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Wigner Research Centre for Physics, H-1525 Budapest 114, P.O.Box 49, Hungary

e-mail: diosi.lajos@wigner.mta.hu

Antoine Tilloy

Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1, 85748 Garching, Germany

e-mail: antoine.tilloy@mpq.mpg.de

(Received: October 12, 2017; Accepted: October 19, 2017; Published: November 30, 2017)

Abstract. We define a time continuous version of the concept of “local operations and
classical communication” (LOCC), ubiquitous in quantum information theory. It allows us
to construct GKLS master equations for particle systems that have (1) an arbitrary pair
potential, and (2) local decoherence terms, but that do not entangle the constituents. The
local decoherence terms take a particularly simple form if a principle of least decoherence
is applied.
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vian feedback; local operations.

1. Introduction

Local operations and classical communication (LOCC) are an important sub-
class of operations on multipartite quantum systems, introduced first in the
context of quantum information theory [1, 2]. In the bipartite case, two sub-
systems are possessed by Alice and Bob respectively. They can carry out
local operations as well as classically communicate with each other but are
not allowed to exchange quantum information (e.g. by sending each other
photons in definite entangled states). The interest of this class of operations
is that it can correlate the local subsystems but it cannot entangle them. For
this reason, LOCC are instrumental in basic quantum information protocols,
allowing entanglement to be seen as a resource one can gather (entanglement
distillation) to subsequently enable tasks (such as quantum teleportation).
Despite what their simple definition would suggest, quantum dynamical maps
obtained from LOCC have a rich and intricate structure [3]. The time contin-
uous setting, which we shall discuss below, has been less studied but already
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points to many interesting problems.
The motivation for the analysis of continuous time LOCC dynamics is

unexpected and arose recently in a context a priori far removed from quan-
tum information theory. Recent works [4 – 10] have indeed used continuous
time LOCC to construct and constrain semi-classical theories of Newtonian
gravity. The idea is that if the gravitational force is classical at a fundamen-
tal level, then perhaps it cannot be used to entangle particles. A sufficient
conditiona is then that gravity can be implemented with LOCC. This pro-
vides a way to construct explicit theories of semi-classical gravity that do
not require a modification of the statistical toolbox of quantum mechanics
contrary to non-linear mean field approaches.

Let us informally define continuous time LOCC dynamics in a simple bi-
partite setting. In the discrete setting, Alice performs a local measurement
on her system and broadcasts the measurement outcome to Bob. Knowing
this outcome, Bob then performs a local unitary. These steps can be repeated
arbitrarily many times while Alice and Bob can exchange their role. There
is a natural continuous time limit to such an iteration of LOCC and one can
obtain it using the theory of continuous quantum measurement. Alice contin-
uously measures (or monitors) a local observable Â and broadcasts the time
dependent measurement signal a(t) to Bob. Bob then applies in real time a

local feedback Hamiltonian V̂ = a(t) × B̂, proportional to the received sig-
nal. This is an instance of Markovian measurement based feedback in which
the measured operators are restricted to a single subsystem of a bipartite
decomposition. The corresponding Gorini-Kossakowski-Lindblad-Sudarshan
(GKLS) master equation [12, 13], even without this locality constraint, was
derived a long time ago [14 – 19]. Importantly, the feedback master equation
contains non-local Hamiltonian terms in addition to local decoherence and
possibly non-local dissipation.

This brings a number of natural questions.

— What kind of non-local potential can one construct this way?

— What is the price to pay in local decoherence or equivalently in local
classical noise?

— Is there a natural way to define the minimum amount of noise required
to implement a given non-local quantum potential with LOCC dynam-
ics?

Our objective is to answer those questions in the slightly restrictive context
of bipartite systems and for translation invariant potentials.

aThis is only a sufficient condition because there could exist non-entangling dynamics
that cannot be simply derived from continuous time LOCC (see e.g. the slightly larger
class of semi-classical dynamics discussed in [8]). Further, the very definition of classical or
non-quantum is sufficiently flexible that one may wish to extend it beyond non-entangling
dynamics [11].

1740020-2

O
pe

n 
Sy

st
. I

nf
. D

yn
. 2

01
7.

24
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

A
X

 P
L

A
N

C
K

 I
N

ST
IT

U
T

E
 F

O
R

 Q
U

A
N

T
U

M
 O

PT
IC

S 
on

 0
1/

11
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



On GKLS Dynamics for Local Operations and Classical Communication

2. Continuous Local Monitoring and Non-local Feedback

2.1. One-way case

We consider a bipartite quantum system of state ρ̂ with each part under the
control of Alice and Bob respectively. In the absence of feedback, we assume
that the total Hamiltonian is a sum of local terms Ĥ = ĤA+ĤB. We further
assume that Alice is monitoring a set of observables {Âν}. The statistics of
the corresponding measurement signals aν(t) as well as the resulting backac-
tion on the state can be written down using continuous measurement theory
(see e.g. [20, 19]). One gets

aν(t) = Tr(Âν ρ̂t) + wA
ν (t) , (1)

where the wA
ν (t) are correlated white noises of zero average characterized by

their two-point function

E
[
wA
ν (t)wA

µ (s)
]

= (γA)−1νµ δ(t− s) . (2)

The real non-negative matrix γA encodes the precision of Alice’s monitoring
device. Under this continuous measurement, the state ρ̂wt evolves according
to the stochastic master equation (SME)

dρ̂w

dt
= −i[ĤA + ĤB, ρ̂

w] (3)

− 1

2

∑

νµ

(γAνµ
4

[
Âν , [Âµ, ρ̂

w]
]
− γAνµ

{
Âν − 〈Âν〉t, ρ̂wt

}
wA
µ (t)

)
,

where 〈Âν〉t = Tr[Âν ρ̂
w
t ] and the multiplicative white noise is understood

in the Itô convention. If nothing is done with the measurement signals and
if one averages over them, one gets the simple GKLS master equation for
ρ̂ = E[ρ̂w],

dρ̂

dt
= −i[ĤA + ĤB, ρ̂]− 1

2

∑

νµ

γAνµ
4

[
Âν , [Âµ, ρ̂]

]
. (4)

However, if Bob introduces a local potential V̂B(t) proportional to the in-
stantaneous signals he receives, i.e.

V̂B(t) =
∑

ν

aν(t)B̂ν , (5)
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where {B̂ν} are local observables of Bob, one can show that the noise-
averaged state of the composite system satisfies the GKLS equation,

dρ̂

dt
= −i[ĤA + ĤB, ρ̂] (6)

− 1

2

∑

νµ

(
i
[
B̂ν , {Âν , ρ̂}

]
+
γAνµ
4

[
Âν , [Âµ, ρ̂]

]
+ (γA)−1νµ

[
B̂ν , [B̂µ, ρ̂]

] )
.

We shall not discuss the derivation of this master equation which contains
minor subtleties and which can be found in the literature (see e.g. [17, 19, 6]).
Rather, we take (6) as the starting point of our exploration of continuous
time LOCC dynamics. We note already an interesting feature of the ME
(6): the non-Hamiltonian part is non-local due to the terms − i

2 [B̂ν , {Âν , ρ̂}]
although the equation is non-entangling by construction, as it is obtained
from LOCC dynamics.

2.2. Symmetric case

We extend the previous setting by adding the possibility for Bob to measure
and Alice to apply a potential proportional to the corresponding instanta-
neous signal. The general case can be obtained in the same way as before.
We focus on a restricted symmetric case which is particularly interesting.
Let us assume that Bob is monitoring the same set of observables {B̂ν} that
he is using for feedback and that Alice is using the same set of observables
{Âν} for feedback that she is using for monitoring. The corresponding GKLS
master equation — after averaging over the measurement outcomes — reads

dρ̂

dt
= − i

[
ĤA + ĤB +

∑

ν

ÂνB̂ν , ρ̂
]
−
∑

νµ

(γAνµ
8

+
(γB)−1νµ

2

) [
Âν , [Âµ, ρ̂]

]

−
∑

νµ

(γBνµ
8

+
(γA)−1νµ

2

) [
B̂ν , [B̂µ, ρ̂]

]
, (7)

where the only freedom lies in the two non-negative real matrices γA and γB

setting the precision of Alice’s and Bob’s monitoring. The master equation
(7) possesses two remarkable features. As before, it is obtained from LOCC
and thus it does not entangle the two parties. Second, it contains a non-local
Hamiltonian term,

ĤAB =
∑

ν

ÂνB̂ν . (8)

The coexistence of these two properties is made possible by the presence
of local decoherence on both sides. Because every interaction Hamiltonian
can be decomposed into a sum of tensor products of local terms, we answer
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the first question mentioned in the introduction: provided one accepts to
pay a certain price in local decoherence, one can implement any non-local
Hamiltonian on a bipartite system.b We now discuss more precisely the
cost in local decoherence to implement a given pair potential between two
particles.

3. Implementing a Pair Potential

3.1. Setup

We assume that Alice and Bob each have a particle and that the two particles
interact via a translation invariant pair potential V (x̂A−x̂B) depending only
on the particle coordinates. Naturally, even for initially disentangled states,
the pair-potential will entangle the bipartite system. If, however, there is
sufficiently strong local decoherence, then entanglement vanishes in finite
time and the two particles remain only classically correlated [21, 22]. We
assume that the bipartite state ρ̂ obeys the GKLS equation

dρ̂

dt
= −i

[
ĤA + ĤB + V (x̂A − x̂B), ρ̂

]
+DAρ̂+DB ρ̂ , (9)

where ĤA, ĤB are local Hamiltonians and DA, DB are local GKLS “dissi-
pators”. In light of the previous section, the natural question we may want
to answer is the following. What structure and “intensity” need the local
dissipators have to prevent the pair potential from entangling the two par-
ticles? A strategy to obtain a candidate is to construct a continuous time
LOCC dynamics giving rise to a master equation of the form (9) and then
to minimize the local dissipators.

We first write the pair potential as a sum of tensor products of local
operators by Fourier expanding it. Because the potential is self-adjoint, we
get

V (x̂A − x̂B) =

∫

R3

dk vk cos [k · (x̂A − x̂B)]

=

∫

R3

dk vk (cos(k · x̂A) cos(k · x̂B) + sin(k · x̂A) sin(k · x̂B))

where vk is real. Defining now

Âk,s =
√
|vk|

{
cos(k · x̂A) s = 1
sin(k · x̂A) s = 2

(10)

B̂k,s = sgn(vk)
√
|vk|

{
cos(k · x̂B) s = 1
sin(k · x̂B) s = 2 ,

(11)

bThe only subtlety, as we shall later see, is that implementing a given Hamiltonian
may require divergent local decoherence terms making the corresponding master equation
trivial.
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we can identify the potential with the interaction Hamiltonian (8) of (7),

V (x̂A − x̂B) =
∑

s=1,2

∫

R3

dk Âk,sB̂k,s . (12)

Alice’s dissipator reads

DAρ̂ = −
∑

s,s′=1,2

∫ ∫
dk dk′

(γA
k,s,k′,s′

8
+

(γB)−1
k,s,k′,s′

2

) [
Âk,s, [Âk′,s′ , ρ̂]

]
,

(13)
and Bob’s can be written in the same way by exchanging A and B.

3.2. Principle of least decoherence

To find a way to canonically minimize local decoherence, we make the as-
sumption that the dissipators in the final GKLS equation have the same
symmetries as the potential, i.e. that they are translation invariant and that
they have the A↔ B symmetry. This drastically reduces the freedom in the
precision matrix which can be written

γAk,s,k′,s′ = γBk,s,k′,s′ = γk δs,s′ δ
3(k − k′) . (14)

With this simplification, Alice’s dissipator becomes

DAρ̂ = −
∑

s=1,2

∫
dk
(γk

8
+

1

2γk

) [
Âk,s, [Âk,s, ρ̂]

]
. (15)

We now have a clear principle of least decoherence (analogous the one al-
ready discussed in [8]) which consists in minimizing all the coefficients inde-
pendently for each wave number. This yields γk = 2. In the end the Alice’s
local decoherence term reads

DAρ̂ = −1

2

∫
dk |vk|

(
[cos(k · x̂A), [cos(k · x̂A), ρ̂]]

+ [sin(k · x̂A), [sin(k · x̂A), ρ̂]]
)

=

∫ ∫
V(x− x′)δ3(x− x̂A) ρ̂ δ3(x′ − x̂A) dxdx′ − V(0) ρ̂ , (16)

where V is the potential with |vk| as Fourier modes (instead of vk for the
initial pair potential). If V is a non-negative kernel (as is the case for most
non-relativistic Green’s functions), then V = V . This is a remarkable result:
the minimum of decoherence is reached when the spatial local decoherence
functional is given by the pair-potential. This brings a severe difficulty for
pair-potentials diverging in 0 (as is the case for the Newtonian potential)
as the resulting minimum decoherence is then infinite. Implementing such
a potential in an LOCC way requires a regularization at short distances to
keep decoherence finite (see [8] for a discussion in the context of gravity).
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3.3. Minimal disentangling local noise

The previous results apply in a slightly different context than the one of 3.1.
Consider now that the two particles are subjected to local noisy potentials
in addition to the entangling pair potential. We assume that their evolution
is given by the following stochastic Schrödinger equation:

d

dt
|ψ〉 = −i

(
ĤA + ĤB + V (x̂A − x̂B) + ξA(x̂A, t) + ξB(x̂B , t)

)
|ψ〉 (17)

where ξA and ξB are independent white Gaussian noises of zero mean with
the same two-point function

E
[
ξA(x, t)ξA(x′, t′)

]
= E

[
ξB(x, t)ξB(x′, t′)

]
= D(x− x′)δ(t− t′) , (18)

and where the multiplicative noise is understood in the Stratonovich conven-
tion.c The only constraint on D is that it is a real function corresponding to
a non-negative kernel (that is, D has positive Fourier transform). We may
ask what amount of local noise is sufficient to destroy the entangling proper-
ties of the pair potential. This can be done simply by noting that the GKLS
master equation obtained from (17), after averaging, has local dissipators of
the same form as those of (16). Indeed, writing ρ̂ = E[|ψ〉 〈ψ|] one can showd

that ρ̂ obeys the GKLS master equation (9) with

DAρ̂ =

∫∫
D(x− x′)δ3(x− x̂A) ρ̂ δ3(x′ − x̂A) dxdx′ −D(0) ρ̂ , (19)

and the same for B. Identifying this expression with (16), we naturally
fix D = V, i.e. the correlation function of the local noises is given by the
pair potential (or a version with positive Fourier transform were it not non-
negative).

This gives us the noise threshold for which the stochastic Schrödinger
equation (17) is non-entangling (on average). As an aside, this provides a
simple demonstration that many-body dynamics are easy to simulate classi-
cally provided a sufficient amount of local classical noise is added.

cThis convention is natural in this context because the noise is physical. Physically,
(17) is obtained in the limit where the time correlation of the noise is much smaller than
all other timescales. By virtue of the Wong-Zakäı theorem [23], this limit corresponds to
the stochastic differential equation in Stratonovich form.

dThis can be done by rewriting (17) in the Itô convention, using Itô’s lemma to get a
stochastic master equation for |ψ〉 〈ψ|, and finally removing the Itô integral by averaging.
Equivalently one may solve (17) by formal exponentiation in the Stratonovich representa-
tion, average over the noise by Gaussian integration, and differentiate the result.
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4. Summary

We have shown that it is possible to create any potential — not necessarily
harmonic — between two particles using LOCC. The corresponding GKLS
master equations possess local decoherence terms that take a particularly
simple form provided a principle of least decoherence is applied. In that case
the local decoherence functional is simply equal to the pair potential (if the
latter has a non-negative Fourier transform).
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