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Abstract: We propose a dynamic optimization approach to calculate optimal feedforward
controls for exact path-following problems of differentially flat systems. In addition to the
derivation of a small dimensional optimal control problem, we provide easily checkable conditions
on the existence of inputs guaranteeing that a given path is exactly followable in the presence
of constraints on states and inputs. Our approach is based on the projection of the feedforward
controlled nonlinear MIMO dynamics along a geometric path onto a linear single-input system
in Brunovský normal form. The presented results indicate how the computation of admissible
trajectories for set-point changes can be simplified by relying on so called steady state consistent
paths. The set-point change of a Van der Vusse reactor is considered as an example.
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1. INTRODUCTION

Usually, control problems are roughly divided into set-
point stabilization and trajectory tracking problems,
whereby the latter means that a time-varying reference
is to be tracked. Path-following can be considered as an
additional class of problems, in which the reference to
be followed is a geometric curve without any preassigned
timing information. Path-following problems provide a
suitable framework to a plethora of interesting applica-
tions: E.g. the control of autonomous vehicles, ships or
aircrafts along given geometric references, see Astolfi et al.
(2004); Skjetne et al. (2004). Also robot control (Shin and
McKay (1985); Verscheure et al. (2009)) as well as batch
crystallization (Nagy (2008)) can be formulated as path-
following problems. However, the majority of existing re-
sults on path-following problems focuses on geometric and
Lyapunov-based methods and does not explicitly consider
constraints during the controller design. Recent contribu-
tions explicitly consider constraints on system inputs and
states in a predictive control setup (Faulwasser and Find-
eisen (2010); Faulwasser et al. (2009)). The aforementioned
results share the a priori assumption that a given path is
exactly followable.

In the present paper we focus on the class of differentially
flat systems (cf. Fliess et al. (1995)) in order to derive both:
Easily checkable, sufficient conditions whether a given path
is exactly followable in the presence of constraints on states
and inputs as well as a small dimensional optimization
problem to compute suitable controls. The contributions
are as follows: We investigate how the dynamics of a
feedforward controlled differentially flat nonlinear MIMO
system along a geometric path can be projected to a
linear single-input system. Using this projection we show

that sufficiently smooth paths in the flat output space
of a system are exactly followable in finite time if they
can be mapped into the interior of the intersection of
the constraints with the set of steady states. Further-
more, we derive a small dimensional dynamic optimization
problem to compute the feedforward controls guaranteeing
exact path-following. The proposed optimization problem
is significantly smaller than existing approaches to exploit
flatness in the context of dynamic optimization of con-
strained systems, cf. Faiz et al. (2001); Oldenburg and
Marquardt (2002); Petit et al. (2001); Sira-Ramı́rez and
Agrawal (2004). Related works also exist in the context
of computed torque robot control, see Shin and McKay
(1985); Verscheure et al. (2009). However, the latter results
are limited since robot dynamics are often described by
flat systems with a specific structure. Note that we focus
on the feedforward control problem. Provided that the
model/plant mismatch is sufficiently small, it is straight-
forward to combine suitable feedforward control signals
with a feedback controller in a two-degrees-of-freedom
control approach to achieve disturbance attenuation, see
e.g. Hagenmeyer and Delaleau (2003); Graichen and Zeitz
(2005). After a concise problem statement in Section 2 we
present the main contributions in Section 3. In Section 4
we discuss set-point changes of a chemical reactor as an
example. Finally, we draw conclusions in Section 5.

Notation
The image of a set A ⊂ Rn under a map f is denoted
as f(A). The interior of a compact set B is written as
int(B). The k-th time derivative of a function r(t) is

written as dkr(t)
dtk

or more conveniently r(k). The k-th
partial derivative of g(τ) : R 7→ Rm with respect to τ is
denoted as ∂kτ h ∈ Rm×1. The set of k-times continuously
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differentiable functions is written as Ck. The norm ‖x‖ of
x ∈ Rn denotes the 2-norm. The solution at time t of an
ODE ẋ = f(x, u) starting at x(t = 0) = x0 and driven by
the input u is denoted as x(t, x0|u). If no ambiguity about
the initial condition can arise, we write x(t|u).

2. EXACT FEEDFORWARD PATH-FOLLOWING

We consider a nonlinear system given by

ẋ = f(x, u), x(0) = x0, (1a)

y = h(x, u, u̇, . . . , u(l)), (1b)

where states x ∈ Rn and inputs u ∈ Rm are constrained
by the compact sets X ⊂ Rn and U ⊂ Rm.

Instead of a set-point or a (time parametrized) reference
trajectory we consider a geometric reference to be followed.
This reference is denoted as path P and given as a regular,
parametrized curve

P := {p ∈ Rm : θ ∈ [θ0, θT ] ⊂ R 7→ p(θ) ∈ Rm}, (2)

where the parametrization p(θ) = (p1(θ), . . . , pm(θ))T is
a priori known. Note that the regularity of a geometric
curve implies the bijectivity of the parametrization θ ∈
R 7→ p(θ) ∈ P, cf. Topogonov (2006). Hence regularity
excludes cases of self-intersecting paths. In general the
path parameter θ = θ(t) is time dependent but its time
evolution t 7→ θ(t) is not given a priori. It has to be
determined during the design of the (feedforward) control.
This means that the path P is a geometric reference
without any preassigned timing information. However,
often one wants to achieve that a system moves forward
(θ̇ ≥ 0) along P. More concisely we are interested in
solving the following control problem.

Problem 1 (Optimal Exact Path-Following)
Given the constrained system (1), and a path P of form
(2) to be followed. Design an input signal u(t) on t ∈ [0, T ]
such that the following conditions are satisfied:

P1 (Exact Path-Following) The system output (1b)
moves from a consistent initial condition h(·)|t=0 =
p(θ0) in forward direction exactly along the path P.

Hence for all t ∈ [0, T ] it holds that θ̇(t) ≥ 0 and
h(·) ∈ P.

P2 (Constraint Satisfaction) For all t ∈ [0, T ] the
feedforward signal u(t) satisfies the input constraints
u(t) ∈ U , and the corresponding system trajectory
satisfies the state constraints x(t, x0|u) ∈ X .

P3 (Cost Minimization) The feedforward input signal
is designed such that the cost functional

J(u, x) = T +

∫ T

0

F (x, u) dτ, (3)

where F : X × U 7→ R, F (·) ∈ C1 is minimized. �

For general nonlinear systems the considered problem
is challenging for two main reasons: Firstly, minimizing
the cost functional (3) subject to the nonlinear MIMO
system (1) and the geometric path constraint P results in
a nonlinear optimization problem, e.g. Faulwasser et al.
(2009). Secondly, it is in general not easy to verify that an
arbitrarily shaped geometric path can be exactly followed
if constraints on states and inputs are present. Actually,
exact path-following problems are often solved under the

a priori assumption that a given P is exactly followable by
the considered system.

In order to circumvent this assumption and tackle the
problem we focus on differentially flat systems, cf. Fliess
et al. (1995). This enables us to obtain an optimization
problem subject to a small dimensional linear SISO sys-
tem, and to state sufficient conditions for exact path-
followability in the presence of constraints.

Definition 1 (Differentially Flat System)
Consider the system (1a). If there exists a variable ξ =
(ξ1, . . . , ξm)T with dim ξ = dimu such that the following
statements hold at least locally:

(i) The variable ξ can be written as a function of the state
variables x = (x1, . . . , xn)T , the input variables u =
(u1, . . . , um)T and a finite number of time derivatives
of the input variables

ξ = g
(
x, u1, . . . , u

(l1)
1 , . . . , um, . . . , u

(lm)
m

)
. (4a)

(ii) The system variables x and u can be expressed as
functions of the variable ξ = [ξ1, . . . , ξm]T and a finite
number of time-derivatives of ξ. Hence

x = Φ
(
ξ1, . . . , ξ

(k1−1)
1 , . . . , ξm, . . . , ξ

(km−1)
)
, (4b)

u = Ψ
(
ξ1, . . . , ξ

(k1)
1 , . . . , ξm, . . . , ξ

(km)
m

)
. (4c)

(iii) The components of ξ are differentially independent,
they do not fulfill any differential equation.

Then ξ is called a flat output of (1a). And (1a) is called a
(differentially) flat system. �

In the following we assume that y = h(·) from (1b) is a
flat output of (1). We denote the evaluation of (4b) or (4c)
along a specific sufficiently smooth output trajectory y(t)
as x = Φ(·)|y(t) and u = Ψ(·)|y(t) respectively.

It is well-known that trajectory tracking or set-point
changes can be achieved easily for flat systems, cf. Fliess
et al. (1995); Lévine (2009); Sira-Ramı́rez and Agrawal
(2004). If a sufficiently smooth reference trajectory is
known a priori, one basically exploits (4c) and obtains
a suitable feedforward control. Consequently, flatness can
also be used to state sufficient conditions for unconstrained
exact path-following of flat systems.

Lemma 1
Given an unconstrained nonlinear flat system (1a) and any
regular path P specified by an a priori known parametriza-
tion p(θ) in a flat output space (1b).

Suppose that

(i) the parametrization p(θ) ∈ Ck̂, where k̂ = max{ki}
and the constants ki ∈ N are defined by (4c);

(ii) the initial condition x0 of (1a) is consistent with P
and θ(t) ∈ Ck̂, such that

x0 = Φ (·) |p(θ(t=0)), (5)

where θ̇(t) ≥ 0 and θ(0) = θ0 and θ(T ) = θT .

Then the feedforward input

u = Ψ
(
p1(θ(t)), . . . , d

k1p1
dtk1

, . . . , pm(θ(t)), . . . , d
kmpm
dtkm

)
(6)

guarantees that the system ẋ = f(x, u), starting from x0,
follows the path P exactly in forward direction. �
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The proof of this lemma follows directly by calculation of
the time derivatives of p(θ(t)), use of (4c) and the ideas
presented in Hagenmeyer and Delaleau (2003).

3. MAIN RESULTS

The challenging part is to extend Lemma 1 such that
constraints on inputs and states can be considered. We
start with a technical lemma. It is subsequently used
to project the feedforward controlled nonlinear MIMO
dynamics (1) along the path P to a linear single-input
system in Brunovský normal form. Finally, the projection
is used to obtain a small dimensional optimization problem
and sufficient conditions for exact path-followability.

Lemma 2
Given a regular path P ⊂ Rm from (2) and its k-times
continuously differentiable parametrization θ 7→ p(θ).
Suppose that the time evolution t 7→ θ(t) is also k-times
continuously differentiable.

Then the map

∆ :
(
θ, θ̇, . . . , θ(k)

)
∈ Rk 7→

(
p, ṗ, . . . , p(k)

)
∈ Rm×k

given by p(θ(t)) and its time derivatives is invertible for all
values of (p, ṗ, . . . , pk)T which are contained in the image
of ∆. �

Proof. The regularity of P implies the bijectivity of
θ 7→ p(θ) and rank (∂θp(θ)) = 1 for all θ, cf. Topogonov
(2006). Therefore, given the parametrization p(θ) and a
specific point p ∈ P, the equation p = p(θ) can be
solved for the unique value of θ. Due to the rank con-
dition it follows that at least one component of ∂θp(θ) =
(∂θp1(θ), . . . , ∂θpi(θ), . . . , ∂θpm(θ))T is not equal to zero.

Hence one can solve ṗi = ∂θpi(θ) · θ̇ for θ̇. Using the equa-
tion for p̈(θ) and the previously calculated values of θ and

θ̇, one can determine θ̈ from p̈i − ∂2θpi(θ) · θ̇2 = ∂θpi(θ) · θ̈.
Following this procedure for the remaining time derivatives
of p(θ) one obtains the unique values of

...
θ , . . . , θ(k). �

The following theorem sets the conceptual basis for the
design approach considered in this note.

Theorem 1 (Equivalence to SISO System)
Given a nonlinear flat system (1) and a regular path P
specified by an a priori known parametrization p(θ) in a
flat output space of the system. Suppose that conditions
(i) and (ii) of Lemma 1 are satisfied.

Then the dynamics of the nonlinear MIMO system (1)
under the feedforward control u = Ψ(·)|p(θ(t)) given by

(6), where θ(t) is of class Ck̂, are equivalent to a linear,
single input system in Brunovský normal form. �

Proof. Provided that condition (i) of Lemma 1 is satis-

fied, any choice of a class Ck̂ timing θ(t) specifies a suf-
ficiently often continuously differentiable output reference
trajectory for the flat system (1). It follows that system (1)
under the feedforward control (6) is equivalent to a linear
MIMO system in Brunovský normal form such that for all
i = 1, . . . ,m

ξ̇i,1 = ξi,2
...

...

ξ̇i,ki = dkipi(θ(t))

dtki
,

(7)

where the time derivatives dkipi(θ(t))

dtki
are the inputs, see

Hagenmeyer and Delaleau (2003).

On the one hand the input and state parametrizations (4b-

c) reveal that any choice of θ(t) ∈ Ck̂ leads to a unique
state evolution of (1). On the other hand Lemma 2 states
that from the knowledge of the parametrization p(θ) and

the values p, ṗ, . . . , p(k̂) the values of θ, θ̇, . . . , θ(k̂) can be
uniquely determined. Hence the dynamics of the system
(1) along a given regular path P are uniquely described

by the choice of a class Ck̂ timing θ(t). Therefore the
MIMO Brunovský normal form reduces to the following
SISO Brunovský normal form

ż1 = z2
ż2 = z3
...

...

żk̂+1 = θ(k̂+1)(t),

(8)

where the k̂+ 1-th time derivative of θ(t) can be regarded
as free input variable.

Since system (1) under the feedforward control u =
Ψ(·)|p(θ(t)) is equivalent to (7) and the latter is equivalent
to (8) it follows that (1) is also equivalent to (8). �

Proposed Optimal Control Problem
The previous considerations show that the feedforward
input u = Ψ(·)|p(θ(t)) can be reformulated as a function of

θ(t) and its first k̂ time derivatives. Equivalently one may
use the representation via the SISO system (8). Based on
the substitution

z := (z1, z2, . . . , zk̂+1)T = (θ, θ̇, . . . , θ(k̂))T (9)

one can represent the feedforward input u from (6) and
the state parametrization (4b) as

u =Ψ
(
θ, θ̇, . . . , θ(k̂)

)
=: Ψ(z), (10a)

x =Φ
(
θ, θ̇, . . . , θ(k̂−1)

)
=: Φ(z). (10b)

Next, we use the k̂+1-th time derivative of θ(t) as decision
variable in a suitably chosen optimal control problem. To
simplify the subsequent notation we set

A :=

(
0 I k̂×k̂

0 0

)
, B := (0, . . . , 0, 1)

T
,

where A ∈ R(k̂+1)×(k̂+1) and B ∈ Rk̂+1. Consider the
feedforward path-following task (P1-P3) for (1a). Taking
the reformulation into account an optimal feedforward
input signal, which respects the constraints x ∈ X , u ∈ U ,
is given by the solution of the following optimal control
problem:

min
v,T

T +

∫ T

0

F (x, u) dτ (11a)

subject to the dynamics

ż = Az +Bv, (11b)

the (convex) state constraints

z(0) = [θ0, 0, . . . , 0]T , (11c)

z(T ) = [θT , 0, . . . , 0]T , (11d)

∀t ∈ [0, T ] : z2 ≥ 0, (11e)
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and the additional constraints

∀t ∈ [0, T ] : u = Ψ(z(t)) ∈ U , (11f)

∀t ∈ [0, T ] : x = Φ(z(t)) ∈ X , (11g)

∀t ∈ [0, T ] : v ∈ V ⊂ R. (11h)

Note that the proposed optimal control problem has a
small number of linearly coupled dynamic states. Scalar
input v(t) and free end time T are decision variables.

The cost functional (11a) directly expresses the require-
ment from P3. The constraints (11c) and (11d) state
that the initial path point is p(θ0) and the final path
point is p(θT ). Equation (11e) expresses the condition on
forward movement along the path (P1). The constraints
on states and inputs of the flat system (1a) u = Ψ(z) ∈
U , x = Φ(z) ∈ X are considered via (11f,g), cf. part P2
of the problem statement. In order to achieve that the
original system (1) follows the path P exactly, it suffices
to compute any admissible solution v to (11) and the
corresponding evolution of z(t|v). Note that the optimal
solution v?(t) is the input to the virtual system (11b).
Finally, the input applied to the nonlinear differentially
flat system (1a) is calculated from the optimal evolution
of z(t|v?) via the input parametrization u = Ψ(z) and the
knowledge about the path parametrization p(θ) from (6).

For general flat systems and arbitrary paths P the con-
straints of the proposed optimal control problem will usu-
ally be non-convex due to the nonlinear maps Ψ(·) and Φ(·)
from (11f,g). Nevertheless, under fairly mild assumptions
the existence of optimal solutions to (11) in the presence
of constraints on states and inputs of the original system
(1) can be guaranteed. In order to do this, we investigate
the relation between a path P, the set of steady states and
the constraints of (1).

Definition 2 (Steady State Consistent Path)
We call a path P from (2) weakly steady state consistent
with respect to system (1) and its constraints X and U , if
for all θ ∈ [θ0, θT ] exist xs ∈ X and constant us ∈ U s. t.

0 = f(xs, us), (12a)

p(θ) = h(xs, us, 0, . . . , 0) (12b)

hold.

If additionally for all θ ∈ [θ0, θT ] it can be verified that
xs ∈ int(X ) and us ∈ int(U) then we call P strongly steady
state consistent . �

Let Z ⊂ Rk̂+1 be the set of all states z which satisfy the
constraints (11c-e) then the following theorem holds.

Theorem 2 (Exact Path-Followability)
Given a flat system (1), a path P (2) and the corresponding
optimal control problem (11). Suppose that conditions (i)

and (ii) of Lemma 1 are satisfied. And for all z ∈ Z ⊂ Rk̂+1

(i) the maps Ψ : z ∈ Rk̂+1 7→ u ∈ Rm and Φ : z ∈
Rk̂+1 7→ x ∈ Rn from (10) are continuous;

(ii) and the path P is strongly steady state consistent to
(1) and the constraint sets X ,U .

Then P is exactly followable by system (1) s.t. the con-
straints x ∈ X and u ∈ U are satisfied and the correspond-
ing problem (11) has an optimal solution. Furthermore, if
the minimum-time case (F (·) = 0) is considered, then the
minimal transition time T ? is finite. �

Proof. Our proof is based on the construction of an ad-
missible solution to (11) and proceeds in four steps. Firstly,
we express the supposition of strongly path consistency
in terms of the flat state and input parametrizations and
perform a suitable reformulation. Secondly, we split the
integrator chain (11b) into two parts and consider the last
integrator as a flat system. This leads to the design of an
admissible reference signal for z2(t) = θ̇ which guarantees
that θT is reached in finite time. In the third step, we

consider the remaining k̂ integrators again as a flat system
and design an admissible v such that the desired z2(t)
trajectory is perfectly tracked. Finally, we conclude from
the existence of an admissible input v to the existence of
an optimal finite-time solution to (11).

Step 1 : In terms of the flat input and state parametrization
a strongly steady state consistent path means that for all
z1 ∈ [θ0, θT ]

Φ(z1, 0, . . . , 0) ∈ int(X ), (13a)

Ψ(z1, 0, . . . , 0) ∈ int(U). (13b)

In the following we focus solely on the constraint Ψ(·) ∈ U
since the consideration of Φ(·) ∈ X relies on the same

concept. Consider the set Z̃ := [θ0, θT ]×[0, c2]×[−c3, c3]×
· · · × [−ck̂+1, ck̂+1], where

∑k̂+1
i=2 c

2
i ≤ δ. Due to the

continuity of Ψ(·) there exists a sufficiently small δ > 0

such that the image set of Z̃ under Ψ lies completely in
the interior of U . Hence Ψ(Z̃) ∈ int(U).

The main idea is to rely on the tightened constraint set Z̃
since keeping z(t) in Z̃ suffices to satisfy (11f). Choose the

constants ci with i = 2, . . . , k̂ + 1 such that all ci > 0

and
∑k̂+1
i=2 c

2
i ≤ δ. W.l.o.g. assume that there exists a

function γ(t) ∈ R, defined on t ∈ [0, s], 0 < s < θT−θ0
2c2

,

which is monotonously increasing γ̇(t) ≥ 0 and γ(t) ∈ Ck̂.
Furthermore, this function can be chosen such that γ(0) =
0, γ(s) = c2, γ(i)(t)|0 = γ(i)(t)|s = 0 and γ(i) ∈ [−ci, ci]
for all i = 3, . . . , k̂+ 1 hold. Basically, γ(t) is a sufficiently
smooth signal which increases from 0 to c2 during some
finite time s, while its time derivatives remain bounded.
Using γ(t) we can construct a reference motion for z2(t).

Step 2 : Consider the last part of the integrator chain (11b)
and denote z2 as w, hence ż1 = w. Next, we design a
signal w ∈ [0, c2] which is sufficiently often continuously

differentiable (w ∈ Ck̂) and ensures for some T < ∞
that z1(T, θ0|w) = θT . Using the function γ(t) introduced
before we choose w as

w(t, T ) =

{
γ(t), t ∈ [0, s],
c2, t ∈ (s, s+ T ),
c2 − γ(t), t ∈ [s+ T, 2s+ T ].

Due to the properties of γ(t) the signal w(t, T ) is in Ck̂,
w(t, T ) ≥ 0 for all t ∈ [0, 2s + T ] and w(i)(t, T )|0 =

w(i)(t, T )|2s+T = 0 for i = 1, . . . , k̂. For any ∞ > T ≥
θT−θ0
c2

it follows

z1(2s+ T |w(t, T )) = θ0 +

∫ 2s+T

0

w(τ, T )dτ > θT .

The inequality follows directly from the construction of
w(t, T ). Furthermore, s and T are finite and so is 2s+ T .
Therefore we know from the mean value theorem that
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for some finite T ◦ : 0 ≤ T ◦ < T the value z1(2s +

T ◦|w(t, T ◦)) = θT . It is clear that w(t, T ◦) ∈ Ck̂ and
w(t, T ◦) ≥ 0.

Step 3 : Note that the complete integrator chain (11b) is
linear and controllable and hence differentially flat, cf.
Fliess et al. (1995). A flat output of (11b) is given by

z1. Indeed also the k̂ last parts of the integrator chain

z
(k̂)
2 (t) = v can be regarded as a flat system, where z2 is

the considered flat output. In order to design the desired

input we set v◦ = w(k̂)(t, T ◦). Since w(t, T ◦) ∈ Ck̂ it follows

that w(k̂)(t, T ◦) ∈ V, where V is some closed interval of R.

Step 4 : The existence of an optimal solution to (11) can be
deduced from two properties: The existence of at least one
admissible solution to the problem and the convexity and
compactness of the extended velocity set S := {v ∈ V 7→
(Az+Bv, F (Φ(z),Ψ(z)) ∈ Rk̂+2} for all fixed z. Linearity
of (11b) and compactness of V ⊂ R imply compactness
and convexity of S.

In the preceding steps we have constructed an admissible
input v◦ for (11) which guarantees that the solution

z(t|v◦) satisfies the tightened constraints Z̃, therefore u =
Ψ (z(t|v◦)) ∈ int(U) satisfies the constraint (11f). Hence we
can conclude from the existence of an admissible solution
to the existence of an optimal solution to problem (11).

Furthermore, we can deduce that if the minimum time
case (F (·) = 0) is considered, then v◦ guarantees that
for some finite T ◦ : z1(2s + T ◦|v◦) = θT . It follows
0 ≤ T ? < 2s + T ◦ < ∞. Hence the minimal transition
time T ? is finite. This finishes the proof. �

Remark 1
Note that strong steady state consistency of a path P in
the sense of Definition 2 combined with the continuity of
input and state parametrizations of a flat system is merely
a sufficient condition. However, if P is only weakly steady
state consistent, then it is in general difficult to guarantee
constraint satisfaction. In that case even a slow motion
along the path might cause violation of the constraints. �

The proposed optimization approach can be understood
as a projection of the feedforward controlled MIMO dy-
namics onto the 1–dimensional path P. Main advantages
of this projection are that the optimization problem (11)
is subject to quite small dimensional linear dynamics.
Furthermore, the projection enables us to state sufficient
conditions for exact path-followability as conditions guar-
anteeing the existence of admissible solutions to (11).

4. PATH-FOLLOWING FOR A CHEMICAL
REACTOR

As an example we consider a Van der Vusse CSTR reactor
described by the dynamics (Rothfuss et al. (1996))

ċA = rA(cA, T ) + (cIn − cA)u1 (14a)

ċB = rB(cA, cB , T )− cBu1 (14b)

Ṫ = h(cA, cB , T ) + α(u2 − T ) + (TIn − T )u1, (14c)

where

Fig. 1. Path in surface of stationary product concentration.

Fig. 2. a) state evolution, b) optimal inputs.

rA(·) = −k1(T )cA − k2(T )c2A
rA(·) = k1(T )(cA − cB)

h(·) = −δ(k1(T ) (cAHAB + cBHBC) + k2(T )c2AHAD)

and the reactions kinetics are of Arrhenius type ki(T ) =

ki0e
−Ei
T+T0 , i = 1, 2. The system states cA and cB refer to

the educt and product concentration in the CSTR, T is the
reactor temperature. The educt concentration is subject
to the constraint 2 [mol/l] ≤ cA ≤ 10 [mol/l]. The input
u1 ≥ 0 [1/h] is the normalized flow rate through the reactor
and u2 ∈ [106.2◦C, 115◦C] refers to the temperature in the
cooling jacket. It can be shown that

y =
(
T, cIn−cAcB

)T
(15)

is a flat output of (14). Since the calculation of the
flat state and input parametrizations (4b,c) leads to vast
and complex expressions, we give here only functional
dependencies. Considering the flat output (15) the inputs
can be expressed as

u1 = Ψ1 (y1, y2, ẏ1, ẏ2, ÿ2) , (16a)

u2 = Ψ2 (y1, y2, ẏ1, ẏ2, ÿ2) . (16b)

The considered path-following problem was proposed in
Rothfuss et al. (1996), where a more detailed presentation
and the system parameters can be found. The task is to
perform a fast set-point change in the surface of stationary
product concentration cB,s in two steps as depicted in
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Figure 1. The first step leads from the set-point ySP1 =
(110◦C, 2.2)T along the path P1 defined by the affine
parametrization

P1 : θ ∈ [2.2, 2.69] 7→ p(θ) = (110◦C, θ)
T
.

The second step is to move along the path of maximal
steady state product concentration given by the nonlinear
parametrization

P2 : θ ∈ [110◦C, 114.21◦C] 7→ p(θ) =

(
θ

2
√

k1(θ)+cInk2(θ)
k1(θ)

)
to the final set-point ySP2 = (114.21◦C, 2.69)T .

Relying on the input parametrization (16) and the path
descriptions for P1,2, it is easy to check numerically that
the considered path is strongly steady state consistent
with respect to the considered input and state constraints.
Since the flat input parametrization from (16) depends
on ÿ2 as highest output derivative the virtual dynamics
(11b) are an integrator chain of length three. The set-point
change should be achieved reasonably fast, therefore the
cost F (·) = 0 is used in (11a).

In order to compute feedforward controls which nominally
move the system (14) from one set-point to the other
we apply the proposed approach for both paths. The
simulations are carried out with Matlab and a multiple-
shooting implementation available in the ACADO opti-
mization toolbox, see Ariens et al. (2010). Solving (11) for
both paths P1,2 separately leads to the solutions depicted
in Figure 2. Part a) shows the state evolutions of the
original system (14), part b) presents the corresponding
input signals. P1 is accomplished in less then 0.2h while
steering the system along P2 needs about 0.06h. The simu-
lation results show that the obtained solution respects the
considered constraints. Additionally, the overall transition
time ≈ 0.26h is much shorter than the heuristic solution
of 1.0h presented in Rothfuss et al. (1996).

5. CONCLUSIONS

In this contribution we investigate path-following prob-
lems for constrained differentially flat systems. We show
that a feedforward controlled differentially flat nonlinear
MIMO system can be projected onto a linear single-input
system. Based on this projection we propose a small di-
mensional optimization problem, which can be efficiently
solved in order to compute optimal feedforward control
signals for exact path-following. Additionally, we derive
sufficient conditions for the problem of steering a con-
strained flat system exactly along a given geometric path
in a flat output space. The considered approach shows
how the calculation of suitable feedforward inputs for set-
point changes can be simplified by relying on steady state
consistent paths.
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