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A An alternative representation of the limiting
distribution

We give a second representation of the limiting distribution under the alter-
native r 6= s. The random part of the limiting distribution (8) is the linear
program

max
(u,v)∈Φ∗p(r,s)

√
λ〈G,u〉+

√
1− λ〈H,v〉.

With the representation (3) of Φ∗p(r, s) we obtain the dual linear program

min zW p
p (r, s) +

∑
x,x′∈X

wx,x′d
p(x, x′)

s.t. w ≥ 0, z ∈ R∑
x′∈X

wx,x′ + zrx = Gx∑
x∈X

wx,x′ + zsx = Hx

Note that the constraints can only be satisfied if both
√
λG − zr and√

1− λH − zs have only non-negative entries and z ≤ 0. In this case the
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second term in the objective function is clearly minimized by −zw∗, with
w∗ an optimal transport plan between these two measures r −

√
λG/z and

s −
√

1− λH/z and the second term of the objective function is equal to
−zW p

p (r −
√
λG/z, s−

√
1− λH/z).

To write this more compactly let us slightly extend our notation. For
r, s ∈ RX with

∑
x rx =

∑
x sx = 1 let

W̃ p
p (r, s) =

{
W p

p (r, s) if r, s ≥ 0;

∞ else.

With this we can thus write the random variable in the limiting distribution
(8) as the one-dimensional non-linear optimization problem

(1)
1

p
W 1−p

p (r, s) min
z≥0

z
{
W̃ p

p (r +
√
λG/z, s +

√
1− λH/z)−W p

p (r, s)
}
.

B Bootstrap

In this section we discuss the bootstrap for the Wasserstein distance. In
addressing the usual measurability issues that arise in the formulation of
consistency for the bootstrap, we follow Van der Vaart and Wellner (1996).
We denote by r̂∗n and ŝ∗m some bootstrapped versions of r̂n and ŝm. More
precisely, let r̂∗n a measurable function of X1, . . . , Xn and random weights
W1, . . . ,Wn, independent of the data and analogously for ŝ∗m. This setting
is general enough to include many common bootstrapping schemes. We say
that, with the assumptions and notation of Theorem 1, the bootstrap is
consistent if the limiting distribution of

ρn,m {(r̂n, ŝm)− (r, s)} ⇒ (
√
λG,
√

1− λH)

is consistently estimated by the law of

ρn,m {(r̂∗n, ŝ∗m)− (r̂n, ŝm)} .

To make this precise, we define for A ⊂ Rd, with d ∈ N, the set of bounded
Lipschitz-1 functions

BL1(A) =

{
f : A→ R : sup

x∈A
|f(x)| ≤ 1, |f(x1)− f(x2)| ≤ ||x1 − x2||

}
,
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where || · || is the Euclidean norm. We say that the bootstrap versions
(r̂∗n, ŝ

∗
m) are consistent if

sup
f∈BL1(RX×RX )

|E [f(ρn,m {(r̂∗n, ŝ∗m)− (r̂n, ŝm)})|X1, . . . , Xn, Y1, . . . , Ym]

−E
[
f((
√
λG,
√

1− λH))
]
|

(2)

converges to zero in probability.

Bootstrap for directionally differentiable functions The most straight-
forward way to bootstrap W p

p (r̂n, ŝm) is to simply plug-in r̂∗n and ŝ∗m. That
is, trying to approximate the limiting distribution of ρn,m {W p

p (r̂n, ŝm)−W p
p (r, s)}

by the law of

(3) ρn,m
{
W p

p (r̂∗n, ŝ
∗
m)−W p

p (r̂n, ŝm)
}

conditional on the data. While for functions that are Hadamard differen-
tiable this approach yields a consistent bootstrap (e.g. Gill et al. (1989);
Van der Vaart and Wellner (1996)), it has been pointed out by Dümbgen
(1993) and more recently by Fang and Santos (2014) that this is in general
not true for functions that are only directionally Hadamard differentiable.
In particular the plug-in approach fails for the Wasserstein distance.

For the Wasserstein distance there are two alternatives. First, Dümbgen
(1993) already pointed out that re-sampling fewer than n (or m, respec-
tively) observations yield a consistent bootstrap. Second, Fang and Santos
(2014) propose to plug-in ρn,m {(r̂∗n, ŝ∗m)− (r̂n, ŝm)} into the derivative of
the function.

Recall from Section 2 that

(4) φp : RN × RN → R, φp(h1,h2) = max
u∈Φ∗p

〈u,h2 − h1〉

is the directional Hadamard derivative of (r, s) 7→W p
p (r, s) at r = s. With

this notation, the following Theorem summarizes the implications of the
results of Dümbgen (1993) and Fang and Santos (2014) for the Wasserstein
distance.

Theorem 1 (Prop. 2 of Dümbgen (1993) and Thms. 3.2 and 3.3 of Fang
and Santos (2014)). Under the assumptions of Theorem 1 let r̂∗n and ŝ∗m be
consistent bootstrap versions of r̂n and ŝm, that is, (2) converges to zero in
probability. Then,
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1. the plug-in bootstrap (3) is not consistent, that is,

sup
f∈BL1(R)

E
[
f(ρn,m

{
W p

p (r̂∗n, ŝ
∗
m)−W p

p (r̂n, ŝm)
}

)|X1, . . . Xn, Y1, . . . , Ym
]

−E[f(ρn,m
{
W p

p (r̂n, ŝm)−W p
p (r, s)

}
)]

does not converge to zero in probability.

2. Under the null hypothesis r = s, the derivative plug-in

(5) φp(ρn,m {(r̂∗n, ŝ∗m)− (r̂n, ŝm)})

is consistent, that is

sup
f∈BL1(R)

E [f(φp(ρn,m {(r̂∗n, ŝ∗m)− (r̂n, ŝm)}))|X1, . . . , Xn, Y1, . . . , Ym]

−E
[
f
(
ρn,m

{
W p

p (r̂n, ŝm)−W p
p (r, s)

})]
converges to zero in probability.

C Proofs

C.1 Proof of Theorem 4

By (Gal et al., 1997, Ch. 3, Thm. 3.1) the function (r, s) 7→ W p
p (r, s)

is directionally differentiable with derivative (11) in the sense of Gâteaux,
that is, the limit (9) exists for a fixed h and not a sequence hn → h (see
e.g. Shapiro (1990)). To see that this is also a directional derivative in
the Hadamard sense (9) it suffices (Shapiro, 1990, Prop. 3.5) to show that
(r, s) 7→ W p

p (r, s) is locally Lipschitz. That is, we need to show that for
r, r′, s, s′ ∈ PX

|W p
p (r, s)−W p

p (r′, s′)| ≤ C||(r, s)− (r′, s′)||,

for some constant C > 0 and some (and hence all) norm || · || on RN ×RN .
Exploiting symmetry, it suffices to show that

W p
p (r, s)−W p

p (r, s′) ≤ C||s− s′||

for some constant C > 0 and some norm || · ||. To this end, we employ
an argument similar to that used to prove the triangle inequality for the
Wasserstein distance (see e.g. (Villani, 2008, p. 94)). Indeed, by the gluing
Lemma (Villani, 2008, Ch. 1) there exist random variables X1, X2, X3 with
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marginal distributions r, s and s′, respectively, such that E[dp(X1, X3)] =
W p

p (r, s′) and E[d(X2, X3)] = W1(s, s′). Then, since (X1, X2) has marginals
r and s, we have

W p
p (r, s)−W p

p (r, s′) ≤ E [dp(X1, X2)− dp(X1, X3)]

≤ p diam(X )p−1E [|d(X1, X2)− d(X1, X3)|]
≤ p diam(X )p−1E [d(X2, X3)] = p diam(X )p−1W1(s, s′)

≤ p diam(X )p||s− s′||1,

where the last inequality follows from (Villani, 2008, Thm. 6.15). This
completes the proof.

C.2 Proof of Theorem 5

Simplify the set of dual solutions Φ∗p As a first step, we rewrite the
set of dual solutions Φ∗p given in (3) in our tree notation as

(6) Φ∗p =
{
u ∈ RX : ux − ux′ ≤ dT (x, x′)p, x, x′ ∈ X

}
.

The key observation is that in the condition ux − ux′ ≤ dT (x, x′)p we do
not need to consider all pairs of vertices x, x′ ∈ X , but only those which
are joined by an edge. To see this, assume that only the latter condition
holds. Let x, x′ ∈ X arbitrary and x = x1, . . . , xl = x′ the sequence of
vertices defining the unique path joining x and x′, such that (xj , xj+1) ∈ E
for j = 1, . . . , n− 1. Then

ux − ux′ =

n−1∑
j=1

(uxj − uxj+1) ≤
n−1∑
j=1

dT (xj , xj+1)p ≤ dT (x, x′)p,

such that the condition is satisfied for all x, x′ ∈ X . Noting that if two
vertices are joined by an edge than one has to be the parent of the other,
we can write the set of dual solutions as

(7) Φ∗p =
{
u ∈ RX : |ux − uparent(x)| ≤ dT (x,parent(x))p, x ∈ X

}
.

Rewrite the target function We define linear operators ST , DT : RX →
RX by

(DT v)x =

{
vx − vparent(x) x 6= root(T )

vroot(T ) x = root(T ).
, (ST u)x =

∑
x′∈children(x)

ux′ .
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Lemma 1. For u,v ∈ RX we have 〈u,v〉 = 〈ST u, DT v〉.

Proof. We compute

〈ST u, DT v〉 =
∑
x∈X

(ST u)x(DT v)x

=
∑

x∈X\{root(T )}

∑
x′∈children(x)

(vx − vparent(x))ux′

+
∑

x′∈children(root(T ))

vroot(T )ux′

=
∑
x∈X

∑
x′∈children(x)

vxux′

−
∑

x∈X\{root(T )}

∑
x′∈children(x)

vparent(x)ux′

=
∑
x∈X

uxvx,

which proves the Lemma. To see how the last line follows let children1(x)
be the set of immediate predecessors of x, that is children of x that are
connected to x by an edge. Then we can write the second term in the
second to last line above as∑

x∈X\{root(T )}

∑
x′∈children(x)

vparent(x)ux′ =
∑
y∈X

∑
x∈children1(y)

∑
x′∈children(x)

vyux′

=
∑
y∈X

∑
x′∈children(y)\{y}

vyux′

and the claim follows.

If u ∈ Φ∗p, as given in (7), we have for x 6= root(T ) that

|(DT u)x| = |ux − uparent(x)| ≤ dT (x,parent(x))p.

With these two observations and Lemma 1, we get for G ∼ N (0,Σ(r)) and
u ∈ Φ∗p that

(8) 〈G,u〉 = 〈STG, DT u〉 ≤
∑

root(T ) 6=x∈X

|(STG)x|dT (x,parent(x))p.

Therefore, maxu∈Φ∗p〈G,u〉 is bounded by
∑

root(T )6=x∈X |(STG)x|dT (x, parent(x))p.

Since DT is an isomorphism, we can define a vector v ∈ RX by

(DT v)x = sgn ((STG)x)dT (x, parent(x))p.
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From (7) we see that v ∈ Φ∗p and Lemma 1 shows that 〈G,v〉 attains the
upper bound in (8). This concludes the proof.

C.3 Proof of Corollary 1

In order to use Theorem 5 we define the tree T with vertices {x1, . . . , xN},
edges E = {(xj , xj+1), j = 1, . . . , N − 1} and root(T ) = xN . Then, if G ∼
N (0,Σ(r)), we have that {(STG)j}j=1,...,N is a Gaussian vector such that
for i ≤ j

cov((STG)i, (STG)j) =
∑
k≤i
l≤j

E [GkGl] =
∑
k≤i

rk(1− rk)−
∑
k≤i
l≤j
k 6=l

rkrl

= r̄i −
∑
k≤i
l≤i

rkrl −
∑
k≤i

i<l≤j

rkrl = r̄i − r̄2
i − r̄i(r̄j − r̄i)) = r̄i − r̄ir̄j .

Therefore, we have that for a standard Brownian bridge B

STG ∼ (B(r̄1), . . . , B(r̄N )).

Together with d(xj ,parent(xj)) = (xj+1 − xj)
2, and (15) this proves the

Corollary.
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