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Abstract. We present a simple model of quantum cosmology based on the group field

theory (GFT) approach to quantum gravity. The model is formulated on a subspace

of the GFT Fock space for the quanta of geometry, with a fixed volume per quantum.

In this Hilbert space, cosmological expansion corresponds to the generation of new

quanta. Our main insight is that the evolution of a flat FLRW universe with a massless

scalar field can be described on this Hilbert space as squeezing, familiar from quantum

optics. As in GFT cosmology, we find that the three-volume satisfies an effective

Friedmann equation similar to the one of loop quantum cosmology, connecting the

classical contracting and expanding solutions by a quantum bounce. The only free

parameter in the model is identified with Newton’s constant. We also comment on

the possible topological interpretation of our squeezed states. This paper can serve an

introduction into the main ideas of GFT cosmology without requiring the full GFT

formalism; our results can also motivate new developments in GFT and its cosmological

application.

http://arxiv.org/abs/1712.07266v1
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1. Introduction

Cosmology is one the main possibilities for how quantum gravity could become relevant

for observations. Different approaches to quantum gravity give different scenarios for

the fate of the initial singularity and for early universe cosmology, each with potentially

different observational signatures [1]. Loop quantum gravity (LQG), for instance, has

led to loop quantum cosmology (LQC) [2], whose insights count among the main

achievements of LQG: the classical singularity is resolved by a bounce, which connects a

previous contracting to an expanding universe. In the framework of improved dynamics

[3], the late-time, semiclassical limit of LQC reduces to classical cosmology, with only

a single new parameter introduced: a maximal (critical) energy density, which is of

the order of the Planck density. If we go back in time until we reach this critical

energy density, the fundamental quantum discreteness of space kicks in and prevents the

Universe from contracting further. This provides an intuitive picture for how quantum

effects can resolve cosmological singularities, see e.g. [4] for an introductory account.

More recently, LQC has made contact with inflation, replacing the classical spacetime

on which inflation is formulated by a so-called quantum spacetime [5].

One of the main questions concerning the foundations of LQC is its relation to the

full theory of LQG. While some aspects of LQG, such as the discreteness of area and

volume or the use of a polymer-like quantisation, are crucially used in the construction

of LQC, there is as yet no fully satisfactory derivation of such models from LQG. What

needs to be shown, in particular, is how the dynamics of LQC can emerge from some

proposed dynamics of LQG, such as a Hamiltonian constraint in the canonical approach,

or a spin foam model in the covariant formulation. This problem has attracted great

interest recently, for example in the setting of quantum reduced loop gravity (QRLG) in

which various features of LQC could be reproduced from a canonical formalism [6]. One

major challenge faced by QRLG and related approaches (see, e.g., [7]), which to a large

extent motivates the model we develop in this paper, is to justify the main assumption

of LQC about the nature of quantum geometry: the assumption that the fundamental

excitations that make up the Universe consist of certain minimal quanta, such that the

expansion of the Universe corresponds to creation of new quanta rather than inflating

existing ones. In canonical LQG, this would presumably require constructing a new,

graph-changing Hamiltonian that can generate new quanta (spin network nodes) while

preserving an appropriate notion of homogeneity.

As is well-known, the description of quantum systems in which the number of

quanta changes dynamically is often easiest in quantum field theory, where one has field

operators that create and annihilate particles. This is precisely what we will do in this

paper to develop a toy model for a quantum description of cosmology. Incorporating the

main idea of LQC, we will assume that each quantum of geometry comes with a fixed

(Planckian) volume. We then show how the cosmological dynamics for a free, massless

scalar field in a flat FLRW universe corresponds classically to a dilatation of volume and

quantum-mechanically to squeezing, familiar from quantum optics. Next, by studying
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the expectation value of the total three-volume relative to the scalar field, we show that

the quantum dynamics defined by a squeezing Hamiltonian is in agreement with the

classical theory for late times. The resulting effective equations are very similar to the

LQC effective equations, where the classical contracting and expanding solutions are

connected by a non-singular bounce. As squeezing preserves semiclassical properties of

an initial state, e.g. the Fock vacuum, the result is the emergence of a large, semiclassical

universe, described by a large number of quanta with respect to the vacuum, following

precisely the classical Friedmann dynamics at low curvature.

Our model fits well into the effective cosmological models developed within the

group field theory (GFT) approach over the last years [8]. GFT provides a second

quantised language for LQG, with field operators that create and annihilate quanta

of geometry. The key idea is then that a macroscopic cosmological universe should

correspond to a GFT condensate, a coherent quantum configuration of a large number

of quanta. Using methods from the study of Bose –Einstein condensates in condensed

matter physics, one can derive effective equations for such GFT condensates that can

be interpreted in cosmological terms. Adding a massless scalar field as matter, one

can link these equations to those of LQC. It could be shown that GFT condensates

undergo a bounce; moreover, assuming that all quanta in the condensate have the same

microscopic volume (as in LQC), effective Friedmann equations could be derived, very

similar to those of LQC [9]. The last assumption can be further motivated by showing

explicitly, in a wide class of GFT models, that for a more generic initial condensate state

a single component (corresponding to a single volume eigenvalue) will always dominate

asymptotically [10].

Our model is constructed to reproduce the classical dynamics of an FLRW universe.

It is not derived from any proposed GFT action. On the other hand, we do not need

to make assumptions about the emergence of a condensate phase; any initial state will

result in a large universe following the classical Friedmann dynamics. Thus, our model

provides a proof of principle that the full physical evolution of quantum geometry states

can lead to states of condensate type, and that one can connect to classical cosmology

and to LQC starting from a simple discrete model of quantum geometry.

The insights gained from our analysis could become useful for developments in GFT.

In particular, an important difference between our model and usual GFT concerns the

choice of canonical commutator algebra for the field operators. Taking the role of the

massless scalar field as a relational clock seriously, we propose equal-time commutation

relations, which is not what is usually done in GFT where no fundamental notion of time

is used. Similarly, the role of squeezing as cosmological time evolution might suggest

possible dynamics for full GFT which reproduce cosmological dynamics in a more direct

way. At the end of the paper, we also comment on the possible topological interpretation

of our squeezed states.
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2. FLRW cosmology with a scalar field

We consider a flat Friedmann-Lemâıtre-Robertson-Walker (FLRW) universe filled with a

free, massless and homogeneous scalar field as matter. This is a very simple cosmological

model, whose dynamics can be deparametrised by using the scalar as a clock [11],

effectively treating its value φ as a time variable (this is justified because φ̇ never changes

sign and so φ evolves monotonically).

In an FLRW universe the evolution of the spatial geometry is conventionally given

in terms of the scale factor a(t) such that the physical three-metric is hij(t) = a2(t)h0ij
in terms of a fixed “fiducial” flat metric h0ij . The phase space variables for gravity

and matter are then a and φ with their canonical momenta pa and πφ. There is a

single constraint corresponding to the freedom of time reparametrisations, given by the

Friedmann equation (see, e.g., [12])

C = −2πG

3

p2a
a

+
1

2

π2
φ

a3
= 0 . (1)

In the usual Dirac formalism for constrained Hamiltonian systems, one would impose

C = 0 as a constraint and define a Hamiltonian NC, where N is the (arbitrary) lapse

function, to generate dynamics.

Deparametrisation amounts to identifying a suitable degree of freedom, here the

scalar φ, as a time variable with respect to which “true” evolution can be defined. We

then need to choose one of the square roots of the Friedmann equation, leading to a

Hamiltonian

πφ = H := ±
√

4πG

3
a pa . (2)

After deparametrisation, the phase space variables are a(φ) and pa(φ) which are

unconstrained. This formalism can be the starting point for a quantisation in which

(2) becomes the Schrödinger equation for a wavefunction of the Universe; this is indeed

what is done in loop quantum cosmology (LQC) where the right-hand side is replaced

by a suitable operator well-defined on the LQC Hilbert space (pa, which involves a

connection, is not; technically speaking, its exponential is not weakly continuous in the

quantum theory [4], hence pa does not exist as an operator itself).

Notice that for this cosmological model time evolution corresponds to a dilatation;

the equations of motion are

da

dφ
= ±

√

4πG

3
a ,

dpa
dφ

= ∓
√

4πG

3
pa (3)

and their solutions are obviously exponential in φ, corresponding to an expanding or a

contracting universe depending on the choice of sign.

Time evolution corresponds to a dilatation not only for a but also for any power of

a; if we pass from a to the volume V ∼ a3, we have

H = ±
√
12πGV pV (4)
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and again exponential solutions (of course, any power of an exponential is also an

exponential). The volume is the variable most commonly used in LQC and we will

focus on it in the following.

In this classical deparametrised formalism, one needs to choose a sign in (2) leading

to either only expanding or only contracting solutions. These approach a singularity

as φ → −∞ (Big Bang) or φ → +∞ (Big Crunch), respectively. The achievement

of LQC [2] was to define a quantum evolution that interpolates between these classical

alternatives, and connects a contracting to an expanding universe through a non-singular

quantum bounce. We will see something similar in our model: time evolution that

corresponds to the positive sign in (4) for large positive φ and to the negative sign in

(4) for large negative φ while deviating from the classical theory at high curvature.

3. Quantum cosmology as squeezing

We could now set up a “first quantised” quantum theory in which H in (4) becomes the

Hamiltonian acting on a wavefunction ψ(V, φ). The resulting Schrödinger equation can

be derived in the usual way from an action for ψ,

S[ψ, ψ̄] =

∫

dφ

∫

dV

[

i

2

(

ψ̄
dψ

dφ
− ψ

dψ̄

dφ

)

− ψ̄Ĥψ
]

(5)

where Ĥ is an appropriate Hermitian operator representing the quantum Hamiltonian,

e.g. Ĥ =
√
3πG(V̂ p̂V + p̂V V̂ ).

Notice that, instead of the classical phase space variables V (φ) and pV (φ), (5)

defines dynamics for a field ψ(V, φ) and its complex conjugate. The first term in the

action is the symplectic form p dq, showing that ψ and ψ̄ are canonically conjugate,

and the second term introduces a field Hamiltonian Hψ :=
∫

dV ψ̄Ĥψ defining the

dynamics. This action viewpoint on Schrödinger quantum mechanics provides an

immediate starting point for “second quantisation” in which one now views ψ and ψ̄ as

field operators in a quantum field theory, with dynamics defined by S or its extension

to an interacting theory in which terms of higher order in ψ̄ or ψ can be added to Hψ.

We can then adopt such a second-quantised viewpoint on quantum cosmology in

which, rather than defined in terms of a Schrödinger-type (single-particle) wavefunction,

the Universe is made up of many elementary quantum patches or “geometric atoms”

governed by a quantum field theory. This viewpoint has been advocated from various

directions including quantum cosmology [13], and is in line with the insights obtained

over the last decades in loop quantum gravity and related approaches such as GFT:

geometry is itself quantised at the Planck scale, and a macroscopic, homogeneous

universe should really arise from the interactions of a very large number of such

quanta of geometry. A second quantised approach also provides a direct route to

including inhomogeneities, which can correspond to a slightly inhomogeneous many-

particle configuration or, somewhat similar to inflation, directly arise as fluctuations in

the quantum field that generates geometry [14].
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A simple possibility would be to promote (5) directly to the action of a quantum

field theory; we would then have field operators Ψ̂ and Ψ̂† with canonical commutation

relations (here treating V as a real variable that can also take negative values)

[Ψ̂(V, φ), Ψ̂†(V ′, φ)] = δ(V − V ′) (6)

and the Hamiltonian would be
∫

dV Ψ̂†ĤΨ̂ with some differential operator Ĥ. This field

theory would be non-interacting, with dynamical equations that are linear in the fields.

In particular, the dynamics would conserve the particle number
∫

dV 〈Ψ̂†Ψ̂〉, just like

the norm of a wavefunction is conserved in single-particle quantum mechanics.

This possibility has rather undesirable consequences for cosmology; it would suggest

that the number of geometric quanta has remained constant while the total volume of

the Universe has increased by many orders of magnitude. As in this scenario expansion

could only proceed by expansion of the quanta themselves, initially Planck size quanta

would be macroscopic today. Not only do we not have any evidence for discreteness in

the Universe around us, but these large quanta would presumably not be able support

short enough wavelengths for cosmological perturbations (known as the trans-Planckian

problem in inflation [15]). Moreover, the improved dynamics prescription for LQC [3]

suggests that expansion of the Universe proceeds purely through generation of new

quanta of geometry, where these quanta remain at constant (Planckian) volumes at all

times. Connecting in any way to LQC requires us to change the dynamics such that

particle number is not conserved. Recent results in GFT condensates have already shown

how, similar to LQC, the expansion of the Universe can be understood as generation

of new quanta of geometry [9, 10]. All this motivates us to define a different type of

dynamics for cosmology.

A related point is that, if there are indeed fundamental quanta of geometry, an

approximately continuous macroscopic universe must consist of many quanta in a highly

symmetric configuration, in order to correspond to the great simplicity (homogeneity,

isotropy) of the observed Universe on largest scales. This has motivated the idea of

describing the Universe as a kind of condensate, a macroscopic coherent configuration

of many quanta. In the context of GFT, condensates have been the main tool to

connect to cosmology; a condensate is defined by the property that a quantum state

of many quanta is fixed by a single-particle wavefunction [8]. In particular, “dipole

condensate” states have appeared in this context [16] that are very similar to squeezed

states in quantum optics. Compared to the simpler mean-field coherent states, dipole

condensates have the advantage of being naturally gauge-invariant from the perspective

of LQG, and so possessing a clearer geometric interpretation (see Sec. 6 for a discussion

of their topological interpretation in GFT).

In this paper, we propose a simple model for GFT cosmology that combines the

insights obtained in the study of GFT condensates with the fact that, for a massless

scalar field in a flat universe, time evolution in φ corresponds to exponential expansion

of the spatial volume. We will make use of well-known properties of squeezed states in

quantum optics [17]: consider a single harmonic oscillator, with associated creation and
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annihilation operators â† and â. Starting from the Fock vacuum |0〉, one can define a

squeezed state as

|ζ〉 = Ŝ(ζ)|0〉 := exp

(

ζ

2
â†â† − ζ̄

2
ââ

)

|0〉 . (7)

The squeezing operator corresponds to a Bogoliubov transformation, i.e. a change of

basis of creation and annihilation operators; by the Baker-Campbell-Hausdorff formula,

Ŝ†(ζ)âŜ(ζ) = â + ζâ† +
1

2
|ζ |2â + 1

6
|ζ |2ζâ† + . . .

= cosh(|ζ |)â+ sinh(|ζ |) ζ|ζ |â
† . (8)

It follows that, with respect to the original Fock vacuum, the number of quanta in the

squeezed state |ζ〉 is
〈ζ |â†â|ζ〉 = 〈0|Ŝ†(ζ)â†Ŝ(ζ)Ŝ†(ζ)âŜ(ζ)|0〉 = sinh2(|ζ |) . (9)

For large |ζ |, this grows exponentially in |ζ |. Squeezing thus realises exactly the

exponential growth in the particle number needed for cosmology. Moreover it leads to a

state with semiclassical properties, just as required for GFT condensates that describe

macroscopic geometries.

One can see directly that the squeezing operator effectively acts as a dilatation in

the particle number n, at least in the limit where the latter is large: if we take ζ to be

real, squeezing corresponds to the exponentiated action of a Hermitian operator ŝ,

Ŝ(ζ) = exp(−iζŝ) , ŝ =
i

2

(

â†â† − ââ
)

. (10)

The action of this operator ŝ on a normalised particle number eigenstate |n〉 ≡
(n!)−1/2(â†)n|0〉 is

ŝ|n〉 = i

2
√
n!

(

(â†)n+2 − n(n− 1)(â†)n−2
)

|0〉

=
i

2

(

√

(n+ 1)(n+ 2)|n+ 2〉 −
√

n(n− 1)|n− 2〉
)

. (11)

For large n and in a continuum limit, ŝ acts just like a dilatation in n, ŝ ∼ −2i(n ∂
∂n

+ 1
2
)

(we will derive the numerical factors in more detail below). In the following we will

develop a cosmological toy model for GFT that implements the main insight of the

improved dynamics prescription for LQC, namely that the total volume is proportional

to the number of quanta. Squeezing then not only acts as dilatation in the particle

number but also in the cosmological volume, as suggested by the classical Friedmann

dynamics (4).

This leads us to our main proposal: cosmological time evolution is best realised as

squeezing.

4. Toy model for GFT cosmology: kinematics

We will build on work of the last years on GFT condensates [8] to develop a model for

cosmology in which time evolution corresponds to squeezing an initial state (such as
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the Fock vacuum) to obtain a generalised “condensate”. GFT itself defines a second

quantisation formalism for loop quantum gravity, i.e. a quantum field theory of geometry,

in which creation and annihilation operators corresponding to quanta of geometry are

defined naturally [18].

In the cosmological context we are interested in, the starting point is a GFT for

gravity coupled to a massless scalar field, in four spacetime dimensions. Here one usually

starts with a complex bosonic field whose arguments are four elements of a Lie group

G and a real variable corresponding to the massless scalar,

ϕ : G4 × R → C . (12)

The group G corresponds to the chosen gauge group of gravity. In the Ashtekar–Barbero

formalism it would be G = SU(2) which we choose here for definiteness.

One imposes a symmetry under right multiplications of all four group elements,

ϕ(
¯
g, φ) ≡ ϕ(g1, . . . , g4, φ) = ϕ(g1h, . . . , g4h, φ) ∀h ∈ SU(2) (13)

corresponding to discrete gauge transformations in a sense that will become clear shortly.

Dynamics for a GFT is then usually defined either through a path integral, whose

expansion into Feynman amplitudes corresponds to a sum over discrete spacetime

histories, or through the canonical formalism as developed in [16, 18]. In the latter,

one introduces canonical commutation relations

[

ϕ̂(
¯
g, φ), ϕ̂†(

¯
g′, φ′)

]

= δ(φ− φ′)

∫

SU(2)

dh
4
∏

I=1

δ(g′Ihg
−1
I ) (14)

where
¯
g = (g1, . . . , g4) and the integral (with respect to the normalised Haar measure

dh) over all h ∈ SU(2) ensures that the commutation relations are compatible with the

right invariance of the GFT field operator (13). Next, one introduces the Fock space

starting from the vacuum |∅〉, which is annihilated by the field operator: ϕ̂(
¯
g, φ)|∅〉 = 0,

such that ϕ̂† creates an “atom of space” from |∅〉. Schematically, we may write

ϕ̂†(g1, g2, g3, g4, φ)|∅〉 =
∣

∣

∣

∣

〉

•

✂
✂
✂
✂
✂
✂
✂
✂✏✏✏✏✏✏✏✏

❅
❅

❅
❅

❅❅

❅
❅

❅
�
�
�
�
��

g1

g2

g3
g4

φ�
�
�
�

❅
❅
❅
❅❅

✂
✂
✂
✂
✂✂

and view the state ϕ̂†(
¯
g, φ)|∅〉 as a chunk of space, a tetrahedron whose geometrical

degrees of freedom are characterised by four G-valued parallel transports through its

four faces, and a label φ corresponding to the value of the scalar field. The four links meet

at a central vertex where a discrete gauge transformation would indeed map gI 7→ gIh,

as in (13). At this stage, the links are seen as open with no gauge transformations acting

on the other end.
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It is now convenient to use a Peter–Weyl decomposition of the GFT field into SU(2)

irreducible representations. Namely, one writes (see e.g. [9]‡)

ϕ̂(
¯
g, φ) =

∑

¯
j,ι

ϕ̂¯
m(
¯
j, ι, φ) I∗

¯
n(
¯
j, ι)

4
∏

I=1

√

2jI + 1 D(jI)(g−1
I )nI

mI
(15)

where D(jI)(gI) is the Wigner D-matrix for the SU(2) element gI in the spin-jI
representation and

¯
m is the multi-index

¯
m = (m1, . . . , m4) and equally

¯
j = (j1, . . . , j4).

The entries of D(jI)(gI) are labelled by magnetic indices mI and nI . Using Einstein’s

summation convention, we sum over all repeated magnetic indices. The appearance

of the SU(2) invariant tensors§ I¯
n(
¯
j, ι) ∈ j1 ⊗ . . . ⊗ j4 is a consequence of the right

invariance property (13) of the GFT field operator. These intertwiners are labelled

by an index ι, which runs over an orthonormal basis in the SU(2) invariant (singlet)

subspace of j1 ⊗ . . .⊗ j4, hence

〈I(
¯
j, ι), I(

¯
j, ι′)〉 ≡ I∗

m1...m4
(
¯
j, ι)Im1...m4(

¯
j, ι′) = δι ι′ . (16)

All this implies now that the definition (15) can be inverted for the coefficients ϕ̂¯
m(
¯
j, ι, φ),

ϕ̂¯
m(
¯
j, ι, φ) =

∫

SU(2)4
d4g I¯

n(
¯
j, ι) ϕ̂(

¯
g, φ)

4
∏

I=1

√

2jI + 1D(jI)(gI)
mI

nI
. (17)

An analogous expression for the Hermitian conjugate field ϕ̂† in terms of Peter–Weyl

modes ϕ̂†

¯
m(
¯
j, ι, φ) is obtained by taking the Hermitian conjugate of (15).

In the geometric interpretation of GFT states given by loop quantum gravity, the

spins jI correspond to possible eigenvalues for the areas of the faces of the tetrahedron,

which are given (in units of ~ = c = 1) by AI = 8πγG
√

jI(jI + 1), where γ is the

Barbero–Immirzi parameter and G is Newton’s constant. Thus, expressing the GFT

field in a spin representation rather than the group representation means that we focus

on metric information (areas) rather than connection information as given by parallel

transports gI .

The GFT commutation relation (14) implies that the field operators ϕ̂¯
m and ϕ̂†

¯
m

satisfy
[

ϕ̂¯
m(
¯
j, ι, φ), ϕ̂†

¯
m′(

¯
j′, ι′, φ′)

]

= δ(φ− φ′)

∫

SU(2)4
d4g I¯

r(
¯
j, ι) I∗

¯
s (
¯
j′, ι′)×

×
4
∏

I=1

√

(2jI + 1)(2j′I + 1) D(jI)(gI)
mI

rI
D(j′

I
)(g−1

I )sIm′
I

= δ(φ− φ′)δ
¯
j
¯
j′ δ ¯

m

¯
m′ I¯

r(
¯
j, ι) I∗

¯
r (
¯
j′, ι′)

= δ(φ− φ′) δ
¯
j
¯
j′ δ ¯

m

¯
m′ δι ι′ . (18)

The group averaging over h is taken care of by the intertwiners contracting the r and

s indices, and in the second line we used g† = g−1 and the orthogonality of the Wigner

matrices with respect to the Haar measure dg.

‡ Compared to [9], we have changed factors of 2jI + 1 so that the terms under the product sign are

normalised.

§ The defining property is: ∀h ∈ SU(2) : D(j1)(h)m1

n1
· · ·D(j4)(h)m4

n4
I¯
n(
¯
j, ι) = I ¯

m(
¯
j, ι)
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These are the commutation relations of creation and annihilation operators. Notice

that we have a delta function in φ, inherited from (14), so that “atoms” can be created

independently at different values of φ. In such a formalism the scalar field variable φ

is just another direction in the configuration space of the GFT field; φ does not play

the role of a physical time variable which would be suggested by the deparametrised

cosmological formalism of Sec. 2.

In this paper, as we have argued, we are interested in a model in which φ plays the

role of a time variable. Correspondingly, as in standard quantum field theory where a

time variable is given by a background spacetime, we assume equal-time commutation

relations. In the Heisenberg picture these would be of the form
[

â¯
m(
¯
j, ι, φ), â†

¯
m′(

¯
j′, ι′, φ′)

]

= δ
¯
j
¯
j′ δ ¯

m

¯
m′ δι ι′ , (19)

where we write â and â† to make clear that this formalism is different from the one

derived from (14). One can switch to a Schrödinger picture in which the operators have

no φ dependence but states evolve in time, as we will do later on. In this sense, we are

proposing a GFT toy model in which the field operators have the canonical commutation

relations (6) of “second quantised quantum cosmology”, but whose dynamics does not

preserve particle number. The commutation relations (19) will be derived from an

action, unlike in the usual canonical formalism for GFT, where they are postulated, a

priori.

The GFT dynamics involves all modes, i.e., all possible values of jI and ι,

corresponding to all possible sizes and shapes of tetrahedra. To build a model for

cosmology, we truncate the theory so that only some of the modes are excited. First

of all, and following [9], we restrict ourselves to isotropic tetrahedra for which all spins

are equal. This seems to be sufficient for building a macroscopic geometry which is

itself isotropic. Then we follow the general expectation coming from LQC [3] that the

relevant modes are those corresponding to minimal non-zero eigenvalues of the area, i.e.

those for which j = 1/2.‖
In the GFT Peter–Weyl expansion (15), we would focus only on the term

ϕ̂(
¯
g, φ) = 4

∑

ι=ι±

ϕ̂A1...A4(ι, φ)I∗
B1...B4

[g−1
1 ]B1

A1
· · · [g−1

4 ]B4

A4
, (20)

where we write [gI ]
A
B ≡ D( 1

2
)(gI)

A
B for the fundamental representation of SU(2).

Here, that the magnetic indices A,B,C, . . . correspond to spinor indices; we distinguish

between “upstairs” and “downstairs” indices which correspond, respectively, to the

fundamental representation and its complex conjugate; indices are raised and lowered

using the Hermitian metric ψ∗
A = δAA′ψ̄A

′

. This distinction will facilitate the use of a

calculus for SU(2) spinor indices.

For all jI taken to be 1/2, the space of intertwiners is two-dimensional. Two

independent and orthogonal intertwiners, which may be denoted ι+ and ι−, correspond

‖ The role of j = 0 quanta in GFT is somewhat different than in LQG; they are “soft tetrahedra” that

have zero area or volume, but contribute to the total particle number. To facilitate comparison with

LQG and LQC, we set the number of j = 0 quanta to zero.
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to the eigenvectors of an LQG operator corresponding to the oriented squared volume,

with positive and negative eigenvalue given by (see [19] for a summary of how to compute

such eigenvalues in LQG)

±v2o = ±(8πγG)3

6
√
3

. (21)

For simplicity, we restrict ourselves to the intertwiner ι+ which corresponds to a positive

orientation, and drop the intertwiner label in the following. In the usual canonical GFT

formalism, we would then obtain a field operator ϕ̂ABCD(φ) and its Hermitian conjugate,

with commutation relations

[ϕ̂A1...A4(φ), ϕ̂†
B1...B4

(φ′)] = δ(φ− φ′)δA1

B1
· · · δA4

B4
. (22)

In our formalism in which φ corresponds to time, we now instead introduce Schrödinger-

picture operators âABCD and â†ABCD with fundamental commutation relations

[âA1...A4 , â†B1...B4
] = δA1

B1
· · · δA4

B4
. (23)

We can then introduce a Fock space for these operators, starting from a vacuum

|0〉 annihilated by all annihilation operators, âABCD|0〉 = 0. The resulting Fock space

for this GFT toy model can be seen as a subspace of a Fock space for a GFT based on

equal-time commutation relations, with field operators satisfying

[

Φ̂(
¯
g, φ), Φ̂†(

¯
g′, φ)

]

=

∫

dh
4
∏

I=1

δ(g′Ihg
−1
I ) . (24)

The Fock space for âABCD and â†ABCD would describe those quanta within the larger Fock

space for Φ̂ and Φ̂† for which only the representation labels jI = 1/2 and the intertwiner

ι+ are being excited. From the perspective of LQG, these are quanta with minimal

non-zero area and volume, which are symmetric in the sense of describing equilateral

chunks of geometry. LQC suggests using such quanta to build a cosmological universe.

We make one further simplification in the model. Namely, the tensor product of

four fundamental representations can be decomposed into irreducible representations of

SU(2) according to

1

2
⊗ 1

2
⊗ 1

2
⊗ 1

2
= 0⊕ 1⊕ 1⊕ (0⊕ 1⊕ 2) . (25)

Concretely, the creation operators âABCD can be written as

âABCD =
1

4
ǫABǫCD Î(1) +

1

2
(ǫACǫBD + ǫBCǫAD)Î(2) +

+
1

2
ǫABV̂ CD

(1) +
1

2
ǫCDV̂ AB

(2) +
1

2
(ǫAC V̂ BD

(3) + ǫBDV̂ AC
(3) ) +

+ ÂABCD (26)

where all operators on the right-hand side have totally symmetric indices. We now

assume that only the totally symmetric component ÂABCD = Â(ABCD), i.e. the spin-

2 component of the tensor product of four fundamental representations, is excited.

From the GFT perspective this would mean imposing an additional symmetry under
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permutations of the four arguments. In cosmology, we may use this as an additional

restriction to implement isotropy. This means we use only five out of 16 oscillator modes

given by the âABCD.

5. Toy model for GFT cosmology: dynamics

We now define the dynamics for our model. Classically, the dynamical variables are the

totally symmetric oscillator modes AABCD and their complex conjugates. We take the

action to be of the form

S[Ai, A∗
i ] =

∫

dφ

[

i

2

(

A∗
i

dAi

dφ
− dA∗

i

dφ
Ai

)

−H(Ai, A∗
i )

]

(27)

in close analogy to (5). We write Ai ≡ AA1...A4 where i is a magnetic index

running over the five totally symmetric combinations of four spinor indices, and A∗
i

denotes the Hermitian conjugate with respect to the SU(2) metric: A∗
i ≡ A∗

A1...A4
=

δA1B′
1
. . . δA4B′

4
ĀB

′
1
...B′

4). The Hamiltonian H is now chosen to violate particle number

conservation, and in order to model cosmological time evolution we choose it to be a

squeezing operator,

H ≡ i

2
λ(A∗

iA
∗
jǫ
ij − AiAjǫij) . (28)

The i and j indices are contracted with appropriate combinations of the invariant tensor

ǫAB = −ǫBA for the spinor representation, i.e. AiAjǫij ≡ AA1...A4AB1...B4ǫA1B1
. . . ǫA4B4

.

The inverse ǫ-tensor is given by ǫij , ǫimǫjm = δij . Notice also ǫij = ǫji.

The coupling constant λ must be real for H to be real. In principle one could

also introduce a complex coupling (and then multiply the second term by λ̄). However,

choosing λ to be real is no loss of generality: the kinetic term in the action (27) is

invariant under a (global) U(1) transformation

Ai → eiθAi , A∗
i → e−iθA∗

i . (29)

Such a field redefinition, which does not alter the dynamical content of (27), sends

λ→ e−2iθλ, and thus λ can always be made real by an appropriate phase transformation.

As for quantum cosmology (5), the first term in (27) determines the Poisson brackets

that turn Ai and A∗
i into canonically conjugate operators at the quantum level,

[Âi, Â†
j ] = δij . (30)

We now have a choice of working in the Heisenberg picture or the Schrödinger picture.

In the Schrödinger picture, we have a φ-dependent Fock state that evolves according to

the Schrödinger equation

i
d

dφ
|χ(φ)〉 = i

2
λ(Â†

i Â
†
jǫ
ij − ÂiÂjǫij)|χ(φ)〉 (31)

with general solution

|χ(φ)〉 = exp

(

λ

2
φ
(

Â†
i Â

†
jǫ
ij − ÂiÂjǫij

)

)

|χo〉 (32)
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where |χo〉 is an arbitrary initial state. Thus, physical states are obtained by acting

with a φ-dependent squeezing operator on any initial state. The assumption of

GFT condensate cosmology [8] that there are coherent condensate states that well

approximate physical GFT states describing macroscopic, homogeneous geometries is

thus realised explicitly within the context of a simplified model. As squeezed states

have semiclassical properties, in this model an asymptotically classical universe emerges

dynamically from, e.g., the Fock vacuum |0〉.¶ This is another appealing property of

this model, beyond its ability to reproduce Friedmann-like dynamics of a flat FLRW

universe with a massless scalar field, as we will show next.

We consider only a single possible eigenvalue vo for the volume per tetrahedron,

corresponding to the intertwiner ι+ (see discussion below (20) and (21)). In this reduced

model, the GFT volume operator V̂ is therefore reduced to a multiple of the number

operator,

V̂ = voÂ
†
i Â

i = voN̂ . (33)

Dilatation with respect to the volume, as in the classical cosmological Hamiltonian (4),

is then equivalent to “dilatation” with respect to the particle number (in an approximate

sense, given that the latter is discrete), which is in turn realised by squeezing. We saw

this already for a single harmonic oscillator. For five oscillator modes given by Âi and

Â†
j , we can similarly define normalised states

|k〉 = 2−(k+1)

√

3

k!(k + 3
2
)(k + 1

2
) · · · (1

2
)
(ǫijÂ†

i Â
†
j)
k|0〉 ; (34)

the squeezing Hamiltonian then acts as

Ĥ|k〉 = i

2
λ
(

Â†
i Â

†
jǫ
ij − ÂiÂjǫij

)

|k〉

=
i

2
λ
(

√

(2k + 2)(2k + 5)|k + 1〉 −
√

2k(2k + 3)|k − 1〉
)

. (35)

For large k and in the vo → 0 continuum limit this corresponds to the action of a

dilatation operator. This can be seen as follows: Introduce a state Ψ(V ) ∈ L2(R≥, dV )

in the continuum, and define its shadow state on the lattice: |Ψ〉 :=
∑∞

k=0Ψk|k〉, for
components Ψk =

√
voΨ(kvo) (the normalisation

√
vo is introduced such that the sum

∑∞

k=0 Ψ̄kΨ
′
k returns the L2 inner product in the vo → 0 continuum limit). By duality,

i.e. using 〈k|Ĥ|Ψ〉 = 〈Ψ|Ĥ|k〉, we now find the difference equation

(ĤΨ)(V ) =
λ

2ivo

(

√

(2V + 2vo)(2V + 5vo)Ψ(V + vo)+

−
√

2V (2V + 3vo)Ψ(V − vo)
)

(36)

¶ Squeezed states inherit the minimal uncertainties satisfied by the Fock vacuum. Showing that relative

uncertainties of geometric observables remain small or vanish asymptotically can be used as a criterion

for emergence of a classical geometry, see e.g. [20] for a discussion in the context of GFT condensates.
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for any V = kvo. Assuming the first derivative ∂VΨ(V ) exists, we can now use

L’Hôpital’s rule to take the continuum limit and find

(ĤΨ)(V )
vo→0→ −2λ i

(

V ∂V +
1

2

)

Ψ(V ) .

Setting λ :=
√
3πG and using the symmetric ordering 1

2
(V̂ p̂V + p̂V V̂ ) for the product

V pV , we thus recover the deparametrised Hamiltonian (4) in the large-volume and

continuum limit.

The time-evolution operator corresponding to our Hamiltonian,

Ŝ(λφ) := exp

(

λφ

2

(

Â†
i Â

†
jη
ij − ÂiÂjηij

)

)

, (37)

also again realises a Bogoliubov transformation of the creation and annihilation

operators, namely

Ŝ†(λφ)ÂiŜ(λφ) = Âi + λφǫijÂ†
j +

1

2
(λφ)2Âi +

1

3!
(λφ)3ǫijÂ†

j + . . .

= cosh(λφ)Âi + sinh(λφ)ǫijÂ†
j (38)

and similarly for Â†
i . From this, the number of quanta in the state |χ(φ)〉 is found to be

N(φ) ≡ 〈χ(φ)|Â†
i Â

i|χ(φ)〉
= cosh2(λφ)〈χo|Â†

i Â
i|χo〉+ sinh2(λφ)〈χo|ÂiÂ†

i |χo〉
+ cosh(λφ) sinh(λφ)

(

ǫij〈χo|Â†
i Â

†
j|χo〉+ ǫij〈χo|ÂiÂj |χo〉

)

= − 5

2
+
(

N0 +
5

2

)

cosh(2λφ) +Re(Q) sinh(2λφ) , (39)

where N0 := 〈χo|Â†
i Â

i|χo〉 is the expectation value of the total particle number in the

chosen initial state |χo〉, and Q := ǫij〈χo|Â†
i Â

†
j |χo〉. For simple initial states, for example

eigenstates of the number operator, Q = 0. In general, a nonzero Q will render the

bounce asymmetric in φ.

For this φ-dependent total particle number, we then observe the following properties:

• At late or early times, φ→ ±∞, the 3-volume V (φ) = voN(φ) asymptotes to

V (φ) = vo〈χ(φ)|Â†
iÂ

i|χ(φ)〉 ∼ vo

(N0

2
+

5

4
± Re(Q)

2

)

exp(2|λφ|) (40)

with the sign given by the sign of (λφ). The three-volume hence interpolates

between a contracting and an expanding solution of the classical cosmological

dynamics of Section 2 if we fix λ :=
√
3πG. Newton’s constant is “emergent”

from the coupling constant λ in our GFT toy model, in much the same way that it

emerges from fundamental GFT couplings in [9].

• If we assume Q = 0 for simplicity, time evolution is symmetric in φ, as for the LQC

effective dynamics (i.e., for suitable states for which these are valid). Moreover,

unless the initial state is chosen to be the Fock vacuum |0〉, the number of quanta

and the total three-volume are bounded from below: N(φ) ≥ N0 at all times, with

equality only at φ = 0. In this sense one finds a bounce resolving the classical
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singularity, again very similar to what was found for full GFT in [9]. For the Fock

vacuum, one obviously starts with zero particle number and hence a singularity in

the geometric interpretation, but φ-evolution still results in a large, semiclassical

universe following exactly the classical Friedmann dynamics.

• Again with Q = 0, the volume satisfies the effective Friedmann equation
(

1

V

dV

dφ

)2

= 4λ2
(

1 +
5vo
V (φ)

− N0(N0 + 5)v2o
V (φ)2

)

. (41)

Of the three terms in brackets, the first would just give the classical Friedmann

equation (again, with λ =
√
3πG). The third term can be written as ρ/ρc, for

some maximal (critical) energy density ρc, given that the energy density ρ of the

massless scalar field scales like V −2; such a term appears in the effective Friedmann

equations valid for suitable semiclassical states in LQC [21], and is responsible for

the bounce. Here this term is absent if N0 = 0, the case of the initial state chosen to

be the Fock vacuum in which the singularity is not resolved. Indeed, for N0 = 0 the

effective Friedmann equation shows no repulsion at high density. The second term

is another quantum correction, effectively behaving like an ultra-stiff (or ekpyrotic)

matter component with equation of state w = 2.

Structurally this effective Friedmann equation appears extremely similar to the one

found for full GFT, for the case of isotropic (equilateral) GFT condensates in which

only a single spin is excited, i.e. essentially the case we consider in our toy model.

There [9], one finds
(

1

V

dV

dφ

)2

= 12πG+
4voE

V (φ)
−

4v2oπ
2
φ

V (φ)2
(42)

where E (the GFT “energy”) and πφ (the scalar field momentum) are conserved,

state-dependent quantities. For further discussion of such effective Friedmann

equations in terms of effective matter components, for condensates with only a

single excited j but including different GFT interactions, see also [22].

• These effective Friedmann equations assume a particularly familiar form if we use a

symmetric ordering for the GFT volume operator, which shifts the volume operator

by a constant,

V̂s =
vo
2
(A†

iA
i + AiA†

i) = vo

(

A†
iA

i +
5

2

)

. (43)

Assuming Q = 0, the expectation value Vs(φ) = 〈χ(φ)|V̂s|χ(φ)〉 satisfies the effective
Friedmann equation

(

1

Vs

dVs
dφ

)2

= 4λ2
(

1− v2o(N0 +
5
2
)2

Vs(φ)2

)

. (44)

This is exactly of the LQC effective dynamics form
(

1

V

dV

dφ

)2

= 12πG

(

1− ρ

ρc

)

(45)

if we identify ρ := λ2(N0+
5
2
)2/V 2

s with the energy density of matter, ρc :=
λ2

v2o
with

the (Planckian) critical density, and λ =
√
3πG.
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Our toy model hence reproduces several of the results for effective Friedmann equations

found in GFT condensate cosmology, without requiring the assumption of a condensate

state: as we have shown, even starting from the Fock vacuum or a one-particle initial

state leads to a squeezed “condensate” state whose dynamics can mimic LQC effective

dynamics and resolve the classical singularity. Only for the Fock vacuum there is, by

assumption, an initial geometric singularity in which no quanta were present, but the

evolution is nevertheless regular.

6. Spatial topology and the GFT Fock space

The construction of the Fock space for our model, and more generally for GFT, suggests

a possibility of associating topological information to the states, in addition to geometric

observables such as the three-volume we have discussed in the application to cosmology.

Namely, if a single-particle state is pictured as a tetrahedron, contracting the indices

associated to open links could be interpreted as “gluing”, i.e. topological identification.

A two-particle state such as

|0〉 = ǫijA†
iA

†
j |0〉 (46)

could then be interpreted as the triangulation of a 3-sphere by two tetrahedra with all

four faces identified. Such an interpretation is natural in simplicial geometry, and often

also assumed in discussions of LQG spin network states.

It would follow that applying the “dipole creation operator” Â†
i Â

†
jǫ
ij twice to obtain

|0〉 =
(

Â†
i Â

†
jǫ
ij
)2

|0〉 (47)

produces a state corresponding, topologically, to two disconnected three-spheres. Taking

this interpretation further to define the topology of the geometries represented by our

squeezed states would imply that, rather than representing a macroscopic cosmological

universe, these squeezed states, and the condensate states of full GFT [8], correspond to

a large number of disconnected, Planck-size universes, rendering their physical meaning

unclear.

In the context of our toy model, it is easy to see that such an interpretation is

not consistent as it is necessarily ambiguous. Take the state (47), which is explicitly

proportional to

Â†
i Â

†
jÂ

†
kÂ

†
l ǫ
ijǫkl|0〉 ≡ Â†

A1A2A3A4
Â†
B1B2B3B4

Â†
C1C2C3C4

Â†
D1D2D3D4

ǫA1B1 · · · ǫA4B4 ǫC1D1 · · · ǫC4D4 |0〉 . (48)

We can now rearrange indices using identities for the ǫ tensors, such as

ǫA1B1ǫC1D1 = ǫA1C1ǫB1D1 − ǫA1D1ǫB1C1 (49)

which can be represented diagrammatically as

= − − . (50)
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Inserting (49) into (47), we find that a state of two disconnected three-spheres would

necessarily be equivalent to a sum of two states representing connected manifolds,

|0〉 = − |0〉 − |0〉 = −2 |0〉 . (51)

This argument obviously extends to more complicated states; any topological

information extracted from Fock states in our model must hence come from elsewhere,

not from a representation of their structure in terms of graphs. The fact that these Fock

states, unlike LQG spin network states, cannot be associated unambiguously to graphs

also applies to the full GFT setting, and is an important difference between the LQG

and GFT Hilbert spaces [23].

7. Discussion

In this paper, we constructed a toy model for quantum cosmology in the framework

of group field theory (GFT). The model realises two basic principles: that geometric

observables have discrete eigenvalues in quantum gravity and that cosmological

expansion is realised by creating new quanta rather than inflating existing ones. Since

the cosmological evolution must change, therefore, the number of quanta, dynamics is

best formulated in a second quantised framework, as given in group field theory. The

model itself is formulated on the full GFT Fock space, only the dynamics differs from

usual GFT models. We showed, in fact, that the cosmological expansion for an FLRW

universe filled with a free massless scalar field can be modelled on the GFT Fock space

by a squeezing operator. The resulting Schrödinger equation can be integrated trivially.

Starting from a suitable initial state, such as the Fock vacuum, the expectation value

of the total three-volume evolves according to modified Friedmann equations, which

are very similar to those previously obtained in GFT cosmology [9] and loop quantum

cosmology [2, 3]. The classical big bang singularity is replaced by a quantum bounce

connecting the contracting and expanding branches.

The kinematics of the framework is taken from both LQG and GFT. The

configuration variables are given by SU(2) holonomies along four distinct links meeting

at a vertex, with each such vertex representing a tetrahedron. In the quantum theory,

the volume of this tetrahedron can only assume certain discrete eigenvalues [19]. The

dynamics, on the other hand, was constructed without direct input from LQG or

GFT. The starting point was the following observation: given a conventional Wheeler –

DeWitt minisuperspace quantisation, the cosmological expansion would be generated by

a dilatation operator∼ iV ∂V . But such an operator cannot exist on the GFT Fock space,

because the differential ∂V is not well-defined if the volume has a discrete spectrum.

We have to replace iV ∂V by a finite difference operator, and we saw that a squeezing

operator provides a particularly simple candidate for such an operator. By imposing

the additional simplifying assumption that only isotropic tetrahedra are excited, and

excited only in the fundamental j = 1/2 representation of SU(2), we reduced the field

theoretic GFT formalism to a simple matrix model, defined in terms of oscillator modes
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Ai(φ) that only depend on the value of the massless scalar field φ used as time. Thus,

inspired by both LQG and GFT, we constructed a certain matrix cosmology.

In quantum gravity, matrix models have appeared in various contexts before, from

quantum gravity in two dimensions [24] to a possible non-perturbative definition of M-

theory [25]. Applications of such matrix models to quantum cosmology were discussed

in, e.g., [26]. In this context one has matricesX i(t) that represent space time coordinates

at the quantum level. This is conceptually different from our more abstract background-

independent oscillators Ai(φ), but the basic objective for quantum cosmology is the

same, namely to derive effective Friedmann equations for an effective scale factor a(t)

(in our work, such effective Friedmann equations are derived from the expectation values

of the three-volume V (φ) as a function of φ). The model that we developed here could

inspire, therefore, further developments relating GFT cosmology to approaches ofmatrix

cosmology that come from other corners of quantum gravity research.

Our model shows explicitly how physical solutions to a many-particle quantum

cosmology model can lead, in principle, to states of condensate type, as used previously

in the context of GFT [8]. The effective dynamics for such states reproduces then

the main features of classical cosmology and LQC. Finally, we also commented on the

impossibility of associating a unique spatial topology to our quantum states. This is a

consequence of the chosen statistics: states that would be distinguishable in the LQG

Hilbert space may be realised as the same quantum state in GFT.

As regards the fundamental definition of GFT models, the main new ingredient

at the kinematical level was the use of equal-time commutation relations for the

fundamental GFT field operators (and thus, for the oscillator mode operators). Such

commutation relations have not been used in GFT before, but are suggested once

we deparametrise the Wheeler –DeWitt equation with respect to a distinguished time

variable (in our case this is the value of the scalar field φ). Further work is needed

to elucidate the precise relation of this formalism to the usual one in which no

deparametrisation, and no equal-time commutator algebra, is used.
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