sRNA₄₁ affects independently several ribosome binding sites within polycistronic mRNAs in *Methanosarcina mazei* Gö1

Anne Buddeweg¹, Kundan Sharma^{2,3}, Henning Urlaub^{2,3} and Ruth A. Schmitz^{1*}

¹Christian-Albrechts-University Kiel, Institute for General Microbiology, Kiel, Germany

²Bioanalytics Research Group, Department of Clinical Chemistry, University Medical Centre,

Göttingen, Germany

³Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry,

Göttingen, Germany

*Correspondence to Ruth A. Schmitz, rschmitz@ifam.uni-kiel.de, Tel: +49431-8804334; Fax: +49431-8802194

Supplemental material

Supplementary figures S1-S5 Supplementary tables S1-S3

Supplementary Figure 1 Overview of the regions that play predominant roles in the statistically significant interactions between $sRNA_{41}$ and target mRNAs given by IntaRNA (Busch *et al.*, 2008). Interactions displayed for **A**, the target mRNAs and **B**, $sRNA_{41}$ sequence. The density plot in the top of each image is calculated from all predicted interactions with an IntaRNA p-value ≤ 0.01 . The interactions pictured in the bottom are shown for the top 25 predicted targets (bottom-up). Blue bars showing interaction regions for each mRNA and the $sRNA_{41}$, respectively.

Supplementary Figure 2 A, Structure prediction of full length 5'UTR *MM2089* (400 nt) performed with RNAfold (Hofacker *et al.*, 1994). Color code indicates base pairing probability. Single stranded RBS is indicated by a black bar. **B,** MST experiment demonstrated interaction between a longer 5'UTR *MM2089* and sRNA₄₁. 6 μ M of unlabeled 240 nt of 5'UTR *MM2089* was incubated together with the wt combination of 15 nM Cy3-labeled '5'UTR MM2089 and with increasing amounts of sRNA₄₁ (1.14 nM to 37.5 μ M) (light blue graph, K_D (com)). Green graph demonstrates the wt '5'UTR MM2089 interaction without competitor 5'UTR *MM2089* (K_D (wt)).

Supplementary Figure 3 Proteome analysis of a chromosomal *M. mazei* Gö1 sRNA₄₁ deletion mutant (Mm_ Δ s41) vs. wild type (Mm_wt) under N-sufficiency. Up and down-regulated proteins in the Mm_ Δ s41 mutant vs. Mm_wt with a minimum fold-change of 2 (blue and red bars) and 0.5 (grey bars). Protein levels were determined in exponential growth phase by LC-ESI MS/MS (see Experimental procedures). Diagram represents the second of two independent experiments. MM-numbers are given in case no function is assigned to the protein. Marked in red are the up regulated subunits of the ACDS complex.

Supplementary Figure 4 Transcriptome analysis via qRT-PCR of the polycistronic mRNA of the operons encoding ACDS complexes and sRNA₄₁ in *M. mazei* wildtype (Mm_wt) and sRNA₄₁ chromosomal deletion mutant (Mm_ Δ s41). **A**, Regulation of the 5' fragment of polycistronic mRNA of ACDS (*MM2089* and *MM0686*) in comparison between Mm_ Δ s41 mutant and Mm_wt under different growth conditions. **B**, Regulation of 5' fragment of polycistronic mRNA of ACDS and **C**, sRNA₄₁ in Mm_wt comparing different nutrient compositions. NH₄⁺, supplemented with ammonium; N₂, molecular nitrogen as sole nitrogen source; +Ac, supplemented with 11 mM sodium acetate trihydrate; -Ac, without acetate source. Fold regulation and respective standard deviations were calculated of three independent experiments. p-values in sections A and C were calculated with Mann-Whitney-Test showing no significant changes in expression levels (p \geq 0.05).

Supplementary Figure 5 Proposed model of the sRNA₄₁ post-transcriptional regulation. **A**, Regulation of sRNA₄₁ under NH_4^+ . Translation of *cdh* genes is partially repressed by sRNA₄₁ binding to the translation start site (RBS). sRNA₄₁ is highly expressed under NH_4^+ . ACDS complex catalyzes among others the synthesis of acetyl-CoA from CO₂, CH₃-H₄SPt and CoA. **B**, Under nitrogen fixing conditions (N₂) sRNA₄₁ is only slightly expressed causing a regular translation of ACDS. Thus more acetyl-CoA is generated for amino acid synthesis and therefore more nitrogen fixing enzymes (nitrogenase) are synthesized.

Supplementary Figure 6 Conservation of 5'UTRs of ACDS operons in different *Methanosarcina* species. **A**, Alignment of a short upstream region (115 nt) and the 5'UTR of the ACDS operon conserved in *Methanosarcina thermophila*, *M. mazei and M. acetivorans*. **B**, Alignment of a short upstream region the 5'UTR (115 nt) of the second ACDS operon, only present in *M. mazei* and *M. acetivorans*. Asterisks indicate conservation of DNA sequences, TSS are marked with an arrow and +1, potential consensus promoter sequences with dashed lines, TLS of both operons with continuous lines and verified interaction regions of sRNA₄₁ with the RBS in *M. mazei* are boxed. Alignments were performed with Clustal Omega (Sievers *et al.*, 2011).

ORF ID (Deppenmeier <i>et al.</i> , 2002)	Gene / protein designation	Interaction energy [kcal/mol]
MM_1294	hypothetical protein	-17.33
MM_2798	hypothetical protein	-14.68
MM_2578	iron (II) transport protein A	-14.25
MM_0764	hypothetical protein	-13.49
MM_0686	acetyl-CoA decarbonylase/synthase complex	-13.32
MM_0828	hypothetical protein	-13.04
MM_2089	acetyl-CoA decarbonylase/synthase complex	-12.94
MM_3000	DNA repair helicase	-12.22
MM_2146	50S ribosomal protein L15	-12.18
MM_1333	zinc ABC transporter, zinc binding protein	-12.10
MM_2750	hypothetical protein	-11.97
MM_0005	peptide ABC transporter permease	-11.96
MM_0341	amidophosphoribosyl-transferase	-11.93
MM_0501	3-demethylubiquinone-9 3-methyltransferase	-11.63
MM_3017	ABC transporter, permease	-11.62
MM_3054	hypothetical protein	-11.59
MM_1006	proteasome-activating nucleotidase	-11.57
MM_2978	hypothetical protein	-11.55
MM_1136	hypothetical protein	-11.53
MM_1517	cysteine desulfurase nifS	-11.51
MM_2382	hypothetical protein	-11.49
MM_1292	archaeosine tRNA-ribosyltransferase	-11.46
MM_2087	acetyl-CoA decarbonylase/synthase complex	-11.20
MM_2673	hypothetical protein	-11.14
MM_1850	hypothetical protein (RNase P)	-11.11
MM_2106	glycosyltransferase	-11.08
MM_2145	50S ribosomal protein L30	-11.01

Supplementary Table 1 Predicted interaction partners of $sRNA_{41}$. Prediction was performed using IntaRNA (Busch *et al.*, 2008) determining interaction \pm 100 bp of translation start site.

Supplementary Table S2 (Excel sheet) List of proteins quantified by LC-ESI MS/MS in $Mm_{\Delta s41}$ vs wt as forward and reverse experiment (see Experimental procedures).

Designation	Sequence (5'->3')	Comment
666-1	CAGGTACCGGATAAGGTTGGA	Construction of a chromosomal sRNA41 deletion
	AA	mutant
666-2	CGGAATTCTTGAGTTCACCTGC	Construction of a chromosomal $sRNA_{41}$ deletion mutant
666-3	AGGAATTCACTCCCTGAAGGAA AA	Construction of a chromosomal sRNA ₄₁ deletion mutant
666-4	GAGAAAACGCTTGAGATCTAA G	Construction of a chromosomal sRNA ₄₁ deletion mutant
sRNA666 for	CTCGAGAGCATAATCAGGGATC T	Construction of a $sRNA_{41}$ overexpression mutant
sRNA666 rev	CTCGAGTGTGTATAAATTGACG	Construction of a sRNA41 overexpression mutant
sRNA41 T7 for		Construction of T7-sRNA ₄₁
sRNA41 NheI rev	GTGCTAGCGTGACTCCCTTGCA	Construction of T7-sRNA ₄₁
sRNA41del18-46fo	GTACAAACTTGCAATGCTGGAA	Construction of 22 nt deletion in sRNA ₄₁ by site- directed mutagenesis
sRNA41del18-46re	CATTTTTACGTCTGTTCGCTAG	Construction of 22 nt deletion in sRNA ₄₁ by site- directed mutagenesis
s41 EMSA for	TTGCAATGCTGGAATTCCCCA	Construction of complementary mutations in sRNA by site-directed mutagenesis
s41 EMSA rev	GTTTGTACAATATAAAATGGAG	Construction of complementary mutations in
MM2089 T7 for	TAATACGACTCACTATAGGGGA	Construction of T7-5'UTR MM2089
MM2089 rev NheI	CTCCCGCTAGCTAATTTGCTCA	Construction of T7-5'UTR MM2089
2089-2088 for	CTGGTGGAAGTTTATCAGGAC	Amplification intergenic region MM2089-MM2088
2089-2088 rev	GATTATGGTGTCGTAGTTGCC	Amplification intergenic region MM2089-MM2088
2088-2087 for	GGCAACTACGACACCATAATC	Amplification intergenic region MM2088-MM2087
2088-2087 rev	CTGGCAGTAGTTGATGAAGTC	Amplification intergenic region MM2088-MM2087
2087-2086 for	CAGCTGAAGAAGAGGAAGAAG	Amplification intergenic region MM2087-MM2086
2087-2086 rev	CGGACTCCTTATTCATATCGG	Amplification intergenic region MM2087-MM2086
2086-2085 for	CCTCTCTTTGAAATACCCGAC	Amplification intergenic region MM2086-MM2085
2086-2085 rev	GAGATCAATCTCAATGTCCCC	Amplification intergenic region MM2086-MM2085
2085-2084 for	CAAACATGGAGCGTATCAGAC	Amplification intergenic region MM2085-MM2084
2085-2084 rev	CTGTCTAGTTCTGCCAGTTTC	Amplification intergenic region MM2085-MM2084
MM1621 for.rt	TAGGAGGTTTTCTCGGAAGCG	qRT-PCR
MM1621 rev.rt	AAGCGTATCTCCATCAAGCCC	qRT-PCR
MM2181 for.rt	GCCTCCATGAGAAGAATGCTC	qRT-PCR
MM2181 rev.rt	CTTCAAGGTCTCCAACTCCTG	aRT-PCR
MM0464 for	TATGTCATCCACGTCAGACGC	gRT-PCR
MM0464 rev	TCGTATCGGCCTTTTGCCTTG	aRT-PCR
MM0686_for	CTTGGTCTCGAACTTGTCAGG	gRT-PCR
MM0686 rev	GTTGATGAAGTCGTGGACACG	aRT-PCR
MM1602 for	TTCTTGACCTGAAGGGCAGTG	gRT-PCR
MM1602 rev	TCCGGTACCCGGTAACAATAG	aRT-PCR
MM2087 for	CTTGGTCTCGAACTTGTCAGG	aRT-PCR
MM2087 rev	GTTGATGAAGTCGTGGACACG	aRT-PCR
MM2089 for	GTGCTGTTACTGCACATACGG	aRT-PCR
MM2089 rev	CCGAGGTTGAGAGGTAACTCT	aRT-PCR

Supplementary Table S3 Primer sequences and descriptions used in this study

MM2427_for	ATGATGGCAGATCTTGCAGCC	qRT-PCR
MM2427_rev	GGAATCCTTCCGGTTTCTTCC	qRT-PCR
MM2860_for	TCACGGACAGATTGTTGCAGG	qRT-PCR
MM2860_rev	CCCGGTCAACTATTGTGTCTG	qRT-PCR
sRNA41 NheI for 2	ACATGCTAGCGTCTAGCGAAC	qRT-PCR
sRNA41 EcoRV rev	AGCCGGATATCTTGTGACTCC	qRT-PCR

Supplementary Table 4 Strains and Plasmids used and constructed in this study

Strain	Description	Reference
<i>E. coli</i> DH5α	General cloning strain	(Hanahan, 1983)
<i>E. coli</i> λpir JM109	General cloning strain	(Miller & Mekalanos, 1988)
E. coli BL21-pRIL	Protein expression strain, pRIL plasmid for expression of rare tRNAs codons for arginine, isoleucine and leucine	Stratagene, La Jolla, CA, USA
M. mazei 3A	Potential cell wall mutant, referenced as wildtype	(Ehlers et al., 2005)
<i>M. mazei</i> pWM321	M. mazei 3A containing plasmid pWM321	(Metcalf et al., 1997)
<i>M. mazei</i> Δ sRNA ₄₁	M. mazei 3A chromosomal sRNA ₄₁ deletion mutant,	This study
	sRNA ₄₁ ::pac	
<i>M. mazei</i> OPsRNA ₄₁	M. mazei 3A sRNA ₄₁ overexpression mutant containing	This study
	plasmid pRS820	
Plasmid	Description	Reference
pWM321	E.coli/M. mazei shuttle vector, oriR6K, pC2A replicon,	(Metcalf et al., 1997)
	pac, bla	
pRS207	pBlueskript SK+ containing pac-casette	(Ehlers et al., 2005)
pRS820	pWM321 containing sRNA ₄₁	This study
pRS821	pBlueskript SK+ containing up- and downstream	This study
	flanking regions of sRNA ₄₁ and the <i>pac</i> -cassette	
	replacing sRNA ₄₁	
pRS913	pCRII-TOPO containing sRNA ₄₁ under T7-promoter for	This study
	in vitro transcription	
pRS1070	pCRII-TOPO containing MM2087	This study
pRS1071	pET-28a(+) containing MM2087 for heterologous gene	This study
	expression	
pRS1126	pCRII-TOPO containing sRNA ₄₁ Δ 18-46 under T7-	This study
	promoter for in vitro transcription	
pRS1128	pCRII-TOPO containing 5'UTR of MM2089 under T7-	This study
"DS1274	promoter for <i>in vitro</i> transcription	This study
рк512/4	pCKII-10PO containing mutated SKNA ₄₁ under 1/-	This study
	promoter for <i>in vitro</i> transcription	

References

- Busch, A., A. S. Richter & R. Backofen, (2008) IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions. *Bioinformatics* 24: 2849-2856.
- Deppenmeier, U., A. Johann, T. Hartsch, R. Merkl, R. A. Schmitz, R. Martinez-Arias, A. Henne, A. Wiezer, S. Baumer, C. Jacobi, H. Bruggemann, T. Lienard, A. Christmann, M. Bomeke, S. Steckel, A. Bhattacharyya, A. Lykidis, R. Overbeek, H. P. Klenk, R. P. Gunsalus, H. J. Fritz & G. Gottschalk, (2002) The genome of *Methanosarcina mazei*: evidence for lateral gene transfer between bacteria and archaea. *J Mol Microbiol Biotechnol* 4: 453-461.
- Ehlers, C., K. Weidenbach, K. Veit, U. Deppenmeier, W. W. Metcalf & R. A. Schmitz,
 (2005) Development of genetic methods and construction of a chromosomal *glnK*(1) mutant in *Methanosarcina mazei* strain Gö1. *Mol Genet Genomics* 273: 290-298.
- Hanahan, D., (1983) Studies on transformation of *Escherichia coli* with plasmids. *J Mol Biol* 166: 557-580.
- Hofacker, I., W. Fontana, P. Stadler, L. Bonhoeffer & M. Tacker, et al., (1994) Fast folding and comparison of RNA secondary structures. *Monatshefte für Chemie - Chemical Monthly*: 125: 167-188.
- Metcalf, W. W., J. K. Zhang, E. Apolinario, K. R. Sowers & R. S. Wolfe, (1997) A genetic system for Archaea of the genus *Methanosarcina*: liposome-mediated transformation and construction of shuttle vectors. *Proc Natl Acad Sci U S A* 94: 2626-2631.
- Miller, V. L. & J. J. Mekalanos, (1988) A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in *Vibrio cholerae* requires *toxR*. *J Bacteriol* **170**: 2575-2583.
- Sievers, F., A. Wilm, D. Dineen, T. J. Gibson, K. Karplus, W. Li, R. Lopez, H. McWilliam, M. Remmert, J. Soding, J. D. Thompson & D. G. Higgins, (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. *Molecular Systems Biology* 7: 539.