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Coherent many-body quantum dynamics lies at the heart of quantum simulation and quantum computation.
Both require coherent evolution in the exponentially largeHilbert spaceof an interactingmany-body system.To
date, trapped ions have defined the state of the art in terms of achievable coherence times in interacting spin
chains. Here, we establish an alternative platform by reporting on the observation of coherent, fully interaction-
driven quantum revivals of the magnetization in Rydberg-dressed Ising spin chains of atoms trapped in an
optical lattice.We identify partialmany-body revivals at up to about ten times the characteristic time scale set by
the interactions. At the same time, single-site-resolved correlation measurements link the magnetization
dynamics with interspin correlations appearing at different distances during the evolution. These results mark
an enabling step towards the implementation ofRydberg-atom-based quantum annealers, quantum simulations
of higher-dimensional complex magnetic Hamiltonians, and itinerant long-range interacting quantum matter.
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I. INTRODUCTION

The coherent unitary evolution of closed many-body
quantum systems initially prepared in a superposition of
different eigenstates is one of the most fundamental
concepts of quantum theory. It predicts a fast dephasing
of the initial state, followed by its revival after long times.
This dynamics originates from the discrete energy spectrum
of the many-body eigenstates, each evolving with its
characteristic frequency. The expected collapse and revival
dynamics is in stark contrast to the experience that in
typical interacting macroscopic systems, quantum revivals
are entirely absent. This is a consequence of the exponential
increase of the number of distinct energy levels with system
size, making the spectrum effectively continuous, such that
the revival time diverges. Even in small systems with few
constituents, the observation of quantum revivals is far
from trivial because of residual couplings to the (macro-
scopic) environment causing decoherence. This renders the
observation of quantum revivals in a many-body system
one of the most demanding tests to demonstrate its coherent
evolution, which itself is indispensable, for example, for
efficient adiabatic quantum computation [1,2].

Quantum revivals have so far been observed experimen-
tally using appropriate observables in few-particle systems,
whose dynamics was additionally constrained to small
parts of the Hilbert space. Seminal achievements are the
observation of collapse and revivals of Rabi oscillation
dynamics of Rydberg states coupled to the radiation field in
a microwave cavity [3,4], of revivals of the motional state
of a single trapped ion [5], or of coherent photonic states in
microwave resonators coupled to a transmon qubit [6].
Revival dynamics has also been observed for small coher-
ent states of matter realized with ultracold atoms in
individual sites of optical lattices. The on-site interactions
between the indistinguishable atoms led first to dephasing
and later to revivals of the relative phase of the condensate
wave function on the different lattice sites [7,8].
A much more complex many-body dynamics is expected

when the full Hilbert space is accessible in the time
evolution, and in particular in systems with long-range
interactions. Quantum magnets featuring such interactions
have been realized recently with trapped ions [9–12],
ground state molecules [13], magnetic atoms [14], and
neutral atoms coupled to Rydberg states on resonance
[15,16] or off resonantly [17,18]. Indeed, indications for
partial quantum revivals have been detected in the dynam-
ics of the next-to-nearest-neighbor correlations [11] and in
the magnetization of small systems of three spins [19].
Here, we take advantage of the revival dynamics

expected solely in closed quantum systems to benchmark
the coherence of interaction-induced spin dynamics in
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Rydberg-dressed Ising chains of about ten atoms. We
observe partial quantum revivals of the transverse mag-
netization of the chains up to times exceeding ten times
the characteristic time scale set by the nearest-neighbor
coupling strength. Single-spin resolved correlation mea-
surements reveal the microscopic origin of the interaction-
induced collapse dynamics at short times.

II. REVIVAL DYNAMICS IN SPIN CHAINS

In our experiments, we implemented a one-dimensional
(1d) Ising spin chain of N spins with soft-core-type
long-range interactions using ultracold 87Rb atoms in an
optical lattice, optically “dressed” to a strongly interacting
Rydberg state [20–22]; see Fig. 1(a). The spin-1=2 degree
of freedom is encoded in two hyperfine ground states and
its dynamics is described by the Hamiltonian

Ĥ ¼ h
XN

i≠j

UðdijÞ
2

Ŝzi Ŝ
z
j: ð1Þ

Here, Ŝzi denotes the spin operator measuring the spin in the
z direction at a lattice site i, and we omit all terms linear
in the spin operators because they are irrelevant to the
subsequent discussion [23]. For the chosen parameters of

the optical coupling, the interaction potential UðdijÞ is
approximated by a soft-core shape for spins at a distance
dij ¼ ji − jj [see Fig. 1(b)]. For distances smaller than the
lattice spacing dij ≤ alat ¼ 532 nm, it saturates to the
nearest-neighbor value Uð1Þ ¼ U0 ≈ −13 kHz, and for
larger distances, it asymptotically falls off with a van der
Waals tail, UðdijÞ ∝ 1=d6ij [18].
To study the quantum evolution, the system is initially

prepared in a separable coherent spin state [24] with
maximal magnetization along the Sy-direction, jψ0i ¼
ðj←iÞ⊗N , where j←i is a single-spin eigenstate of Ŝy. In
the Ŝz basis, in which all many-body eigenstates of Ĥ
factorize, each spin is equally likely found in the two
single-spin eigenstates of Ŝz. Thus, each many-body
eigenstate jλi with possibly degenerate eigenenergy Eλ ¼
hνλ is populated with equal probability jhλjψ0ij2 ¼ jcλj2
and an amplitude of cλ ¼ 2−N=2eiϕλ . After unitary evolution
of jψ0i with Û ¼ e−iĤt=ℏ, the expectation value of the local
transverse magnetization at site j in the chain becomes
hŜyjðtÞi ¼ 2−N

P
λ;ηe

−i2πðνλ−νηÞthηjŜyj jλi, where the phases
ϕλ and ϕη have been absorbed in the operator matrix
element. The dynamics of hŜyjðtÞi is hence determined
by those frequency differences Δν ¼ νλ − νη, for which

(a) (c)

(b)

FIG. 1. Schematic of the Ising spin chain and spin-selective detection. (a) Illustration of a spin chain with N ¼ 10 spins initialized in
the fully transverse magnetized state. The dominant contributions of the Rydberg-dressed interaction between nearest and next-to-
nearest spins spaced by alat are indicated by the dark gray and light gray arrows. The brightness of the blue color of the spins encodes the
interaction strength between the exemplary selected fifth spin with the rest of the chain. The gray lines are guides to the eye to link to the
interaction potential shown in (b). (b) Ab initio calculated Rydberg-dressed potential [18] for our experimental parameters Ω=2π ¼
3.57ð3Þ MHz and Δ=2π ¼ 11.00ð2Þ MHz, normalized to the nearest-neighbor interaction strength jU0j ¼ 13.1ð5Þ kHz (blue solid
line), with the relevant potential at multiples of the lattice distance alat marked by blue points and gray horizontal lines. The inset shows
the occurrence of frequency differences Δν in the many-body spectrum of the long-range interacting Ising model (gray bars) and those
governing transverse magnetization dynamics (blue bars). Orange vertical lines mark the corresponding Δν for the Ising model with
nearest-neighbor interactions only. (c) Simulated revival dynamics of the populations of spin left (red) and spin right (blue), starting from
the initially fully magnetized chain in the Sy direction for a defect-free chain of ten spins and long-range interactions. Clear partial
revivals are observed during the evolution. The fluorescence images to the right show characteristic spin configurations for ten spins
observed during the collapse and revival dynamics at times indicated by the gray lines. The spin of the atoms was detected via an in situ
Stern-Gerlach sequence, which led to a spatial separation of spin-left (red) and spin-right atoms (blue). This allows for the reconstruction
of the full spin and density distribution (pictograms to the right).
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the operator matrix element hηjŜyj jλi does not vanish [see
Fig. 1(b)]. Due to the contribution of different Δν’s, the
initial state and hence the magnetization is expected to
undergo an initial collapse dynamics, followed by a revival
on longer time scales. Importantly, this dynamics is purely
driven by the buildup of correlations [12], since the initial
state is a mean-field steady state with hŜzji ¼ 0. Indeed, the
collapse is accompanied by the generation of entanglement
at short evolution times in the form of spin squeezing
[25–27]. At a later time t ¼ 1=2U0, the system realizes
approximately a cluster state [28], a highly entangled state
useful for quantum computation.
To obtain an intuitive understanding of the collapse and

revival dynamics, it is illustrative to consider the case of an
Ising model with only nearest-neighbor interactions of
strength hU0. For such a case, the transverse magnetization
hŜytoti ¼

P
N
j¼1hŜyji would show periodic revivals at times

tn ¼ n=U0. This is due to the highly degenerate spectrum
with all relevant energy differences Δν either vanishing, or
being equal to U0 for a spin located in the bulk or to U0=2
for a spin at the edge of the system [see Fig. 1(b) and [23]].
Adding interactions with a longer range leads to a more
complex spectrum, breaking many of the degeneracies
present in the former case. For the interaction potential
realized in the experiment and a chain ofN ¼ 10 atoms, the
number of relevant frequency differences also increases
significantly [see Fig. 1(b)]. Whereas this shifts a possible
perfect revival of the initial state to experimentally inac-
cessible times, the magnetization may still show dynamics
with partial revivals [see Fig. 1(c)]. The exact magnetiza-
tion dynamics can be calculated analytically for our initial
state, and it predicts that the local transverse magnetization
evolves in time as hŜyjðtÞi ¼ 1

2

Q
N
i≠j cos½πUðdijÞt� [25,29].

This confirms the intuition that partial revivals of the
magnetization of a single spin originate from its inter-
action UðdijÞ with spins at different distances dij and the
resulting beat notes. Despite the conceptual similarities to
previously studied revival dynamics [4–8], an important
difference of the spin system with long-range interactions
studied here is the absence of a spatial spin exchange
symmetry, and hence, there is no simplifying description
of the system’s temporal dynamics in terms of symmetric
Dicke states [30]. Thus, here the dynamics is in a regime
exploring a much larger portion of the Hilbert space,
leading also to an interesting spatial structure in the time
evolution that we reveal by our microscopic detection
[see Fig. 1(c) and [23]].

III. MAGNETIZATION AND
CORRELATION DYNAMICS

Our experiments started with the preparation of an
atomic chain of ten sites with 87(3)% filling from a
Mott insulator using single-site addressing techniques
[23,31,32]. Subsequently, the coherent spin state was

initialized by a global microwave-induced π=2 rotation
about the Sx-axis ending in an equal superposition of the
hyperfine states jF;mFi ¼ j1;−1i and j2;−2i. Next, we
switched on the interactions UðdijÞ for a total time t by
illuminating the sample with the “dressing” laser, coupling
to the 31P1=2 Rydberg state with Rabi frequency Ω=2π ¼
3.57ð3Þ MHz and detuning Δ=2π ¼ 11.00ð2Þ MHz. This
Rydberg dressing was interrupted after a time t=2 to
implement a spin-echo pulse of area π about the Sx-axis
to remove trivial phases accumulated because of single
atom shifts proportional to Ŝz, thereby leaving the spin-spin
interaction as the only drive of the dynamics [23]. Finally,
the spin along the Sy direction was read out using a second
π=2 pulse to rotate the spins to the Ŝz basis, where we
separated the spins in situ, making use of their different
magnetic moments. This enabled a position-dependent
readout of the spin direction [33] and provided access to
the local and global magnetization, as well as the total atom
number N after the dynamics.
The collapse and revival dynamics of the initial coherent

spin state is observed by tracking the evolution of the
spin populations along the Sy direction. This is equivalent

(a) (b)

FIG. 2. Evolution of the mean magnetization density. (a) The
probability to measure atoms in the states j←i (j→i) vs total
dressing time t shown as red (blue) data points. The final spin
rotation before detection is indicated by the pictograms (upper and
lower left corner). The upper axis is scaled in units of the inverse
nearest-neighbor interaction 1=jU0j ¼ 76ð3Þ μs. The total atom
number was restricted to be N < 15 to filter out events with clear
preparation errors. The solid line shows the theoretically expected
dynamics, averaged over 100 initial chains randomly selected from
a reference data set with an initial filling of 87(3)% and a mean
atom number of 10(1.4). The shaded region marks the correspond-
ing standard error of the mean (s.e.m.). All data points are an
average over at least 50 experimental realizations (150 for
t < 0.1 ms). The inset shows the initial dynamics of the mean
transverse magnetization density hŜytoti=N up to t ≈ 6=U0, ob-
tained from the spin populations (green data points) with the
theoretical prediction (green solid line). (b) Zoom-in on two
magnetization features at t ≈ 5=U0 (1) and t ≈ 12=U0 (2), as
indicated by the gray boxes in (a). Even at long times up to 12=U0,
the nonvanishing magnetization indicates the presence of finite
coherence. All error bars on the data points denote one s.e.m.
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to tracking the mean transverse magnetization density
hŜytotðtÞi=N, where the measured total atom number at
time t is used for the normalization (see Fig. 2). For short
times, we find a fast interaction-induced depolarization
dynamics up to a time of approximately t ≈ 40 μs ≈ 1=2U0,
before exhibiting clear partial revivals at t ≈ 1=U0, 2=U0,
and 5=U0. The times of the revivals can be qualitatively
explained by considering only the nearest and next-to-
nearest neighbor interaction, which differ by a factor of
about 5 in our case. Interestingly, even at longer times, the
data closely follow the numerical prediction, showing a
finite magnetization signal up to t ¼ 12=U0 and
approaching the 1=e lifetime τ ¼ 1.21ð3Þ ms of the atom
number in the chains. This indicates that the atom loss
does not induce excessive dephasing, which would result
in a vanishing magnetization density in the system. Our
numerical simulation of the dynamics considers pure
unitary evolution and additionally takes into account the
randomness due to the initially imperfect filling of the
chain. The presence of defects in the chain suppresses all
revivals at odd multiples of 1=U0 as an empty site causes
the neighboring spin to evolve with approximately half
the frequency [23].
Investigating spatial spin-spin correlations providesmicro-

scopic insight into the collapse and revival dynamics. To
this end, we evaluated the connected spin-spin correlator
Cd ¼ hŜyi Ŝyiþdi − hŜyi ihŜyiþdi at different distances d vs time
(see Fig. 3). The correlation signal for neighboring spins
(C1) reveals that the initial decay of the magnetization
is driven by the buildup of strong nearest-neighbor
correlations, peaking at t ≈ 1=4U0. Whereas for pure

nearest-neighbor interactions one solely expects correlations
extending to the neighboring spins and C2 ¼ 0 for all times,
we also find a nonzero next-to-nearest-neighbor correlator
C2, peaking later at t ≈ 2=U0. In our case, a nonzero C2 is
therefore a directmanifestation of the long-range interactions.
These can entangle distant parts of the system even in the
absence of moving quasiparticles [10,11,34], which arise
for example in the Ising model with transverse field as
free fermions after a Jordan-Wigner transformation [30].
An illustrative interpretation of the initial strong growth
of the nearest-neighbor correlation can be obtained by
rewriting Ĥint in terms of the raising and lowering operators

with respect to the Sy-direction, ~̂S
�
j ¼ Ŝxj � iŜzj, yielding

Ĥ ¼ h
P

N
i≠j½UðdijÞ=4�ð ~̂S

þ
i
~̂S
−
j þ ~̂S

−
i
~̂S
þ
j − ~̂S

þ
i
~̂S
þ
j − ~̂S

−
i
~̂S
−
j Þ.

Starting with jψ0i, where all spins are in state j←i, only the
last term in the sum contributes for short times, which
flips spins pairwise. This “pair production” of j→i spins
is strongest at short distances, explaining the observed
correlation signal qualitatively.

IV. PARITY DECAY AND DECOHERENCE

All terms in the Hamiltonian above are parity conserving
since the number of spins flipped from j←i to j→i can only
be changed in steps of two. Hence, ideally, we expect to
observe only even numbers of j→i spins to appear during
the evolution. This situation is similar to spontaneous pair
creation in the squeezed vacuum state of photons. There, a
strongly parity-modulated signal in the excitation numbers
[35] has also been observed and interpreted as quantum
interference in phase space [36]. The parity signal is
directly visible in the histograms shown in Fig. 4 for
different evolution times and most pronounced at short
times, where spurious single-spin rotation terms propor-
tional to Ŝzi are smallest and atom number decay is
negligible. We characterized the evolution of the parity
of the number of detected atoms in j→i by evaluating

hP̂i ¼ he−iπ
P

N
i¼1

Ŝ→i i, with Ŝ→i ¼ j→iih→ji, detecting if
atom i is in the j→i state. The parity is a sensitive measure
of the many-body coherence in a sense that it detects
decoherence-induced loss, spin flips or dephasing of every
spin in the chain [23]. For the initial state at t ¼ 0, we
obtain hP̂i ¼ 0.41ð7Þ, where the reduction of the parity
compared to unity is expected because of imperfections in
the microwave rotations and decoherence attributable to
magnetic field noise, both leading to uncorrelated rotations
of individual spins, even in the absence of Rydberg
dressing [23]. Subsequently, the observed parity signal
decays with increasing dressing time t, and we extract a
time constant of τP ¼ 0.13ð4Þ ms, which is on the order of
τ=N, the characteristic time to lose a single atom. Hence,
we conclude that off-resonant excitation to the Rydberg
state, followed by a loss of the excited atom, is the
dominating decoherence effect [23].
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FIG. 3. Local characterization of the spin dynamics. (a) Ob-
served evolution of the connected correlations Cd for spins
separated by d ¼ alat and (b) d ¼ 2alat, as indicated by the
pictograms. The solid line with surrounding shading shows the
corresponding prediction of the same theoretical calculation as
used in Fig. 2. All error bars denote one s.e.m.

JOHANNES ZEIHER et al. PHYS. REV. X 7, 041063 (2017)

041063-4



V. CONCLUSION

Our observations of coherent, interaction-driven collapse
and revival dynamics establish Rydberg dressing as a
promising technique to study interacting spin systems also
in more complex scenarios [37,38]. Indeed, the demon-
strated interaction to decay ratio of 2πU0τ ≈ 100 exceeds
our previous result [18] by a factor of 100 and is
comparable to the state of the art for implementing spin
Hamiltonians in ion chains [10,11,39]. The additional
factor of 2π has been included to follow the convention
used in previous publications [10,11,18]. While in the
current experiment faster dynamics at larger interaction
strengths was not accessible because of merely technical
limitations in the pulse timing accuracy, the interaction
strength and hence the interaction-to-decay ratio can be
significantly increased by working closer to resonance at a
larger Rydberg state admixture. The improved available
long coherence times combined with the controlled, opti-
cally induced interactions allow for the implementation of
Loschmidt-echo-type sequences to characterize the value of
the generated states for quantum metrological applications
[26]. The study of periodically driven systems in two
dimensions or in systems with periodic boundary condi-
tions are now also within reach, holding promise to shed
new light on many-body phases existing solely in non-
equilibrium scenarios [40,41], among them the “Floquet
time crystal” phase [39,42,43]. Furthermore, our experi-
ments mark the first step towards a Rydberg quantum
annealer based on coherent Rydberg-dressed interactions

[44] and the study of itinerant quantum matter with long-
range, soft-core interactions [22,45,46].
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