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aCentre de Physique Théorique, Ecole Polytechnique, CNRS, Université Paris-Saclay,
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1 Introduction

Determining the low-energy effective action of type II string theory compactified on a torus

T d−1 from 10 to D = 11−d space-time dimensions has been an on-going research topic for

many years [1–21]. The low-energy effective action is interesting since one can hope to un-

derstand better how string theory improves the ultraviolet behaviour of point particle the-

ories like gravity and supergravity through infinite towers of massive particles that restore

unitarity at high energy. Taking various limits of the exact couplings also provides impor-

tant information on non-perturbative objects in string theory, like D-branes, membranes or

black holes. They include in particular helicity supertraces or partition functions associated

to solitons or instantons, respectively. The effective action includes, besides the standard

two-derivative action, an infinite set of higher-derivative corrections, e.g. of the form ∇2kR4

in the case of four-graviton scattering. These couplings were originally obtained from the

computation of the perturbative string scattering amplitudes of states belonging to the

massless graviton supermultiplet, and their low-energy expansion in α′ = `2s [2, 6, 11].

With the (conjectural) discovery of non-perturbative U-duality Ed(Z) for the maximally

supersymmetric compactifications on tori T d−1 [22], non-perturbative contributions to the

higher-derivative corrections could be determined and are often related to automorphic

forms. Together with an analysis of supersymmetry constraints [17, 18, 20, 23], one can
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Figure 1. Dynkin diagram of Ed.

sometimes prove uniqueness of the perturbative and non-perturbative contributions to cer-

tain higher-derivative corrections [24].

Using the above methods together with consistency relations coming from various

perturbative and decompactification limits, it has been possible to pin down the Ed(Z)-

dependence of the correction terms R4 and ∇4R4 on the moduli Φ parametrising the

symmetric space Ed(R)/K(Ed), where Ed(R) is the split real form Ed(d) and K(Ed) its

maximal compact subgroup. The Dynkin diagram of Ed(d) is shown in figure 1. One has

to distinguish the cases d ≤ 7 where the U-duality symmetry Ed(Z) follows naturally from

charge quantisation, and the lattice of charges support the spectrum of BPS particles,

from the cases d = 8, 9 for which there is no such interpretation. In these cases one has

nonetheless conjectured U-dualities following the same pattern [22, 25] and one can define a

field theory in D = 3 and D = 2 dimensions, respectively, with a low-energy two-derivative

action that exhibits Ed(R) symmetry. By E9 we denote the affine Kac-Moody extension of

E8. For the indefinite hyperbolic and Lorentzian Kac-Moody symmetries E10 and E11, the

dynamical theory is less clear and the definition and separation of massless amplitudes is ill-

defined, but one can still formally use automorphic forms on them that are a book-keeping

device in that they decompactify correctly to the cases Ed(d) with d ≤ 9 [16]. In general,

these corrections are given by certain Eisenstein series on the groups Ed(d). Speaking in the

language of automorphic representations, the 1
2 -BPS correction R4 belongs to the minimal

unitary representation of Ed(R) while the 1
4 -BPS correction ∇4R4 belongs to a next-to-

minimal unitary representation [13, 15] (that is unique for d ≥ 7). The next case ∇6R4

has also attracted attention in the last years and has been treated using different methods

in [8, 9, 19, 20, 26, 27]. The corresponding function multiplying the ∇6R4 term in the

effective action, often denoted E(0,1), is generally the sum of two functions that correspond

to two distinct 1
8 -BPS supersymmetry invariants [20]. One is an Eisenstein series attached

to a next-to-minimal representation for d ≤ 6 (and next-to-next-to-minimal for d = 7),

while the other satisfies an inhomogeneous differential equations with sources quadratic in

E(0,0) [8]. Consequently, the latter is not an automorphic form and cannot be attached to

an automorphic representation in the standard sense. Despite this, one can prove that its

Fourier coefficients and the differential equations it satisfies are naturally associated to a

nilpotent orbit [28].

The coefficient functions E(0,1) multiplying the R4 term and E(1,0) multiplying the ∇4R4

term for compactifications on T d−1 were determined indirectly using consistency arguments.

A direct calculation was undertaken recently in [29] and based on the framework of excep-

tional field theory. Exceptional field theory [30–41] in D space-time dimensions uses an

extended ‘internal’ space whose coordinates YM transform in a representation Rαd of the
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Space-time dimension Hidden symmetry coordinates YM Section constraint

D = 11− d Ed(R) Rαd Rα1

9 GL(2,R) 1(−4) ⊕ 2(3) 2(−1)

8 SL(2,R)× SL(3,R) (2,3) (1,3)

7 SL(5,R) 10 5

6 SO(5, 5,R) 16 10

5 E6(R) 27 27

4 E7(R) 56 133

3 E8(R) 248 3875

Table 1. Coordinate representation Rαd and strong section constraint representation Rα1
for

hidden symmetry groups Ed(d) in dimension D = 11− d for 2 ≤ d ≤ 8.

symmetry group Ed(R) where d = 11−D. In order to eliminate extra degrees of freedom

compared to supergravity, any field of the theory (and product of fields) is required to

satisfy a section constraint that transforms in a different representation Rα1 of Ed(R).

These representations are tabulated for the various values of 0 < d ≤ 8 in table 1. More

precisely, one demands

∂

∂YM
A(x, Y )

∂

∂Y N
B(x, Y )

∣∣∣∣
Rα1

= 0 (1.1)

for any two fields A(x, Y ) and B(x, Y ), where xµ are the standard D-dimensional coordi-

nates and YM the extended coordinates. The representation Rα1 is contained in the tensor

product of two representations Rαd and can be interpreted as a 1
2 -BPS constraint. When

the theory is defined on D-dimensional Minkowski space times the exceptional torus (i.e. in

a background independent of the Y coordinates), the Fourier modes of momentum Γ satis-

fying the 1
2 -BPS constraint can be interpreted as massive 1

2 -BPS supermultiplets of states.

The exceptional field theory Lagrangian permits to describe the three-point interactions of

these multiplets, and their coupling to the massless supermultiplet.

Using this formalism and explicit one- and two-loop calculations in exceptional field

theory, together with a reduction to scalar diagrams as in [42, 43], we recovered from a

direct calculation the R4 and ∇4R4 correction functions in [29], confirming the previous

indirect results. We also obtained a form of the ∇6R4 correction function consistent with

its differential properties described above. Nonetheless, the consistency of our result re-

quired to neglect the one-loop contribution to the ∇4R4 correction to avoid divergences

and the doubling of the coefficient. Moreover, it is expected that the latter does not get

contributions from higher loops but it is known that ∇6R4 is corrected at three-loop. The

calculations in [29] can be seen as a U-duality completion of supergravity loop calculations

carried out in [44, 45] by including full multiplets of 1
2 -BPS states [7].

In the present paper, we extend this analysis to the three-loop contribution to the E(0,1)

coupling in exceptional field theory. As is known from [42, 43], there are several topologies

of scalar diagrams that arise at three-loop order in maximal supergravity. Not all of them
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are amenable to the exceptional field theory techniques developed in [29]. However, only one

of them is relevant for the ∇6R4 correction and it is treatable in perturbative exceptional

field theory. The skeleton graph in this case has tetrahedral structure [27].

By a careful analysis of the solutions of the section constraint and exploiting the

symmetries of the tetrahedron, we shall derive automorphic functions that solve the relevant

differential equations and we shall also see how our calculation exhibits a cancellation

of divergences in the various dimensions, with a dependence in a renormalisation scale

consistent with the known and expected ultraviolet divergences in supergravity.

We shall also discuss in detail aspects of the regularisation of the exceptional field

theory amplitudes, expanding on our proposal in [29]. As mentioned above, the one-loop

exceptional field theory contribution to the ∇4R4 coupling must be renormalised to zero to

give the correct finite result. The cancelling contribution was argued in [29] to come from

the contributions of 1
4 -BPS states that are neglected in exceptional field theory. In section 3,

we shall argue that one can obtain these 1
4 -BPS contributions by U-duality covariantisation

of the∇4R4 coupling obtained from perturbative string theory at one-loop. We shall exhibit

a formal cancellation of the 1
2 -BPS states (coming from exceptional field theory) and the

1
4 -BPS states contributions (from string theory), confirming the validity of the picture

in [29]. We also extend these arguments and discuss more generally the systematics of BPS

corrections up to ∇6R4 in section 4 where we also discuss non-renormalisation properties

of BPS solitons and instantons. This will allow us to exhibit that our framework provides a

consistent approach to determining the low-energy behaviour of the four-graviton scattering

process up to order ∇6R4.

2 The tetrahedral diagram and its symmetries

Up to two loops, all the Feynman diagrams contributing to the four-graviton scattering

amplitude involves internal momenta that satisfy the strong section constraint Γi×Γj = 0.

Here, Γi for i = 1, 2 are the discrete charges of the supermultiplet circulating in the loops.

The discrete charges are in the lattice Zd(αd) in the Ed(R) representation Rαd of dimension

d(αd) shown in table 1. As explained in [29], each contribution is then necessarily in the

U-duality orbit of a supergravity amplitude in two more dimensions on RD × T 2. It then

follows that the reduction of the amplitudes derived in supergravity in [42, 43] applies,

and the exceptional field theory amplitude reduces to the U-duality covariantisation (i.e.

Poincaré sum over U-duality orbits) of the supergravity amplitude. At three loops this

is no longer the case in general, and for example for the ladder diagram shown on the

right of figure 2, the momenta do not necessarily satisfy the strong section constraint.

Moreover, the amplitude includes then a priori four-point vertices between four massive

states of charges satisfying the strong section constraint, and the non-associativity of the

convolution product subjected to the section constraint implies that one cannot neglect the

1/4 BPS states multiplets in this computation. Nonetheless, we shall argue that the ∇6R4

coupling is still determined by the tetrahedral diagram contribution only in exceptional

field theory.
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Figure 2. The skeletons graphs at three-loop order. The tetrahedral graph on the left starts

contributing at order ∇6R4 in the derivative expansion whereas the ladder diagram on the right

has its first contribution at order ∇8R4.

There are two skeleton diagrams that arise at three-loop order, the tetrahedral graph

(a.k.a. Mercedes diagram) and the ladder diagram depicted in figure 2. The ladder diagram

does not give any contribution to order ∇6R4 in supergravity [43]. When all internal

momenta satisfy the strong section constraint Γi × Γj = 0, one can always use an element

of the U-duality group to consider an equivalent representative in eleven-dimensional (or

type IIB) supergravity, such that the same reduction of the diagrams computed in [43] also

applies in exceptional field theory. At one loop and at two loops, the fact that the three-

point vertices satisfy the section constraint implies that all momenta Γi have to satisfy the

strong section constraint consistently in a pairwise manner. But at three loops one can

have diagrams (like the ladder diagram) for which among the three momenta satisfying

Γi×Γi = 0, two of them fail to satisfy the strong section constraint, say Γ1×Γ2 6= 0 while

Γ1 × Γ3 = Γ2 × Γ3 = 0, see also [29]. Such a configuration is not Ed(Z) equivalent to a

configuration of momenta in supergravity and one cannot rely on [43] to deduce that they

could only contribute to higher order derivative couplings. Nonetheless, these contributions

with two momenta failing to satisfy the section constraint can be moved to a frame where

one can see them as momenta and winding of perturbative strings on the torus. In this

case indeed one can always find an element of Ed(Z) to rotate the element Γ1 × Γ2 in Rα1

to the highest weight representative. In the string perturbative parabolic decomposition

P1 of Ed(R),1

ed(d)
∼= (Λd−7V )(−2) ⊕ S(−1)

− ⊕ (gl1 ⊕ so(d− 1, d− 1))(0) ⊕ S(1)

− ⊕ (Λd−7V )(2) ,

R(Λd) ∼= · · · ⊕ (Λd−8V ⊕ Λd−6V )(2 d−8
9−d ) ⊕ S

( d−7
9−d )

+ ⊕ V ( 2
9−d ) ,

R(Λ1) ∼= · · · ⊕ (Λd−7V ⊗ S−)( 3d−23
9−d ) ⊕ (Λd−7V ⊕ Λd−5V )( 2d−14

9−d ) ⊕ S
( d−5
9−d )

− ⊕ 1( 4
9−d ) , (2.1)

the only solutions Γi to the section constraints compatible with the property that Γ1×Γ2 ∈
1( 4

9−d ) are such that all Γi ∈ V ( 2
9−d ). One can always choose the representative such that

Γ1 + Γ2 ∈ V ( 2
9−d ), and the constraint that Γ3× (Γ1 + Γ2) = 0 and (Γ1−Γ2)× (Γ1 + Γ2) = 0

impose that they both belong to V ( 2
9−d ) as well.

The low-energy expansion of the three-loop 4-graviton scattering amplitude computed

in [46] can be extended straightforwardly to toroidal compactifications [19]. The resulting

1With V we denote the vector representation of so(d− 1, d− 1) while S± denote the chiral spinors with

the convention that S− has its non-zero highest weight label on the node attached to node 1 when embedded

in ed. For even d one has S− ∼= S− while for odd d the isomorphism is S− ∼= S+.
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string theory contribution to the ∇6R4 coupling is simply the integral over the genus-

3 moduli space Sp(6,Z)\Sp(6,R)/U(3) of the SO(d − 1, d − 1) genus-3 Narain partition

function. It follows that the only string states contributing to ∇6R4 at 3-loop are level

matched, and so satisfy the strong section constraint. One can check in particular that this

contribution is the SO(d− 1, d− 1,Z) covariantisation of the ten-dimensional supergravity

amplitude as written in [27]. We conclude therefore that there are no contributions to the

∇6R4 coupling that fail to satisfy the strong section constraint at 3-loops. In the follow-

ing we shall therefore consider that the unique contribution comes from the tetrahedral

diagram.

Here we assume therefore that the exceptional field theory integrand is identical to

the one deriving from supergravity. The 3-loop supergravity amplitude was evaluated

in [42, 43] and it was shown in [27] that one can use several integrations by part to simplify

the three-loop tetrahedral diagram integrand to a manifestly SL(3,Z) invariant integrand

in nine dimensions.2 The dual graph of the tetrahedral skeleton is the regular tetrahedron,

making obvious that the symmetric group S4 is a symmetry of the configuration and we

will see below that the amplitude can be written in a way that is manifestly symmetric

under this group [27]. Extrapolating this result to exceptional field theory, one obtains the

contribution to the effective action at order ∇6R4

E (3-loop)

(0,1) =
5

6

∑
Γi∈Z3d(αd)

Γi×Γj=0

∫
S+

d6Ω

(det Ω)2− d−5
2

expµ

(
− πΩijg(Γi,Γj)

)
. (2.2)

Here, each of the three internal charges Γ1, Γ2 and Γ3 is an integral charge in Zd(αd) ⊂ Rαd .

The Ed(Z) invariant3

g(Γi,Γj) = ΓTi VVTΓj =
1

2

(
|Z(Γi + Γj)|2 − |Z(Γi)|2 − |Z(Γj)|2

)
(2.3)

appearing in the exponential is formed using the coset representative V(Φ) ∈ Ed(R)/K(Ed),

and |Z(Γ)| is the mass of a 1/2 BPS state of charge Γ satisfying the section constraint

Γ×Γ = 0. The integration domain S+ = (R+)6 denotes the positive Schwinger parameter

space. The six Schwinger parameters LA at three-loop order for the tetrahedral skeleton

have been arranged in the symmetric (3 × 3)-matrix

Ω = Ωij =

L1 + L3 + L5 L3 + L5 L5

L3 + L5 L2 + L3 + L5 + L6 L5 + L6

L5 L5 + L6 L4 + L5 + L6

 . (2.4)

Note that Ω is a symmetric and positive definite matrix on Schwinger parameter space S+.

There are three internal charges Γi propagating in the diagram and they all have to

mutually satisfy the strong section constraint Γi×Γj = 0. This is due to the structure of the

tetrahedral graph; generally only adjacent charges have to satisfy the section constraint [29].

2Note that the individual non-amputated diagrams underlying the tetrahedral skeleton are not just of

scalar φ3 type since they have non-trivial momentum dependence in the numerators.
3Here VT = (V−1)‡, where ‡ is the Cartan involution. There always exists a matrix representation of

real split groups Ed(R) on R(Λd) such that VT is the transpose of the matrix V.
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Since the ∇6R4 contribution is the lowest contribution from the tetrahedral skeleton

there is no dependence on the external momenta and dependence on the Schwinger param-

eters except for the overall scale and the BPS-mass through the exponential. We have also

included an index µ on the exponential to indicate that the amplitude has to be regulated

through the introduction of a mass term µ. We will be more explicit on this regularisation

below when we have rewritten the integral in a different form. The integral (2.2) also

exhibits the primitive divergence for d = 5 (corresponding to six space-time dimensions)

that corresponds to the known supergravity 3-loop logarithmic divergence [42, 43].

A first step in evaluating (2.2) consists in showing that the action of SL(3,Z) on the

symmetric matrices

Ω→ AΩAT , (2.5)

that preserves Schwinger parameter space S+ generates a finite S4 subgroup of SL(3,Z).

Because the action of SL(3,Z) is transitive on S+, any SL(3,Z) transformation that pre-

serves Schwinger parameter space acts by permuting fundamental domains of SL(3,Z) in

S+. Among all the S6 permutations of the Schwinger parameters, one computes straight-

forwardly that only a subgroup S4 ⊂ S6 can be realised in SL(3,Z). We have furthermore

checked that among hundred thousand SL(3,Z) matrices the only ones that preserve S+

all belong to this S4 subgroup, so that there are no other SL(3,Z) transformations acting

by permutations. One further check consists in computing the integral4

∫
S+

d6Ω

(det Ω)2−s e
−πdet Ω ≈ 24

πs
Γ(s)ξ(2)ξ(3) = 24

∫
H+

3×3/SL(3,Z)

d6Ω

(det Ω)2−s e
−πdet Ω , (2.6)

where we have done the integral on the left numerically on a subset of values for s ≥ 0.

The approximation is such that 24 is always the closest integer to the resulting value. The

integral on the right-hand side contains the space H+
3×3 of all symmetric positive definite

(3× 3)-matrices and the integral is known (see (A.2) in the appendix).

One concludes therefore that the subgroup of SL(3,Z) that stabilises Schwinger pa-

rameter space is S4 of order 24, such that the amplitude (2.2) reduces to

E (3-loop)

(0,1) = 20
∑

Γi∈Z3d(αd)

Γi×Γj=0

∫
H+

3×3/SL(3,Z)

d6Ω

(det Ω)2− d−5
2

expµ

(
− πΩijg(Γi,Γj)

)
. (2.7)

The constrained sum over the three internal charges Γi can be rewritten by a suitable

parabolic decomposition of the Ed(d) duality group. This is a generalisation of the discussion

in [29] where a similar decomposition was performed at two-loop order. Consider a single

charge Γ1 ∈ Zd(αd) satisfying Γ1×Γ1 = 0, using [47], one has for d ≤ 7 that one can always

use an element of the Chevalley subgroup Ed(Z) to rotate the discrete charge in the highest

4The function ξ(s) appearing here and in many other places in this paper is the completed Riemann

zeta function defined by ξ(s) = π−s/2Γ(s/2)ζ(s) that satisfies the functional identity ξ(s) = ξ(1− s).
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degree component 1(10−d) in the decomposition

ed(d)
∼= R(d−9)

αd−1
⊕
(
gl1 ⊕ ed−1(d−1)

)(0) ⊕R
(9−d)
αd−1

,

Rαd
∼= δ

(−3)

d,7 ⊕R(d−8)
α1

⊕R(1)
αd−1

⊕ 1(10−d) ,

Rα1
∼= . . . ⊕ δ

(4(d−7))

d≥6 ⊕R(d−7)
α2

⊕R(2)
α1
, (2.8)

Using this one straighforwardly checks that a second charge Γ2 such that Γ1 × Γ2 = 0

must belong to R
(1)

αd−1
⊕ 1(10−d). Using furthermore Γ2 × Γ2 = 0, one can use the same

property to conclude that the second charge belongs to the highest level decomposition of

ed−1(d−1) under ed−2(d−2). The two charges can then be chosen to be in the highest degree

component 2(11−d) in the decomposition

ed(d)
∼= R(2d−18)

α1
⊕ (2⊗Rαd−2

)(d−9)⊕
(
gl1 ⊕ sl2 ⊕ ed−2(d−2)

)(0)⊕ (2⊗Rαd−2
)(9−d)⊕R

(18−2d)

α1
,

Rαd
∼= (δd,72)(d−11) ⊕R(2d−16)

α2
⊕ (2⊗Rα1)(d−7) ⊕R(2)

αd−2
⊕ 2(11−d) ,

Rα1
∼= . . . ⊕ (δd,7(1⊕ 3)⊕Rα3)(2d−14) ⊕ (2⊗Rα2)(d−5) ⊕R(4)

α1
. (2.9)

Assuming that the two charges Γ1,Γ2 are linearly independent, one finds by inspecting

the decomposition of the representations above that any third charge Γ3 satisfying that

Γ3 × Γi = 0 must belong to the component R
(2)

αd−2
⊕ 2(11−d). Because the component of

Γ3 in R
(2)

αd−2
again satisfies the same constraint, one can therefore conclude that the three

charges belong to the highest degree component 3(12−d) in the decomposition

ed(d)
∼= . . .⊕

(
gl1 ⊕ sl3 ⊕ ed−3(d−3)

)(0) ⊕ (3⊗Rαd−3
)(9−d) ⊕ (3⊗Rα1)(18−2d) ⊕R

(27−3d)

α2
,

Rαd
∼= . . .⊕ (3⊗Rα2)(2d−15) ⊕ (3⊗Rα1)(d−6) ⊕R(3)

αd−3
⊕ 3(12−d) ,

Rα1
∼= . . .⊕ (3⊗Rα2)(d−3) ⊕R(6)

α1
, (2.10)

where for d ≤ 6 the algebra ed−3(d−3) has to be interpreted as the correct hidden symmetry

obtained from decompactification and the representation Rαa has to be interpreted ac-

cordingly.5 The same argument generalises to e8(8) using [48], and one proves in the same

way that three charges belonging to the corresponding lattice belong to the highest degree

component 3(4) in

e8(8)
∼= . . .⊕

(
gl1 ⊕ sl3 ⊕ so(5, 5)

)(0) ⊕ (3⊗ 16)(1) ⊕ (3⊗ 10)(2) ⊕ 16
(3) ⊕ 3(4) ,

3875 ∼= . . .⊕ (3⊗ 16)(5) ⊕ 10(6) . (2.11)

The salient point here is that the tensor product of two top components in 3(12−d) always

satisfies the strong section constraint (for d ≤ 8) and is moreover stabilised by the upper

parabolic subgroup Pd−2 with the chosen Levi factor Ed−3(d−3) × SL(3) ×GL(1). We can

bring any triplet of charges satisfying the strong section constraint into three copies of the

3(12−d), i.e. represent them by a (3 × 3)-matrix M and conversely any such triplet can be

represented as an image of such an M under the action of Ed(d) modulo the stabiliser Pd−2.

5In particular for d = 4 one must consider the sum of the two contributions associated to the type

IIA and IIB decompactification. For d = 3 the decompactification is necessarily to eleven-dimensional

supergravity for three linearly independent charges, and they cannot be linearly independent for d < 3.
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This construction can be understood more generally from the Bruhat decomposition

of a Kac-Moody group, and, as a consequence, that any group element defined over Q can

be decomposed as the product of an element in the Chevalley group defined over Z and an

element in the Borel subgroup over Q , i.e. G(Q) = B(Q)G(Z). We discuss this in some

detail in appendix C, in which we show that the same construction can be generalised to

Kac-Moody groups and in particular to E9(9).

One can therefore rewrite the threshold function (2.2) as a sum of four terms corre-

sponding to the possible ranks of the matrix M

E (3-loop)

(0,1) =20

∫
H+

3×3/SL(3,Z)

d6Ω

(det Ω)2− d−5
2

( ∑
γ∈Pd−2\Ed

∑
M∈Z3×3

detM 6=0

exp
(
− πTr (ΩMτGL(3)

γ MT )
)

+
∑

γ∈Pd−1\Ed

∑
M∈Z3×2

rkM=2

exp
(
− πTr (ΩMτGL(2)

γ MT )− πµ2R2(Ω)
)

(2.12)

+
∑

γ∈Pd\Ed

∑
m∈Z3

m 6=0

exp
(
− πTr (ΩmτGL(1)

γ mT )− πµ2R1(Ω)
)

+ exp
(
−πµ2R0(Ω)

))

Here, τGL(n)
γ is the GL(n) symmetric matrix representating the Ed(d) representative in the

top component n(9−d+n) in the decomposition of Rαd , after the action of the discrete

γ ∈ Pd+1−n\Ed(Z) coset representative τGL(n)
γ (V) = τGL(n)(γV). Note indeed that the repre-

sentatives of the charges only contract into this part of the full Ed(R) coset element, such

that with the corresponding embedding of M ∈ Zn×d(αd), MτGL(n)(V)MT = MVVTMT .

Rn(Ω) are some functions of Ω that we shall specify below, that regulate the infrared di-

vergence with the infrared regulating mass µ. The specific contributions in log µ that will

be relevant in the following should not depend on the specific choice of function Rn(Ω), so

we shall choose them such as to make the computation as simple as possible.

We will now unfold the integral over H+
3×3/SL(3,Z) for each orbit in the above equa-

tion. For non-degenerate three by three matrices the stabiliser of SL(3,Z) is trivial so that

we can unfold the integral to H+
3×3. For simplicity we shall consider twice the sum over non-

degenerate matrices in Z3×3/GL(3,Z) (rather than once the matrices in Z3×3/SL(3,Z)).

For rank two three by two matrices, the stabiliser is Z2 ⊂ SL(3,Z), and SL(3,Z) allows

to rotate M to two by two representatives of non-vanishing determinant in Z2×2/GL(2,Z).

This choice distinguishes the decomposition of the symmetric matrix of Schwinger param-

eters in block form as

Ω =

(
Ω2×2 Ω2×2u

uTΩ2×2 u
TΩ2×2u+ t

)
⇒ det Ω = t det Ω2×2 , (2.13)

and

d6Ω = (det Ω2×2) d3Ω2×2 d
2u dt , (2.14)

such that Tr (Ω3×3M3×2τ
GL(2)
γ MT

3×2) = Tr (Ω2×2M2×2τ
GL(2)
γ MT

2×2), and the Z2 stabiliser acts

as a shift of u. Choosing for convenience R2(Ω) = t to regularise the integral, the integral

of u simply gives a unit volume contribution.
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For non-zero vectors m ∈ Z3 the stabiliser is SL(2,Z) n Z2 ⊂ SL(3,Z), and SL(3,Z)

permits to rotate m to a positive integer in the first component. This choice distinguishes

the decomposition of the symmetric matrix of Schwinger parameters in block form as

Ω =

(
Ω1×1 Ω1×1u

T

uΩ1×1 t2×2 + uΩ1×1u
T

)
⇒ det Ω = det t2×2 Ω1×1 , (2.15)

and

d6Ω = (det t2×2) dΩ1×1 d
2u d3t2×2 , (2.16)

such that Tr (Ω3×3mτ
GL(1)
γ mT ) = Ω1×1τ

GL(1)
γ m2, and the SL(2,Z) n Z2 stabiliser acts as

a shift of u, and linearly on u and t. Choosing for convenience R1(Ω) = det t2×2 to

regularise the integral, the integral of u simply gives a 1
2 volume contribution (because of

the −1 ∈ SL(2,Z) that does not act on t). The remaining integral over the matrix t2×2

is over H+
2×2/PSL(2,Z), which is twice the integral over H+

2×2/PGL(2,Z), so we reabsorb

the factor of 1
2 of the integral over u by this halving of the integration domain of t2×2.

For the trivial orbit the stabiliser is of course SL(3,Z) = PGL(3,Z). For convenience

we write the variable as t3×3, since the integral contribution is defined by its infrared

divergence, and we use R0(t3×3) = det t3×3 for simplicity.

So to conclude, the orbit method permits to reduce the threshold function to

E (3-loop)

(0,1) = 40
∑

γ∈Pd−2\Ed

∑
M∈Z3×3/GL(3,Z)

det (M) 6=0

∫
H+

3×3

d6Ω

(det Ω)2− d−5
2

exp
(
− πTr (ΩMτGL(3)

γ MT )
)

+ 20
∑

γ∈Pd−1\Ed

∑
M∈Z2×2/GL(2,Z)

det (M) 6=0

∫
H+

2×2

d3Ω

(det Ω)
3
2
− d−4

2

∞∫
0

dt

t1−
d−7

2

× exp
(
− πTr (ΩMτGL(2)

γ MT )− πµ2t
)

+ 20
∑

γ∈Pd\Ed

∑
m>0

∞∫
0

dΩ

Ω1− d−3
2

∫
H+

2×2/PGL(2,Z)

d3t

(det t)
3
2
− d−6

2

× exp
(
− πΩτGL(1)

γ m2 − πµ2det t
)

+ 20

∫
H+

3×3/PGL(3,Z)

d6t

(det t)2− d−5
2

exp
(
− πµ2det t

)
. (2.17)

In this formula we have suppressed the subscripts on the sub-blocks in Ω, M and t in order

to ease the notation. Their size is evident from the summation and integration ranges.

In the next step, we carry out the integrals over Ω and t using the formulæ of ap-

pendix A. These reduce the expressions for each rank into a power of det τγ multiplied by

a power of the regulator µ and d-dependent numerical factors involving Γ and ξ factors.
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The result is

E (3-loop)

(0,1) = 40ξ(d− 5)ξ(d− 6)ξ(d− 7)
∑

γ∈Pd−2\Ed

(det τGL(3)

γ )−
d−5

2

+ 20Γ

(
d− 7

2

)
(πµ2)−

d−7
2 ξ(d− 4)ξ(d− 5)

∑
γ∈Pd−1\Ed

(det τGL(2)

γ )−
d−4

2

+ 20ξ(2)Γ

(
d− 6

2

)
(πµ2)−

d−6
2 ξ(d− 3)

∑
γ∈Pd\Ed

(τGL(1)

γ )−
d−3

2

+ 20ξ(2)ξ(3)Γ

(
d− 5

2

)
(πµ2)−

d−5
2 . (2.18)

The γ-sums over the duality group can be carried out to yield the final result

E (3-loop)

(0,1) = 40ξ(d− 5)ξ(d− 6)ξ(d− 7)Eαd−2,
d−5

2

+ 20Γ

(
d− 7

2

)
(πµ2)−

d−7
2 ξ(d− 4)ξ(d− 5)Eαd−1,

d−4
2

+ 20ξ(2)Γ

(
d− 6

2

)
(πµ2)−

d−6
2 ξ(d− 3)Eαd, d−3

2

+ 20ξ(2)ξ(3)Γ

(
d− 5

2

)
(πµ2)−

d−5
2 , (2.19)

where the Langlands Eisenstein series coming from the maximal parabolic cosets sums

have been labelled by the node associated with the maximal parabolic subgroup of Ed(d)

together with the parameter of the inducing determinant.

Before explaining the derivation (2.19) in more detail, we make a small parenthesis on

our different conventions for denoting Eisenstein series. More precisely, we have used for

1 ≤ n ≤ 3

Eαd+1−n,s =
∑

γ∈Pd+1−n\Ed

(
det τGL(n)

γ

)−s
, (2.20)

such that the identity coset term has numerical coefficient equal to one. We shall also

encounter Eisenstein series associated with non-maximal parabolic subgroups and in this

case it is convenient to either label the series by putting the corresponding weight {si}di=1 on

the Dynkin diagram (for a fixed symmetry group Ed(d)) or by writing the weight
∑d

i=1 siΛi
in the basis of the fundamental weights {Λi}di=1. Note that the Eisenstein series are instead

commonly labeled by the weight λ = 2
∑d

i=1 siΛi − ρ =
∑d

i=1(2si − 1)Λi defining the

infinitesimal character on which the Weyl group acts in functional relations. For ease of

notation it will be nonetheless useful to label them by
∑d

i=1 siΛi for short, since most of

the si vanish in practice. Concretely, we write for maximal parabolic Eisenstein series

Eαi,s = EsΛi (2.21)

indicating that the fundamental weight Λi occurs with coefficient s in the weight. Moreover,

we use the Ed labelling for the fundamental weights and the standard labelling for the
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Dynkin diagrams, such that we would write for example for E5(5) = SO(5, 5) of type D5

E∑d
i=1 siΛi

= E[ ss s s s

] . (2.22)

In deriving the final expression (2.19), we have used the identities for the matrix integrals

and Eisenstein series naively and without paying attention to their convergence. In fact

one can check that the integral over t only converges absolutely for the rank n orbit if

d > 5 + n and the integral over Ω for the rank n orbit if d > 1 + 2n. To take care of the

convergence of the Langlands Eisenstein series we consider the analytic continuation of the

parameter by replacing d by d+ 2ε, which corresponds formally to dimensional regularisa-

tion. In this case one checks that the Eisenstein series Eαd+1−n,
d−2−n

2 + ε converges absolutely

for Re(ε) > n2−(d−2)n+7d−3
2(9+n−d) , using the convergence criterion that EsΛi is absolutely con-

vergent if and only if 〈Λi, sΛi − ρ〉 > 0 for a maximal parabolic Eisenstein series.6 These

expression are therefore generally divergent at ε = 0, but are absolutely convergent for

Re(ε) satisfying the above inequality. Using Langlands’ construction these functions can

then be analytically extended to meromorphic functions in ε to the whole complex plane,

where one also continues the numerical prefactors appropriately. We shall use this analytic

continuation as a dimensional regularisation as in [29]. Each individual expression is then

finite for a dense set of ε ∈ C, but the expressions involve individually poles at ε = 0.

These divergences are also to be expected on physical grounds and signal the appearance

of ultra-violet divergences of amplitudes or form factors in supergravity, or equivalently,

ambiguities in the decomposition of the non-perturbative string amplitude into analytic

and non-analytic components due to the logarithmic behaviour of the latter in the Man-

delstam variables. We will now discuss the treatment of these divergences in the different

dimensions, and show that all poles cancel in the complete expression for the amplitude

for all d.

2.1 D = 6

For six space-time dimensions (d = 5) one has to interpret the Eisenstein series from the

various orbits as follows where we also introduce the dimensional regularisation d = 5 + 2ε:

Eαd−2,ε = E[ ε
0ε 0

0

] , Eαd−1,12+ε
= E[ 0

00 1
2
+ε

0

] , Eαd,1+ε = E[ 0
00 0

+ε

] . (2.23)

In particular, the series Eαd−2,ε is not a maximal parabolic Eisenstein series and converges

absolutely for Re(ε) > 5
2 . Considering the factors multiplying the various terms we see that

the contributions from the rank-one orbit and rank-two orbit give only finite contributions

for ε → 0 that vanish when sending the IR regulator µ to zero. The rank-three and

rank-zero orbits on the other hand give divergent contributions that we now analyse.7

Let us first analyse the series coming from the non-degenerate orbit. This term is

divergent due to the ξ(d − 5) → ξ(2ε) prefactor. To analyse it, we note the following

6The case d = 5 and n = 3 has to be treated separately since it is not a maximal parabolic series and

we will give its convergence condition below after (2.23).
7For the Eisenstein series themselves one has E

SO(5,5)
αd,1+ε = O(ε0), E

SO(5,5)

αd−1,
1
2

+ε
= O(ε2) and E

SO(5,5)
αd−2,ε = O(ε0).
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functional relations of Eisenstein series

E[ 0
0ε 0

0

] =
ξ(5− 2ε)ξ(6− 2ε)ξ(7− 2ε)ξ(8− 4ε)

ξ(1− 2ε)ξ(2− 2ε)ξ(3− 2ε)ξ(7− 4ε)
E[ 0

0 7
2
-ε 0

0

] ,

E[ ε
00 0

0

] =
ξ(6− 2ε)ξ(8− 2ε)

ξ(1− 2ε)ξ(3− 2ε)
E[ 0

00 0
-ε

] . (2.24)

Using the property that

E[ ε
0ε 0

0

] = E[ 0
0ε 0

0

] + E[ ε
00 0

0

] − E[ 0
00 0

0

] +O(ε2) , (2.25)

one deduces therefore that the rank-three contribution becomes

ξ(2)ξ(3)ξ(2ε)E[ ε
0ε 0

0

]=ξ(2)ξ(3)ξ(2ε)+ξ(5)ξ(6)ξ(8)Ê[ 0
0 7

2
0
0

]+ξ(2)ξ(6)ξ(8)Ê[ 0
00 0



]+O(ε),

(2.26)

where the hat on the Eisenstein series indicates that the pole in 1
ε has been removed before

taking the limit ε→ 0, e.g.

Ê[ 0
00 0



] = lim
ε→0

(
E[ 0

00 0
+ε

] − ξ(1 + 2ε)ξ(3 + 2ε)

ξ(6 + 2ε)ξ(8 + 2ε)

)
,

Ê[ 0
0 7

2
0
0

] = lim
ε→0

(
E[ 0

0 7
2

+ε 0
0

] − ξ(1 + 2ε)ξ(2 + 2ε)ξ(3 + 2ε)ξ(7 + 4ε)

ξ(5 + 2ε)ξ(6 + ε)ξ(7 + 2ε)ξ(8 + 4ε)

)
. (2.27)

The remaining explicit divergence in (2.26) associated with ξ(2ε) ∼ − 1
2ε , cancels precisely

the leading part in the IR divergence in the last term of (2.19) coming from the rank-

zero orbit.

Putting everything together we therefore obtain (for some irrelevant constant c1)

E (3-loop)

(0,1) = 40ξ(5)ξ(6)ξ(8)Ê[ 0
0 7

2
0
0

] + 40ξ(2)ξ(6)ξ(8)Ê[ 0
00 0

4

] − 20ξ(2)ξ(3)(log(πµ2) + c1) .

(2.28)

The two series are the two homogeneous solutions to the differential equation for the ∇6R4

term and the combination is the one displayed in [28]. The constant logarithmic term

in ξ(2)ξ(3) log(πµ2) exhibits the need of introducing a renormalisation scale in the non-

analytic component of the amplitude, which is a consequence of the logarithmic divergence

in the supergravity four-graviton scattering amplitude at 3-loop [43].

2.2 D = 5

For five space-time dimensions (d = 6 + 2ε) one has to perform a similar analysis to above.

The only interesting terms are the rank-three and the rank-one orbit in this case

E (3-loop)

(0,1) = 40ξ(2− 2ε)ξ(1+2ε)ξ(2ε)E[ 0
0 0 1

2
+ε 0 0

] + 20ξ(2)Γ(ε)(πµ2)−εξ(3+2ε)E[ 0
0 0 0 0 3

2
+ε

] .
(2.29)
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Using the functional relations

ξ(1 + 2ε)E[ 0
0 0 1

2
+ε 0 0

] = ξ(3− 2ε)E[ ε
0 ε 0 0 3

2
-ε

] , (2.30)

E[ -ε
0 0 0 0 3

2
+ε

] =
ξ(6 + 2ε)ξ(9 + 2ε)

ξ(1 + 2ε)ξ(3 + 2ε)
E[ 0

0 0 0 0 9
2
+ε

] ,

E[ 0
0 ε 0 0 3

2
-ε

] =
ξ(2 + 2ε)

ξ(3− 2ε)
E[ 1+ε

0 0 0 0 0

]

=
ξ(6− 2ε)ξ(7− 2ε)ξ(8− 4ε)ξ(9− 2ε)

ξ(2ε)ξ(2− 2ε)ξ(3− 2ε)ξ(7− 4ε)
E[ 9

2
-ε

0 0 0 0 0

] ,

one can simplify the rank-three orbit contribution similarly as for (2.26)

ξ(2ε)ξ(1 + 2ε)E[ 0
0 0 1

2
+ε 0 0

] = ξ(2 + 2ε)ξ(2ε)E[ 1+ε
0 0 0 0 0

] + ξ(3− 2ε)ξ(2ε)E[ 0
0 0 0 0 3

2
+ε

]

− ξ(2ε)ξ(3− 2ε)

ξ(−2ε)ξ(3 + 2ε)
ξ(6 + 2ε)ξ(9 + 2ε)E[ 0

0 0 0 0 9
2
+ε

]+O(ε) .

(2.31)

The divergent second term in (2.31) cancels against the rank-one contribution, leaving only

finite pieces and logarithms of the IR regulator µ. With a similar appropriate definition of

the regularised Eisenstein series one obtains

E (3-loop)

(0,1) = 40ξ(6)ξ(8)ξ(9)Ê[ 9
2

0 0 0 0 0

] + 40ξ(2)ξ(6)ξ(9)Ê[ 0
0 0 0 0 9

2

]
−20ξ(2)ξ(3) log(πµ2)E[ 0

0 0 0 0 3
2

] . (2.32)

Once again, the two series defining the µ independent contribution are the two homogeneous

solutions to the differential equation for the ∇6R4 term and the combination is the one

displayed in [28]. The constant logarithmic term in ξ(2)ξ(3) log(πµ2) exhibits the need

of introducing a renormalisation scale in the non-analytic component of the amplitude,

which is a consequence of the logarithmic divergence in the supergravity form factor of the

E(0,0)R
4 type invariant with four external gravitons at 2-loop.

2.3 D = 4

For d = 7 + 2ε, it is the rank 2 orbit that is divergent in the limit µ → 0, and one gets

together with the rank 3 orbit

E (3-loop)

(0,1) = 40ξ(2 + 2ε)ξ(1 + 2ε)ξ(2ε)E[ 0
0 0 0 +ε 0 0

]
+ 20Γ(ε)(πµ2)−εξ(2 + 2ε)ξ(3 + 2ε)E[ 0

0 0 0 0 3
2
+ε 0

] , (2.33)

Using successive Weyl group transformations one proves the identities

E[ 0
0 0 0 +ε 0 0

] =
ξ(3− 2ε)ξ(4− 2ε)ξ(7− 4ε)ξ(8− 6ε)

ξ(1 + 2ε)ξ(2 + 2ε)ξ(3− 4ε)ξ(7− 6ε)
E[ 0

0 ε 0 0 ε 4-3ε

] (2.34)
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and

E[ 0
0 0 0 0 ε 4-2ε

] =
ξ(9− 2ε)ξ(12− 2ε)

ξ(1− 2ε)ξ(4− 2ε)
E[ 0

-ε 0 0 0 0 0

] ,

E[ 0
0 ε 0 0 0 4-2ε

] =
ξ(2 + 2ε)ξ(3 + 2ε)ξ(3− 4ε)

ξ(4− 2ε)ξ(3− 2ε)ξ(8− 4ε)
E[ 0

0 0 0 0 3
2
+ε 0

] , (2.35)

which imply that

E[ 0
0 ε 0 0 ε 4-3ε

] =
ξ(9−2ε)ξ(12−2ε)

ξ(1−2ε)ξ(4−2ε)
E[ 0

-ε 0 0 0 0 0

] +
ξ(2+2ε)ξ(3+2ε)ξ(3−4ε)

ξ(4−2ε)ξ(3− 2ε)ξ(8−4ε)
E[ 0

0 0 0 0 3
2
+ε 0

]
− E[ 0

0 0 0 0 0 4-ε

] +O(ε2) . (2.36)

Substituting this last expression in (2.33), one gets that the poles in E[ 0
0 0 0 0 3

2
0

] cancel be-

tween the rank three and the rank two orbits, and using (2.35) that the poles in E[ 0
0 0 0 0 0 4

]
cancel as well, such that the final expression is finite. Using moreover the identities

ξ(8− 2ε)ξ(4− 2ε)ξ(−2ε)E[ 0
0 0 0 0 0 4-ε

] = ξ(2 + 2ε)ξ(6 + 2ε)ξ(10 + 2ε)E[ 0
0 0 0 0 0 5+ε

] , (2.37)

and

ξ(3)E[ 0
0 0 0 0 3

2
0

] = ξ(5)E[ 05
2

0 0 0 0 0

] , (2.38)

one obtains finally

E (3-loop)

(0,1) = 40ξ(8)ξ(9)ξ(12)Ê[ 0
 0 0 0 0 0

] + 40ξ(2)ξ(6)ξ(10)Ê[ 0
0 0 0 0 0 5

]
−20ξ(2)ξ(5) log(πµ2)E[ 05

2
0 0 0 0 0

] , (2.39)

where the hatted functions are defined to be the finite part of the corresponding divergent

Eisenstein series, for which the pole
(

1
ε + cE

)
E
[

05
2

0 0 0 0 0

]
has been removed for a given

choice of constant cE . Here we do not define a precise subtraction scheme (defining cE),

since this would only become meaningful if we were also considering the appropriately

regularised non-analytic part of the amplitude such that the complete amplitude would

match correctly the perturbative string theory three-loop amplitude. The full 3-loop non-

analytic amplitude is not known. The two series defining the µ independent contribution

are the two homogeneous solutions to the differential equation for the ∇6R4 term and the

combination is the one displayed in [28]. The constant logarithmic term in ξ(2)ξ(5) log(πµ2)

exhibits the need of introducing a renormalisation scale in the non-analytic component of

the amplitude, which is a consequence of the logarithmic divergence in the supergravity

form factor of the E(1,0)∇4R4 type invariant with four extrenal gravitons at 1-loop in four

dimensions.

2.4 D = 3

For D = 3 (d = 8) there is not much to do. The non-degenerate orbit satisfies the functional

relation

E[ 0
0 0 0 0 3

2
+ε 0 0

] =
ξ(2− 2ε)ξ(3− 2ε)ξ(4− 2ε)ξ(6− 4ε)ξ(7− 4ε)ξ(11− 6ε)

ξ(1 + 2ε)ξ(2 + 2ε)ξ(3 + 2ε)ξ(3− 4ε)ξ(4− 4ε)ξ(7− 6ε)
E[ 0

0 0 ε 0 0 0 11
2

-ε

] ,
(2.40)
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and so directly relates in a regular way to the adjoint function at s8 = 11
2 that solves the

homogeneous supesrymmetry differential equations and that comes with a finite overall

coefficient. In dimensions D > 3 we always had combinations of adjoint and fundamental

Eisenstein series above. For E8, these two notions coincide and that is why the presence

of only one function here agrees with the expectations. The two classes of supersymmetry

invariants with couplings satisfying two distinct sets of differential equations also coincide

in D = 3 and there is a unique class of supersymmetry invariant [20].

The final answer obtained from our 3-loop calculation is then

E (3-loop)

(0,1) = 40ξ(8)ξ(9)ξ(11)E[ 0
0 0 0 0 0 0 11

2

] . (2.41)

As in the other cases the non-degenerate orbit provides the homogeneous solution to the

differential equations of [20] and it was shown in particular in [28] that the above Eisenstein

series encodes all the relevant information about supergravity divergences up to three loops.

2.5 D < 3

We can also treat the expression (2.19) formally in dimensions when the hidden symmetry

is thought to be of Kac-Moody type [49–51]. A full exceptional field theory has not been

developed in these cases. For D = 2 one can define the four-scalar amplitude in supergravity

and the two-derivative effective theory is known to admit a Kac-Moody E9 symmetry [52].

A closed algebra of generalised diffeomorphisms for the corresponding exceptional field

theory has been defined in [53], and it involves exceptional coordinates in the expected

highest weight module Rαd . As we explain in appendix C, the situation is then essentially

as much in control as for D = 3, so that one arrives to the same formula (2.19). For d ≥ 8,

this formula indicates that one can neglect the lower rank contribution in the limit µ→ 0,

so that one only gets the maximal rank contribution with a finite coefficient. In this section

we shall also extrapolate these formulas for d > 9, although there is no clear scattering

amplitude defining the coupling in this case.

From the analysis of the D = 3 case above, we anticipate that there should only be

a ‘fundamental’ series on the last node of the Ed Dynkin diagram in figure 1. Using the

properties of Kac-Moody Eisenstein series [16, 54–56] we can address this question. As

we discuss in more detail in appendix C one can relate the constrained Epstein sums over

1/2-BPS charges to Langlands Eisenstein series on the completed Kac-Moody group that

are also discussed in the appendix.

For D = 2 (d = 9) we are in the affine E9 case. Due to the degenerate Cartan

matrix one has to treat the derivation (that is used to desingularise the Cartan matrix)

separately [54, 55]. There is a parameter v associated with the derivation direction in the

affine Lie algebra that is dual to the null root. We discuss more details related to this

subtlety in appendix C. One has that the fundamental series for E9 satisfies

EsΛ9 =
ξ(2s− 13)ξ(2s− 14)ξ(2s− 15)

ξ(2s)ξ(2s− 6)ξ(2s− 10)
v14−4sE(s−6)Λ3+(8−s)Λ7

, (2.42)
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where we use the notational conventions discussed around (2.21). For s = 6 one deduces

then that the non-degenerate orbit contribution in (2.19) is

40ξ(2)ξ(3)ξ(4)v2Eα7,2 = 40ξ(2)ξ(6)ξ(12)v12Eα9,6 (2.43)

and this agrees with the one-loop result of [29], see also appendix C.

As stressed in the introduction the cases E10 and E11 are more formal, but we will

now show that they work in an exactly parallel manner.

For D = 1 (d = 10) the conjectured symmetry group is the hyperbolic E10 and we

have formally that an Eisenstein series on the fundamental node satisfies the functional

relation

EsΛ10 =
ξ(2s− 15)ξ(2s− 16)ξ(2s− 17)

ξ(2s)ξ(2s− 7)ξ(2s− 11)
E

(s−13
2 )Λ3+(9−s)Λ8

(2.44)

so that the non-degenerate orbit in (2.19) is related to a fundamental series by

40ξ(3)ξ(4)ξ(5)Eα8,5/2 = 40ξ(2)ξ(6)ξ(13)Eα10,13/2 = E (1-loop)

(0,1) , (2.45)

where the last step shows that this is formally equal to the contribution from the one-loop

exceptional field theory amplitude in ([29], eq. (3.9)).

For D = 0 (d = 11) the conjectured symmetry group is the Lorentzian E11. The

functional relation in this case reads

EsΛ11 =
ξ(2s− 17)ξ(2s− 18)ξ(2s− 19)

ξ(2s)ξ(2s− 8)ξ(2s− 12)
E(s−7)Λ3+(10−s)Λ9

. (2.46)

At s = 7 this gives the desired relation between the non-degenerate orbit in (2.19) and the

one-loop calculation:

40ξ(4)ξ(5)ξ(6)Eα9,3 = 40ξ(2)ξ(6)ξ(14)Eα11,7 = E (1-loop)

(0,1) . (2.47)

3 One-quarter BPS contributions

One way to extract the 1/4 BPS states contribution is to consider the superstring ampli-

tude. Ed(Z) relates all 1/2 BPS states to 11-dimensional supergravity torus Kaluza-Klein

states. Similarly, Ed(Z) relates all 1/4 BPS states to perturbative string theory states

with torus winding and momenta that are not orthogonal (do not satisfy level matching).

The 1-loop string theory contribution to the ∇4R4 coupling is given by an integral of a

modular graph function against the Narain theta function Γd−1,d−1 associated with the

torus T d−1. The modular graph function in this case is well-known to be proportional to

the real analytic Eisenstein series E2 [5, 12, 57] and this leads to

EString (1-loop)
(1,0) = 4πg

−2 d+1
9−d

s

∫
F1

d2τ

τ 2
2

ξ(4)E2(τ)τ
d−1

2
2

∑
Q∈Zd−1,d−1

e−πτ2g(Q,Q)+iπτ1〈Q,Q〉 . (3.1)

F1 denotes the fundamental domain of the inequivalent toroidal world-sheets parametrised

by the world-sheet modulus τ . Q denotes the momentum and winding charges of the string

on T d−1.
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The standard unfolding procedure, including an appropriate regulator [58, 59], permits

to compute the integral (3.1) and to recover the O(d − 1, d − 1) vector Eisenstein series

of weight d+1
2 . This computation suggests that only 1/2 BPS states contribute to the

amplitude, because the integral over τ1 then enforces the level matching condition 〈Q,Q〉 =

0 satisfied by 1/2 BPS string states. However, we know that 1/4 BPS states contribute as

well when d > 0 [6, 15]. To recover the complete set of states contributing to the amplitude

from (3.1) we substitute the formal identity

1 = lim
ε→0

∑
γ∈Z\PSL(2,Z)

τ ε2,γ (3.2)

by analytic continuation of the function for Re(ε) > 1. As a consequence, we are saying

that (3.1) is formally equal to the same integral over a complete unit strip in the upper

complex half-plane H+ when we freely unfold this coset sum and then take the limit again.

In the integral over H+ we can then substitute the Fourier expansion of E2(τ) and obtain

for the non-zero Fourier coefficients8

8πg
−2 d+1

9−d
s

∑
n 6=0

∑
Q∈Zd−1,d−1

∫
Z\H+

dτ

τ2
2

τ
d/2
2 σ3(n)|n|−3/2K 3

2
(2π|n|τ2)e2πinτ1−πiτ1〈Q,Q〉−πτ2g(Q,Q)

= 8πg
−2 d+1

9−d
s

∫ ∞
0

dτ2

τ2

∑
Q∈Zd−1,d−1

〈Q,Q〉6=0

σ3

(∣∣ 〈Q,Q〉
2

∣∣)
| 〈Q,Q〉2

∣∣ 3
2

K 3
2

(
2πτ2

∣∣ 〈Q,Q〉
2

∣∣) τ d−2
2

2 e−πτ2g(Q,Q) (3.3)

= 2π
5−d

2 Γ(d−5
2 )

∑
Q∈Zd−1,d−1

〈Q,Q〉6=0

σ3

(
| 〈Q,Q〉2 |

) g
4

9−d
s g(Q,Q) + (d− 3)g

4
9−d
s

∣∣ 〈Q,Q〉
2

∣∣(
g

4
9−d
s

∣∣ 〈Q,Q〉
2

∣∣)3(
g

4
9−d
s g(Q,Q) + 2g

4
9−d
s

∣∣ 〈Q,Q〉
2

∣∣) d−3
2

.

The integral over the Bessel function can be carried out for example using the exact asymp-

totic expansion around τ2 →∞: K 3
2
(x) =

√
π
2xe
−x(1 + 1

x). Note that the integral over τ1

has produced the constraint 〈Q,Q〉 = 2n 6= 0 corresponding to 1/4 BPS states.

The quantities involving Q appearing in the last expression in (3.3) can be reinterpreted

in terms of specific representatives of charges Γ in U-duality multiplets of 1/4 BPS states

as follows. For all 1/4 BPS charges Γ there is an element γ ∈ P1\Ed such that Γ lies in the

vector representation highest degree component of the corresponding decomposition of the

representation R(αd) of Ed(d) under O(d−1, d−1). We denote this component in Zd−1,d−1

by Q and have

|Z(Γ)|2 = g
4

9−d
s g(Q,Q) , ∆(Γ) = g

8
9−d
s

∣∣ 〈Q,Q〉
2

∣∣2 . (3.4)

Taking the Poincaré sum of this contribution under the full Ed(Z), one obtains the mani-

festly U-duality invariant ∇4R4 threshold function corresponding to 1/4 BPS states from

8The general expansion of Es(τ) for τ = τ1 + iτ2 is

Es(τ) =
∑

γ∈Z\SL(2,Z)

(Im τγ)s = τs2 +
ξ(2s− 1)

ξ(2s)
τ1−s
2 +

2

ξ(2s)
τ

1/2
2

∑
n 6=0

|n|s−1/2σ1−2s(n)Ks−1/2(2π|n|τ2)e2πinτ1 .

Here, σk(n) =
∑
d|n d

k is the divisor sum of n; the variable d runs over the positive divisors of n.
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the T-duality invariant string expression (3.3) as

E (1-loop) 1/4-BPS
(1,0) = 2

ξ(d− 5)

ζ(d− 5)

∑
Γ∈Zd(αd)

Γ×Γ 6=0
I′4(Γ)=0

σ3(Γ× Γ)

∆(Γ)
3
2

|Z(Γ)|2 + (d− 3)
√

∆(Γ)(
|Z(Γ)|2 + 2

√
∆(Γ)

) d−3
2

. (3.5)

The constraint on the sum is exactly the 1/4 BPS constraint [60]. The superscript ‘1-loop’

for this U-duality invariant function refers to the loop order from the point of view of the

effective field theory analysis.

The amplitude (3.5) is indeed consistent with the expected result: the factor of

(|Z(Γ)|2 + 2
√

∆(Γ))
d−3

2 is the 1/4-BPS mass to the power corresponding to a 1-loop box

diagram in 11 − d dimensions and σ3(Γ × Γ) is the twelfth helicity supertrace of the 1/4

BPS states computed in perturbative string theory [48, 61]. The numerator is determined

by supersymmetry such that the function 1

∆(Γ)
3
2

|Z(Γ)|2+(d−3)
√

∆(Γ)

(|Z(Γ)|2+2
√

∆(Γ))
d−3

2

satisfies the differential equa-

tions imposed by supersymmetry on E (1-loop) 1/4-BPS
(1,0) . In particular, the full E (D)

(1,0) must satisfy

a Laplace equation of the form (D = 11− d as always)(
∆Ed − 5

(d+ 1)(4− d)

9− d

)
E (D)

(1,0) = 40ζ(2)δd,4 + 7E (6)

(0,0)δd,5 (3.6)

that is homogeneous away from D = 6 and D = 7. Considering the ‘theta kernel’ function

appearing in (3.1) one finds indeed that9(
∆Ed − 5

(d+ 1)(4− d)

9− d

)(
g
−2 d+1

9−d
s τ

d−1
2

2 e−πτ2g(Q,Q)+iπτ1〈Q,Q〉
)

=
1

2
(∆τ − 2)

(
g
−2 d+1

9−d
s τ

d−1
2

2 e−πτ2g(Q,Q)+iπτ1〈Q,Q〉
)
. (3.7)

This implies that the function that this kernel is integrated against in a ‘theta lift’ must be

an eigenfunction of the upper complex half plane Laplacian ∆τ of eigenvalue 2. The same

construction can be used to show that all the Casimir differential operators on Ed(d)/K(Ed)

take the correct eigenvalues imposed by supersymmetry, provided that the source function

satisfies this Laplace equation. The only two solutions associated to 1/4 BPS charges with

a non-trivial dependence in e2πiτ1n with n 6= 0 are e±2π|n|τ2+2πinτ1(1 − 1
2π|n|τ2 ), where the

minus sign occurs for the Fourier coefficient of E2(τ) and the other, exponentially growing,

solution is normally eliminated by moderate growth conditions. This second solution gives

a function of the form 1

∆(Γ)
3
2

|Z(Γ)|2−(d−3)
√

∆(Γ)

(|Z(Γ)|2−2
√

∆(Γ))
d−3

2

that is singular at finite values of the moduli and

does not reproduce the expected mass term for a 1/4 BPS state contribution. We have

checked in [29] that these are indeed the two unique solutions to the tensorial equations

imposed by supersymmetry for d = 4.

To evaluate (3.5), we go back to its form before integration written as the Ed(Z)

Poincaré sum of the perturbative string theory contribution. For this purpose we note that

9For which ∆Ed = (9−d)(31−3d)
32

gs
∂
∂gs

gs
∂
∂gs
− 42+d(d−27)

8
gs

∂
∂gs

+ 1
2
(g(Q,Q)2 − 〈Q,Q〉2) ∂2

∂g(Q,Q)2
+

d−1
2

∂
∂g(Q,Q)

.

– 19 –



J
H
E
P
0
3
(
2
0
1
8
)
1
0
0

for any 1/4 BPS charge, there exists an Ed(Z) element to bring the cross product Γ × Γ

into the highest weight component of the highest weight representation Λ1 of stabiliser

P1(Z) ⊂ Ed(Z). This is precisely the decomposition in which the charge Γ is represented

by the highest weight component vector Q ∈ Zd−1,d−1 and Γ × Γ is 〈Q,Q〉2 . We conclude

that we have a representation of the 1/4 BPS threshold function as a theta lift of an E2(τ)

Fourier mode

E (1-loop) 1/4-BPS
(1,0) =8π

∑
γ∈P1\Ed

g
−2 d+1

9−d
s,γ

∑
n 6=0

σ3(|n|)
n2

∫
Z\H+

d2τ

τ 2
2

√
|n|τ2K 3

2
(2π|n|τ2)e2πinτ1Γd−1,d−1(τ, gγ)

(3.8)

with the Narain genus-one partition function

Γd−1,d−1(τ, g) = τ
d−1

2
2

∑
Q∈Zd−1,d−1

e−πτ2g(Q,Q)+πiτ1〈Q,Q〉 . (3.9)

We shall formally now fold this integral by defining the Eisenstein series from the Poincaré

sum of the Whittaker function∑
γ∈P1\PSL(2,Z)

√
|n|τ2Ks− 1

2
(2π|n|τ2)e2πinτ1

∣∣∣
γ

=
π

(2s− 1) cos(πs)ξ(2s− 1)

σ2s−1(|n|)
|n|s−1

Es(τ) .

(3.10)

Formally, the left-hand side defines an SL(2,Z) invariant function with eigenvalue s(s− 1)

under the Laplacian and thus should be proportional to the Eisenstein series Es(τ) for

real s. The above equation provides the proportionality factor in a formal way but the

actual Poincaré sum does not converge for any s. It can be written as the difference of two

Niebur-Poincaré series that are absolutely convergent on two different domains (Re(s) > 1

and Re(1− s) > 1 respectively), see [57]

∑
γ∈P1\PSL(2,Z)

√
|n|τ2Ks− 1

2
(2π|n|τ2)e−2πinτ1

∣∣∣
γ

=

√
π

2 cos(πs)

(
F(s, n, 0)

4sΓ
(
s+ 1

2

) − F(1− s, n, 0)

41−sΓ
(

3
2 − s

)) .

(3.11)

The limit s→ 2 is nevertheless regular and one obtains from (3.10) that10

E (1-loop) 1/4-BPS
(1,0) = 480

ξ(4)

ξ(3)

∑
γ∈P1\Ed

g
−2 d+1

9−d
s,γ

∑
n>0

σ 2
3 (n)

n3

∫
F1

d2τ

τ 2
2

E2(τ)Γd−1,d−1(τ, gγ) , (3.12)

where the Fourier sum is now only over n > 0. The sum
∑

n>0
σ 2

3 (n)
n3 still diverges, but

using a zeta function regularisation via the Ramanujan identity (see appendix B)11

∑
n>0

σ2
3(n)

n3
→ −ζ(3)

240
(3.13)

10For this one uses the functional relation for Niebur-Poincaré series as derived in [62].
11The dimensional regularisation gives naturally E2+ε(τ) and the sum

∑
n>0

σ 2
3+2ε(n)

n3+2ε = ζ(3 + 2ε)ζ(−3−
2ε)ζ(0) does not converge either.
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one obtains that

E (1-loop) 1/4-BPS
(1,0) = −4πξ(4)

∑
γ∈P1\Ed

g
−2 d+1

9−d
s,γ

∫
F1

d2τ

τ 2
2

E2(τ)Γd−1,d−1(τ, gγ)

= −8πξ(4)ξ(d+ 1)
∑

γ∈P1\Ed

g
−2 d+1

9−d
s,γ E

SO(d−1,d−1)

V, d+1
2

(gγ)

= −8πξ(4)ξ(d+ 1)Eαd, d+1
2

(3.14)

where we have first carried out the (regularised) theta lift using for instance the results

of [59] to obtain a vector Eisenstein series on the T-duality group SO(d− 1, d− 1),12 and

then performed the Poincaré sum over the U-duality group starting from the constant term

in the expansion of Eαd, d+1
2

along the T-duality subgroup.

Recalling that E (1-loop) 1/2-BPS
(1,0) = 8πξ(4)ξ(d + 1)Eαd, d+1

2
from [29], this formally proves a

claim that was made there: the 1/4 BPS state contribution cancels precisely the divergent

1/2 BPS amplitude, such that the contributions of all states with gcd(Γ× Γ) = n give the

same contribution with a weight that gives a divergent overall factor

E (1-loop) 1/2-BPS+1/4-BPS
(1,0) = 8π

(
1 +

240

ζ(3)

∑
n>0

σ 2
3 (n)

n3

)
ξ(4)ξ(d+ 1)Eαd, d+1

2
, (3.15)

which formally vanishes in zeta regularisation.

Although we have been manipulating several expressions formally in this section in

order to regularise infinite sums without defining a proper analytic continuation from ab-

solutely convergent sums, it seems reasonable to assume that there could be proved using

well-defined analytic continuation in an appropriate regularisation scheme. Assuming this

is the case, one would conclude that the ∇4R4 threshold function E(1,0) comes entirely from

the exceptional field theory 2-loop 1/2 BPS contribution. Note that the same argument at

string two loops exhibits that there is no contribution from 1/4 BPS states to the ∇4R4

threshold function since the genus 2 integrand is just the Narain partition function.

Let us note finally that the computation above can be interpreted in perturbative

string theory also as follows. The function E2(τ) appearing in the theta lift (3.1) has

three distinct pieces in its Fourier expansion, namely two constant terms and the non-

zero Fourier modes, see footnote 8. The two constant terms give twice the contribution

in 8πξ(4)ξ(d + 1)E
SO(d−1,d−1)
V,(d+1)/2 (using the Langlands functional relation for vector series

for the second), whereas the 1/4-BPS sum over strings with non-orthogonal winding and

momenta gives formally the same contribution with a minus sign (cf. (3.15)), to eventually

reproduce the correct perturbative contribution. If one were to compute the one-loop

amplitude within an effective field theory with all massive states in string theory, this is

the infinite sum one would need to regularise. Modular invariance of string perturbation

theory permits to combine all these states in a manifestly finite form, which regularises the

infinitely many Feynman diagrams one would find instead in field theory. Such infinite sums

12In our notation, the general formula is
∫
F1

d2τ
τ22
Es(τ)Γd−1,d−1(τ) = 2ξ(2s+ d− 3)E

SO(d−1,d−1)

V,s+ d−3
2

.
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are therefore also expected in the non-perturbative effective theory. One may expect that

a consistent formulation of M-theory would provide the appropriate integral regularising

this sum, with an appropriate notion of modular invariance.

4 Comments on systematics of BPS corrections

We have seen above in (3.15) that the 1/4 BPS contribution that follows from the per-

turbative string theory one-loop calculation and completed to a U-duality invariant ∇4R4

threshold function as in (3.5) cancels formally the one-loop 1/2 BPS contribution com-

puted in exceptional field theory in [29]. It follows that the entire contribution to the

∇4R4 coupling in the loop expansion involving all BPS states appears at 2-loop. In this

section we shall discuss the analogous structures that one expects for the ∇6R4 coupling,

and how they are compatible with the result of the 3-loop computation we have carried

out in this paper.

Before embarking on this discussion we want to clarify the distinction between BPS

solitons and BPS instantons, and their respective ‘non-renormalisation theorems’. The BPS

solitons that contribute to the low-energy effective action are the BPS black hole solutions

in supergravity. In type II string theory, they correspond to fundamental strings, Dp-

branes, NS5-branes and KK-branes that wrap the T d−1 torus such that they are effectively

point-like particles in the uncompactified D dimensions. The BPS instantons depend on

the perturbative frame. In type II string theory they are the Euclidean Dp-branes and NS5-

brane that wrap the T d−1 torus along all their directions. In D = 11 supergravity they can

be defined as M-theory instantons described by Euclidean M2- or M5-branes wrapping the

T d torus.13 One can also formally consider the large radius limit as a perturbative theory

in the inverse radius, in which case the instantons can sometimes be identified as black

holes in D + 1 dimensions compactified over the thermal time circle [15, 48, 63–65].

The set of instantons that can contribute to a higher-derivative coupling is mathemati-

cally equivalent to the so-called wave-front set of the corresponding automorphic function of

the U-duality group [13, 15, 66]. The wave-front set in mathematical terms is a description

of all non-vanishing Fourier coefficients an automorphic function or form has. More pre-

cisely, an automorphic form belongs to an automorphic representation, and the wave-front

set is attached to the automorphic representation. One says that an automorphic repre-

sentation is small, if most of the Fourier coefficients vanish. For a given representation, the

wave-front set is the closure of typically a single nilpotent orbit of the hidden symmetry

group Ed(C) in the Zariski topology.14 As instanton corrections are associated with non-

trivial Fourier coefficients of the automorphic threshold function [3, 5, 12, 13, 15, 66], the

wave-front set encodes which types of instantons contribute to a given threshold function

13In D = 3 one has moreover Kaluza-Klein instantons that contribute, but the general interpretation of

the various contributions is less clear in this case since the solitons do not have a charge in the discrete lattice

in three dimensions, but the scalar fields instead admit a non-trivial monodromy in Ed(Z)\Ed(R)/K(Ed).
14Below we will label the nilpotent orbits by their Bala-Carter type [67, 68]. Type A1 describes the

minimal nilpotent orbits, type 2A1 the next-to-minimal and the orbits can be arranged on a Hasse diagram.

The minimal orbit characterises a unique automorphic representation for d ≥ 5 and the next-to-minimal

orbit characterises a unique automorphic representation for d ≥ 7.
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ED(p,q). The wave-front set can equivalently be defined from a set of differential equations

satisfied by the automorphic forms belonging to a given representation [69, 70]. For the

first few couplings in the low-energy expansion, R4, ∇4R4 and ∇6R4, supersymmetry con-

strains the couplings to satisfy differential equations, which imply that the only instanton

corrections contributing to them are at most respectively 1/2 BPS, 1/4 BPS, or 1/8 BPS,

respectively [17, 18, 20]. The differential equations following from the supersymmetry Ward

identities, and the property that only certain supersymmetric instantons can possibly con-

tribute to a protected coupling, are two aspects of the same mathematical concept, the

wave-front set discussed above. More precisely, there are two types of ∇6R4 supersymme-

try invariants in dimensions 4 ≤ D ≤ 7 [20], one that we shall call chiral and that satisfies

a homogeneous differential equation and a second one that we shall refer to as non-chiral

and that satisfies an inhomogeneous differential equation. The chiral invariant is associated

to an automorphic representation of Bala-Carter type 2A1 for D ≥ 5, i.e. 1/4 BPS, and of

Bala-Carter type 3A1 for D = 4, i.e. 1/8 BPS (chiral), while the homogeneous solution to

the equation of the non-chiral invariant is associated to a Bala-Carter type A2 automorphic

representation, i.e. 1/8 BPS.15 The unique automorphic form satisfying the corresponding

homogeneous differential equation of the chiral invariant is the ‘fundamental’ Eisenstein

series Eαd, d+3
2

of Bala-Carter type 2A1 (or 3A1 for d = 7) while the unique homogeneous

solution of the inhomogeneous equation for the non-chiral invariant is the Eisenstein se-

ries associated to the adjoint representation at a particular value of the weight parameter

(i.e. EE7
α1,6

, EE6

α2,9/2
, ED5

α2,7/2
, EA4

[3 0 0 5/2])
16 of Bala-Carter type A2. The full inhomogeneous

solution can be constructed formally (up to regularisation issues discussed below) from

the particular solution provided by the two-loop exceptional field theory calculation in

D > 3 [29], i.e. it is determined by the 2-loop 1/2 BPS states contribution. The quadratic

source term in the inhomogeneous equation of the 1/8 BPS coupling has as maximal orbit

in the wave-front set the orbit of Bala-Carter type A2, so it is natural to consider the full

inhomogeneous non-chiral solution to be characterised by this wave-front set [28] even if it

does not belong to an automorphic representation in the strict mathematical sense. The

chiral contribution to the coupling has the maximal orbit 3A1 in four dimensions, so that

the full ∇6R4 coupling wave-front set then has two maximal orbits.

There is no clear non-renormalisation theorem for the BPS solitons, but one can get

some insights from string perturbation theory. The type of BPS states that can contribute

to a given coupling in string perturbation theory does not depend only on the type of

coupling but also on the loop order. At genus 1 ≤ g ≤ 3, the g-loop contribution to such

couplings is defined in perturbation theory as the theta lift of a particular automorphic form

of Sp(2g) with the genus g Narain theta function. For the R4 coupling at 1-loop, the ∇4R4

15One can often think of the Bala-Carter type nA1 as being associated to a multiple intersection of n

orthogonal 1/2 BPS instantons, which therefore preserves 1/2n of the supersymmetry, and the Bala-Carter

type A2 as being associated to special intersections of 1/2 BPS instantons, as for a D0-D6 type IIA bound

state [71–73], which preserves 1/8 of the supersymmetry.
16Here, we have used the Bourbaki labelling of the algebras D5 and A4. If one used instead the induces

‘exceptional’ labelling of E5 and E4 that comes from diagram 1, the functions would be EE5
α3,7/2

and

EE4
[3 5/2 0 0].
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coupling at 2-loops, and the ∇6R4 coupling at 3-loops, the automorphic form is a constant,

so that the only states that contribute in the loop satisfy the level matching condition and

are 1/2 BPS string states. Since perturbative 1/4 BPS states do not contribute in this

case, one concludes using U-duality that the same is true for non-perturbative 1/4 BPS

states, so that these couplings only receive corrections from 1/2 BPS solitons at these loop

orders. A similar argument using U-duality and the string amplitude cannot be applied for

the 1/8 BPS states, but it is legitimate to assume that the absence of 1/4 BPS corrections

implies the absence of 1/8 BPS corrections at the same order. The mechanisms responsible

for the cancellation of contributions coming from BPS multiplets not preserving enough

supersymmetry are indeed always ordered, because they are usually associated with the

matching of a certain number of fermion zero modes with the number of supercharges that

annihilate an operator.

At one loop one can identify the perturbative 1/4 BPS states contributions to the

∇4R4 coupling as we did in the last section. The same argument can be applied to the

∇6R4 coupling where we recall that the exceptional field theory one-loop calculation gives

the 1/2 BPS contribution proportional to the (fundamental) Eisenstein series Eαd, d+3
2

[29].

Repeating for ∇6R4 the same steps as performed in section 3 for ∇4R4, one extracts from

the string theory one-loop amplitude the 1/4 BPS contribution by U-duality completion,

such that

E (1-loop) 1/2-BPS+1/4-BPS
(0,1) = 40

(
1− 504

ζ(5)

∑
n>0

σ 2
5 (n)

n5

)
ξ(2)ξ(6)ξ(d+ 3)Eαd, d+3

2
= 0 , (4.1)

Again, these two contributions cancel formally using zeta regularisation. Similar to (3.5),

one can relate the divisor sum to helicity supertraces Bn of 1/4 BPS states, where [61]

Bn(Γ) =
(−1)

n
2

n!
Tr′Γ (−1)2J3(2J3)n , (4.2)

is the supertrace over the space of states with charge Γ and the prime indicates that the

bosonic zero mode corresponding to the center of mass has been removed. The multiplicity

of the 1/4 BPS contributions to the ∇6R4 above is then the contribution of 1/4 BPS

multiplets of charge Γ to the helicity supertrace 6B14 + 2B12 = σ5(Γ × Γ). It is rather

natural that the contribution to these couplings is related to the helicity supertrace, because

they are the unique observables that preserve these precise fractions of supersymmetry.

Extrapolating this structure to the 1/8 BPS solitons contribution in D = 4 and 5 (there

are no 1/8 BPS black hole solutions in D ≥ 6), one expects that they should not contribute

to the ∇4R4 coupling, and that the contribution to the ∇6R4 coupling of 1/8 BPS states of

charge Γ should be proportional to its contribution to the helicity supertrace B14, that is

proportional to the Fourier coefficient of the Jacobi function −ϑ1(z, τ)2/η(τ)6 in D = 4 [74].

Extrapolating this structure to 2-loops, and consistently with the non-renormalisation

theorem for the instanton corrections discussed above, one concludes that the R4 coupling

receives perturbative corrections only from 1/2 BPS states at 1-loop, the ∇4R4 coupling

receives corrections from 1/4 BPS states only at 1-loop and 1/2 BPS states up to 2-loop,

and the∇6R4 coupling receives 1/8 BPS states contributions only at 1-loop, 1/4 BPS states
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contributions up to 2-loop, and 1/2 BPS states contributions up to 3-loop. Summarising

the possible contributions to ∇6R4, including the ones we have already computed, one

obtains the table

∇6R4 1
2 BPS 1

4 BPS 1
8 BPS

one-loop Ef -Ef ?

two-loop EEFT ? 0

three-loop Ef + Eadj 0 0

where the question marks stand for contributions we have not computed, and EEFT is the

two loop contribution from exceptional field theory computed in [29]. For simplicity we

have absorbed the numerical coefficients of these functions in their definition in the table,

such that e.g. Ef = 40ξ(2)ξ(6)ξ(d+ 3)Eαd, d+3
2

, where the label ‘f’ stands for fundamental.

Typically, the fundamental and adjoint functions are divergent at the values of their pa-

rameters (like (d+ 3)/2) and we employ minimal subtraction of the pole when continuing

in this parameter to obtain regularised series Êf and Êadj and write the ‘hat’ when we want

to insist on this fact.

We therefore see from supersymmetry arguments that there is a potential contribution

from 1/8 BPS states at one-loop that should correspond to a finite contribution compatible

with the homogeneous differential equation satisfied by the threshold function [8, 20]. 1/8

BPS black hole solutions in D = 4 come in two forms: either with vanishing or with

finite horizon area. As argued in [29], relying on [75], the finite size solitons should be

exponentially suppressed in perturbation theory and therefore should not contribute to

the low-energy effective action. This argument might be invalidated by the fact that they

are expected to contribute with an exponentially growing multiplicity proportional to B14.

The vanishing size solitons should not arise separately from the generic 1/8 BPS solitons

from the point of view of automorphic representations. Indeed, 4-dimensional solitons

can be thought as 3-dimensional instantons [63], and there is no E8 automorphic form

with a wave front set of Bala-Carter type 3A1 that would not include Fourier coefficient

(intantons corrections) of Bala-Carter type A2 [76], since the 3A1 orbit is not special. In

simpler terms, there is no E8 automorphic form that gets contributions from zero size 4D

black holes but not from finite 4D black holes. In five space-time dimensions there are no

vanishing size 1/8 BPS black hole solitons, and there are no 1/8 BPS black hole solitons

in D ≥ 6. Since all contributions to the effective action come in a rather uniform way

in all dimensions, it seems plausible that there is no one-loop contribution from 1/8 BPS

solitons to the ∇6R4 coupling. One cannot justify this absence of contribution from the

analysis of [75] or by supersymmetry arguments, but we shall argue below that it must be

the case if one assumes the loop expansion involving all BPS states to be consistent as an

effective theory.

The two-loop exceptional field theory calculation in [29] gives a function EEFT that

satisfies the correct tensorial inhomogeneous differential equation. The only automorphic

solution to the homogeneous part of the tensorial differential equation for the non-chiral

invariant is the adjoint Eisenstein series Eadj discussed above. Since we have not analysed
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the perturbative limit of the function EEFT, we only know that it must reproduce the function

E satisfying the same equation that appears in string theory, modulo a free coefficient

E = EEFT − αEadj . (4.3)

The adjoint Eisenstein series does not have a perturbative string theory expansion along

the T-duality group O(d−1, d−1) that is compatible with string perturbation theory,17 so

one could in principle determine α by extracting the perturbative component in the string

coupling constant of the exceptional field theory integral. It is important to note that

these functions are divergent for D = 4, 5, 6 and must be regularised appropriately. The

logarithmic divergences of the string theory coupling E computed in [19] coincide with the

divergences of the adjoint Eisenstein series [28]. They satisfy the same differential equations

with the same linear inhomogeneous terms associated to the supergravity divergences. This

implies in particular that their difference E − Eadj is well-defined and finite.

The tree level supersymmetry Ward identities imply the homogeneous differential equa-

tions, and so the linear inhomogeneous terms must be compensated by the non-analytic

component of the amplitude. In six dimensions the constant source term is associated to

the 3-loop divergence, and so should only be present at 3-loop. In five dimensions the linear

source term is associated to the 2-loop form-factor of the exact R4 coupling that appears

at 1-loop. So once again it only contributes at 3-loop order. In four dimensions the linear

source term is associated to the 1-loop form-factor of the exact ∇4R4 coupling. But we

have seen in the preceding section that the ∇4R4 coupling comes entirely from the 2-loop

contribution in our construction, so once again the source term to the differential equation

only appears at 3-loop order.

At three loops, we have calculated the 1/2 BPS contribution from exceptional field

theory in this paper in (2.28), (2.32) and (2.39) and have found a combination of the

adjoint function together with the other homogeneous solution Ef, so schematically

E 3-loop
(0,1) = Êadj + Êf (4.4)

This combination was shown to be precisely such that its divergences compensate the ones

of the non-analytic component of the 3-loop amplitude, and it satisfies the differential

equations involving the inhomogeneous source terms consistent with the supergravity di-

vergences discussed above [28]. Moreover, together with the contributions from lower loops

one should obtain the correct full answer that has the schematic form

ED(0,1) = Ê + Êf (4.5)

as a combination of the regularised inhomogeneous solution and a regularised homogeneous

solution. This is precisely consistent with the assumption that the amplitude should be

finite to all orders, since the difference E − Eadj is finite and satisfies the inhomogeneous

equation with a quadratic source term, but no linear source terms associated to threshold

17This means that they have powers of gs appearing that do not correspond to a positive integer genus

calculation, most notably they contain näıve −1/2-loop order terms.
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effects. We note that the fact that our homogeneous one-loop result Êf appears with exactly

the same coefficient as in the proposal in [19] for D = 6 suggests that α vanishes.

If we assume that the loop expansion involving all BPS states of the theory is indeed

finite and well-defined order by order in the loop expansion, the couplings at 1-loop and

2-loop must be regular finite automorphic functions satisfying the differential equations

with zero linear source terms associated to supergravity divergences. Êadj and Êf satisfy

differential equations with constant source terms, and their linear combination for which

these source terms compensate for D = 4, 5, 6 is not consistent with the decompactification

limit. Indeed, using the formulas derived in [28], one can check that their appropriate

linear combination such that the source terms compensate is 7Ef− (10−d)Eadj,
18 whereas

the normalisation must be independent of the dimension for them to be compatible in

the decompactification limit, i.e. such that the large radius limit of the D = 4 function

reproduces at leading order the D = 5 function, and idem from D = 5 to D = 6. So

assuming moreover that the loop expansion involving all BPS states is compatible with

the decompactification limit, one concludes that there cannot be any contribution from

these functions to the ∇6R4 coupling at one loop, and that the 2-loop contribution must

be precisely the well-defined finite combination Ê − Êadj. This implies that the 3-loop

contribution to the ∇6R4 coupling we have computed in this paper is indeed the expected

answer, despite the fact that it is by itself inconsistent with string perturbation theory.

As the same inconsistency appears the the two-loop level with opposite sign, the overall

perturbative answer is perfectly compatible with string theory. The result of this discussion

can be summarised by the following table.

∇6R4 1
2 BPS 1

4 BPS 1
8 BPS

one-loop Ef -Ef 0

two-loop E − αEadj (α− 1)Eadj 0

three-loop Ef + Eadj 0 0

Let us summarise the discussion of this section. By the supersymmetry arguments

of [20] reviewed above there are only three types of functions that can arise in this table.

Because of the quadratic source term, the function E can only appear once at 2-loop

order. Considering in more detail the linear source terms associated to threshold effects

one finds that the unique linear combination of these three functions compatible with the

decompactification limit that can appear before 3-loop order is E − Êadj. We conclude that

the total 1-loop contribution must vanish, the total 2-loop contribution must be E − Êadj,

and the 3-loop contribution must be Ef + Eadj as we have obtained in this paper. This

implies in turn that there should be no 1/8 BPS contributions at 1-loop order, and that

the 2-loop contributions involving 1/4 BPS states should be proportional to the adjoint

series with the correct coefficient. For this we have assumed that the loop expansion is

finite and consistent with supersymmetry and the decompactification limit order by order

in the loop expansion. It would be good to be able to confirm these predictions for the

18One computes that for d = 5, ∆Êadj = 70
3
ζ(3) and ∆Êf = 50

3
ζ(3); for d = 6 that (∆+18)Êadj = 35

3
E(0,0)

and (∆ + 18)Êf = 20
3
E(0,0); and for d = 7 that (∆ + 60)Êadj = 35

π
E(1,0) and (∆ + 60)Êf = 15

2π
E(1,0).
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1-loop contribution of 1/8 BPS states and the 2-loop contribution of 1/4 BPS states. For

the second one could in principle apply the same tricks as in this paper, and U-dualise the

2-loop string theory amplitude contribution to the ∇4R4 coupling [77, 78].
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A Some matrix integrals and volumes of fundamental domains

For the determination of the three-loop diagram we require a number of identities of inte-

grals over the space H+
n×n of symmetric positive definite (n × n)-matrices or quotients of

this space. We collect these identities in this appendix.

The first identity is useful for the Schwinger Ω-integrals and can be found for example

in ([79], (1.1)):

∫
H+
n×n

dn(n+1)/2Ω

(det Ω)
n+1

2
−s
e−πTr (ΩX) = |detX|−s

n−1∏
j=0

π−(s− j
2

)Γ

(
s− j

2

)
. (A.1)

A similar identity for the t-type integrals in the text is of Γ-type (for n > 1) and also

involves the ζ-function:

∫
H+
n×n/PGL(n,Z)

dn(n+1)/2t

(det t)
n+1

2
−s
e−πµ

2det t =

 n∏
j=2

ξ(j)

 · ∫ ∞
0

dt

t1−s
e−πtµ

2

= (πµ2)−sΓ(s)

n∏
j=2

ξ(j) , (A.2)

where we have separated out the determinant of t and used the volume of unit determinant,

symmetric, positive definite matrices up to action by PGL(n,Z) given by a product of

completed Riemann zeta functions ξ(k) = π−k/2Γ(k/2)ζ(k) given for example in ([80],

section 4.4, Thm. 4).19 For our application we need the formula (A.1) above for X =

19We note that on the real line the function ξ(k) has simple poles at k = 0 and k = 1 with residues −1

and +1, respectively. It also satisfies the functional relation ξ(k) = ξ(1− k).
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MτγM
T , where M is summed over cosets of full rank matrices of the form

∑
M∈Zn×n/GL(n,Z)

detM 6=0

∫
H+
n×n

dn(n+1)/2Ω

(det Ω)
n+1

2
−s
e−πTr (ΩMτγMT )

= (det τγ)−s

n−1∏
j=0

π−(s− j
2

)Γ

(
s− j

2

) ∑
M∈Zn×n/GL(n,Z)

detM 6=0

|detM |−2s

= (det τγ)−s

n−1∏
j=0

π−(s− j
2

)Γ

(
s− j

2

)
ζ(2s− j)


= (det τγ)−s

n−1∏
j=0

ξ (2s− j) , (A.3)

where we have used a special case of the Koecher zeta function in the next-to-last step ([80],

section 4.4). An elementary way of understanding the appearance of the product of Rie-

mann zeta functions is to use the property that a representative of each GL(n,Z) orbit

is realized by an upper triangular matrix with generic positive diagonal entries mii and

off-diagonal entries 0 ≤ mij < mjj for i < j. Since the determinant does not depend on the

off-diagonal entries, they simply give an additional factor of m i−1
ii , which after summing

over mii gives the ζ function terms with increasing arguments.

B Ramanujan identity

We here provide a brief proof of the Ramanujan identity that appears in (3.13), using

standard methods of Dirichlet series and Euler products. If a series a(n) for n ∈ N is

multiplicative, i.e., satisfies a(mn) = a(m)a(n) whenever m and n are co-prime, one can

express the corresponding Dirichlet series as an Euler product∑
n>0

a(n)n−s =
∏

p prime

P (p, s) , (B.1)

where

P (p, s) =
∑
k≥0

a(pk)p−ks . (B.2)

The identity of the sum and product form follows formally from prime factorisation of

integers.

The divisor sum σa(n) =
∑

d|n d
a can easily be seen to be multiplicative. Moreover,

σa(p
k) =

k∑
m=0

pma =
1− pa(k+1)

1− pa
. (B.3)
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The product σa(n)σb(n) is also multiplicative. The (Bell) series (B.2) becomes in this case

∑
k≥0

σa(p
k)σb(p

k)p−ks =
1− pa+b−2s

(1− p−s)(1− pa−s)(1− pb−s)(1− pa+b−s)
. (B.4)

Using the Euler product of the Riemann zeta series ζ(s) =
∏
p(1 − p−s)−1 one therefore

obtains ∑
n>0

σa(n)σb(n)n−s =
ζ(s)ζ(s− a)ζ(s− b)ζ(s− a− b)

ζ(2s− a− b)
. (B.5)

Putting a = b = k one obtains (3.13).

C On affine Eisenstein series and Epstein series

Garland has studied in detail affine Eisenstein series and their functional relation [54, 55].

We adapt his conventions and define an affine Eisenstein series for E9 through an infinites-

imal quasi-character given by a weight

λ =

9∑
i=1

2siΛi − ρ+ tδ , (C.1)

where ρ =
∑9

i=1 Λi is a standard choice of Weyl vector in terms of the fundamental weights

Λi and δ the primitive null root. For E9 there are nine simple co-roots hi and one more

Cartan subalgebra element that we denote by d [81]. We define the fundamental weights by

Λi(hj) = δij for i, j,= 1, . . . , 9 and Λi(d) = 0 . (C.2)

Simple Weyl reflections wi (i = 1, . . . , 9) act on weights λ by

wi(λ) = λ− 〈λ|αi〉αi , (C.3)

where αi are the simple roots.

An Eisenstein series is now defined on elements g of the centrally extended loop group

and a variable v associated with the direction d.20 In other words, torus elements are

written as avd for a =
∏9
i=1 r

hi
i and the pairing with the weight λ of (C.1) is by

exp〈λ+ ρ|H(avd)〉 = (avd)λ+ρ = vt
9∏
i=1

r2si
i , (C.4)

20There are different definitions of groups in the Kac-Moody case. The minimal definition is as the group

generated from the one-parameter subgroups associated with all the real roots [82]. The complete Kac-

Moody group is obtained by a certain completion with respect to a positive (or negative) Borel subgroup.

In the affine case, the difference between these groups can be phrased as follows: the minimal definition

corresponds to allowing only rational maps from C× to the finite-dimensional Lie group (e.g., E8) while

the completed group allows infinite power series in the positive (or negative) powers of the variable on

C× [54, 55]. This complete group is the one that we are using here and should also be the one that is

relevant in two-dimensional supergravity [83].
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where H denotes the logarithm map from the affine group to the split torus. The Eisenstein

series is then given by

E(λ, gvd) =
∑

γ∈B̂(Z)\G(Z)

e〈λ+ρ|H(γgvd)〉 =
∑

γ∈B̂(Z)\G(Z)

γ
[
(gvd)λ+ρ

]
(C.5)

as a sum over a discrete group of the centrally extended loop group, i.e. the affine group

E9 without the d-direction. Convergence requires restricting also the group element gvd,

in particular the v coordinate [54].

The functional relation for Weyl related weights λ and wλ is

E(λ, gvd) = M(w, λ)E(wλ, gvd) (C.6)

for

M(w, λ) =
∏
α>0
wα<0

ξ(〈λ|α〉)
ξ(〈λ|α〉+ 1)

(C.7)

as usual. An important point now is that wλ can also alter the coefficient of δ in (C.1)

thus changing the overall power of v. This explains the different powers of v appearing in

relations such as (2.42).

From the point of view of a putative E9 exceptional field theory, some of the E9

Eisenstein series should arise from Feynman diagrams. The coordinates are expected to

lie in the highest weight representation representation R(Λ9 + δ) [53], such that the dual

discrete charges Γ are in the conjugate R(Λ9 + δ). The shift in δ corresponds to factors of

v appearing in the BPS mass and also follows from the decomposition of the fundamental

representation R(Λ11) of E11 [84, 85].21 Considering the non-linear sigma model with the

three-dimensional metric

ds2 = e2σ(−dt2 + dx2) + v2dy2 , (C.8)

with y a circle coordinate, the E8(8) non-linear sigma model action involves the Lagrangian

L = vTr (PtPt − PxPx − (v−1Py)(v
−1Py)) . (C.9)

The second term implies indeed that, after reduction to two space-time dimensions, the

mass formula for a charge Γ ∈ R(Λ9 + δ) is v−1|Z(Γ)| where Z(Γ) is defined in the repre-

sentation R(Λ9). In the Feynman amplitude, one must also take into account the power of

v due to the overall v factor in the Lagrangian. Each vertex contributes a factor of v, and

each internal line a factor of v−1, such that at L-loop one gets an overall factor of v1−L.

The relevant lattice in R(Λ9 + δ) in which the charge Γ is defined is the smallest lattice

in R(Λ9 + δ) that includes the canonical lowest weight representative vector Γ0 with an

arbitrary integer coefficient and that is preserved by the Chevalley group E9(Z). Its ele-

ments are linear combinations over Z of charge vectors obtained from the canonical lowest

weight representative by the action of the Chevalley group E9(Z). The same definition

21One useful observation for checking this is that δ is related to minus Λ10.
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applies for the module defined over Q. According to [82], the solution to the constraint

Γ× Γ = 0 in the module R(Λ9 + δ) over Q defines a single orbit of E9(Q) of the canonical

lowest weight vector representative. Because of the Bruhat decomposition of E9(Q)

E9(Q) =
⋃
w∈W

B(Q)wB(Q) , (C.10)

one can prove recursively using the property that SL(2,Q) = SL(2,Z)B(Q) that

E9(Q) = E9(Z)B(Q) , (C.11)

where B(Q) is the Borel subgroup of E9(Q). Let us sketch a proof of this statement that

is standard for finite-dimensional simple groups. Bruhat decomposition implies that any

element g ∈ G(Q) belonging to a given Bruhat cell B(Q)wB(Q) is the product of certain

elements gα for each positive root α ∈ ∆+ in certain SL(2,Q)α subgroups associated to a

Weyl word w. More explicitly, let w = wi` · · ·wi1 be a reduced expression of a Weyl word of

length ` in terms of simple reflections such that w−1 = wi1 · · ·wi` . Then, for k = 1, . . . , `,

the negative roots

βk = wi1 · · ·wikαik (C.12)

with αik the ikth simple root parametrise all roots α < 0 such that wα > 0 (see, e.g., [86]).

In particular β1 = −αi1 . Any element g ∈ B(Q)wB(Q) can then be written uniquely as

g = w

[
1∏
k=`

n̄βk

]
b (C.13)

with n̄βk ∈ N̄βk = {exp(qEβk) | q ∈ Q}, the lower unipotent inside SL(2,Q)βk and b ∈ B(Q).

We choose to order the factors starting with β` on the left as indicated by the limits on

the product. Note that we can think of the Weyl word w as an element of E9(Z). The

equality SL(2,Q) = SL(2,Z)B(Q) then implies that we can write22

n̄β` = hβ`bβ` , (C.14)

with hβ` ∈ SL(2,Z)β` and bβ` ∈ Bβ`(Q), and then

g = whβ`

[
bβ`

1∏
i=`−1

n̄βi

]
b = whβ`

[
1∏

i=`−1

(bβ` n̄βib
−1
β`

)

]
bγ`b = whγ1

[
1∏

i=`−1

n̄′βi

]
b′ (C.15)

with b′ ∈ B(Q) and new elements n̄′βi in the same roots spaces. The last statement is true

because the Borel conjugation with bγ` scales an element n̄βi and produces contributions

22Explicitly, we have for co-prime p and q(
1 0

p/q 1

)
=

(
q b

p d

)(
1/q −b
0 q

)
,

where b, d ∈ Z are any solution to qd− pb = 1. The ambiguity in this solution can be absorbed in the Borel

matrix on the right. We do not require this explicit form, however, for the argument.
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to n̄βj for j < i (according to our ordering assumptions) as well as elements in the Borel

B(Q). In b′ we have collected all possible such contributions. Recursively one gets

g = w

[
1∏
i=`

hβi

]
b̃ (C.16)

with b̃ ∈ B(Q). Thus any element g ∈ BwB can be written as E9(Z)B(Q). Since E9(Q) is

the union of its Borel cells and the statement is true for all Weyl words w, we obtain the

claim (C.11). A similar argument that is also valid for arbitrary (completed) Kac-Moody

group can be constructed using Theorem 8.15 of [87] that directly gives representatives for

the Bruhat cells of the desired form.23

Since the lowest weight vector is by definition stabilised by the conjugate (lower) Borel

subgroup B(Q)T up to the multiplication by a rational number, it follows that any solution

to the constraint Γ × Γ = 0 in the discrete lattice in R(Λ9 + δ) is in the E9(Z) orbit of a

canonical lowest weight representative Γ0 = gcd(Γ)|Λ9〉. Such elements of the above lattice

are associated to 1/2-BPS multiplets of states, and the 1-loop amplitude for four massless

scalar fields in the putative two dimensional exceptional field theory are therefore formally

Epstein series of the form

E(2sΛ9 + 2sδ − ρ) =
1

2ζ(2s)
v2s

∑′

Γ∈Zd(α9)

Γ×Γ=0

|Z(Γ)|−2s , (C.17)

where the coefficient of δ is fixed by the shifted representation of the charges. On the right-

hand side, the charges are given in the standard lattice in R(Λ9) and we have written the δ

shift by extracting the power of v2s. This formal definition defines an absolutely convergent

sum provided the moduli are restricted to (a slice of) the Tits cone in K(E9)\E9(9) and the

Re(s) is sufficiently large, and is then mathematically sound. We expect a similar rewriting

of the Langlands Eisenstein series as an Epstein for general Kac-Moody algebras, but note

that the convergence and analytic continuation have not been established rigorously, see [56]

for recent results. The functional relation of the Langlands Eisenstein series was proven

by Garland in [54, 55].

These powers of v and coefficients are consistent with the results found in [16] when

applying an appropriate functional relation (C.6). More precisely, we have from ([29],

eq. (3.9)) at one loop the following threshold functions

R4 : 4πξ(6)E(2 · 3Λ9 + 6δ − ρ)= 4πξ(3)E(2 · 3
2Λ1 + δ − ρ)= 2ζ(3)vE(2 · 3

2Λ1 − ρ) ,

∇4R4 :
4π3

45
ξ(10)E(2 · 5Λ9+10δ−ρ)=

4π3ξ(2)ξ(5)

45ξ(4)
E(2 · 5

2Λ1+δ−ρ)= ζ(5)vE(2 · 5
2Λ1−ρ)

(C.18)

and these are exactly the functions with the correct v powers found in [16].

Let us also consider formally the two- and three-loop amplitudes to be constructed E9

exceptional field theory. The 2-loop contribution to the ∇4R4 coupling computed in ([29],

23We are grateful to M. Patnaik and G. Savin for explaining this general proof to us.
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eq. (4.47)) defines an Epstein sum over the wedge product of the two 1/2-BPS charges, that

give rise to an Epstein sum in the largest module R(Λd−1) in the wedge product R(Λd) ∧
R(Λd). Similarly, the 3-loop contribution to ∇6R4 computed in (2.19) gives an Epstein

sum in the largest module R(Λd−2) in the 3-form wedge product R(Λd) ∧ R(Λd) ∧ R(Λd).

Applying the same argument for E9, and taking into account the δ shift, one obtains

R(Λ9 + tδ) ∧R(Λ9 + tδ) = R(Λ8 + (2t− 1)δ)⊕ . . . ,
R(Λ9 + tδ) ∧R(Λ9 + tδ) ∧R(Λ9 + tδ) = R(Λ7 + (3t− 2)δ)⊕ . . . , (C.19)

such that L(t − 1) + 1 = 1 for R(Λ9 + δ) and one expects the L-loop contribution

in exceptional field theory to give a contribution proportional to the Eisenstein series

v1−LE(2s(Λ10−L + δ) − ρ) = E(2sΛ10−L + (2s − L + 1)δ − ρ) for the appropriate value

of s. In other words, the correct function at two loops should be with weight λ =

2 · 5
2Λ8 + (2 · 5

2 − 1)δ− ρ and for three-loops with weight λ = 2 · 2Λ7 + (2 · 2− 2)δ− ρ, where

the former corresponds to the ∇4R4 threshold arising at two loops ([29], eq. (4.47)) and the

latter to the homogeneous solution for the ∇6R4 threshold arising at three-loops (2.19).

We can verify these expectations by applying functional relations of the type (C.6).

For the ∇4R4 threshold function one finds

8πξ(4)ξ(5)E(5Λ8 + 4δ − ρ) = 8πξ(2)ξ(5)E(2 · 5
2Λ1 + δ − ρ) = ζ(5)vE(2 · 5

2Λ1 − ρ)

(C.20)

as required for ∇4R4 [16].

The homogeneous solution for ∇6R4 deduced in this paper from the three-loop calcu-

lation is

40ξ(2)ξ(3)ξ(4)E(2 · 2Λ7 + 2δ − ρ) = 40ξ(2)ξ(6)ξ(12)E(2 · 6Λ8 + 12δ − ρ) , (C.21)

which is the result found at one-loop in [29] with (C.17) at s = 6.

Open Access. This article is distributed under the terms of the Creative Commons
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