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Abstract

Major cognitive functions such as language, memory, and decision-making are thought to

rely on distributed networks of a large number of basic elements, called canonical micro-

circuits. In this theoretical study we propose a novel canonical microcircuit model and find

that it supports two basic computational operations: a gating mechanism and working

memory. By means of bifurcation analysis we systematically investigate the dynamical

behavior of the canonical microcircuit with respect to parameters that govern the local

network balance, that is, the relationship between excitation and inhibition, and key intrin-

sic feedback architectures of canonical microcircuits. We relate the local behavior of the

canonical microcircuit to cognitive processing and demonstrate how a network of interact-

ing canonical microcircuits enables the establishment of spatiotemporal sequences in the

context of syntax parsing during sentence comprehension. This study provides a frame-

work for using individualized canonical microcircuits for the construction of biologically

realistic networks supporting cognitive operations.

Introduction

Most modern neuroscientific theories adopt a connectionist’s approach, where higher cognitive

functions are anchored in a distributed network of a large number of similar basic elements,

often called canonical microcircuits [1–7]. These relatively simple elements give rise to the com-

plexity of cognitive processing by virtue of (i) their interaction in large numbers within an orga-

nized network topology, and (ii) the individual tuning of their properties. While higher cognitive

operations are necessarily associated with the combination and distribution of large amounts of

information and therefore must rely on the connective structure of the wider network, canonical

microcircuits may play an important role by providing a set of basic operations [2, 8, 9]. In this

study, we propose a generic computational framework for a cortical canonical microcircuit. We

systematically investigate this model’s ability to represent important basic operations, quantify

the influence of fundamental structural features and physiological variables, and demonstrate its

capacity to cooperate in larger networks to implement cognitive function.

Two of the most fundamental basic operations at the local level are signal flow gating and

working memory. Signal flow gating controls the transmissibility of neural signals. It is likely to
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depend (i) in a bottom-up way on the properties, in particular the salience, of the input signal

itself and (ii) on top-down modulation of the canonical microcircuit by the global network.

The selection of input according to its salience, that is its prominence in terms of magnitude

and duration, is for example associated with steering visual attention [10], selective reaction to

sensory input, and determination of processing pathways [11].

For processing temporally structured information a fast working memory mechanism is

required that does not rely on structural (e.g., synaptic) changes [12]. Bistable dynamics in a

canonical microcircuit is one possible realization of such a mechanism.

In contrast to other parts of the brain, such as brain stem, cerebellum or thalamus, the cir-

cuitry of the cortex is mainly characterized by recurrent excitatory and inhibitory feedback

loops at the local level, and by bidirectional sparse excitatory connectivity at the global level

[13]. A model of a local cortical microcircuit should therefore feature pyramidal cells with long

axons projecting to distant cortical areas, as well as local excitatory and inhibitory feedback

loops. Such basic architectures, found at various spatial scales, have been represented in the

parsimonious form of neural mass/field models [14–18]. Investigations of the steady-state

behavior of such models have demonstrated that they may indeed provide the foundations for

the aforementioned basic operations by featuring bistability and bifurcations [19–21]. Here,

we extend those findings to the responses to transient stimuli and thereby gauge the imple-

mentation of signal gating and working memory operations. In this context, we investigate the

influence of the following structural and physiological issues that have not been studied before

in neural mass models of canonical microcircuits:

• Indirect versus direct excitatory feedback. Most neural mass and field models only con-

sider a single excitatory neural population [e.g., 17], where the excitatory feedback loop is

modeled as a recurrent (direct) feedback. Other approaches [e.g., 16] distinguish between

pyramidal cells, which provide long-distance output connectivity, and excitatory interneu-

rons, which are the main receivers of bottom-up input [2, 22]. In these three-population

models the excitatory feedback to the pyramidal cells is indirect, mediated by the excitatory

interneurons. Garnier and colleagues [23] have examined the consequences of direct versus

indirect excitatory feedback and reported that an indirect feedback path provided additional

dynamics. However, the relevance of these additional dynamics needs to be balanced against

the costs of increased model complexity and should be evaluated with respect to the specific

modeling requirements [2]. Therefore, we assess the sensitivity of the basic operations of a

canonical microcircuit with respect to this choice.

• Recurrent inhibitory feedback. The axons of inhibitory interneurons form collaterals that

target the same or other inhibitory neurons. This ‘inhibition of inhibition’ is incorporated

into some models [17], while in others it is disregarded [16]. The nonlinear effect of this dis-

inhibition with respect to the basic microcircuit operations will be investigated by numerical

simulations.

• Local network balance. It has been shown that the relationship between inhibition and exci-

tation in a neural assembly is of central importance for its information processing capacity

[24]. In consequence, it mediates higher-order brain functionality [25] and its disruption

disturbs cortical processing mechanisms and can lead to severe brain malfunctions and dis-

orders, such as epilepsy [26, 27], autism [28–30], schizophrenia [31, 32], and excitotoxicity

[33]. The healthy brain automatically establishes a dynamic balance of excitation and inhibi-

tion. This has been shown theoretically [34] and experimentally in both in vitro [35] and in
vivo studies [26, 36]. As part of this study it is therefore investigated how the local network
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balance influences the functional capabilities of local microcircuits and how the canonical

microcircuits can be individualized.

Networks composed of multiple canonical microcircuits realized by neural mass models

have been recently used to explain experimental data in neurocognitive experiments, notably

within the framework of dynamic causal modeling (DCM) [37, 38]. However, little attention

has been devoted to two aspects: (i) the relationship between the network behavior and the

intrinsic properties of the microcircuits, and (ii) the mechanistic explanation of behavior,

rather than brain imaging data. Here we describe, as a simple example, a sentence processing

network consisting of canonical microcircuits, which is flexible in processing the arrangement

of words and enables the differentiation between alternative interpretations of ambiguous sen-

tences. We show that the precise tuning of the local network balance is critical for the function-

ing of the proposed sentence processing model.

Methods

Description of the canonical neural population model

In the following, we present the neural mass model which is employed in this study. Neural

mass models are an established approach to explain electroencephalography data [16, 38, 39],

elucidate epileptogenic processes [40, 41] and electrical brain stimulation [42, 43], and investi-

gate the dynamical behavior of a circumscribed neural area [19–21]. In this study, we employ a

neural mass model that has three neural masses, or populations, representing the pyramidal

cells (Py), excitatory interneurons (EIN), and inhibitory interneurons (IIN). The two interneu-

ron populations form feedback loops on the Py (Fig 1A). Each of these neural masses is

described by the mean membrane potential V(t), which is coupled to the mean firing rate φ(t)

of the population through a non-linear activation function S(V(t)). For the definition and

parameterization of the synaptic response and the activation functions we follow the approach

by Spiegler [20], which is based on earlier descriptions [16, 39]. In each neural mass the affer-

ent mean firing rate φ(t), arriving at the dendritic tree of a neural population, is transformed

to a respective mean membrane potential V(t) by convolving the firing rate with a synaptic

response kernel he,i(t) as in

VðtÞ ¼ φðtÞ � he;iðtÞ; ð1Þ

where the index e (i) denotes the synaptic response kernel of an excitatory (inhibitory) neural

mass. The synaptic response kernel is modeled as an alpha-function

he;i tð Þ ¼
He;i

te;i
� t � y tð Þ � e

� t=te;i ; ð2Þ

where θ(t) denotes the Heaviside function, He,i is the synaptic gain, reflecting number and effi-

cacy of synaptic contacts, and τe,i is the characteristic time constant of either excitatory or

inhibitory operating neural masses. The mean membrane potential Vc(t), c 2 [P,E,I], of the

respective neural masses then depends on the sum of all incoming input components. Using

Green’s function this can be expressed as:

De;iVc ¼
P
φinðtÞ; ð3Þ

where D is a second order temporal differential operator, which reads

De;i ¼
te;i

He;i

d2

dt2
þ

2

te;i
�
d
dt
þ

1

te;i
2

 !

; ð4Þ
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where Eq (2) represents the Green’s function of this differential operator. This operator is then

decoupled into two first-order differential equations. The transformation of mean membrane

potential to mean firing rates, representing the processes occurring at the axonal hillock of a

neuron, are modeled by a sigmoidal activation function, in this case the logistic function

φ tð Þ ¼ S VcðtÞð Þ ¼
2eo

1þ erðv0 � VcðtÞÞ
: ð5Þ

While e0 represents the half of the highest achievable firing rate, r is the maximum slope of

the sigmoid function and v0 denotes the membrane potential for which half of the maximum

firing rate is invoked. The mean membrane potential of the Py, integrating both positive and

negative feedback, forms the observable signal of the circuit (e.g., by EEG) and, at the same

time, gives rise to the output signal to distant areas through the activation function. Hence, the

description of observable dynamics is centered on this principal cell population.

We construct a general model formalism that accounts for distinct local feedback topolo-

gies: (i) a three-population model with an indirect excitatory feedback path through the EIN

Fig 1. Generalized architecture of the neural mass model. A) The neural mass model accounts for

excitatory interneurons (EIN), inhibitory interneurons (IIN), and pyramidal cells (Py). The architectural

parameter b1 controls the deployment of direct and indirect excitatory feedback as well as the input receiving

population, whereas the consideration of inhibitory collaterals is governed by the architectural parameter b2.

This parameterization allows for a comparative investigation of relevant changes in the dynamical behavior

among the three distinct architectures: B) a three-population model, C) a two-population model, and D) a two-

population model with recurrent inhibitory feedback of the IIN. The transmitted mean firing rates φ(t) are

scaled by connectivity gains Nab between the source population, b, and the targeted population, a,

respectively. The membrane potential of the pyramidal cells, Vpy(t) = V2(t)-V3(t), represents the output of the

model (indicated by red arrows), detectable, for example, by EEG.

https://doi.org/10.1371/journal.pone.0188003.g001
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(Fig 1B), (ii) a two-population model with direct excitatory feedback through self-connec-

tions of the Py (Fig 1C), and (iii) a two-population model with direct excitatory feedback

and recurrent inhibitory feedback of the IIN (Fig 1D). The local topologies are controlled

by two parameters b1 and b2. The first parameter (b1) allows a gradual transition between

the two-population models, with extrinsic input, pext, received by the excitatory population

(Py), and the three-population model with extrinsic input, pext, received by the excitatory

interneurons (EIN). Importantly, intermediate situations can be modeled, where both excit-

atory populations receive extrinsic input and, both, direct and indirect excitatory feedback

loops co-exist (0< b1 <1). This approach enables the treatment of a principle choice in

model structure (two vs. three-population model) as a continuous parameter, which can be

subjected to, for example, bifurcation analysis. See S1 File for more details on the mapping

of the three to the two-population model. The second parameter (b2) controls the presence

of the recurrent feedback loop for the IINs. According to the scheme depicted in Fig 1A, the

system of governing equations of the canonical microcircuit reads:

De � V1 ¼ NEP � φP þ b1 � pext
De � V2 ¼ b1 � NPE � φE þ ð1 � b1Þ � NPP � φP þ ð1 � b1Þ � pext
Di � V3 ¼ NPI � φI

De � V4 ¼ NIP � φP

Di � V5 ¼ ð1 � b2Þ � NII � φI

φP ¼ SðVPyÞ ¼ SðV2 � V3Þ

φE ¼ SðVEÞ ¼ SðV1Þ

φI ¼ SðVIÞ ¼ SðV4 � V5Þ

: ð6Þ

The parameters Nab denote the connectivity gains between the source population b and the

target population a, where a,b 2 [P,E,I]. For the numerical integration of this system of non-

linearly coupled linear ordinary differential equations Heun’s method is employed. The opera-

tors De,i and S(�) denote the excitatory (inhibitory) temporal differential operator and the sig-

moidal activation function, respectively (see Eqs (4) and (5)). The stability of the integration

for the integration interval of 1ms was checked. The system is initially parameterized accord-

ing to a previously used configuration [16, 39], see Table 1. Further, the connectivity gains NPP

and NII are determined to be NPP = 113.4 (see S1 File) and NII = 33.25, similar to other inhibi-

tory connection strengths.

Definition and parameterization of network balance

The relationship of inhibition and excitation, often referred to as network balance, in a neural

assembly regulates the interaction of neural units, affects the dynamics of brain states, and is

associated with severe brain disorders, such as epilepsy [26, 27], autism [28–30], or schizophrenia

Table 1. Parameterization of the employed neural mass model.

Parameter Value Unit Parameter Value Unit Parameter Value Unit

He 3.25 mV NPE 0.8*NEP - r 0.56 mV-1

Hi 22 mV NIP 0.25*NEP - v0 6 mV

τe 10 ms NPI 0.25*NEP - e0 2.5 s-1

τi 20 ms NPP 113.4 -

NEP 135 - NII 33.25 -

https://doi.org/10.1371/journal.pone.0188003.t001
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[31, 32]. The concept of network balance is ambiguous and difficult to quantify simply as ratio of

excitation and inhibition in a neural system. This is due to the multiple spatial and temporal

scales in the brain [24, 28] and the multiple structural and functional aspects that could be con-

sidered. A description of network balance on a mesoscopic level of interacting neural popula-

tions may focus on structural influences, such as topology, number, and efficacy of synaptic

contacts, or functional features, such as conveyed firing rates, or factors of the synaptic response.

In computational models of other studies, proposed approaches relate excitatory and inhibitory

charges, conductances [27, 28, 36], or membrane potentials [24] to each other. Often the net-

work balance is defined in a network context as the ratio of recurrent inhibition to excitation

[44, 45]. However, this is limited to two population models and becomes ambiguous for multiple

population models such as those used in our study.

In our model, the pertinent parameters that are potentially relevant for excitation and inhi-

bition include: (i) the synaptic response function (time constants, synaptic gains), (ii) the

external input to all three populations, (iii) the parameters of the sigmoidal activation function,

and (iv) the connectivity gains between the populations. Among these parameters, the synaptic

gains He,i, the connectivity gains, i.e. NEP, NPE, NPI, NIP NPP, and NII, and the external inputs

have the most direct and biologically plausible effect on the excitation and inhibition of the

system. However, note the formal redundancy, yet conceptual difference, among synaptic

gains and connectivity gains in the system equations. According to the governing model equa-

tions, i.e. Eqs (1)–(6), Hi, NPI, and NII reflect a gain of inhibitory feedback just with different

scaling. Also, varying He is equivalent to synchronously varying NEP, NPE, NIP, and NPP. Thus,

in the interest of tractability, for the investigation of the modulating influence of excitation

and inhibition to the local dynamics, consideration of a parsimonious set of parameters is suf-

ficient. Hence, we focus our analysis on the influence of He and Hi, which are interpreted to

represent efficacy and density of excitatory, e.g. AMPA, and inhibitory, e.g. GABAA, neuro-

transmitter receptors. This is equivalent to the number and strength of the synaptic weights.

Bifurcation analysis, simulations, and dynamic function map

The model equations were simulated in a dimensionless form in Matlab (The MathWorks,

Inc., Natick, Massachusetts, USA) and a bifurcation analysis was performed using the numeri-

cal continuation tool DDE-BIFTOOL [46]. Standard methods to compute fixed point curves

were used, i.e. computation of fixed points, derivation of Jacobian matrix, linearization of the

system around the fixed points, and evaluation of the eigenvalues to determine the local stabil-

ity. The synaptic gains He,i served as bifurcation parameters in the respective local topologies.

The simulations were of 5 seconds length and the state variables were initialized with a zero

vector. Due to the initialization of the system with an external input level of pext = 0s-1, the sys-

tem consistently resided on the lower branch of the S-shaped fixed point curve in the case of a

bistable regime.

In each simulation, the model was stimulated with a rectangular impulse of defined inten-

sity, ranging between 50s-1 and 250s-1, and duration, ranging between 500ms and 1500ms,

starting after a 1s settling time. The dynamic response behavior of the canonical microcircuit

to this stimulation was categorized within three different time windows, through comparison

of the maximum membrane potentials of the pyramidal cell population with a firing threshold.

The time windows were: i) the prestimulus window (0.5s–1s), ii) the immediate response win-

dow (1.1s to 3.5s), and iii) the asymptotic window (4s to 5s), see Fig 2A. The firing threshold

uth = 4mV was defined relative to the maximum firing rate of 5s-1, so that about 25% of the

maximum firing rate is reached at the threshold. In each time window the system was consid-

ered to be active if the maximum activation exceeded the threshold and to be inactive if the
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maximum activation was below the threshold. Three general types of behavior were observed

(see Fig 2B): i) a memory behavior, when the system remains permanently active after the

input has ceased, ii) a transfer behavior, when activity is above threshold during the immediate

response window but below otherwise, and iii) a nonresponsive behavior, when the maximum

activity is consistently above or below the threshold in all three windows. Note that in some

cases the activity oscillates around the threshold. In these cases the population can activate

postsynaptic populations at least for part of the time and is therefore considered to be above

threshold. The occurrence of these behaviors in dependence on the governing parameters is

summarized in so-called dynamic function maps, which typify the dynamical response reper-

toire of the respective parameterization.

Model evaluation

In this section we describe the evaluation of the proposed canonical microcircuit model with

respect to (i) the consideration of indirect or direct excitatory feedback, (ii) recurrent feedback

to IIN, and (iii) the local network balance, by means of bifurcation plots and dynamic function

Fig 2. Stimulation principle and categorization of the dynamic response behavior. A) The model

received a rectangular stimulation of varying intensity and duration (green line). The maximum of the mean

membrane potential of the pyramidal cell population (blue line) was recorded in three time windows, i.e.

prestimulus window, immediate response window, and the asymptotic window (gray shaded areas). To

classify the response behavior, these activation values were compared to a threshold of 4mV (red horizontal

line, uth) in each window–‘0’ denoting a subthreshold activation and ‘1’ denoting an activation exceeding the

threshold. B) The combined evaluation of the activities (e.g., ‘0-1-1’) led to three distinct classes of response

behaviors: memory, transfer, and nonresponsive behavior. For the plotted curves we used b1 = 1, b2 = 1, He =

3.25mV, and Hi = 22mV.

https://doi.org/10.1371/journal.pone.0188003.g002
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maps. We show that, and under which conditions, the model supports mechanisms for signal

flow gating and working memory.

Principal dynamics

In the following we describe the key features of the gating mechanism for the three-population

model, which features indirect excitatory feedback (Fig 1B). This configuration considers sepa-

rate neural masses for input and output. Rectangular bursts with a distinct intensity and dura-

tion were applied to the excitatory interneuron population (EIN). These bursts mimicked

input from upstream sources, such as sensory information stemming from primary cortical

areas, or higher level information, such as spoken words or phonemes. Fig 3A summarizes the

distinct response behaviors: The system responds to weak and brief stimuli with a small deflec-

tion of the Py membrane potential (nonresponsive behavior), but to stronger, though still

brief, stimuli with a large transient, exceeding the firing threshold of 4mV (transfer behavior).

In both cases the system settles down to its original state shortly after the stimulus is turned

off. In contrast, for longer lasting stimuli the system settles down in a stable state of higher acti-

vation and remains insensitive to further stimuli or noise (memory behavior). Being in this

stimulus-selective high-activity state, a brief input to the IIN can actively reset the system to

the lower activated state (S2 Fig). Whether the response is nonresponsive, transfer, or memory,

depends on the salience of the applied stimulus in terms of intensity and duration, see Fig 3B.

The diagram in Fig 3B serves as a characteristic fingerprint and maps the observable response

dynamics. The respective basic operations of gating and storage may serve as building blocks

for more complex mechanisms like decision-making, based on neural interaction in a single

neural area. The stripe-like patterns in the transition zone between areas of transfer and

Fig 3. Aspects of the models’ responsiveness to afferent stimuli arriving at the EIN of the three population

model. A) Depending on the salience of the applied stimuli in terms of duration and intensity, three distinct response

behaviors were observed: (1) a nonresponsive behavior following weak and brief stimulation, where the Py’s

membrane potential, VPy, responds only with a small deflection below a firing threshold, see impulse (i), (2) a transfer

behavior following a strong and brief stimulation, where VPy exceeds a firing threshold, see impulse (ii), and (3) a

memory behavior following longer stimulation of medium intensity, see impulse (iii), for which the system can settle

down on a stable state of higher activation. In this state the system is insensitive to further stimuli, or noise, (see

impulse (iv)), but can be actively reset through a weak and brief impulse to the IIN, clearing the memory trace, see

impulse (v). Please note that this IIN impulse was enlarged by a factor of 20 to improve clarity. B) The response

behaviors depend on the salience of the input. A nonresponsive behavior is shown for intensities below 78s-1 (green

region). Exceeding this intensity, a longer stimulus is able to reliably evoke the memory behavior (orange region). The

shorter the stimulus the more likely the transfer behavior (grey region) becomes, where the stripe-like patterns signify

a dependency of the behavior (transfer or memory) on the phase relation between stimulus switch-off time and the

intrinsic system oscillation. For the plotted curves we used b1 = 1, b2 = 1, He = 3.25mV, and Hi = 22mV.

https://doi.org/10.1371/journal.pone.0188003.g003
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memory behavior in Fig 3B signify a dependence on the stimulus switch-off time relative to

the phase of the system’s intrinsic oscillations (see S3 Fig).

When looking on the underlying structure of the state space, it becomes apparent that the

observed behavior is based on a rather simple mechanism. In Fig 4A, the fixed point curve of

the steady state behavior of the three-population model with default parameterization is visual-

ized. A fold bifurcation was identified at each turning point of the fixed point curve–one of

saddle-node type (unstable-stable) and one of saddle-saddle type (unstable-unstable). Further,

a subcritical Hopf bifurcation is identified at pext = -5.9s-1. The resulting separatrix marks an

unstable manifold, which repels local trajectories in the state space close to it. If no input is fed

into the system (pext = 0s-1), the system resides on the lower branch of the fixed point curve

with VPy� -2mV, see Fig 4A. If a weak impulse (pext<78s-1, see Fig 4B) is applied to the EIN,

the system is not able to pass the lower fold bifurcation and settles down on the lower branch

of the fixed point curve again. If the input pext>78s-1, the system passes the lower fold bifurca-

tion and settles on the upper branch of the fixed point curve, thus exceeding the firing thresh-

old of 4mV. The existence of a pair of negative conjugate complex eigenvalues leads to a

damped oscillation. When the stimulus is switched off, the system’s input returns to its original

value (pext = 0s-1). If the system’s trajectory is located outside the Hopf separatrix (i.e. the

Fig 4. Dynamics of the distinct response behaviors in a projection of the state space. A) The S-shaped

fixed point curve features stable (solid line) and unstable (dashed line) fixed points for varying input strengths to

the EIN. Two fold bifurcations (saddle-node and saddle-saddle) and a subcritical Hopf bifurcation were

identified. B-D) Projections of the response behaviors in the bifurcation diagrams with inlets illustrating state

space trajectories and the respective time courses: nonresponsive (B), transfer (C), and memory (D) behavior.

Note that VPy(t) = V2(t)-V3(t). Color-coding distinguishes prestimulus (red), response (blue), and asymptotic

(green) mean membrane potentials.

https://doi.org/10.1371/journal.pone.0188003.g004
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system was not damped sufficiently) the system settles down at the lower branch of the fixed

point curve, realizing the transfer behavior (Fig 4C). If, however, the system’s trajectory is

located within the Hopf separatrix (i.e. the oscillations has damped sufficiently due to ample

settling time), the system settles on the upper branch of the fixed point curve, thus showing the

memory behavior (Fig 4D). In summary, the hallmarks of the described mechanism are (i) bis-

table activation of the Py population (high and low state), (ii) selectivity for salient stimuli, (iii)

reduced sensitivity to further stimuli in the high state, (iv) relative robustness to noisy fluctua-

tions in external input in each state, and (v) a phase-dependency of the stimulus offset, where

certain phases allow the system to settle down in the high activated state while other phases do

not (see S3 Fig for more information).

In the following subsections, we will assess the effects of the positive and negative feedback

structures to the described response behavior. For this purpose, we varied the excitatory and

inhibitory synaptic gains He,i (controlling the network balance). For each variation, the charac-

teristic fingerprint (see Fig 3B) was generated and qualified in the state space. We evaluated

three distinct architectures with respect to the local network balance: (i) indirect excitatory

feedback architecture with no recurrent IIN self-feedback (Fig 1B), (ii) direct excitatory feed-

back architecture with no recurrent IIN self-feedback (Fig 1C), and (iii) direct excitatory feed-

back architecture with recurrent IIN self-feedback (Fig 1D).

Indirect excitatory feedback architecture

If both parameters b1 and b2 are set to one, the excitatory feedback loop becomes purely indi-

rect (i.e., the output of the Py is fed into the EINs, which in turn project back to the Py) and

the recurrent IIN self-feedback loop disappears (i.e., the three-population model, see Fig 1B).

Fig 5 shows the dynamic function map, a collection of characteristic fingerprints (Fig 3B). The

dynamic function map charts the classified response behaviors in the parameter space spanned

by He and Hi and reveals regions where the system is dominated by the nonresponsive (bright

green, anthracite and cyan regions), transfer (grey regions), and memory behaviors (orange

and rose regions) as well as compositions thereof. The default ratio of excitation and inhibition

(He = 3.25mV and Hi = 22mV) [16], denoting the network balance, is located just at the tip of

a larger memory-dominated region (orange region) corresponding to strong inhibitions levels,

and close to a region dominated by transfer behavior. Such proximity of a system’s state to

major transition zones of the system’s behavior (i.e., bifurcations) has been referred to as criti-

cality and is considered beneficial for the system’s information processing capacity, as small

parameters changes may produce large changes in behavior [47, 48]. Hence, the local network

balance constitutes a very sensitive determinant of the canonical microcircuit’s behavior in

that it tunes criticality. Further, the local network balance controls the perceptual sensitivity of

the system concerning the intensity of afferent stimuli which are perceived or not by tuning

the distance between the working point and the lower fold bifurcation (compare, for example,

S5G and S5H Fig). In the default parameterization (He = 3.25mV and Hi = 22mV) this thresh-

old was about pext = 78s-1. The threshold is raised when He is decreased, meaning a reduced

sensitivity to external stimuli. In turn, the sensitivity is increased when this threshold is low-

ered through an increase of He. Note, however, that a pure increase of He would result in a

transfer dominated behavior whereas a sensitivity increase in favor of memory behavior

demands a simultaneous decrease in inhibition (Fig 5).

In order to better understand the mechanism behind how the network balance changes the

response behaviors we further characterized the system at its working point pext = 0. We kept

the external input at zero, systematically varied He and Hi, and tracked the relevant bifurca-

tions, as shown in Fig 6A. The background of the plot is colored light red for oscillating

A model of individualized canonical microcircuits supporting cognitive operations

PLOS ONE | https://doi.org/10.1371/journal.pone.0188003 December 4, 2017 10 / 29

https://doi.org/10.1371/journal.pone.0188003


behavior in the low state at pext = 0s-1, light blue for non-oscillatory behavior and monostabil-

ity, and dark blue for no oscillations and bistability. The default parameter values for He and

Hi are indicated on the axes. Note that the emerging graphs strikingly reflect the borders of the

response behavior regions from Fig 5. The blue line in Fig 6A indicates the lower fold bifurca-

tion for pext = 0. Below that line this bifurcation will be located at pext>0 and above it at pext<0

with respect to pext, compare Fig 6D and 6C. Likewise the cyan line indicates the upper fold

bifurcation for pext = 0s-1, which is located at pext<0 above that line and at pext>0 below the

line, compare Fig 6D and 6G. In consequence, only for the area between the two fold

Fig 5. Dynamic function map for the indirect excitatory feedback architecture (see Fig 1B). Collection of characteristic fingerprints

for varying excitatory (He) and inhibitory (Hi) synaptic gains. Colors code the observed response behaviors: nonresponsive (bright green,

anthracite and cyan regions), transfer (grey regions), and memory (orange and rose regions). The local network balance controls the

dominance of the behaviors and tunes the criticality of the system. See S4 Fig for a duplication of this figure, extended by explanatory

state space diagrams.

https://doi.org/10.1371/journal.pone.0188003.g005
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bifurcation branches, the point pext = 0s-1 will be located between the two fold bifurcations–a

necessary condition for bistability at that point. For the memory behavior, it is a necessary pre-

requisite that bistability exists without input. Therefore, the two fold bifurcation lines delimit

the area in the He-Hi plane, where memory behavior is possible. This is in agreement to the

observed behavior shown in Fig 5. Further, between those lines the distance between the upper

and lower fold bifurcations on the pext axis (see Fig 6B–6G) determines the robustness of the

system to noise, by scaling the width of the bistability. Moreover, the system’s location relative

to the lower fold bifurcation determines its sensitivity to stimuli. However, not the entire area

between the two fold bifurcation branches actually exhibits bistability. This is because at some

point, when Hi is increased, the upper fold bifurcation, switching between unstable and stable

fixed points (saddle-node bifurcation, solid cyan line in Fig 6A), separates into a fold bifurca-

tion between two unstable fixed points (saddle-saddle bifurcation, dashed cyan line), and a

subcritical Hopf bifurcation, indicated by the dashed orange curve. To the left of that curve the

subcritical Hopf bifurcation occurs at pext<0 leading to bistability for pext = 0 in form of a sta-

ble focus on the upper branch of the fixed point curve, while to the right of that curve the Hopf

bifurcation is at pext>0. In consequence to the latter, the upper branch of the fixed point curve

is unstable for pext = 0 and bistability is abolished (Fig 6B). At some point along this subcritical

Fig 6. Two parameter bifurcation plot of the three-population model. A) The plot characterizes the existing bifurcations

(with respect to pext) at pext = 0 for the indirect excitatory feedback architecture and tracks them through the parameter

space spanned by the excitatory and inhibitory synaptic gains He and Hi. The background is colored light red for oscillating

behavior in the low state at pext = 0s-1, light blue for non-oscillatory behavior and monostability, and dark blue for no

oscillations and bistability. Brown marks at the axis denote default parameter values for He and Hi. The region between the

upper (cyan line) and lower (blue line) fold bifurcations and the Hopf bifurcation (purple/orange curve) exhibits bistability,

where memory behavior is possible and He and Hi tune robustness and sensitivity of the system. Signs + and–indicate

whether the particular fold bifurcation is located at positive or negative values relative to the working point. The solid purple

line denotes the supercritical Hopf bifurcation branch. The dashed orange line denotes the subcritical Hopf bifurcation

branch, which is important for the transfer behavior of the system. Together, the branches mark the border between

dominant regions of memory and transfer behavior (compare S4 Fig). B)-G) Bifurcation diagrams characterizing stable and

unstable fixed points for a broad range of input values.

https://doi.org/10.1371/journal.pone.0188003.g006
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Hopf bifurcation branch, the subcritical Hopf bifurcation turns into a supercritical Hopf bifur-

cation, indicated by the solid purple curve in Fig 6A. Instead of the stable focus, the stable limit

cycle, associated with the supercritical Hopf bifurcation, then accounts for the bistability at pext

= 0. In consequence, there is also bistability along a narrow strip on the right side of the super-

critical Hopf bifurcation in Fig 6A, where the upper state is oscillatory.

Note that the mentioned subcritical and supercritical Hopf bifurcations collide at positive/

negative values of pext within a small region close to the dashed/solid purple line, respectively

(not shown here). This collision leads to a stable limit cycle, which either surrounds small bits

of the overlapping part of the fixed point curve (see S5F Fig), giving rise to bistability and thus

memory behavior, or reaches just up to the lower fold, abolishing bistability and leading to

transfer behavior (see S5I Fig). In case of an overlap, the oscillations of this global limit cycle

do cross the firing threshold (classified rose in S5F Fig) or do not cross the firing threshold

(classified orange in S5G Fig), both indicating memory behavior. In summary, the dark blue

area in the He-Hi plane in Fig 6 exhibits bistability and allows for memory behavior, but also

part of the light blue area (due to stable limit cycles), as corroborated by Fig 5. For a tuning of

the network balance outside of this bistable region, the canonical microcircuit does not feature

the memory behavior anymore and, thus, loses an integral part of the basic operations.

Direct excitatory feedback architecture

As explained in the Methods, we may seamlessly transpose the indirect excitatory feedback archi-

tecture into a direct excitatory feedback one, without any qualitative change of the underlying

cortical microarchitecture. For this two-population model the parameters equal b1 = 0 and b2 =

1 (see Fig 1C). The transition is constrained by conserving the total number of neurons in the

system, the sum of the flowing currents and all connections between single neurons, as described

in the S1 File. The two-population model does not divide the excitatory neurons into an input

and an output layer. For a parameterization with default values for He and Hi, no bistability was

observed (see Fig 8A and 8E, at the working point there is only one stable fixed point).

The dynamic function map for the direct excitatory feedback architecture was derived and

is depicted in Fig 7. As no oscillatory behavior is observed (at the current working point pext =

0, see Fig 8), this map exhibits fewer variants as compared to the indirect feedback architecture

(Fig 5), but still contains all types of the classified response behaviors, but for lower inhibitory

synaptic gain. However, we could not find parameterizations where all three types of response

behaviors are robustly present in a single fingerprint. Memory and nonresponsive behaviors

still occur within single parameterizations and depend on the intensity but not on the duration

of the stimulus anymore. Furthermore, the ability to respond with a damped oscillation to fur-

ther input, being in the high state, is lost. Now, the system immediately settles down. Like in

case of the indirect excitatory feedback, the system is in general more sensitive to changes in

the excitatory synaptic gain than to those in the inhibitory synaptic gain. This is reflected by

the respective ranges of synaptic gains necessary to obtain a desired response behavior.

As for the indirect excitatory feedback architecture, the existence of bifurcations was exam-

ined at the working point pext = 0s-1 and is depicted in Fig 8A. Again, the bifurcation branches

reflect the borders of the response behavior regions in the extended dynamic function map

from Fig 7. As described for the indirect feedback architecture, bistability and memory behavior

generally exist within the region between the upper and the lower fold bifurcation branches, as

long as they reflect saddle-node bifurcations. However, also similar to the indirect feedback

case, at about Hi = 6mV the upper fold bifurcation (cyan curve in Fig 8A) splits into a saddle-

saddle and a subcritical Hopf bifurcation, and only to the left of that Hopf bifurcation bistability

exists, compare Fig 8C and 8D. In general, the membrane potentials in the high state are quite
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high (>10mV) and close to the saturation threshold of the sigmoid function at about 14.8mV.

The efferent firing rates of such high membrane potentials will, hence, lead to almost invariantly

transmitted firing rates of 5s-1. In consequence, graduated efferent firing rates, like in case of the

indirect excitatory feedback architecture, are rather exceptional.

In summary, the two-population model exhibits all types of response behaviors, but for

lower ranges of the inhibitory synaptic gain. A concomitant existence of all types of response

behaviors for a single value of the local network balance was not observed.

Direct excitatory feedback architecture with disinhibition

An often neglected property of neural architectures is the existence of recurrent inhibitory

collaterals, leading to inhibitory self-feedback and resulting in a disinhibition effect. While

Fig 7. Dynamic function map for the direct excitatory feedback architecture (see Fig 1C). Collection of characteristic fingerprints

for varying excitatory (He) and inhibitory (Hi) synaptic gains. Colors code the observed response behaviors: nonresponsive (bright green

and anthracite), transfer (grey), and memory (orange). The variety of observed behaviors is reduced compared to the three-population

case (Fig 5). However, all three main types are observable. See S5 Fig for a duplication of this figure, extended by explanatory state

space diagrams.

https://doi.org/10.1371/journal.pone.0188003.g007
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inhibition dampens an excited system, disinhibition reduces this damping and makes the

inhibitory feedback path less effective. This promotes saturation of the excitatory feedback

path and may lead to stationary dynamics, where the membrane potential of the Py can rise in

linear dependence on the external input. This effect is even more amplified for high excitatory

(increase in positive feedback) and inhibitory (increase of disinhibition) synaptic gains.

We introduced disinhibition to the two-population model by setting the architectural

parameter b2 to zero while keeping b1 = 0 (see Fig 1D), slowly increased the disinhibition con-

trolling connectivity gain NII and tracked existing bifurcations in the state space for the two-

population model (see S1 Fig). Since the dynamics did not change significantly for large levels

of disinhibition, we fixed NII to NII = 33.25, which equals the level of inhibitory connections

targeting excitatory populations.

The dynamic function map for the direct excitatory feedback architecture with inhibitory

recurrent feedback was derived and is shown in Fig 7. Again, all types of the classified response

behaviors were observed. For some parameterizations two behaviors were observed in depen-

dence on the stimulus’ intensity. Again, the system was more sensitive, in terms of different

response behaviors, to changes in the excitatory synaptic gain than to changes in the inhibitory

synaptic gain. As before, bifurcations at the working point pext = 0 in the He-Hi-space, which

reflect the borders of the response behavior regions in the dynamic function map for the two-

population model with disinhibition (Fig 7), were examined and are depicted in Fig 8. It shows

that for increasing inhibitory synaptic gain the upper and lower fold bifurcations, which

delimit the multistabilty range of the fixed point curve, resemble the three-population model

more than the two-population model without disinhibition. Moreover, the upper fold bifurca-

tion remains a saddle node bifurcation for increasing inhibitory synaptic gains and preserves

stability of the upper part of the fixed point curve. This is in contrast to both alternative mod-

els, for which the saddle-node bifurcation splits into a saddle-saddle and a subcritical Hopf

bifurcation (Fig 8). The preserved bistability and the absence of a separatrix (filtering out brief

Fig 8. Two parameter bifurcation plot of the two-population model. The plot characterizes the existing bifurcations

at pext = 0s-1 for the direct excitatory feedback architecture and tracks them through the parameter space spanned by

the excitatory and inhibitory synaptic gains He and Hi. The region between the upper (cyan line) and lower (blue line) fold

bifurcation branch limits the region where a bistable fixed point curve is obtained. However, the subcritical Hopf

bifurcation (purple line) renders parts of the fixed point curve instable and prevents an actual bistability at pext = 0s-1.This

suppresses a memory behavior in favor of a transfer behavior (see Fig 7).

https://doi.org/10.1371/journal.pone.0188003.g008
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stimuli, see Fig 6) explain the considerably larger range of working memory in the two-popula-

tion model with disinhibition. In terms of signal flow gating, the two-population model with

disinhibition filters stimuli according to their intensity but disregards their temporal consis-

tency and transiency.

Application to sentence processing

We employed the canonical microcircuit to model the cognitive function of sentence process-

ing. During sentence perception, a continuous stream of words is incrementally transformed

into a hierarchically organized neural representation reflecting the meaning of the perceived

sentence. A reproduction of the sentence after some time necessitates a local representation

which stores the words and their relation to each other. In this part of the study we show, how

a network composed of canonical microcircuits is able to parse a sentence based on its syntac-

tic information. The selective activation of word-representing neural areas and the defined

retention of local information rest upon the basic operations examined above. We further

show how an alteration of the network balance perturbs the structure-building process of sen-

tence perception.

In the following we address the question how the ambiguous word information in the

exemplary sentence ‘I hit the thief with the club’ can be represented in a distributed neural net-

work of canonical microcircuits. This sentence is ambiguous in its syntax: the phrase ‘with the
club’ can be interpreted as adverbial phrase, that is, further specifying ‘hit’, or as adjective

phrase, further specifying ‘the thief ’. We assume that this ambiguity is solved by available con-

textual information, i.e. prosodic information or specific knowledge concerning the discourse

or the topic. In the proposed network model, depicted in Fig 9, each word is represented by a

single neural area (i.e., place coding see [49]), modeled through a single canonical microcir-

cuit. These word-representing microcircuits are categorized into modules according to their

syntactical role, i.e. subjects, verbs, objects, and their modifiers. The values of the extrinsic

inter and intra module connections were optimized by hand to give sensible responses. These

values can be found in Fig 10. Further, we assume that the temporal order of the words pro-

vides information about the assignment of subject and object [49]. The proposed structure-

building computation is based on an input-driven sequential activation of the canonical

microcircuits. An activated microcircuit, belonging to a certain word module, transmits its

increased firing rate to those modules, which are likely to follow, and differentially pre-acti-

vates the respective words by means of weighted connections, creating expectations. In the

model, this graded pre-activation corresponds to a shift in the baseline activation of a micro-

circuit and brings the system closer to the respective fold bifurcation (see section Principal
Dynamics and Fig 4). In that sense, an activation of the word ‘eat’ in the verb module pre-acti-

vates the words in the module of verb-modifiers and in the module of objects, but does not

activate the words in the module of verbs again (see Fig 9). Subsequent afferent word informa-

tion can then fully activate the respective microcircuit and continue the structure-building

process. The verb and object modifying modules (see Fig 9) allow for competing interpreta-

tions of a sentence. Their mutual inhibition in combination with the present level of contextual

information ensures that one particular interpretation is supported at a time. The network

topology incorporates findings about the phrasal structure of sentences, parsing principles (i.e.

late closure [50]) and reflects the predictive character of sentence processing.

For the representation of the exemplary sentence ‘I hit the thief with the club’, we focused on

the relevant words and neglected connections to uninvolved microcircuits. Hence, we set up a

network of six interacting canonical microcircuits (see Fig 10A), each modeled by a three-pop-

ulation model (Fig 1B), and their respective connections, see Fig 10B. For the parameters, see
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Table 1. Ambiguity, i.e. whether the phrase ‘with the club’ serves as adjective or adverbial

phrase, is resolved by separating verb-modifying from object-modifying modules. Both mod-

ules mutually inhibit each other through asymmetrical connections, see Fig 10B. Further, the

present level of contextual information guides the structure-building process. In the simula-

tions, contextual information was modeled as an inhibitory noisy signal with a constant offset,

which degrades the afferent input, represented by pext (see Fig 1), of a target area. Two inter-

pretations for the same afferent word information were observable. For the first interpretation

(see Fig 10C) word information activates ‘I’ and subsequently ‘hit’. This pre-activates both the

object module and the verb-modifier module. Afferent word information now activates ‘the
thief’, which pre-activates the object-modifier module. Afferent word information then acti-

vates ‘with’ in both the verb-modifying and the object-modifying modules, resulting in a

Fig 9. Dynamic function map for the two-population model with disinhibition (see Fig 1D). Collection of characteristic fingerprints

for varying excitatory (He) and inhibitory (Hi) synaptic gains. Color-coded are the observed response behaviors: nonresponsive (bright

green and anthracite), transfer (grey), and memory (orange). The variety of observed behaviors is reduced compared to the three-

population case (Fig 5). However, all three main types are observable. See S6 Fig for a duplication of this figure, extended by explanatory

state space diagrams.

https://doi.org/10.1371/journal.pone.0188003.g009
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competitive interaction, which resolves the ambiguity. During the competition, contextual

information inhibits the verb-modifying module. Further afferent word information activates

‘the club’ and completes the structure-building process. For the second interpretation (see Fig

10D), no specific contextual information is present so that the interpretation proceeds accord-

ing to the listener’s experience, i.e. the individual ratio of mutual inhibition between the modi-

fiers. Consequently, the verb-modifying inhibits the object-modifying module and ‘with the
club’ is interpreted as an adverbial phrase.

Several neurological disorders are associated with a disturbed network balance on the level

of interacting neural populations [26, 29, 32]. Further, drugs, anesthetics, and other chemicals

are known to alter number or efficacy of available neurotransmitter receptors. Valenzuela [51]

reports on a perturbation of the network balance in favor of inhibitory influences following

alcohol consumption. In the three-population model we replicated this scenario by increasing

the inhibitory synaptic gain slightly from Hi = 22mV to Hi = 23mV (Hi = 24mV) and observed

a defective sentence representation (see Fig 10E and 10F). Although the representing canonical

microcircuits receive the respective afferent word information, they are not able to show the

necessary sustained activity.

In summary, a network of interacting canonical microcircuits is able to transform a stream

of afferent word information into a representative neural activity trace by means of an input-

driven sequential activation. However, if the canonical microcircuits are not able to perform

the necessary basic operations, for example due to a detuning of the network balance, this

structure building process will fail.

Discussion

In this study we demonstrate how the local architecture of the cortex, as represented by a

canonical microcircuit, implements the basic information processing operations of signal flow

Fig 10. Two parameter bifurcation plot for the two-population model with disinhibition (see Fig 1D). A) The

plot characterizes the existing bifurcations at pext = 0 for the direct excitatory feedback architecture with

disinhibition and tracks them through the parameter space spanned by the excitatory and inhibitory synaptic gains

He and Hi. The region between the upper (cyan line) and lower (blue line) fold bifurcation limits the parameter range

for a bistable fixed point curve. These bifurcation branches ranges reflect the borders of nonresponsive, transfer,

and memory behavior in Fig 7). B)-D) The single parameter bifurcation plots show the fixed point curve (VPy) and

local bifurcations along pext for distinct values of the local network balance.

https://doi.org/10.1371/journal.pone.0188003.g010
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gating and working memory. These basic operations form major prerequisites for higher-

order cortical computations, such as structure building. We investigated to what extent local

topological choices constrain these basic operations. We demonstrated that only models with

separate excitatory input and output populations (i.e., the three population model, featuring

indirect excitatory feedback) feature all relevant response behaviors simultaneously for a single

parameterization. Importantly, the local network balance was shown to be a critical factor for

the accessibility of the basic operations and thereby the functional individualization of the

microcircuit. We exemplified how a network comprising multiple individualized canonical

microcircuits can realize a complex cognitive operation, namely syntax parsing in sentence

processing.

In the following we will discuss how our choice of basic operations and the canonical

microcircuit model can be considered as a common denominator for various other proposi-

tions found in literature. We will argue that neural mass models are a suitable choice for the

representation of a canonical microcircuit and point out how our investigations go beyond

previous studies on neural mass models. Moreover, we will elucidate the strengths and limita-

tions of the provided example in light of neurolinguistics as well as other computational mod-

els of sentence processing.

Basic operations in canonical microcircuits

The notion of diversified cognitive functions being grounded on a relatively uniform local

architecture of the underlying neural substrate supports the idea of canonical microcircuits [6,

52], whose efficient interaction constitutes the processing power of the cerebral cortex [1–3].

So far, neurobiological studies agree upon cortex-wide characteristics such as lamination,

Fig 11. Sentence processing network for sentence comprehension. Afferent word information

selectively excites a word-representing canonical microcircuit when the respective word is recognized in

primary auditory areas. The activated microcircuit, for example representing the word ‘I’ and belonging to the

subject module (S), pre-activates words in the connected verb-module (V) and, together with the selective

afferent word information, activates another microcircuit (‘eat’). Now, words both in the module of verb-

modifiers (V mod.) and in the module of objects (O) are differentially pre-activated by weighted connections.

Contextual information is proposed to guide this input-driven structure-building process by modulating the

excitability of a targeted microcircuit, such as, in our case, through inhibition.

https://doi.org/10.1371/journal.pone.0188003.g011
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biophysical properties of dominant types of neurons, as well as target and source layers of

transmitted signals [6, 53]. Note, however, that this concept is not entirely undisputed [54, 55].

Canonical microcircuits have been previously associated with basic operations, or stereo-

typic functions [9], such as gain control and signal restoration [56], linear (e.g. summation,

division, and sign inversion) and nonlinear operations (e.g., winner-takes-all, invariance, and

Fig 12. Neural representation of a perceived sentence by a distributed network of six interacting

canonical microcircuits. A) The network topology features modules (dashed rectangles) containing the six

relevant word-representing canonical microcircuits (solid colored rectangles), which are interconnected

through excitatory and inhibitory connections of individual strength (B). The line colors consistently reflect the

respective words in all panels. C) The interpretation for which the phrase ‘with the club’ refers to an adjective

phrase, is guided by contextual information (e.g. knowing that there is a thief bearing a club) which inhibits the

module of verb-modifiers. D) For the second interpretation, interpreting ‘with the club’ as an adverbial phrase,

contextual information is low and the verb-modifying module remains activated. E, F) In case the local network

balance of the microcircuits is biased in favor of inhibitory influences, an accurate structure building fails for

both interpretations (E & F) and will lead to misinterpretations, i.e. defective word activation traces (top plots),

or memory loss, i.e. no lasting activation trace at all (bottom plots).

https://doi.org/10.1371/journal.pone.0188003.g012
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multistability) [7], amplification and signal normalization [55, 57], as well as selectivity and

computation of gain [2]. Large-scale spiking neuron networks, explicitly emulating the laminar

architecture of a cortical column, have been extensively used to examine the link between ste-

reotypic structure and basic operations in computational models of canonical microcircuits [8,

58–60]. The presence of such operations has also been investigated in mean field models [61–

63], which form the basis of the majority of attempts to model neurocognitive experiments

(e.g., DCM; [37, 64]). In the present study, we advance the understanding of canonical opera-

tions by providing evidence for fundamental basic operations even in a very simple feedback

model of a canonical microcircuit. Due to their fundamental character, the identified basic

operations (signal flow gating and working memory) imply other formerly described canonical

operations (see above), which are more complex and were found in the very specific architec-

tures of a cortical column. It has been established that mean field models can reliably describe

the collective behavior of large numbers of neurons [65]. Importantly, the spatial abstractness

of the type of model we chose, flexibly reflecting the interaction of a few neurons, neural popu-

lations, or entire cortical areas, allows the interpretation of this basic functionality to be rele-

vant at various levels of neural organization, potentially exceeding the level of the cortical

column.

Nevertheless, the mesoscopic spatial scale of neural populations, at which the uniformity of

canonical microcircuits is arguably established, is well captured by the concept of neural mass

models [20, 65]. Here we examine its dynamics in response to a transient input, in the light of

variations of the underlying state space, which is most relevant for stimulus-driven informa-

tion processing.

Our focus on a single microcircuit complements recent network-based developments that

also appeal to the notion of modeling canonical microcircuits by neural mass models. It has

been studied how the apparent distinction of inter-circuit connections into forward and back-

ward connections, with laminar-specific origins and targets [22, 38, 66], motivates the arrange-

ment of canonical microcircuits in hierarchical models [37, 67, 68]. What has not been studied

in these models yet are basic operations at the level of the microcircuit and their sensitivity to

topological features and levels of excitation and inhibition. In this study, we investigated stim-

ulation-induced response behaviors in three representative local topologies: (i) a three-popula-

tion model (Fig 1B), (ii) a two-population model (Fig 1C), and (iii) a two-population model

with recurrent inhibitory feedback (Fig 1D). Among the examined feedback architectures and

respective parameter ranges we found that only the three-population model (with input to the

excitatory interneurons, thus with separate input and output populations) exhibits the coexis-

tence of all three response behaviors for a fixed value of the network balance. That is, only a

three-population architecture is capable of selectively blocking, transmitting, or memorizing a

stimulus based on its properties. Furthermore, the transfer behavior of the two-population

models only depends on the strength of the applied stimuli and not on their duration, as

opposed to the three-population model, where it depends on both. In that sense, our results

demonstrate that the consideration of an indirect excitatory feedback loop increases the diver-

sity and biological realism of the model’s dynamics in very important ways. As more complex

model architectures generally tend to exhibit richer dynamical repertoires, we expect these

behaviors also to occur in more detailed models of canonical microcircuits. In particular, our

model neglects a direct interaction between the excitatory and inhibitory interneurons, as well

as the self-feedback among the excitatory interneurons. Both these connections certainly exist

[58]. These features are among the important extensions of the model that need to be investi-

gated in future studies.

In our model of a canonical microcircuit, we described local memory behavior based on

bistability. The recurrent and self-sustaining activity is modulated by the network balance and

A model of individualized canonical microcircuits supporting cognitive operations

PLOS ONE | https://doi.org/10.1371/journal.pone.0188003 December 4, 2017 21 / 29

https://doi.org/10.1371/journal.pone.0188003


is initiated and terminated by afferent inputs, a behavior that has been shown in vitro [35]. In

contrast to long-term memory that rests on synaptic plasticity, short-term (or working) mem-

ory is thought to rely on mechanisms that do not change the underlying connectivity structure.

Alternatively, it has been proposed that working memory may be based on delays and time

constants [12, 69], such as synfire chains [70], recurrent excitatory networks [71], or cellular

properties [72]. In these mechanisms the period of storage (forgetting time) depends on rela-

tively fixed structural aspects of the network, whereas with bistability the item can be kept in

memory in principle for any period, until it is actively switched off (e.g., by an impulse to the

inhibitory population, see S2 Fig).

Neural functions should be robust to noise but sensitive to afferent input at the same time.

Signals can be distinguished from noise by their higher amplitude and temporal smoothness.

In our model, with respect to amplitude, the distance between the working point and the fold

bifurcation should be larger than the noise and smaller than the signal. We demonstrated that

this distance is effectively controlled by the local network balance, which is therefore a key

parameter for governing the tradeoff between robustness to noise and sensitivity to stimuli

(e.g., S4 Fig). With respect to temporal smoothness, only the three-population model offers a

selection mechanism. We established that the model keeps a stimulus in memory only if it

lasts long enough, that is, it exhibits a large degree of temporal smoothness.

In addition to the concept of functional diversification by topology [3], we showed that a

variation of the local network balance is also a biologically plausible means to individualize

local functionality. This local tuning determines whether a neural area will selectively forward

an impulse (transfer behavior), switch into a higher persistent activation (memory behavior),

or not respond to the impulse at all (non-responsive behavior). We note that in this case we

have treated the local network balance as a lumped parameter that actually encapsulates a large

number of physiological and anatomical properties and mechanisms, such as neurotransmitter

kinetics and neuroreceptor densities, dendritic arborization, synaptic and extra-cellular ionic

dynamics and local and non-local network connectivities, to name but a few [73, 74]. Because

of this ambiguity, and as discussed previously, the concept of network balance is very difficult

to quantify. In this research, we have used a simple definition in order to demonstrate as a

proof of concept that the local network balance does provide a fundamental means of individ-

ualizing local microcircuit functionality.

Application of the canonical microcircuit to sentence processing

The notion of an extensive network of similar microcircuits supporting cortical function has

been put forward in specialized neurocognitive theories. For example, several proposals have

been put forward to provide mechanistic insight into the processing of language [1, 49, 61, 62,

75]. It has also been associated with organizing principles such as place coding, where a neural

area represents an abstract processing element [49]. In this study, we employed canonical

microcircuits to represent constituents of perceived sentences, reflecting the principle of place

coding. Single word-representing canonical microcircuits were grouped into modules accord-

ing to their syntactic role (e.g., subject, object) rather than to their word category (e.g., noun,

pronoun). We describe a computational mechanism of input-driven functional binding of dis-

crete elements. This enables the generation of infinite sequences out of a limited number of

discrete elements, a concept referred to as infinite recursion [3]. The proposed generative struc-

ture building mechanism might be called dynamic recruitment to emphasize the freedom of

the structure concerning its number and order of elements.

The proposed computational mechanism is applied to syntax-parsing, that is, the grouping

of a continuous stream of words into a hierarchical structure of sentence constituents. We
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constrain the structure-building mechanism by fixing the underlying wiring of interacting

neural areas. The characteristics of the network, that is, its topology and connection weights,

reflect the rules of syntax, which are likely to be established during language learning. The

basic operations provided by the canonical microcircuit are crucial for this structure-building

mechanism. Clearly, an efficient short-term memory mechanism is needed to implement tem-

poral integration of real-time sequences. The working memory mechanism of our canonical

microcircuit provides fast encoding and flexible holding times. The latter is especially relevant

in order to account for varying speeds of speech and different sentence lengths. The signal

flow gating ensures that words are activated only if they were both pre-activated (expected) by

the sentence structure and recognized from the input stream. As these basic operations have

been shown to crucially depend on the network balance, altering this parameter leads to failure

of the global network operation. In the current implementation of the language network the

coexistence of memory and transfer behavior, which is the hallmark of the three population

model, is not a necessary ingredient. Thus, also a two population model could have been used.

However, for further elaboration of the model, the specific properties of the three population

model might become relevant. For example, due to unspecific afferent word information single

words can, in principle, occur multiple times (e.g. the word drink as subject, verb, object). To

prevent a simultaneous sustained activation of multiple canonical microcircuits (which would

saturate the nodes and make them unavailable for later activation), the local circuit needs to

feature transfer behaviors provided by the three population model.

During the process of sentence comprehension the initial syntax parsing, addressed in this

study, is proposed to be followed by a thematic role assignment and a collective assessment of

syntactic and semantic information [76]. Besides pragmatic information, prosodic information

is also proposed to guide sentence comprehension [77]. In our model we combine all types of

such additional information into the more general notion of contextual information.

The proposed network model reflects characteristics of a serial, syntax-first model by con-

structing the simplest syntactic structure on the basis of word-category information, indepen-

dent of lexical-semantic information [76]. The model also reflects characteristics of the

constraint-satisfaction models [78] by incorporating nonstructural factors into the network

topology. Such factors include the frequency of a particular structure or its semantic plausibil-

ity. In further agreement with the concept of constraint-satisfaction models, the proposed net-

work model is able to account for syntactic ambiguities (see Fig 10). We also assume that

perception and identification of word information informs, but is conceptually distinct from,

the structure-building computations. The incoming auditory information is recognized as a

word [79], which is then inputted into neural areas that are recruited during syntax parsing.

In extension to a similar model [49], our model considers modifiers of verbs and objects.

However, in the mechanism proposed here, structure-building still strongly rests on temporal

word orders, i.e. subject-verb-object. In addition to word category information, a successful syn-

tax parsing would also need to account for morphosyntactic features, such as gender, prefixes or

cases. How these features are incorporated is an open question and would require further study.

One aim of our study was to pave the way for a mechanistic understanding of sentence pro-

cessing in compliance with neuropsychological theories. This is opposed to the field of compu-

tational linguistics, which aims to optimize spoken human-machine interaction while

sacrificing biological plausibility. Further, we would like to emphasize the developmental char-

acter of our model and are aware of several short-comings, some of which we address here:

At the word level. Multiple mentions of the same word within a sentence are difficult to

deal with. As soon as a word within a distinct module is activated it needs to be deactivated

before it can be activated again. Although a deactivation mechanism is implicitly included in

our model, through a brief impulse to the IIN, an online deactivation of a single word would
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interrupt the representative activation trace. Further, the summarizing effect of multiple pre-

activations will eventually lead to an activation of an area, even if the word is not present at the

input. An extension of the model could scale the pre-activation level relative to the activation

threshold, so that a word is ‘on the tip of one’s tongue’ but not activated yet.

At the sentence level. Again, representations need to be deactivated, before a following

sentence could be represented. To follow a conversation it is necessary to activate a sequence

of words and their associated word-webs [80]. These webs decay slowly so that information

spanning multiple sentences can be linked together through associative processes. Finally, it

has been shown previously that networks with too many activated nodes tend to become

unstable and thereby destroy information stored in the network state [42], which could be rele-

vant for long or complex sentences.

Conclusion

Our results support the concept of computational primitives [7] or stereotypic functions [9]

and identify a minimum model structure for a canonical microcircuit that supports these func-

tions. They further corroborate, at the local level, the crucial role of the network balance for

the information processing capacity of neural networks. We conclude that our findings lend

support to the connectionist idea that higher brain function arises from networks of relatively

similar, though individually tunable, canonical microcircuits.

Supporting information

S1 Fig. Increasing recurrent inhibitory self-feedback in the two-population model. A) The

two parameter bifurcation plot tracks the occurring bifurcations along pext, when recurrent

inhibitory self-feedback NII is increased (i.e., b2 is set to zero, see Fig 1D). The network balance

was held constant at values He = 3.25mV and Hi = 22mV. B-E) The single parameter bifurca-

tion plot show the fixed point curve (VPy) and local bifurcations along pext for different values

of NII. F) Fixed point curves for the firing rate of the Py, φ(t), along pext for different values of

the local network balance.

(TIF)

S2 Fig. Deactivation diagram for brief input to the IIN. Sufficiently long and strong

impulses to the IIN (blue area) are able to deactivate the system, i.e. transfer the system from

the active to the inactive state.

(TIF)

S3 Fig. Phase-dependency between the system’s intrinsic oscillation and stimulus switch

off time. The diagram shows a collection of system responses to stimuli of constant intensity

(100s-1) and stimulus durations ranging between 600-750ms, where the stimulus offset times

are marked by vertical lines. Blue lines denote stimuli responses, for which the system will

eventually return to the inactive state after the stimulus was switched off (i.e. transfer behav-

ior). Red lines denote stimuli and responses for which the system was able to remain activated

(i.e. memory behavior). Whether the system remains in the activated state depends on the

time point of stimulus-offset relative to the phase of the oscillatory response. This behavior

arises from the distinct trajectory of the system in the state space when the stimulus is on. As

soon as the stimulus is switched off, the system’s phase point is either within the basin of

attraction of the stable focus of the upper branch of the fixed point curve or will be attracted to

the stable node of the lower branch of the fixed point curve (compare to Fig 4). Both basins of

attraction are separated by the irregularly shaped separatrix arising from the unstable Hopf

bifurcation (see projection in Fig 4A). The longer the stimulus duration, the more time does
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the system have in order to settle down to the fixed point curve, which increases the likeliness

of residing in the basin of attraction of the upper branch fixed point (the memory behavior)

and causes the wider stripes for larger stimulus durations in Fig 3B.

(TIF)

S4 Fig. Dynamic function map for the indirect excitatory feedback architecture (see Fig

1B). A) Collection of characteristic fingerprints for varying excitatory (He) and inhibitory (Hi)

synaptic gains. Colors code the observed response behaviors: nonresponsive (bright green,

anthracite and cyan regions), transfer (grey regions), and memory (orange and rose regions).

The local network balance controls the dominance of the behaviors and tunes the criticality of

the system. B-J) Exemplary parameterizations featuring fingerprints, time courses, and projec-

tions thereof in a bifurcation plot.

(TIF)

S5 Fig. Dynamic function map for the direct excitatory feedback architecture (see Fig 1C).

A) Collection of characteristic fingerprints for varying excitatory (He) and inhibitory (Hi) syn-

aptic gains. Colors code the observed response behaviors: nonresponsive (bright green and

anthracite), transfer (grey), and memory (orange). The variety of observed behaviors is

reduced compared to the three-population case (S4 Fig). However, all three main types are

observable. B)-G) Selected parameterizations featuring fingerprints, time courses, and projec-

tions thereof in a bifurcation plot.

(TIF)

S6 Fig. Dynamic function map for the two-population model with disinhibition (see Fig

1D). A) Collection of characteristic fingerprints for varying excitatory (He) and inhibitory (Hi)

synaptic gains. Color-coded are the observed response behaviors: nonresponsive (bright green

and anthracite), transfer (grey), and memory (orange). The variety of observed behaviors is

reduced compared to the three-population case (Fig 5). However, all three main types are

observable. B)-E) Selected parameterizations featuring fingerprints, time courses, and their

projections in a bifurcation plot.

(TIF)

S1 File. Gradual mapping of two excitatory populations into a single one by introducing

self-feedback NPP.

(PDF)

Acknowledgments

We thank Jens Brauer for helpful comments on the manuscript.

Author Contributions

Conceptualization: Tim Kunze, Andre D. H. Peterson, Thomas R. Knösche.
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