.013)
Cb | 0.12 (0.005) | 6.95 (0.438) | 0.94 (0.013)
Cn | 0.2 (0.006) | 6.73 (0.396) | 0.93 (0.011)
Lf | 0.05(0.01) | 7.27 (0.439) | 0.93 (0.015)
Lb | 0.17 (0.008) | 6.99 (0.415) | 0.92 (0.014)
Ln 0.24 (0.008) | 6.77 (0.411) | 0.92 (0.014)
St | 0.4 (0.006) | 6.88 (0.493) | 0.94 (0.013)
Sb | 0.54 (0.006) | 6.52 (0.407) | 0.94 (0.011)
Sn | 0.55 (0.006) | 6.43 (0.445) | 0.93 (0.013)
Ly,
Cf | NA (NA) [0.86 (0.081) [ 0.93 (0.023)
Cb | 0.05 (0.009) | 0.85 (0.081) | 0.92 (0.021)
Cn | 0.28 (0.012) | 0.77 (0.077) | 0.92 (0.026)
Lf | 0.24 (0.013) | 0.81 (0.082) | 0.92 (0.025)
Lb | 0.2 (0.015) | 0.79 (0.079) | 0.91 (0.029)
Lo | 0.34(0.01) | 0.78 (0.079) | 0.91 (0.026)
St 0.63 (0.011) | 0.79 (0.084) | 0.92 (0.02)
Sh | 0.68 (0.01) | 0.79 (0.075) | 0.93 (0.021)
Sn | 0.69 (0.009) | 0.79 (0.085) | 0.93 (0.021)
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Table S6: Kolmogorov-Smirnov (K-S) Statistic for Barro Colorado Island (BCI) and 18 aggregated
pixels of the United States Southwest (USSW) for all nine models and three traits. The lowest
value and best match is highlighted in bold. Each model is indicated by a two letter abbreviation:
C=Categorical, L=Linear, S=Spatial and the accompanying PFT resolution: f=PFT-free, b=broad,
N=Narrow.

Model | SLA [BCI] | N,, [BCI] [ P,, [BCI] | SLA [USSW] [ N,, [USSW] | P,, [USSW]
Cf 0.211 0.244 0.281 0.255 0.291 0.348
Cb 0.214 0.207 0.224 0.241 0.266 0.327
Cn 0.205 0.205 0.243 0.261 0.267 0.097
Lf 0.337 0.261 0.297 0.240 0.135 0.172
Lb 0.298 0.278 0.210 0.155 0.120 0.114
Ln 0.237 0.215 0.210 0.189 0.175 0.108
Sf 0.163 0.119 0.160 0.173 0.150 0.109
Sh 0.118 0.134 0.190 0.160 0.179 0.117
Sn 0.118 0.093 0.220 0.184 0.220 0.156
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S6 Training and Test data

Trait data from 85% of the locations were used as training data, while the remaining randomly
selected 15% were withheld as test data for evaluation. The set of locations withheld were different
for the three traits owing to their differential geographical coverage. For each trait, the same set of
withheld locations were used to evaluate both the categorical and the Bayesian spatial models. We
used stratified sampling to obtain the withheld locations. Stratification was based on three zones:
tropics (all points between the Tropics of Capricorn and Cancer), temperate (extending from the
Tropic of Cancer to the Arctic Circle and from the Tropic of Capricorn to the Antarctic Circle) and
boreal (north of the Arctic Circle, there are no data south of the Antarctic Circle). The stratified
sampling strategy ensured that each of the geographical zones were equi-proportionally represented
in the withheld locations. Consequently, most of the 14 narrow PFTs were also significantly repre-

sented in the withheld sample.

S7 Covariate Selection

The 17 environmental predictors at each of the 53,900 pixels contain redundant information as
indicated in Figure S18, which plots the pairwise correlations among the predictors and clearly
indicates collinearity among them. In particular, the four temperature variables: yearly mean
monthly maximum temperature (mz7'), yearly mean monthly minimum temperature (mi7'), mean
annual (yearly) temperature (MAT or myT') and mean temperature of the warmest quarter (mTwq)
were highly correlated. Similarly, there was strong correlation among the precipitation indices:
precipitation (pre), number of wet days (wet) and moisture index (MI). Among the soil covariates,
total nitrogen (totn) and the carbon/nitrogen ratio (cnr) demonstrated strong correlation. Similar
strong associations were detected between organic carbon (orgC') and bulk density (blk) and again
among silt (slt), sand (snd) and clay (cly) content. Overall there was substantial collinearity

among the covariates which may result in unreliable regression estimates. Surrogating the individual
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predictors with the first few score vectors obtained from a principal component analysis is one
solution to alleviate such collinearity (Dormann et al. 2013). However, such an approach was less
attractive, in this case, as it is difficult to understand the trait-environment relationship from the
principal component regression.

It is also important to note that the range of values of the environmental predictors in the
training dataset is only a small subset of the observed combinations of values. This poor predictor
coverage is an artifact of the low data density in many regions of the world. To elucidate the lack
of coverage, we plotted the relative ranges of all the predictors in Figure S19. Note that for many
predictors, the observed range only covers about 70% of the possible range. Consequently, a global
regression model will estimate the trait-environment relationships from a much more limited set
than the full span of global values into which it will predict. This problem is exacerbated by a large
number of predictors, as the joint relative coverage (ratio of the range of values of the predictors in
the observed locations to the range of values in the entire predicted space) of different environmental
combinations is exponentially reduced with increased dimensionality of the predictor space. This is
illustrated in Figures S20 and S21, where the pairwise joint relative coverages for the climate and
soil predictors are significantly worse than the individual relative coverages. Using a large number of
predictors in the training dataset will yield over-fitted models, resulting in a potentially inaccurate
estimation of the trait-environment relationship at locations with environmental combinations not
well represented in the data.

Together, collinearity and poor coverage of the predictors warrants a reduction in model com-
plexity to ensure reliable predictions at new locations. General model selection methods like the
Akaike Information Criterion (AIC) or Bayesian Information Criterion (BIC) are computationally
infeasible in this setting as there are 2'7 different predictor combinations to choose from. Over
the last two decades, the statistical community has developed a large inventory of model selection

techniques for analyzing complex datasets with ever-growing predictor dimensionality. Popular

methods include the Lasso (Tibshirani 1994), SCAD (Fan and Li 2001), Dantzig Selector (Candes
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and Tao 2007), and Adaptive Lasso (Zou 2006) methods, among others. Bayesian alternatives in-
clude stochastic search variable selection (George and McCulloch 1993), Bayesian Lasso (Park and
Casella 2008), horseshoe prior (Carvalho et al. 2010) and others. Some approaches are also tailored
to accommodate grouped selection of collinear predictors, such as the elastic net (Zou and Hastie
2005). However, model selection in a Bayesian spatial linear regression model is relatively less
developed. Furthermore, none of the aforementioned approaches are designed to incorporate the
available predictor data at unobserved locations. To the best of our knowledge, there is no extant
work on predictor selection approaches in a Bayesian spatial paradigm that uses the information
about the coverage of the predictors in the observed and unobserved data to infer the optimal choice
of predictors.

Shorthanded by the dearth of a relevant model selection technique, we adopted a heuristic vari-
able screening approach predicated upon pairwise trait-predictor correlation, predictor coverage and
coverage over different axes of environmental sensitivity. For consistent interpretation of the model
output we also restricted ourselves to the same subset of predictors for all three traits. Figure
S22 shows the absolute values of the pairwise trait-predictor correlations between the seventeen
predictors and three traits. We observed that among the four temperature variables mi7T (mean
annual minimum temperature) and my7T (mean annual temperature) exhibited relatively high cor-
relations with all three traits. In addition, from Figure S19, we observed that all the temperature
variables possessed poor relative coverage. Since the four temperature covariates were highly corre-
lated among each other (S18), only one temperature-based predictor was retained in the model. We
preferred myT over miT because it has been more widely used in other regression models (Reich
and Oleksyn 2004; Ordonez et al. 2009) and facilitates comparison of this work with others. The
number of days above 0° C - dg0 - was not included because it was highly correlated with myT,
which was already included in the model and dg0 has the lowest absolute correlation with N,,.
Among the three correlated precipitation variables, wet, pre and MI, we observed that wet had

the worst coverage ratio among all seventeen predictors (S19). It also has the lowest correlation
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with SLA (S22,top). We chose MI (yearly precipitation/Penman-Monteith potential evapotranspi-
ration) over pre because although the latter had slightly higher pairwise correlation with all the
traits, M1 had the best coverage ratio (97%) among all seventeen predictors (pre had 70% coverage
ratio). Furthermore, MI better represents the moisture availability of a region by accounting for
both inputs (precipitation) and demands (potential evapotranspiration). Radiation, rad, was also
included in the model because it had a high correlation with all three traits and rounds out the three
physical climate axes: temperature, moisture, and radiation. Among the soil predictors, pH— was
almost uncorrelated with any of the other predictors. It also had high correlation with the traits
and decent coverage (80%), and is a good representation of the general nutrient availability in the
soil (Binkley et al. 1989; Maire et al. 2015). The next four soil variables totn, orgC, cnr and blk
were not included due to strong collinearity, poor association with the traits and poor coverage.
The last three soil variables all represent physical properties of the soil slt, snd and cly were all
collinear. Among them, s/t and cly both had strong correlation with the traits. We chose the latter
because it had slightly better correlations with the traits and significantly better coverage (82%
compared to 66% for slt).

To summarize, the initial suite of seventeen candidate predictors was narrowed down to five
predictor variables based on the strength of their individual correlations and the representative
coverage within TRY locations of the total global distribution of the predictor. This means that
inference into areas without predictor values in the training data was minimized. These predictors
were then standardized into z-scores by subtracting their mean values and dividing by their standard
deviations. The five selected environmental predictors include three climate and two soil variables.
Climate variables were myT (mean yearly temperature), MI (moisture index), and rad (annual
total radiation). The soil variables selected were pH, as an aggregate of nutrient availability, and

cly (percent clay content), for a physical soil characteristic.
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S8 Amazonian Hyperdominance

Recently, ter Steege et al. (2013) reported that a small subset of species accounts for a large portion
of tropical trees by stem count. Failing to account for this in the data analysis can introduce poten-
tial bias into the trait distributions at regions where such hyperdominance of species is prevalent.
Ideally, if information on species abundance were available globally and at a fine resolution, those
abundances could be used to weight the trait data for our analysis, and hence account for the species
level bias in the data. In the absence of such a global database, we have addressed this potential bias
issue at a coarser resolution - at the PF'T level. This was done by reweighting the PFT specific trait
distributions at each location with the remote sensing estimates of PF'T abundance corresponding
to that location. While this mitigates PFT level bias it does not address species level bias within
a PFT.

Without knowledge of the true species abundance within each PF'T at a location, we give equal
weights to all species measured at that location. The other option would have been to use the TRY
species abundance at that location as surrogate weights. This relies on the assumption that the
species abundance in the TRY database mirrors the true abundance worldwide, which is hard to
verify. However, the recent work on hyperdominance in tropical communities gives us an opportunity
to evaluate our choice of weights against this alternative.

We tested whether weighting our data by the TRY occurence of the 227 most common species
in the Amazon improved our trait distribution estimates. The trait distribution obtain by using
the true abundance weights of the 227 species as reported in ter Steege et al. (2013) is used as the
gold standard against which the two weighting schemes are compared. Figure S23 plots the three
distributions each of SLA, N,,, and P,, for the broadleaf tropical PFT across the Amazon, the region
of study in (ter Steege et al. 2013). The black curve corresponds to trait distribution based on the
227 hyper abundant species with the abundance weights chosen to be those reported in ter Steege
et al. (2013). The dotted lines in the figure correspond to the respective modes of each distribution.

We found that the results which most closely matched the trait distributions weighted by the
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species occurrence in ter Steege et al. (2013) were the unweighted distributions (red curve). Despite
the large proportion of TRY trait data coming from the hyperdominant species (20 to 30% of all
measurements), the TRY weights for all species did not improve the trait distribution (blue curve)
estimates. The modes of the trait distributions corroborates this as the mode from the equal-
weighted scheme aligned much better with the gold standard mode. This suggests that given the
available data the unweighted species level trait estimates are the best indicator of trait diversity.

Both choices of weights produced trait distributions whose broad shapes were very similar to
the respective true abundance weighted distributions. This may reflect that within the narrow
PFTs, the bias in the distribution of species may not necessarily translate to a bias of equivalent
magnitude in the distribution of traits. Until we have both improved global level species location
data accompanied by substantial intra-species trait measurements the assumption of equal weighting

across species is, apparently, the best predictor available.
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S9 Supplemental Figures
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Figure S1: Dominant PFTs in Broad PFT categories. Note that multiple Broad PFTs are typically
present, but for ease of reading only the PFT that covers the largest area in each pixel is displayed

on the map.
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Dominant Natural PFT
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Figure S2: Dominant natural PFT in each pixel. Each pixel contains a mixture of PFTs, but for
simplicity only the PFT occupying the largest fraction of the pixel is shown here. None indicates
regions dominated by bare soil, rock, and /or crops. Abbreviations indicate each of the narrow PFTs
which are preceded by their respective broad PFTs as indicated by square brackets.

[Needleleaf trees] NETte: Needleleaf Evergreen Tree, temperate; NETb: Needleleaf Evergreen Tree,
boreal; NDTb: Needleleaf Deciduous Tree, boreal;

[Broadleaf trees] BETtr: Broadleaf Evergreen Tree, tropical; BETte: Broadleaf Evergreen Tree,
temperate; BDTtr: Broadleaf Deciduous Tree, tropical; BDTte: Broadleaf Deciduous Tree, tem-
perate; BDTh: Broadleaf Deciduous Tree, boreal;

[Shrubs| BESte: Broadleaf Evergreen Shrub, temperate; BDSte: Broadleaf Deciduous Shrub, tem-
perate; BDSh: Broadleaf Deciduous Shrub, boreal;

[Grasses| C3ar: C3 arctic grass; C3: C3 grass; C4: C4 grass.
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Figure S3: Mean Annual Temperature in Degrees Celsius.
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Figure S4: Moisture Index (Yearly Precipitation/Yearly Penman-Monteith Potential Evapotranspi-

ration)

28



Latitude

-50

3000

2500

— 2000

I I I I I I I
-150 -100 -50 0 50 100 150

Longitude

Figure S5: Yearly total radiation in units of W m™2
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Figure S6: Soil clay content, in percent
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Figure S7: Soil pH
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Figure S8: PFT-free SLA Models [m? kg~!]. a) categorical mean b) linear mean c) spatial mean d)
categorical standard deviation e) linear standard deviation f) spatial standard deviation
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Figure S9: Broad PFT SLA Models [m? kg™!]. a) categorical mean b) linear mean c) spatial mean
d) categorical standard deviation e) linear standard deviation f) spatial standard deviation
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Figure S10: Narrow PFT SLA Models [m? kg™!]. a) categorical mean b) linear mean c) spatial
mean d) categorical standard deviation e) linear standard deviation f) spatial standard deviation
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Figure S11: PFT-free N,, Models [mg N g!]. a) categorical mean b) linear mean c) spatial mean
d) categorical standard deviation e) linear standard deviation f) spatial standard deviation
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Figure S12: Broad PFT N,, Models [mg N g~!]. a) categorical mean b) linear mean c) spatial mean
d) categorical standard deviation e) linear standard deviation f) spatial standard deviation
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Figure S13: Narrow PFT N,, Models [mg N g~!]. a) categorical mean b) linear mean c) spatial
mean d) categorical standard deviation e) linear standard deviation f) spatial standard deviation
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Figure S14: PFT-free P,, Models [mg P g~!]. a) categorical mean b) linear mean c) spatial mean
d) categorical standard deviation e) linear standard deviation f) spatial standard deviation
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Figure S15: Broad PFT P, Models [mg P g™!|. a) categorical mean b) linear mean c) spatial mean
d) categorical standard deviation e) linear standard deviation f) spatial standard deviation
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Figure S16: Narrow PFT P,, Models [mg P g7'|. a) categorical mean b) linear mean c) spatial
mean d) categorical standard deviation e) linear standard deviation f) spatial standard deviation
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Figure S17: Site Locations: The black points are all locations with data, the red circle is the pixel
that includes Barro Colorado Island and blue circles are the composite of sites used in the US
Southwest case study.
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Figure S18: Pairwise correlation for the seventeen environmental predictors. The size of the circles
as well as the color indicate the magnitude of the correlation. mxT [C] = Yearly mean monthly
maximum temperature; miT [C] = Yearly mean monthly minimum temperature; myT [C] = Yearly
mean monthly mean temperature; mTwq [C] = Mean temperature of warmest quarter; rad [w m-2] =
Yearly total radiation; dg0 [days] = Number of days above 0C; pre [mm] = Yearly total precipitation;
wet [days] = Number of wet days; MI [unitless] = Moisture Index (precipiation/evapotranspiration);
pH [pH units] = Percent hydrogen (aqueous); totn [% (mass)] = Percent nitrogen content; orgC [%
(mass)] = Percent organic carbon content; cnr [unitless] = Carbon to nitrogen ratio; blk [g cm-3]
= Bulk soil density; slt [% (mass)] = Percent silt content; snd [% (mass)] = Percent sand content;
cly [% (mass)] = Percent clay content
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Figure S19: Observed coverage (green) and full coverage (red) of each predictor. The number below
each predictor represents the observed to full coverage ratio. mxT [C] = Yearly mean monthly
maximum temperature; miT [C] = Yearly mean monthly minimum temperature; myT [C] = Yearly
mean monthly mean temperature; mTwq [C] = Mean temperature of warmest quarter; rad [w m-2] =
Yearly total radiation; dg0 [days] = Number of days above 0C; pre [mm] = Yearly total precipitation;
wet [days] = Number of wet days; MI [unitless] = Moisture Index (precipiation/evapotranspiration);
pH [pH units] = Percent hydrogen (aqueous); totn [% (mass)] = Percent nitrogen content; orgC [%
(mass)] = Percent organic carbon content; cnr [unitless] = Carbon to nitrogen ratio; blk [g cm-3]
= Bulk soil density; slt [% (mass)] = Percent silt content; snd [% (mass)] = Percent sand content;
cly [% (mass)] = Percent clay content
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Joint Climate Predictor Coverage
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Figure S20: Pairwise predictor coverage for the climate predictors: Green points indicate observed
scenarios and red points indicate total range of scenarios. mxT [C] = Yearly mean monthly maxi-
mum temperature; miT [C] = Yearly mean monthly minimum temperature; myT [C] = Yearly mean
monthly mean temperature; mTwq [C] = Mean temperature of warmest quarter; rad [w m-2] =
Yearly total radiation; dg0 [days] = Number of days above 0C; pre [mm] = Yearly total precipitation;
wet [days] = Number of wet days; MI [unitless] = Moisture Index (precipiation/evapotranspiration)



Joint Soil Predictor Coverage
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Figure S21: Pairwise predictor coverage for the soil predictors: Green points indicate observed
scenarios, red points indicate total range of scenarios. pH [pH units] = Percent hydrogen (aqueous);
totn [% (mass)] = Percent nitrogen content; orgC [% (mass)] = Percent organic carbon content;
cnr [unitless] = Carbon to nitrogen ratio; blk [g cm-3] = Bulk soil density; slt [% (mass)] = Percent
silt content; snd [% (mass)] = Percent sand content; cly [% (mass)] = Percent clay content
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Figure S22: Top: Pairwise absolute correlations between SLA and the seventeen predictors (Red
bars indicate positive correlation and blue bars indicate negative correlation). Middle: Pairwise
absolute correlations between N,,, and the seventeen predictors. Bottom: Pairwise absolute corre-
lations between P,, and the seventeen predictors. mxT [C] = Yearly mean monthly maximum tem-
perature; miT [C] = Yearly mean monthly minimum temperature; myT [C] = Yearly mean monthly mean
temperature; mTwq [C] = Mean temperature of warmest quarter; rad [w m-2] = Yearly total radiation;
dg0 [days] = Number of days above 0C; pre [mm] = Yearly total precipitation; wet [days] = Number of wet
days; MI [unitless] = Moisture Index (precipiation/evapotranspiration); pH [pH units] = Percent hydrogen
(aqueous); totn [% (mass)] = Percent nitrogen content; orgC [% (mass)] = Percent organic carbon content;
cor [unitless] = Carbon to nitrogen ratio; blk [g cm-3] = Bulk soil density; slt [% (mass)] = Percent silt
content; snd [% (mass)] = Percent sand content; cly [% (mass)] = Percent clay content
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Figure S23: Evaluating the influence of hyperdominance in the Amazon. Each figure corresponds
to a trait from top left (clockwise): SLA, N,,, P,,.
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Figure S24: Macro ecology trait-environment relationships. The raw data show different trait-
environment relationships between four traits: specific leaf area (SLA, top row), leaf nitrogen (N,,,
second row), leaf phosphorus (P,,, third row), and the nitrogen-phosphorus ratio (N,,/P,,, fourth
row) and two environment metrics: mean annual temperature (MAT, left two columns) and latitude
(right two columns). The outer columns bin the traits by their quantiles while the inner columns
are the full data set. Each panel is fit with a quadratic to highlight the broad trait-environment
relationship. While phosphorus patterns are consistent with earlier work (Reich and Oleksyn 2004),
the pattern for leaf nitrogen may indicate different control mechanisms in hotter and colder climates
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Figure S25: Modeled Trait-Environment Relationships.
to the raw data (Figure S24), and is laid out identically: specific leaf area (SLA, top row), leaf
nitrogen (N,,, second row), leaf phosphorus (P,,, third row), and the nitrogen-phosphorus ratio
(N, /Py, fourth row) and two environment metrics: mean annual temperature (MAT, left two
columns) and latitude (right two columns). The outer columns bin the traits by their quantiles
while the inner columns are the full data set. Each panel is fit with a quadratic to highlight the
broad trait-environment relationship. The coherence of these patterns reinforces the suitability of

the spatial model for a range of applications.
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Figure S26: Broadleaf Evergreen Tree estimates in Peru. The close-up maps of Peru show similar
patterns, particularly along the east-west elevation gradient as recent detailed remote sensing anal-
yses (Asner et al. 2017). From the upper left and rotating clockwise the traits are: Specific Leaf
Area [m*kg™!], Leaf Nitrogen [mg g~'], and Leaf Phosphorus [mg g~].
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