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We present a method to certify the presence of Bell correlations in experimentally observed statis-
tics, and to obtain new Bell inequalities. Our approach is based on relaxing the conditions defining
the set of correlations obeying a local hidden variable model, yielding a convergent hierarchy of
semidefinite programs (SdP’s). Because the size of these SdP’s is independent of the number of
parties involved, this technique allows to characterize correlations in many–body systems. As an
example, we illustrate our method with the experimental data presented in [Science 352, 441 (2016)].
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Introduction. – Local measurements on quantum sys-
tems can display correlations that can not be explained
by any local hidden variable model (LHVM) [1] or, in
other words, that can not be reproduced by local deter-
ministic strategies (LDS), even if assisted by shared ran-
domness [2]. Bell inequalities bound the space of LHVM
or “classical” correlations, and correlations that violate a
Bell inequality are termed nonlocal. Beside their funda-
mental interest, nonlocal correlations are a resource that
enables novel quantum information processing tasks [3].

From a geometrical point of view, LHVM correlations
form a polytope, i.e. a bounded convex set that can be de-
scribed as the convex hull of a finite number of vertices, or
equivalently as the intersection of a finite number of half-
spaces. The vertices of the LHVM polytope correspond
to LDS, while the half-spaces in which it is contained are
defined by Bell inequalities. For this reason, finding all
Bell inequalities gives a necessary and sufficient condition
for deciding membership in the LHVM set. However, re-
sults in computer science indicate that this search is an
extremely demanding problem [4], which is NP-complete
even in the bipartite case [5]. Therefore, a complete list
of Bell inequalities exists only for the simplest scenarios;
e.g. only up to 3 parties [6–10].

To characterize correlations in scenarios with a large
number of parties, one necessarily has to relax the con-
dition of membership in the LHVM set. This can be
done by projecting the LHVM polytope onto the space
of observables of a particular form, e.g. permutation-
ally invariant [11], with low-order correlators [12, 13], or
translationally invariant [14, 15]. Finding Bell inequali-
ties in these particular spaces has allowed the detection
of Bell correlations in a Bose-Einstein condensate of 480
87Rb atoms [16]. However, even in these low dimensional
spaces, the complexity of the commonly adopted method
(going from the vertices description of the polytope, to
the dual half-spaces description) [17] still prohibits one
to obtain all Bell inequalities for many-body scenarios,
leaving undiscovered potentially useful inequalities.

In this work, we present a technique to approximate
the set of symmetric LHVM correlations from the out-
side. This technique is based on a hierarchy of semidef-
inite programs (SdP’s), aproximating convex hulls of
semialgebraic sets [18–21], and it can be seen as checking
all Bell inequalities of a specific form with a single test.
Contrary to other existing SdP’s hierarchies [22, 23], in
our work the size of the SdP’s are independent of the
number of parties, and the hierarchy shows convergence
already after few levels. In summary, our method pro-
vides an efficient sufficient condition for a set of corre-
lations to be nonlocal, and it naturally provides a Bell
inequality that they violate.

Preliminaries. – We consider a Bell scenario in which
each of N observers (indexed by i = 1 . . . N) performs on
their share of the system one out of d possible local mea-

surementsM(i)
j , labeled by j = 0 . . . d−1. For simplicity,

we assume that every measurement is dichotomic, giving
as outcome +1 or −1, keeping the generalization to an
arbitrary number of outcomes for later. The correlations
that can be observed are represented by the k-body cor-

relators 〈M(i1)
j1

...M(ik)
jk
〉, with k = 1, ..., N . In the spirit

of [11–13], we focus on permutationally invariant (PI)
k-body correlators, defined as

Sj1...jk =

N∑
i1,...,ik=1

all i’s different

〈M(i1)
j1

...M(ik)
jk
〉 . (1)

If the statistics observed through Eq. (1) satisfy a LHVM,
they belongs to the so-called (symmetrized) LHVM poly-
tope [11], denoted PS. Its vertices correspond to LDS,
satisfying

〈M(i1)
j1

...M(ik)
jk
〉 = 〈M(i1)

j1
〉 · · · 〈M(ik)

jk
〉 (local) , (2)

〈M(i)
j 〉 = ±1 ∀ i, j (deterministic) . (3)

ar
X

iv
:1

70
7.

00
69

9v
1 

 [
qu

an
t-

ph
] 

 3
 J

ul
 2

01
7

https://doi.org/10.1126/science.aad8665


2

As there are m = 2d possible LDS per party, Eq. (3)
gives rise to an exponential number of vertices, 2dN .
However, the PI condition reduces them to at most(
N+m−1
m−1

)
, a polynomial number in N , because only the

amount of parties following the same LDS is relevant
[12, 13]. For this reason, it is natural to introduce m
variables ~x = (x1, . . . , xm), where xi counts how many
parties follow the i-th LDS. Note that the xi satisfy

m∑
i=1

xi = N, xi ∈ Z≥0. (4)

Using this parameterization, Eq. (1) can be written as
a polynomial of degree k in m variables with real coef-
ficients, i.e. Sj1...jk ∈ R[~x]k (see [12] and the example).

Denoting with ~S the vector of all such correlations, we
express PS as the convex hull (CH) of ~S evaluated on the
parameter region defined by Eq. (4):

PS = CH

{
~S(~x) s.t.

∑
i

xi = N, xi ∈ Z≥0

}
. (5)

Dedicated algorithms [24, 25] exist to compute the dual
description of PS, thus obtaining a minimal set of PI Bell
inequalities. These inequalities are of the form∑

k

∑
j1≤...≤jk

αj1...jkSj1...jk + βC ≥ 0, (6)

where αj1...jk ∈ R, and βC ∈ R is the so-called classical
bound. Unfortunately, since the dimension of PS scales
as
(
d+N
d

)
− 1, one in practice can not obtain a full set of

BI for N > 5 [11]. However, it has recently been shown
both theoretically [12, 13], and experimentally [16], that

a small subset of the correlators in ~S (namely, one- and
two-body PI correlators) suffices to detect Bell correla-
tions for arbitrarily large N . Therefore, we limit the
number of components of ~S to contain only up to K-
body correlators, effectively projecting PS to a polytope
PS
K living in a subspace of dimension

(
d+K
d

)
−1, indepen-

dent of N , whose vector of coordinates we denote ~SK .
Still, in the case K = 2 finding all PI BI only works for
N . 40 in less than a month runtime. Hence, to study
the large N regime one has to (i) infer classes of BI and
generalize them to arbitrary N and (ii) derive a proof
of their βC for each class. Nevertheless, as more BI ap-
pear as N increases, this procedure may leave potentially
more useful classes unnoticed if they do not show up for
sufficiently small N .

We propose here a method to approximate PS
K from

the outside, which overcomes the above limitations. Our
technique is based on two mild relaxations yielding a hi-
erarchy of conditions satisfied by all LHVM correlations.

First relaxation. – According to Eq. (5), PS is defined
as the convex hull of a finite set of points, therefore not
exploiting the inherent algebraic structure present in the

polynomials ~SK(~x). The first relaxation we introduce
consists in dropping the condition xi ∈ Z≥0, and consider
instead xi ∈ R≥0, which gives rise to the set

P̃S
K = CH

{
~SK(~x) s.t.

∑
i

xi = N, xi ∈ R≥0

}
. (7)

Note that ~SK(~x) with ~x ∈ Rm interpolates the vertices

of PS
K , implying PS

K ⊆ P̃S
K . As a consequence, if a set of

correlations lies outside P̃S
K , it also lies outside PS

K , and
therefore it is nonlocal.

Since ~x hasm−1 free parameters, and ~SK has
(
d+K
d

)
−1

components, ~SK(~x) can be expressed as a set of equa-

tions fi(~SK) = 0, where 1 ≤ i ≤
(
d+K
d

)
− m. The

non-negativity constraints xj ≥ 0 can also be expressed

as a set of m constraints in ~SK , by a set of inequali-
ties gj( ~SK) ≥ 0 (see the example). In what follows, we
refer to the set of solutions of a system of polynomial
equations fi( ~SK) = 0 as an algebraic set. Moreover, if
an algebraic set is further restricted by polynomial non-
negativity constraints gj( ~SK) ≥ 0, as it is the case for

P̃S
K in Eq. (7), we shall call such a set semialgebraic.

Second relaxation. – Deciding membership in the CH
of a (semi)algebraic set V is NP-hard [20]. However, there
exist efficient approximations for CH(V) from the outside
[18–21]. The idea behind these methods is to reduce the
membership problem in CH(V) to that of a multivariate
polynomial being non-negative, which can be relaxed to
determining whether such polynomial can be expressed
as a sum of squares (s.o.s.) [26]. While the first condition
is NP-hard, the second can be efficiently checked using a
SdP, as we are going to show.

Following this approach, the main idea behind our
method is to construct linear polynomials l( ~SK) ∈
R[ ~SK ]1 satisfying l( ~SK) ≥ 0 for all ~SK ∈ V, i.e. valid
Bell inequalities defining half-spaces containing CH(V).

Starting from the observation that every polynomial of
the form p+

∑
i fipi, with p, pi ∈ R[ ~SK ], takes the same

values when evaluated in V (because fi( ~SK) = 0 for all
~SK ∈ V), we define the ideal I generated by fi as the set

I =

{∑
i

fi pi s.t. pi ∈ R[ ~SK ]

}
⊆ R[ ~SK ] , (8)

such that every polynomial in p + I = {p + q, q ∈ I}
is equivalent when evaluated in V. Moreover, the ideal
I defines the set of equivalence classes R[ ~SK ]/I, where

p, q ∈ R[ ~SK ] are in the same class if they are equivalent
modulo I, i.e. p ≡ q mod I, meaning that p− q ∈ I.

To express l( ~SK) we consider the following ansatz :

l( ~SK) =

m∑
i=0

gi( ~SK)σi( ~SK) mod I , (9)
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where g0( ~SK) = 1, and σi( ~SK) are s.o.s. polynomials

modulo I (i.e. there exists a s.o.s. polynomial in σi( ~SK)+
I). For compactness, let us use the shorthand notation
gi and σi. Note that since all gi ≥ 0 in V by definition,
and s.o.s. are non-negative, the form of Eq. (9) ensures

the non-negativity of l( ~SK) in V, [27].

Now, given a point ~S∗K , our goal is to prove that

l( ~S∗K) < 0 for some σi. If we succeed in this proof, then

we have to conclude that ~S∗K /∈ CH(V) ⊇ PS
K , i.e. that

the statistics in ~S∗K come from nonlocal correlations.

For computational reasons, we need to bound the max-
imum degree of the s.o.s. decomposition allowed in σi+I.
The higher the degree, the larger the family of l( ~SK) that
can be accessed through Eq. (9), but the more computa-
tionally expensive to produce such s.o.s. representation
will be. This naturally yields a hierarchy of outer ap-
proximations to CH(V) by increasing the degree of the
s.o.s. decomposition of σi. To simplify our exposition, we
consider here the special case where all σi = σ.

To express all σ that are s.o.s. of degree 2µ, modulo
I, we adopt the following procedure. First, we select
(via a Gröbner basis [28]) a linearly independent set of

representatives of R[ ~SK ]/I, and we order them in the

vector ~b = (1,S0,S1, . . . )
T . Denoting by ~bµ the vector of

elements of ~b of degree at most µ, we write σ =
∑
j s

2
j

mod I, where sj are linear combinations of the elements

of ~bµ; i.e. sj = ~bTµ~aj , with ~aj real vectors. At this point,

by defining the matrix G =
∑
j ~aj~a

T
j , which is positive

semi-definite by construction (G � 0), and the moment

matrix Γi = gi~bµ~b
T
µ mod I, we write

gi σ = Γi ·G mod I , G � 0 . (10)

Here X · Y =
∑
abXabYab.

When the elements of Γi corresponding to ~SK are re-
placed by ~S∗K , only some of its entries are constrained.
If the remaining free parameters can be tuned to make
Γi � 0, Eq. (10) ensures that gi σ ≥ 0 in ~S∗K for all σ
(that are s.o.s. of degree 2µ, modulo I). On the other
hand, when Γi � 0 for any choice of the free parameters,

there exists at least one σ such that gi σ < 0 in ~S∗K [29].

Recall here that our final goal is to prove that there
exist a σ such that Eq. (9) gives l( ~S∗K) < 0. To this

end, we write Eq. (9) as l( ~SK) = Γ̃ · G̃ mod I, where
Γ̃ =

⊕m
i=0 Γi, and similarly for G̃. As for Eq. (10), we

ask whether Γ̃ can be made positive semi-definite at the
point ~S∗K . To perform this check with a SdP, we first
reduce Γ̃ modulo I, and then linearize it as

Γ̃ =
∑
j

yjΓ̃j , (11)

where yj indexes the j-th element of ~b, and Γ̃j are con-
stant real matrices embodying the constraints among the

-� � �

-��

-�

�

�

��

α

β

Figure 1. For N = 10 and K = 2, the plane of the sym-

metric correlations of the form α~S(1)
2 + β ~S(2)

2 , with ~S(1)
2 =

(1,−1, 0,−1, 1)T /
√

4 and ~S(2)
2 = (0,−1,−1, 1, 0)T /

√
3. In

blue, the intersection of PS
2 with the plane, computed with

a linear program. In red, the boundary of the feasible set of
SdP (12) for µ = 1. The gap between the two objects is im-
putable mainly to the first relaxation, and the small N was
chosen also to appreciate its size, which remains of the same
order while PS2 increases with N (see also Fig. 2)

entries of Γ̃. Now, for the point ~S∗K , we write the SdP

max
yj∈R

1

s.t. Γ̃ � 0
y0 = 1

yj = ( ~S∗K)j

(12)

where y0 and the yj corresponding to ~S∗K are fixed, while
the other yj are free real parameters that can be varied

until the condition Γ̃ � 0 is fulfilled.
If SdP (12) is infeasible, Γ̃ � 0 independently on the

free yj , which proves that there exist a σ such that

l( ~S∗K) < 0. Therefore, infeasiblity of (12) certifies that
~S∗K /∈ CH(V) ⊇ PS

K , i.e. its nonlocal nature (see the ex-
ample and Fig. 2).

While the output of SdP (12) is the answer feasi-
ble/infeasible, we can also write a SdP to maximize λ

subject to y0 = 1 and yj = λ( ~S∗K)j . The dual formu-
lation of this modified SdP results in the dual variables
αj1...jk associated to y1 . . . yi, and βC associated to y0,
defining a Bell inequality (6) that can be used to certify

the nonlocality of ~S∗K [30] (see the example and Fig. 2).

In addition, maximizing λ along different directions ~S∗K
results in the points λmax

~S∗K that can be used to approx-
imate the boundary of PS

K , (see Fig. 1).
On the other hand, if SdP (12) is feasible it means that

it does not exist a σ that is s.o.s. of degree 2µ, modulo
I, such that l( ~S∗K) < 0. In this case, we could access
a higher level of our hierarchy by increasing µ, which
enlarges the class of l( ~SK) to be tested [31].
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Figure 2. Plane generated by {S0, (S00 + 2S01 + S11)}.
Black circled dot, point (367.6,−525.4) measured experi-
mentally in [16] for N = 476. Blue points, projected ver-
tices of PS

2 . Blue line, bound given by the Bell inequality
−2S0 + (S00 + 2S01 + S11) /2 + 2N ≥ 0, from [12, 16]. This
inequality is tight, meaning that it is also a facet of the pro-
jected polytope. Pink region, points where SdP (15) gives
λ ≥ 1. Orange dashed line, Bell inequality obtained numeri-
cally by solving the dual of SdP (15). The distance between
the blue and the orange lines is 1.000002, meaning that the er-
ror of our method compared to the tight classical bound scales
as 1/N , and it is imputable mainly to the first relaxation.

An additional result in [18, 19] ensures that, since the
variety V we want to approximate is compact, our hier-
archy converges at least asymptotically to CH(V). Actu-
ally, in all examples we studied, we observed numerically
that convergence at µ = 1 was already present.
Example. – In the spirit of [12, 16], we consider

d = K = 2, giving rise to the set of correlators ~S2 =
(S0,S1,S00,S01,S11) ∈ R5, and N parties. In this sce-
nario, there are four LDS parameterized by xi ≥ 0 and
satisfying

∑4
i=1 xi = N . By expressing the correlators

~S2 evaluated on a LDS in terms of ~x, we obtain [12]
N
S1

S0

Z

 =


x1 + x2 + x3 + x4

x1 + x2 − x3 − x4

x1 − x2 + x3 − x4

x1 − x2 − x3 + x4

 , (13)

 S00

S01

S11

 =

 S2
0 −N

S0S1 −Z
S2

1 −N

 . (14)

When N is fixed Eqs. (13) are three free parameters,
while Eqs. (14) define the ideal I, whose

(
d+K
d

)
−m = 2

generators {f1( ~S2), f2( ~S2)} = {S00−S2
0 +N,S11−S2

1 +N}
form also a Gröbner basis for I. Inverting Eq. (13) we

obtain four polynomials in ~S2 that allow to express the
constraints xi = gi( ~S2) ≥ 0; e.g.

g1( ~S2) = (S0 + S1 + (S0S1 − S01) + (S2
0 − S00))/4 ≥ 0 .

At the first level of our hierarchy, µ = 1, the vector ~bT1 =
(1,S0, . . . ,S11) generates the five 6× 6 moment matrices
Γi. Combined together, the Γi give a 30 × 30 block-
diagonal moment matrix Γ̃, in which N appears as a
parameter, and thus not affecting its size.

Considering the experimental data presented in [16],
we can conclude that the measured statistics (S∗0 ,S∗00 +
2S∗01 + S∗11) = (367.6,−525.4) contain Bell correlations
because the following SdP gives λ < 1:

max
yj∈R

λ

s.t. Γ̃ � 0
y0 = 1

(y1, y3 + 2y4 + y5) = λ(S∗0 ,S∗00 + 2S∗01 + S∗11)

(15)

The dual of SdP (15) gives as result the dual variables
associated to y0, y1 and y3 + 2y4 + y5, which correspond
respectively to the coefficients of the Bell inequality βC+
α1S0 + α2 (S00 + 2S01 + S11) ≥ 0, (see Fig. 2).

Comment on more outcomes – It is possible to con-
sider the case where measurements have more outcomes
by defining the expectation values as e.g. 〈M(i)

j 〉(a) =
2Pi(a|j) − 1, where Pi(a|j) is the probability that mea-
surement j on party i gives as outcome a, and the sym-

metrized correlators as e.g. S(a)
j =

∑N
i=1〈M

(i)
j 〉(a).

Conclusions. – We introduced a method to bound the
set of LHVM correlations. Its main advantage, with re-
spect to other techniques, is that there is no scaling with
the number of parties, making it particularly suited for
the study of nonlocal correlations in many–body systems.
Our approach has several applications, some of which
were presented here, such as the characterization of ex-
perimentally observed correlations or the derivation of
new Bell inequalities. Furthermore, it can be easily gen-
eralized to scenarios with more measurements settings
and outcomes, potentially enlarging the class of systems,
and states, where nonlocal correlations could be experi-
mentally detected.

Acknowledgments. – We are grateful to Antonio Aćın,
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stein, and A. Aćın, “Detecting nonlocality in many-body
quantum states,” Science 344, 1256–1258 (2014).

[13] J. Tura, R. Augusiak, A. B. Sainz, B. Lücke, C. Klempt,
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