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Abstract: Safety requirements of technological processes trigger an increased demand for
elaborate fault diagnosis tools. However, abrupt changes in system behavior are hard to
formulate with continuous models but easier to represent in terms of hybrid systems. Therefore,
we propose a set-based approach for complete fault diagnosis of hybrid polynomial systems
formulated as a feasibility problem. We employ mixed-integer linear program relaxation of
this formulation to exploit the presence of discrete variables. We improve the relaxation with
additional constraints for the discrete variables. The efficiency of the method is illustrated with
a simple two-tank example subject to multiple faults.
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1. INTRODUCTION

The goal of fault diagnosis is to isolate possible faults
that have occurred in a system, given some measured
information. This knowledge can then be used either for
monitoring and safety purposes, or for changing the control
scheme that will counteract the impact of the faults.
An introduction to the most common fault diagnosis
approaches can be found in Blanke et al. [2006], Ding
[2008], Gertler [1998], Isermann [2006]. Although physical
processes are mostly continuous, a system might also
possess discrete changes in its dynamics, e.g. due to a
fault, phase changes, flow limitation through a valve or
discontinuous input signals (Branicky et al. [1998]). In
many cases such processes are described in terms of hybrid
systems (Hofbaur and Williams [2004]).

We focus in this work on model-based fault diagnosis meth-
ods for such hybrid systems. These methods are typically
based on consistency tests, which compare measurement
data with the capability of a model to reproduce those
measurements. The goal is to determine the set of models
that are consistent with the measurements. We refer to
this set also as fault candidates. Typically, those fault
candidates are determined by excluding all fault models
that are not consistent with the observations. Assuming
the initial set of fault candidates describes all possible
faults that can occur, a fault diagnosis method is said to be
complete if the true fault is never excluded from the fault
candidates. In practice, this does not necessarily lead to
a single fault candidate due to some overlap in the input-
output behavior of the considered fault models.

In literature there are several model-based fault diagnosis
methods available for hybrid systems. For instance, in
1 The researchers were supported in part by the International Max
Plank Research School, Magdeburg.

Bayoudh et al. [2008] a state tracking algorithm was
employed. An observer-based approach was presented in
Narasimhan and Biswas [2007] and a stochastic hypothesis
testing based method in Fourlas et al. [2003].

In this contribution we present a set-based approach for
polynomial hybrid systems. The proposed approach ex-
tends Rumschinski et al. [2010], where the fault diagno-
sis task is formulated in terms of a nonlinear feasibility
problem and relaxed to a convex semidefinite program.
The main advantages of such a formulation are the in-
corporation of uncertainty as for instance resulting from
noise or model-plant mismatch and the achievable rigorous
proof of model inconsistency. To be able to account for
hybrid phenomena as e. g. non-smooth or discontinuous
dynamics, we introduce integer switches into the feasibility
formulation of Rumschinski et al. [2010]. Furthermore, we
propose an aggregate model formulation for faults that af-
fect only subsystems to reduce possible redundancy in the
system formulation of different faults. In contrast to the
semidefinite relaxation used in our previous work, here we
employ linear relaxations that allow us to consider larger
systems due to the effective use of mixed-integer linear
solvers (e. g. Gur [2010]). In addition, we comment on
the relaxation gaps in connection to the discrete variables,
which in some special cases are less conservative than the
ones with continuous variables.

2. PROBLEM SETUP

Given a process we consider discrete time hybrid models
Mf that correspond to specific system faults

f ∈ F = {f0, . . . , fnf },
where f0 is associated with the nominal system (faultless
case). The behavior of these systems is described by
polynomial or rational difference equations of the form
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Mf :

{
Gf (xk+1, xk, wk, p) = 0,
Hf (yk, xk, wk, p) = 0.

(1)

Here xk ∈ Rnx ×Zdx denotes the system states, p ∈ Rnp ×
Zdp the model parameters and wk ∈ Rnw×Zdw , yk ∈ Rny×
Zdy denote the measured input and output respectively.
This notation is used to allow for both continuous variables
and discrete variables in the model formulation.

We assume that models corresponding to all faults in F
are known. Additionally, the measurements are assumed
to be unknown-but-bounded and their real subspaces to
be given as convex sets so that measurement uncertainties
can be taken into account. We collect them in the form

Y = { Yk ⊂ Rny × Zdy , k ∈ T},
W = { Wk ⊂ Rnw × Zdw , k ∈ T}

within a certain time window T = {t0, t1, . . . , te}. This
time window denotes the time instances when the mea-
surements were taken.

The method for fault diagnosis that we employ checks
consistency of the models with the measurement data. We
formalize the notion of consistency in the following way:

Definition 1. (Consistency). Consider the collection of mea-
surements W of the applied input and the measurements
Y of the output of the considered process. A modelMf is
said to be consistent with the measurements if wk ∈ Wk

and yk ∈ Yk for all k ∈ T .

With Definition 1 we can state the following:

Proposition 1. (Fault detection). A fault has occurred if
the model Mf0 is inconsistent with the measurements.

Proposition 2. (Fault isolation). A fault f is a fault can-
didate, if modelMf is consistent with the measurements.

2.1 Aggregated Model

For numerous systems that occur in practice the expres-
sions Gf that correspond to different faults are quite
similar. We can reduce this redundancy in formulation
(1) by merging the models using a set of integer variables
that correspond to each of the faulty scenarios. Formally
speaking we introduce one model of the form

M :

{
G(xk+1, xk, wk, p, s) = 0,
H(yk, xk, wk, p, s) = 0,

(2)

where the variables xk, wk, yk and p are as defined before,
and the variables s ∈ Zds correspond to the faults that
occur in the model. Namely, we introduce a set

S = {sf ∈ Zds | f ∈ F},
such that for every system fault f ∈ F the following holds

G(xk+1, xk, wk, p, sf ) = Gf (xk+1, xk, wk, p),

H(yk, xk, wk, p, sf ) = Hf (yk, xk, wk, p).

Hence, every model Mf is represented by the system (2)
when the variable s is set to sf .

2.2 Feasibility Problem Formulation

Next we formulate Proposition 1 and Proposition 2 as non-
linear feasibility problems. The goal of the fault detection
problem is to show that under the allowed variations of

system parameters the measurements are not reproducible
by the model Mf0 .

As in Rumschinski et al. [2010], we introduce a set of semi-
algebraic equations, that represent the system in terms of
the equations (2):

F (S) :


G(xk+1, xk, wk, p, s) = 0, k ∈ T,
H(yk, xk, wk, p, s) = 0, k ∈ T,
p ∈ P, s ∈ S,
wk ∈ Wk, yk ∈ Yk, k ∈ T,
xk ∈ Xk, k ∈ T ∪ {te+1},

where P, Xk denote given sets with convex real subspaces,
bounding the parameters and the states, respectively.

Remark 1. These bounds can be either derived from the
physical meaning of the parameters and states, or from
conservation principles. Theoretically, the bounds can be
arbitrary large, but tighter bounds are preferable in prac-
tice for the employed relaxation procedure that will be
explained in the following section.

The set S ⊂ Zds denotes a collection of admissible values
for the variables s and the feasibility problem is formulated
as the problem of checking whether F (S) admits a solution
with s = sf for model Mf . Naturally, the value sf has to
be included in S to do so.

Theorem 1. If the feasibility problem does not admit a
solution for s = sf , then the model Mf is inconsistent
with the measurements Y, W.

The proof follows directly from the construction of F (S).

Using Theorem 1 we can formulate fault detection and
fault isolation in the following way.

Proposition 3. (Fault detection/isolation). If F (S) does
admit a solution with s = sf , the fault f is a fault
candidate, i.e. Mf is consistent with the measurements.

Remark 2. For fault detection it suffices to set S = {sf0}
and check if F (S) admits a solution or not. However if
we include all values sf corresponding to the models Mf

(i. e. S ⊆ S), we can check consistency of every faulty
model once we obtain the projection of the feasible region
of F (S) onto the subspace Zds .
Remark 3. The variables s in this formulation are time-
invariant, so our method will not be suited for fault
isolation in cases when the measurement data are taken
both before and after the fault occurs. Even though in this
situation we still can detect the appearance of the fault,
isolation is in general only possible if all of the employed
measurements correspond to the same faulty case.

In practice it is not always possible to determine an
exact solution of the feasibility problem F (S), due to the
nonlinearities of the model equations. However, we will
show in the next section that it is possible to address a
relaxed version instead of the original feasibility problem
for polynomial/rational systems to give conclusive answers
to the problems included in Proposition 3. Note that as a
consequence of the relaxation the fault candidates will be
determined by elimination of all other possibilities.
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3. PROBLEM RELAXATION

For the considered system class it is possible to relax F (S)
into a convex semidefinite or linear program Fujie and
Kojima [1997], Lasserre [2001], Parrilo [2003]. Although
in Rumschinski et al. [2010] the semidefinite formulation
was employed for fault diagnosis, we propose here the use
of a mixed-integer linear relaxation. The linear relaxation
allows us to handle significantly larger problems than the
semidefinite formulation, besides efficient mixed-integer
linear solvers are available nowadays (i. a. Gur [2010]).
For a comparison of continuous variables in LP and
SDP relaxations for polynomial programs we refer to
Anstreicher [2009] and handling of discrete variables will
be addressed in Section 4. For the sake of completeness, we
present a short overview of the necessary relaxation steps
following Borchers et al. [2009].

As a first step, the original feasibility problem F (S) is
rewritten in form of a mixed-integer quadratic feasibility
problem (MIQP ). Therefore, we introduce a vector ξ ∈
Rnξ , consisting of a minimal basis of monomials of the
model and output equations (2), in the form

ξi ∈ {1, xj , pl, wm, yn, sr, xjpl, xjwm, . . .},
Iξ ⊆ {1, . . . , nξ}, ξIξ ∈ Zdξ ,

where indices j, l,m, n, r correspond to the respective
number of states x, parameters p, inputs w, outputs y and
model variables s. We treat the products of the discrete
variables as discrete entries of ξ, whereas products of
the continuous variables, as well as mixed products, are
treated as continuous entries.

Using the vector ξ, equations (2) can be transformed to

M :

{
Gi(xk+1, xk, wk, p, s) = ξTQikξ = 0,

Hj(yk, xk, wk, p, s) = ξTQj+nGk ξ = 0,
(3)

where Qik ∈ Rnξ×nξ is a symmetric matrix and the
range of index i corresponds to the number of equations
nG + nH . Apart from that, if ξ contains nA higher order
terms (products of first degree monomials), nA additional
equality constraints of the form (3) have to be introduced.

To simplify the notation we define the range of index i
such that it covers the number of equations (2) as well as
the number of additional constraints, i. e.

i ∈ I = {1, . . . , nG + nH + nA}.
The bounds that describe the subsets P, S, Xk,Wk, Yk in
F (S) can be formulated as linear constraints

Bξ ≥ 0.

In the most trivial case B ∈ R2(nξ−1)×nξ provides explicit
upper and lower bounds on all components of ξ except for
the first one. However, one can employ any valid constraint
that is linear in the basis ξ.

Then the feasibility problem F (S) can be rewritten as

MIQP (S) :


find ξ ∈ Rnξ
subject to ξTQikξ = 0, i ∈ I, k ∈ T,

ξ1 = 1,
Bξ ≥ 0,
ξIξ ∈ Zdξ .

Such a quadratic decomposition can always be found for
a polynomial/rational system (2), although its continuous

relaxation is still not convex. We obtain a convex semidef-
inite program (with non-convex integrality constraints) by
introducing the variable matrix X = ξξT and relaxing the
conditions rank(X) = 1 and tr(X) ≥ 1 with the weaker
constraint X � 0, see e. g. Parrilo [2003]. To simplify the
notation we will denote the space of the matrix variable
X as X ⊂ Rnξ×nξ , where entries that correspond to the
products of the discrete variables of ξ will be treated as
discrete variables.

The semidefinite program is then represented as

SDP (S) :



find X ∈ X
subject to tr(QikX) = 0, i ∈ I, k ∈ T,

tr(eeTX) = 1,
BXe ≥ 0,
BXBT ≥ 0,
X � 0,

where e = (1, 0, . . . , 0)T ∈ Rnξ .
Remark 4. Due to the relaxation the solution space will
increase compared to F (S) which might lead to the wrong
inclusion of a faulty model in the fault candidate set. How-
ever, as the relaxation is conservative, the true fault will
never be excluded from the fault candidates. Additionally,
the introduction of the constraints BXBT ≥ 0 aims at
reducing this conservatism (see Lasserre [2001]).

The mixed-integer linear relaxation of the SDP program
is obtained by substituting the constraint X � 0 with
X ≥ 0. After the relaxation of the SDP -constraint the
mixed-integer linear program is formulated as

MILP (S) :



find X ∈ X
subject to tr(QikX) = 0, i ∈ I, k ∈ T,

tr(eeTX) = 1,
BXe ≥ 0,
BXBT ≥ 0,
X ≥ 0.

As stated in Theorem 1, we are interested in proving
infeasibility of F (S). An efficient approach in this case is
to consider the dual formulation D(S) of the mixed-integer
relaxation:

D(S) :



max ω
subject to∑
k∈T

∑
j∈I

νjkQ
j
k + ωeeT + eλT1 B+

+BTλ1e
T +BTλ2B + λ3 = 0,

λ1 ≥ 0, λ2 ≥ 0, λ3 ≥ 0,

where νjk, ω are the dual variables corresponding to the
equality constraints in the original program, and λ1 ∈
R2(nξ−1), λ2 ∈ R2(nξ−1)×2(nξ−1), λ3 ∈ Rnξ×nξ those
corresponding to the remaining constraints.

Theorem 2. If the dual program D(S) is unbounded, then
for all faults f with sf ∈ S, Mf is inconsistent with the
measurements.

The weak-duality theorem and the relaxation process
guarantee that if the dual program is unbounded, then
F (S) does not admit a solution.
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4. REDUCING THE RELAXATION ERROR FOR
INTEGER VARIABLES

The relaxation technique, introduced in the previous sec-
tion, allows us to approximate the non-convex feasibil-
ity problem F (S) with another type of problem (either
semidefinite or linear), that is non-convex only due to the
integrality conditions. These can be efficiently solved with
the help of mixed-integer solvers, so we are able to find
globally optimal solutions. However, those solutions will
not always be feasible for F (S). By relaxing non-convex
constraints we introduce “spurious” solutions, that are
valid for the modified problem, but violate the nominal
model constraints.

As mentioned in Remark 4, the SDP formulation can
be strengthened with the constraint BXBT ≥ 0 that
originates from the reformulation-linearization technique
Sherali and Adams [1999]. The effect of this strengthening
was studied for the continuous case in Anstreicher [2009].
We now employ a similar notation to study the effect
of additional constraints, that can be introduced to both
SDP and MILP relaxations due to the presence of the
discrete variables in our system. We concentrate on binary
({0, 1}) variables as they represent the most common type
of discrete variables, that can be employed to model fault
switches and discontinuity of the models.

Notice, that we only relax equalities of the type

Xij = ξiξj (4)

for the matrix X, written in form of the rank constraint

rank(X) = 1.

In case of the SDP formulation we relax the constraint to
X � 0, and for MILP it is further relaxed to X ≥ 0.

Lemma 1. For MILP and SDP formulations the relax-
ation error for the elements of X that involve binary
variables can be avoided.

Proof. We show that equality (4) can be reformulated
via a set of linear constraints if ξi or ξj is binary. As
equality (4) only affects pairs of variables ξi, ξj , we can
restrict ourselves to submatrices of X of size 3× 3. Larger
matrices will not provide any additional information for
strengthening the relaxation:

rank

(
1 ξ2 ξ3
ξ2 X22 X23

ξ3 X23 X33

)
= 1. (5)

Depending on the number of binary variables in (5), two
cases are possible. The first case, when ξ2 and ξ3 are
both binary variables, leads to the following additional
constraints:Xij ∈ {0, 1}, ∀i, j ∈ {2, 3},

Xii = ξ2i = ξi, ∀i ∈ {2, 3},
X23 = ξ2ξ3 = min{ξ2, ξ3},

(6)

where the last equation can be represented via the follow-
ing set of linear inequalities:{

X23 ≤ ξ2,
X23 ≤ ξ3,
X23 ≥ ξ2 + ξ3 − 1.

(7)

As the introduced constraints (6) can be written in linear
form using (7), the lemma holds for this case. Namely,
any combination of binary variables that satisfies (6) will
automatically satisfy the rank constraint (5).

Without loss of generality we consider as the second case
the case when ξ2 is binary and ξ3 continuous. The set of
additional constraints is

X22 ∈ {0, 1},
X22 = ξ2,
X23 ≤ u3ξ2,
X23 ≥ l3ξ2,
X23 ≤ ξ3 + (ξ2 − 1)l3,
X23 ≥ ξ3 + (ξ2 − 1)u3,

(8)

where l3 ≤ ξ3 ≤ u3 are the bounds on the corresponding
monomial of ξ. In this case we can not introduce additional
constraints on the variable X33, as it is the product of two
continuous variables. So the rank constraint (5) will not be
satisfied by just adding (8) to the relaxation. Nevertheless,
for any binary value of ξ2 the constraints on X23 will be
equivalent to (4), so we avoid its relaxation. Naturally, as
in the previous case, the constraint on the variable X22 is
also tight for any binary value of ξ2. 2

Corollary 1. Aggregation of the faulty modelsMf in form
(2) does not introduce any additional relaxation error if all
of the variables s are binary.

Remark 5. We should point out that the constraints are
tight when integrality conditions are in place, but they do
not represent convex hulls of the feasible points. Therefore,
if one considers the linear relaxation with all the binary
variables relaxed to continuous variables in [0, 1], fractional
solutions might appear. We rely therefore on mixed-integer
solvers, that can efficiently produce valid cuts if the
linear relaxation of the mixed-integer problem produces
infeasible result.

We showed that binary variables that appear in the system
do not add relaxation errors for both semidefinite and
mixed-integer linear relaxations of the initial feasibility
problem. Also by merging the models (1) into one model
(2) we do not increase conservatism of the obtained relax-
ation compared to the relaxation of each of the feasibility
problems (as it was done in Rumschinski et al. [2010]).

5. EXAMPLE

In this section we illustrate the fault diagnosis method
considering the simple two-tank system as described in
Blanke et al. [2006] and depicted in Figure 1. We consider
first the case when both H1 and H2 are measured and
compare the result with the result from Rumschinski et al.

Fig. 1. Two-tank system.
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[2010]. Secondly, we assume that one can only measure
the outflow from the second tank and investigate the
diagnosability of the obtained system.

5.1 System Description

The system consists of two tanks with the area A = 1.54 ·
10−2m2 connected by a valve, an inflow qP , an outflow
q2 and a possible leakage qL. H1, H2 denote the measured
water-levels. If the maximum allowed height hmax = 0.6m
for H1 is reached, qP will be set to zero. The switching
conditions for differential equations are modeled using
state-dependent binary variables. We assume for reasons
of simplicity in the remainder of this work that under
operating conditions the fill level H1 will always be greater
or equal to H2. Incorporating the case for H1 < H2 can
be done with additional discrete switching conditions. We
consider two fault scenarios, first when the valve V12 gets
stuck in the closed position, and second when the leakage
qL occurs. These scenarios are embedded in the aggregated
model using a pair of binary parameters s ∈ {0, 1}2.

5.2 State Measurement Scenario

A mathematical description of the system is given by the
following nonlinear differential equations

Ḣ1(t) =
1

A
(qp(t)− qL(t)− q12(t)), (9)

Ḣ2(t) =
1

A
(q12(t)− q2(t)), (10)

with

qP (t) = q̄pdp(t)(1−
√
H1(t)/hmax),

qL(t) = cLdL(t)
√
H1(t),

q12(t) = c12s1
√
H1(t)−H2(t),

q2(t) = c2d2(t)
√
H2(t).

(11)

The binary variables can be described in the following form

dp(t) =

{
1, H1(t) ≤ hmax,
0, H1(t) > hmax,

s1 =

{
1, V12 open,
0, V12 closed,

dL(t) =

{
s2, H1(t) > 0,
0, H1(t) ≤ 0,

s2 =

{
1, Tank 1 leaking,
0, Tank 1 sealed,

d2(t) =

{
1, H2(t) > 0,
0, H2(t) ≤ 0.

that can be easily represented via a set of mixed-integer
linear constraints.

Note that the equations (11) contain non-polynomial
parts, that can be reformulated by introducing three ad-
ditional states with constraints

∆H2(t) = H1(t)−H2(t),
SqrtH2

1 (t) = H1(t),
SqrtH2

2 (t) = H2(t),
(12)

and placing SqrtH1, SqrtH2 and ∆H in (11) instead of
the corresponding square root terms.

As our method requires usage of discrete-time models, we
apply Euler discretization to the equations (9)–(10) with
a step size of 1 second.

To get a realistic setup the parameters are not assumed to
be known a priori but chosen to be bounded (see Table 1).

Table 1. Reference Parameter Values

Parameter [Unit] Lower bound Nominal value Upper bound

c12 [m5/2s−1] 5.75 · 10−4 6 · 10−4 6.25 · 10−4

c2 [m5/2s−1] 1.75 · 10−4 2 · 10−4 2.25 · 10−4

cL [m5/2s−1] 2.35 · 10−4 2.6 · 10−4 2.85 · 10−4

q̄P [m5/2s−1] 4.25 · 10−4 4.5 · 10−4 4.75 · 10−4

5.3 Output Measurement Scenario

The second setup relies on partial knowledge of the states
of the system. We consider a measured signal proportional
to the outflow q2 and for simplicity we assume it to be
the additional state SqrtH2(t) =

√
H2(t). Additionally,

we use the measured data to define the inflow qP in the
form

qP (t) = q̄pdp(t)(1−
√
H2(t)/hmax).

5.4 Experimental Setup

The simulation data employed for fault diagnosis was
obtained using initial conditions H1(0) = 0.325m and
H2(0) = 0.0625m for 300s with the stepsize 1s. Nominal
parameter values were taken from the Table 1. An absolute
error (5% of the maximal value of H1 and H2) was added
to the states to simulate the output disturbances.

In the formulation (9)–(11) the nominal behavior of the
system is described by setting the variables sf0 = {1, 0},
i. e. when the valve V12 is open and the Tank 1 is not
leaking. The fault scenarios are similarly represented by
sf1 = {0, 0} for the stuck valve and sf2 = {1, 1} for the
leaking tank. We set

S = {sf0 , sf1 , sf2}
and estimate admissible values of S considering sets of
measurements taken at specific time ranges.

The faults are assumed to occur at time-step 150s (cf.
Figure 2), and we perform the fault diagnosis procedure
with the measurements taken right after this time-step.
According to Remark 3, we cannot isolate the fault for the
time range that includes measurements before and after
this time step. We discuss a possible solution in Section 6.

Fig. 2. Simulated measurements of the valve stuck at 150s.
Dashed lines correspond to nominal case.

5.5 Computational Results and Discussion

State Measurement Scenario Taking measurements from
the point 150s, we are able to uniquely diagnose the
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occurrence of the stuck valve fault considering 4 time-
steps. The occurrence of the leakage in the first tank can
be diagnosed with only 2 time-steps.

Although we used a slightly different experimental setup
compared to Rumschinski et al. [2010], we showed that its
results can be reproduced.

Output Measurement Scenario For the output measure-
ment scenario the fault diagnosis is much harder. Due
to the absence of the bounds on the water level of the
first tank the measurement data are less informative. Both
faults result in a decreasing water level of the second tank
and these measurements alone can correspond to the nom-
inal trajectory for some allowed parameter combination. It
requires 9 time-steps to detect the occurrence of the stuck
valve fault, but we were unable to uniquely diagnose it. To
detect the leakage in the first tank we need 16 time-steps,
although in this scenario we also discriminate the other
fault and, hence, the diagnosis is unique.

Compared to the state measurement scenario the leakage is
harder to detect here, as it mainly results in the drop of the
water level in the first tank. On the other hand, the water
level of the second tank decreases less steep compared to
the stuck valve case, which makes it possible to distinguish
between the two fault behaviors.

The above result shows that our method can be applied
for the output measurement scenario, providing useful
information on the faulty behavior of the system.

6. CONCLUSIONS AND OUTLOOK

In this contribution we have studied fault diagnosis for a
class of hybrid systems. We extended the approach pre-
sented in Rumschinski et al. [2010] to handle discrete vari-
ables and to suppress model redundancy by aggregating
the models corresponding to the different fault scenarios.
We demonstrated for the well-known two tank example,
that our approach is capable of determining which of the
considered fault situations are exhibited by the plant.

For the considered class of uncertain polynomial/rational
hybrid systems we were able to show that the fault
detection/isolation tasks can be reformulated as a non-
convex feasibility problem. Additionally, we have shown
that it is sufficient to address a relaxed version of this
feasibility problem and still achieve conclusive results. A
mixed-integer linear formulation was chosen because of
highly efficient MILP -solvers that are available nowadays.
We derived that the relaxation gaps can be avoided for
binary variables present in the system formulation and
hence the proposed aggregation of the models does not
increase the conservatism of the relaxation.

Integer switches that are employed by our aggregation
approach are treated as time invariant parameters. This
prevents us from isolating the fault if it occurs within the
considered time range, however, the fault detection is still
possible for such a setup. One possible way to overcome
this restriction is to employ time variant switches instead.
The drawback of this solution lies in a significant increase
of model variables leading to an increase of solving time.

The proposed linear relaxation is advantageous in terms of
computation speed, but might be too conservative for a dif-

ferent class of hybrid systems. The presented semidefinite
formulation is fully applicable with our method and the
corresponding study should take place as soon as efficient
mixed-integer semidefinite solvers are available.
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