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Abstract

Studying biological processes by using dynamical models is a key approach in systems
biology. To obtain a reliable model or to improve an existing one, system theoretical
methods are required which are suited, first and foremost, for nonlinear dynamical
systems and uncertain data.

In this thesis, we develop new methods to address several theoretical and practical
issues encountered when modeling biological processes. The proposed methods are
based on describing uncertainty of the available data and disturbances by bounded
sets, semidefinite programming relaxations, and set-membership estimation techniques
to obtain set-valued outer-estimates of the parameters, states, or inputs. Overall, the
proposed methods are applicable to polynomial dynamical systems of moderate size,
they yield a robust perspective because uncertainties are taken explicitly into account,
and they provide guaranteed and conclusive results.

Particularly, we derive a invalidity criterion for purpose of hypothesis falsification,
and address the estimation of parameter confidence intervals, sets, and optimal pa-
rameter values. Based on this, we study parameter sensitivities, i.e. how variations of
the parameters affect consistency of the model. A set-valued observer is developed to
reconstruct missing state values.

In addition, we study how uncertainty in initial conditions and parameters prop-
agates to the model outputs using reachability analysis. Besides, reachable sets are
considered for identifying outliers in measurement data within a model-generic setting.

Focusing on polynomial systems which are linear in the parameters, we design robust
optimal experiments and study the limits of the possible designs so as to obtain as
good as possible estimates of the unknown parameters.

The methods are finally put into use for a genuine case, a cell growth process of a
human cell line. We demonstrate applicability and utility of the methods for real world
applications, as the findings provide new insights into the underlying mechanisms of
cell growth and metabolism.
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Deutsche Kurzfassung

Die Untersuchung biologischer Prozesse mittels dynamischer Modelle ist kennzeich-
nend für die Systembiologie. Modellierung und Modellanalyse ermöglichen einen
integrativen und quantitativen Zugang zu den oft komplizierten Vorgängen, welche
den Prozessen zugrunde liegen, und ergänzen dabei die klassische experimentelle
Forschung. Die Findung aussagekräftiger Modelle und deren Analyse bedarf jedoch
systemtheoretischer Methoden, welche auf die speziellen Herausforderungen biologis-
cher Prozesse ausgerichtet sind, insbesondere durch Berücksichtigung von Messun-
genauigkeiten und die Nichtlinearität der betrachteten Systeme. Die Entwicklung
entsprechender Methoden ist das Thema dieser Arbeit.

Eine Herausforderung in der Modellbildung von Stoffwechselprozessen, Signaltrans-
duktionsvorgängen oder Genregulationmechanismen, ist nichtlineares Verhalten. Nur
durch nichtlineare Modelle lassen sich viele typische Eigenschaften abbilden, so Mul-
tistabilität und -stationarität, allerdings wird dadurch unter anderem die Identifika-
tion der Modellparameter und die Modellanalyse erheblich erschwert. Eine weitere
grundsätzliche Schwierigkeit ist der Mangel an und die Ungenauigkeit von biologis-
chen Messdaten für einen betrachteten Prozess. Nur selten sind alle Zustände eines
Prozesses direkt messbar, fehlende Zustände müssen rekonstruiert werden. Messun-
genauigkeiten experimenteller Daten sind hier darüberhinaus im Allgemeinen nicht
homogen, können sehr gross und möglicherweise fehlerhaft sein, das heisst Aussreisser
aufweisen. Im Gegensatz zu rein technischen Prozessen resultiert Messungenauigkeit
hier oftmals nicht nur aus der angewandten Messmethode, sondern auch aus inherenter
Heterogenität. Aus diesem Grund kann die Ungenaugikeit der Daten nicht einfach
außer Acht gelassen werden, da ansonsten wertvolle Information, beispielsweise über
die Variabilität der betrachteten Systeme, verloren gehen kann. Im Umkehrschluss
ist deswegen auch eine Systemanalyse für biologische Prozesse oftmals ungenügend,
die sich allein auf ein nominelles anstatt robustes Systemverhalten stützt. Der Man-
gel an Prozesswissen führt darüberhinaus oft zu konkurrierenden Modellhypothesen,
welche auf der Grundlage vorhandener, ungenauer Messdaten validiert bzw. falsifiziert
werden müssen.

Unter Berücksichtigung dieser Schwierigkeiten entwickeln wir in dieser Arbeit neue
Methoden für die Modellfalsifizierung, Identifikation der Parameter und Zustände,
der Analyse, und der Experimentenplanung. Die Methoden sind speziell entwickelt
für polynomielle dynamische Systeme moderater Größe, wobei Ungenauigkeiten der
Messungen (Falsifikation, Identifikation, Experimentenplanung) beziehungsweise Un-
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sicherheiten der Parameter (Analyse) unmittelbar berücksichtigt werden. Dadurch
liefern die Methoden nicht nur nominell gültige Resultate, sondern auch eine robuste
Perspektive auf die vielfältigen hier untersuchten Fragestellungen. Die Anwendbarkeit
und Nutzen der hier entwickelten Methoden veranschaulichen wir an einem realen
Beispiel aus der Bioprozesstechnik.

Die vorgeschlagenen Methoden sind mengenbasiert, das heisst Ungenauigkeiten
der verfügbaren Daten und Störungen werden generell mittels kompakter Mengen
beschrieben. Neben experimentellen Daten können auch a priori Wissen sowie qualita-
tive Information berücksichtigt werden. In Kombination mit einer semidefiniten Relax-
ation und effizienten Eingrenzungsalgorithmen ermöglicht es dieser Ansatz, die Exis-
tenz gültiger Lösungen zu überprüfen, Optimallösungen zu bestimmen, und die Menge
aller gültigen Parameter, Zustände, oder Eingänge je nach Fragestellung abzuschätzen.
Bei der Ausgestaltung des hier verfolgten Ansatzes achten wir auf dessen praktische
Anwendbarkeit, welche vor allem durch den erforderlichen Rechenaufwand begrenzt ist.
Dazu schlagen wir mehrere Strategien vor, um eine dem Problem angemessene Bal-
ance zwischen der Präzision der Resultate einerseits und dem numerischen Aufwand
andererseits zu gewährleisten, zum Beispiel durch die Wahl der Relaxation, des Ein-
grenzverfahrens, oder durch Anwendung eines Suksessionsalgorithmus.

Nach der Beschreibung der betrachteten Modelle und der Daten (Kapitel 2) sowie der
Ausarbeitung des mengenbasierten Ansatzes (Kapitel 3) betrachten wir die folgenden
konkreten Fragestellungen.

In Kapitel 4 betrachten wir die Modellfalsifizierung und das Parameterschätzprob-
lem. Dazu leiten wir ein hinreichendes Invalierungskriteriums her, und zeigen die
Schätzung der Konfidenzintervalle, der optimalen sowie der Menge aller gültigen Pa-
rameter auf. Die Parametersensitivitäten werden ebenfalls untersucht.

In Kapitel 5 leiten wir einen mengenwertigen Zustandsbeobachter her, betrachten
das Erreichbarkeitsproblem, und schlagen Modell-basierte Ansätze zur Detektion von
Aussreissern vor. Die Ergebnisse ermöglichen zudem eine Unsicherheitsanalyse.

In Kapitel 6 betrachten wir die Planung von Experimenten zur optimalen Param-
eterschätzung. Dazu zeigen wir fundamentale Grenzen des Möglichen auf, leiten ein
notwendig und hinreichendes Kriterium zur Identifizierbarkeit her, und ermitteln op-
timale Experimente unter Einbezug von Messungenauigkeiten.

In Kapitel 7 wenden wir schließlich die hier entwickelten Methoden der Hypothe-
senfalsifizierung, Schätzung, Analyse, und der Experimentenplanung auf ein reales
Beispiel an. Wir untersuchen das Zellwachstum und den Stoffwechsel einer men-
schlichen Zelllinie. Die Ergebnisse liefern neue Einsichten in die Stoffwechselvorgänge
und Wachstumslimitierung dieser Zellen.
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1. Introduction

The question of origin, evolution, and functioning of life has always fascinated mankind
and influenced the way we think about and perceive ourselves. In 1665, Robert Hooke
described the structure of cork, by using a microscope, as being composed of what
he called cells. This discovery lead to one of the fundamental axioms of modern
biology, namely, that cells are the basic units of life. While the minute structures
within these cells are generally colorless and transparent, it was the development of cell
staining techniques, which made possible the impressive advances in our understanding
of cells and organisms. Among the recent developments in this field of study, the
combination of fluorescence and transfection techniques - especially green fluorescent
protein - revolutionized the study of cells, i.e. to analyze, track, and quantify biological
molecules in vivo. With the automation of these techniques advancing towards high
throughput ones, it became possible to gather large amounts of data about genes,
proteins and the interactions of both - pivotal for the understanding of the plenitude
of cellular functions and their regulation.

Yet, many biological and in particular intra-cellular processes are often difficult to
study by experimentation alone. They are influenced and regulated by a variety of fac-
tors, which can not be kept constant under experimental conditions. Besides, certain
signals or components of a studied system, such as cytokines or transcription fac-
tors, may trigger or regulate several cellular functions simultaneously. Therefore, the
study of cellular functions, their mechanisms and interplay requires, besides exper-
imentation, a complementary methodological framework: an abstracted, integrative
description in terms of a mathematical model. With simplicity and conciseness (law
of parsimony) as guiding principles, modeling promises to structure and integrate the
available knowledge and data about the process. Besides it provides an insight into the
most important features and the relevant mechanisms, and possibly designs therapies
or control strategies which influence the process under study in the desired way.

Nowadays, numerous modeling approaches are available for the variety of cellular
functions and systems. Each approach hereby reflects upon the prior knowledge avail-
able about the process as well as the modeling purpose. Cellular decisions such as the
chemotaxis of bacteria for example, can be described by stochastic models in many
cases, whereas metabolic pathways, cell growth, and signal transduction are frequently
being described by ordinary deterministic differential equations. More complex gene
regulatory processes are often represented by Boolean or Petri networks. In any case,
modeling has to be understood as an objective-oriented and iterative approach, de-
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1. Introduction

picted in Fig. 1.1. Initially it consists in formulating - potentially competing - model
hypotheses about the inner mechanisms and interactions regarding the components
of the considered process. In a next step, these hypotheses have to be evaluated by
taking into account the available (experimental) data, which might also imply to re-
ject hypotheses that do not represent the observed behavior. Thus, a preliminary
model is obtained, which uses the experimental data to estimate unknown parame-
ters. This model can then be analyzed, e.g. to verify qualitative features of the model.
Accordingly, new experiments have to be designed which reveal the most important
information about the ongoing process, which particularly consists in rejecting the
remaining hypotheses and to refine or learn more about the unknown parameters.

Figure 1.1.: Iterative modeling scheme and the major topics addressed in this thesis.

To complete the thus structured modeling process, an appropriate and consistent
methodological framework is required to address the systems theoretical issues and
problems, namely model falsification, estimation, analysis, and the design of the indi-
vidual experiments. Such a framework, in turn, needs to be accurately adjusted to the
model class in question and the particular challenges of biological systems. When fo-
cusing on the biological processes, described by ordinary differential equations (ODE),
the most challenging characteristics are nonlinearities, noise, and the lack of informa-
tion. Unlike technical systems, measurement uncertainty can be very large, and this
is due not only to measurement imperfection, but also to the inherent heterogeneity
of biological systems. Therefore, from a systems engineering perspective, errors and
uncertainties cannot be neglected because valuable information would be ignored, nor
can they be considered homogeneously distributed mostly. These facts motivate us
to reconsider the description of uncertainties and to develop coherent and conclusive
methods based on previous considerations within a membership setting in order to
address these challenges.

2



1.1. Research topics

1.1. Research topics

We further review and discuss the considered topics.

Hypotheses testing

Modeling within system biology is in often complicated because of limited information
about the inner mechanisms of a considered process. For instance, when modeling
biochemical reaction networks, it remains unclear how and if at all components inter-
act, and the reaction kinetics is often unknown. This typically amounts in a number
of rivaling hypotheses with unknown parameters. Modeling hence often necessitates,
prior to estimation and analysis, a selection criterion as well as testing methods to
distinguish concurring hypotheses.

In terms of existing concepts, validation or falsification approaches are considered
for this purpose. The former consists in selecting the ‘most appropriate’ hypothesis,
the latter in rejecting those hypotheses which do not meet certain criteria. One general
observation is that models with a larger number of parameters are more flexible and
fit the data better than models with a smaller number of parameters [Jaqaman and
Danuser, 2006]. An example for validation approaches is the Bayesian information
criterion. Here, a score - based on maximum likelihood and the number of parameters
- is assigned to each hypothesis. Among these hypotheses the one with the minimum
score is the most suitable one, see e.g. Jaqaman and Danuser [2006]. One problem,
however, is that validation criteria are inherently subjective, see e.g. Oreskes and Be-
litz [2001], Smith and Doyle [1992]. Furthermore, as pointed out by Anderson and
Papachristodoulou [2009], it is impossible to validate a hypothesis, since this would re-
quire an infinite number of experiments. There are various stochastical approaches for
falsification. One example is the Neyman-Pearson Lemma. It is based on minimizing
the probability of false acceptance [Lehmann, 2009], and for this purpose the maxi-
mum likelihood ratio can be considered. In addition, the F-test can be used to clarify
if the introduction of extra parameters, and hence a more complicated hypothesis, is
justified, see e.g. Jaqaman and Danuser [2006]. An overview over hypothesis testing
approaches for systems biology can for example be found in Kremling et al. [2004].

Alternatives to stochastical approaches have been considered e.g. in Anderson and
Papachristodoulou [2009], Prajna [2006], using barrier certificates for model invalida-
tion. These barrier certificates, namely functions of state, parameter, and time, allow
to separate possible model trajectories from measurement data. Locating them allows
invalidating a model conclusively; however, deriving these certificates is non-trivial
and often practically impossible. Another certificate-based approach has been consid-
ered for polynomial stationary systems in Kuepfer et al. [2007]. It consists in deriving
infeasibility certificates by employing a suitable semidefinite relaxation [Parrilo, 2003].

3



1. Introduction

The approach has been extended recently to dynamical systems in Borchers et al.
[2009a,b,c], Hasenauer et al. [2010b], Rumschinski et al. [2010a].

Parameter and state estimation

Mathematical models allow us, by numerical simulation, to make, for instance, predic-
tions about the outcome of an experiment. Given the available efficient ODE solvers,
such simulations can be easily obtained if the initial conditions and the model pa-
rameters are known and defined. To obtain those parameters which characterize the
process however, observations have to be converted into information, which defines the
estimation problem, also known as the inverse problem [Tarantola, 2005].

Inverse problems are in general difficult to solve because they typically admit mul-
tiple solutions and are often ill-posed. Following the definition by J. Hadamard
[Tikhonov et al., 1977], a well-posed estimation problem should include the follow-
ing properties: an existing solution which is unique and depends ‘smoothly’ on the
data. Evidently, these criteria are not met when considering nonlinear systems, par-
ticularly with regard to sparse and uncertain biological measurements; as measurement
is not only an observed value, but an acquired state of information [Tarantola, 2005].
The information about the (un-)certainty of a measurement is crucial to evaluate the
influence of the uncertainties as well as the precision of the estimated parameters (or
states).

The classical notion of inverse problems is based on describing the uncertainty (i.e.
the state of information) of the available data by probability density distributions, i.e.
a stochastic setting. One particular approach to the inverse problem is to infer the
optimal variables (parameter) from the available information with respect to a certain
optimality criterion (e.g. Gauss ‘the most advantageous values’, Laplace ‘the most
plausible values’ [Lehmann, 2009]. The most widely used criterion is the ordinary least
squares, it leads to a regression problem. If the uncertainties are normally distributed,
the ordinary least squares method is equivalent to the maximum likelihood, see e.g.
Shao [2003]. For generalized linear models with normally distributed measurement
errors, it can be shown that the maximum likelihood is well-defined (see e.g. Ljung
[1998]).

Due to conceptual simplicity, the ordinary least squares approach is being applied
the most frequently to estimate the optimal parameters of dynamical systems. Here,
estimation consists in solving a constrained optimization problem. If the model is linear
time-invariant and if the uncertainties are (unbiased and) normally distributed, see e.g.
[Ljung, 1998], the estimation problem is well-posed. To obtain the optimal parameter
values, gradient methods, e.g. the direction of steepest ascent, can be employed, see e.g.
Boyd and Vandenberghe [2004], Marquardt [1963]. If, however, the model is nonlinear
(in parameters or states), or if the data is not normally distributed, the optimization
problem may admit multiple and non-unique optima. The problems can be partially
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1.1. Research topics

addressed considering stochastical global optimization approaches [Mendes and Kell,
1998, Moles et al., 2003, Robert and Casella, 2004, Rodriguez-Fernandez et al., 2006],
such as evolutionary algorithms [Kikuchi et al., 2003], multiple-shooting approaches
[Balsa-Canto et al., 2008, Peifer and Timmer, 2007], clustering approaches [Rinnooy-
Kan and Timmer, 1987], or simulated annealing methods [Kirkpatrick et al., 1983].

The more general interpretation of the inverse problem consists in transforming the
a priori into a posteriori probability density distribution [Tarantola, 2005]. This allows
for the accuracy of the parameters to be determined, e.g. estimating the confidence
intervals or limits, see e.g. Faller et al. [2003], Swameye et al. [2003], Toni et al.
[2009]. To this end, several approaches based on the Fisher information matrix have
been proposed to obtain the (symmetric) lower bound of a parameter’s variance, see
e.g. Banga et al. [2002], Ljung [1998]. However, as noted by Kremling et al. [2004],
this lower bound would be reached only if the model equations were linear within
the parameters, which is seldom the case with biological systems. To estimate the
precision of the parameters, besides some simple cases, a resolution in terms of sam-
ples of the probability density distribution [Tarantola, 2005] is considered. To this
end, re-sampling techniques, e.g. bootstrap, jackknife, and Monte-Carlo testing [Efron,
1979, Joshi et al., 2006, Robert and Casella, 2004] have been elaborated. However,
important solutions may be missed because these methods due to the stochastic set-
ting. This is also why these methods typically require a large number of samples,
growing exponentially with the number of unknown parameters and initial conditions,
to obtain a certain confidence in the results.

Besides the stochastic setting, a set-membership approach can be considered to ad-
dress inverse problems. This approach is based on unknown, but bounded uncertainties
and disturbances, i.e. bounded error description. Then, the inverse problem consists
in deriving, or approximating, the a posteriori solution set, e.g. the set of parame-
ters or states which are consistent with the bounded uncertainties. In the following,
we provide an overview, not intended to be complete, of methods which have been
established within the bounded error setting.

The set-membership approach for linear systems has been pioneered in Schweppe
[1968], Witsenhausen [1968], where a set-valued outer-approximate is obtained by lin-
ear programming (see also Bai et al. [1999], Milanese and Vicino [1991] and the ref-
erences therein). To this end, ellipsoids [Fogel and Huang, 1982, Schweppe, 1968,
1973], orthotopes [Milanese and Belforte, 1982], and zonotopes [Mo and Norton, 1990,
Walter and Piet-Lahanier, 1989] have been considered so far. For nonlinear systems,
these algorithms are typically not directly applicable. To manage this problem, inter-
val analysis and constraint propagation methods for parameter estimation have been
developed, see e.g. Jaulin et al. [2001] and references therein. Set-membership ap-
proaches for nonlinear system identification have been established, e.g. for Wiener
[Cerone and Regruto, 2006] and Hammerstein [Cerone and Regruto, 2003] models, and
Aubin et al. [2002], Bemporad et al. [2005], Figueroa et al. [2008], Milanese and No-
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vara [2004], Sznaier [2009]. A barrier-certificate approach has been considered [Prajna,
2006] to discard parameter sets. An alternative certificate-based approach for param-
eter estimation of stationary systems has been presented in Kuepfer et al. [2007]. The
approach consists in deriving infeasibility-certificates by employing a suitable semi-
definite relaxation [Parrilo, 2003]. Using a bi-sectioning algorithm, the set of feasible
parameters can be outer-approximated. Such a relaxation approach has, for exam-
ple, been extended to steady state sensitivity analysis [Waldherr et al., 2008], steady
state analysis of (bio-)chemical processes [Hasenauer et al., 2010a], and linear dy-
namic systems [Cerone et al., 2010]. However, considering only stationary systems (as
in Hasenauer et al. [2010a], Kuepfer et al. [2007], Waldherr et al. [2008]) is in general
not sufficient to analyse dynamical systems and estimate their parameters, see e.g.
Bullinger et al. [2008], Farina et al. [2006]. In this thesis, we extend this approach
to dynamical systems, following Borchers et al. [2009a,b,c], Hasenauer et al. [2010b],
Rumschinski et al. [2010a].

State estimation for dynamical systems has been addressed in a stochastic setup,
where the process and measurement noises are assumed to be Gaussian [Rāıssi et al.,
2010]. Kalman filtering and particle filtering are two representative methods, see
Lendek et al. [2006].Under the assumption of linear state space systems, and that both
state transition and the measurement noise is unbiased and normally distributed, the
Kalman filtering is shown to be an optimal estimator in the mean least squares sense
[Lendek et al., 2006]. The Kalman filtering has been extended to the nonlinear case
with non-Gaussian noise, e.g. the extended Kalman filtering (see e.g. Anderson and
Moore [1979]), or the unscented Kalman filtering, see e.g. Wan and Van Der Merwe
[2000]. However, particularly if the parameters of the system are not exactly known, or
the measurement uncertainties are non-homogeneously distributed, the Kalman filter-
ing might fail. To overcome these problems, particle filtering, also known as sequential
Monte Carlo methods, can be considered. A survey about particle filters is given e.g.
in Crisan and Doucet [2002]. These methods use many random samples (i.e. parti-
cles) to represent the posterior probability distributions, which are then propagated
over time [Crisan and Doucet, 2002]. Although this approach is generally applica-
ble to nonlinear systems and non-homogeneous uncertainties, there exists no general
rule how to choose ‘representative’ samples, and the required number of samples grow
exponentially with the number of variables.

As for state estimation in membership settings, three main approaches have been
considered (compare the review given in Rāıssi et al. [2010]): A prediction/correction
mechanism as e.g. proposed in Jaulin [2002], Kieffer and Walter [2004], although the
approach is limited, due to the wrapping effect, to small (measurement and parametric)
uncertainties [Raissi et al., 2012]. The second approach (e.g. Kieffer and Walter [2006])
is again a prediction/correction approach which employs however the Müller Theorem
[Müller, 1927] for the prediction step, and third closed loop interval observers, e.g.
Bernard and Gouzé [2004], Gouzé et al. [2000], Mazenc and Bernard [2011], Moisan
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et al. [2009]. Interval observers have in parts been applied to biological processes, e.g.
uncertain bioreactors as in Moisan et al. [2009].

Uncertainty and outlier analysis

This analysis deals with investigating the uncertainty in the model output that is
generated from the one in initial conditions or parameters [Marino et al., 2008]. Such
investigation is motivated because measurements for biological processes are in general
uncertain and lead to uncertain parameter estimates. Moreover, one feature of those
processes is their robustness regarding perturbations [Eißing et al., 2005, Kitano, 2004,
Stelling et al., 2004], which means that they show a particular behavior even under
uncertain conditions and disturbances. Hence, a corresponding mathematical model
should also describe such qualitative property [Morohashi et al., 2002], which in turn
requires an uncertainty analysis.

To investigate the influence of uncertainties, sensitivity analysis is a frequently con-
sidered tool to evaluate the individual contribution of variations of certain variables
onto the behavior of the system. Sensitivity analysis approaches are classified depend-
ing on whether small (local sensitivity analysis) or large perturbations are investigated
(global sensitivity analysis). In addition, the influence of uncertainties can be evalu-
ated regarding the systems dynamics (dynamical sensitivity analysis, see e.g. Saltelli
et al. [2008], or with respect to steady states, see e.g. Mönnigmann et al. [2007],
Waldherr et al. [2008]), which is also relevant for robust model synthesis as e.g. in
Marquardt and Mönnigmann [2005]. A frequently used tool to study robustness is
hereby bifurcation analysis, particularly to investigate the influence of uncertainties
regarding a qualitative change in system behavior, as for example oscillation, multi-
stability or even chaotic behavior, see for example Bagheri et al. [2007], Bates and
Cosentino [2011], Conradi et al. [2007], Waldherr et al. [2011].

Outlier analysis, in turn, deals with the problem of detecting - and if appropriate -
removing anomalous observations. It is the primary step towards obtaining estimates
and coherent analysis [Ben-Gal, 2005] because outliers may contain valuable informa-
tion or lead to falsely rejecting hypotheses or biased parameter estimates. Therefore it
is crucial to identify outliers prior to modeling and analysis (refer to Liu et al. [2004],
Williams et al. [2002]).

Outliers mainly arise due to faults, such as changes in system behavior, fraudu-
lent behavior, human error, instrument error or simply through natural deviations in
populations [Hodge and Austin, 2004]. There are several approaches to detect those
outliers, each involving the challenge of defining the outlier, which again depends on
the method used for detection. Existing outlier detection methods can be classified
according to whether or not an (error) model is utilized, i.e. parametric (supervised or
model-based) and non-parametric (non-supervised) respectively, see e.g. Hodge and
Austin [2004] and Ben-Gal [2005] for a comprehensive survey. Non-parametric meth-
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ods typically deal with large data sets and independent data. Model-based outlier
detection methods are frequently used to detect outliers in time-series data (depen-
dent data), as yet though only within a stochastical context. They can be further
classified into model-specific or model generic approaches [Ben-Gal et al., 2003]. Ex-
amples of model-specific approaches for dependent data are cumulative sum filters or
moving average filters. They typically require knowledge about the distribution of the
data. In contrast, model-generic approaches are based on estimating the underlying
model, i.e. they are parameter-dependent.

A general observation when considering data sets with multiple outliers is, that,
following Ben-Gal [2005], they are possibly subject to masking and swamping effects.
An intuitive, though not mathematically rigorous, understanding of these phenomena
is given by Acuna and Rodriguez [2004]: An outlier masks another one, if the second is
an outlier by itself, though not in the presence of the first outlier. Thus, only after the
deletion of the first one, the second outlier emerges as such. Vice versa, an outlier is
said to swamp a second observation, if the latter is an outlier only due to the first one.
In other words, after the deletion of the first outlier the second observation becomes
a non-outlying observation. Hence, masking and swamping effects may complicate
the detection of outliers and have to be employed cautiously, e.g. to avoid neglecting
important information.

Design of experiments

The design of experiments is an important link between modeling and experimentation.
It addresses a priori how to perturb the process under study, as well as which states
have to be observed to identify and reveal the most important features of a system,
e.g. to invalidate a particular hypothesis or to learn the unknown parameters. To
obtain best possible estimates concerning the parameters of a mathematical model,
experiments have to be performed and measurements have to be taken. Experiments
however are generally (resource and time) expensive, and poorly planned ones might
only provide little information. It is therefore important to properly investigate the
conditions required to identify parameters at all, and to design experiments with a
maximum information gain, while explicitly taking uncertainties into consideration.

Fisher [1935] initiated the study of a priori experimental design, with the idea of
“deciding what patterns of factors combination1 will best reveal the properties of the
systems response, and how this response is influenced by the factors” [Franceschini
and Macchietto, 2008]. He focused on obtaining the most important information
to reveal an input-output relationship in the presence of variations, in general of a
stochastical nature, which is known nowadays as black box experimental design (see
e.g. Franceschini and Macchietto [2008] for applications and a more comprehensive
review). The black box approaches however are inappropriate for dynamical systems

1i.e. inputs and initial conditions
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with constrained outputs, as they do not take into account the available (or at least
partially available) information about the system’s structure.

Therefore, experimental design approaches had to be extended to explicitly enclose
knowledge of the considered system’s structure [Franceschini and Macchietto, 2008].
This is termed model-based experimental design. Early approaches admitted only
steady state systems, including linear and nonlinear models, e.g. to study reaction ki-
netics as in Box and Lucas [1959]. The extension to dynamical systems has been slow
[Shirt et al., 1994] and primarily been considered in a stochastical context. For exam-
ple, one objective for experimental design, which has been considered, is to minimize
either the variance (uncertainty of the estimates [Shirt et al., 1994]) or the bias [Ljung,
1998] of the transfer function. Various other optimality criteria have been pursued, all
based on the Fisher information matrix (FIM). Here, the parameter uncertainty can
be appropriately distinguished within the FIM “due to the asymptotic normality of
parameter estimators and the Cramer-Rao bound” [Pronzato, 2008]. Optimality crite-
ria are found by minimizing the (expected) variance of the unknown parameters, e.g.
functionals of the invariants of the FIM. In this context, a widely used criterion is the
D-optimal design which aims at maximizing the determinant of the FIM and thereby
minimising the parameter variances. Alternatively, designs such as A-optimality, E-
optimality, etc. have been considered (see e.g. [Boyd and Vandenberghe, 2004, p.
384–392] for a compact overview).

However, the proposed frequency domain and Fisher-information matrix based ap-
proaches all rely on the true system parameters, or at least on an appropriate and
accurate a priori guess of the nominal system parameters. Hence, the quality of ex-
periments designed using these standard techniques can be adversely affected by poor
starting values of the parameters[Asprey and Macchietto, 2002]; such information how-
ever is in many cases simply not available. Thus, design methods that are insensitive
to these starting values are required [Asprey and Macchietto, 2002]. This issue has
been recognized in literature, and some approaches to the so called robust experimen-
tal design have been taken into account, as for example the sequential design (e.g.
Walter and Pronzato [1997], Wynn [1970]), Bayesian approaches (see e.g. Chaloner
and Verdinelli [1995] for a review), or minimax design (see e.g. Rojas et al. [2007]
for an overview and references). However, apart from standard cases (linear systems,
white noise), there has been little study on robust experimental design for engineer-
ing problems [Rojas et al., 2007], see also the survey presented in Hjalmarsson [2005].
In membership setting only few approaches have been made so far towards the ro-
bust design of experiments. Norton [1987] proposed a number of general guidelines,
and Belforte et al. [1987] described an orthotopic approximation approach. Pronzato
and Walter [1990] considered to use experimental design for linear regression mod-
els, by choosing as design policy a volume criterion which compares to the classic
D-optimal design in the stochastical setting. Novara [2007] considered experimental
design for nonlinear system identification, and recently, Marvel and Williams [2012]
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set-membership experimental design has been considered in the context of biological
systems.

With this overview of existing approaches for systems engineering, we outline next
the particular research challenges when considering biological systems.

1.2. Challenges

Estimation, analysis, and design of experiments are well known issues in control engi-
neering and it seems easy to apply available methods for technical systems to biolog-
ical ones. However, their theoretical and practical applicability is severely limited for
the following reasons: Non-linearity, the scope of existing methods, and the available
data’s characteristics. In the first place, biological processes are in general nonlinear
dynamical systems within parameters, states, and stimuli. Secondly, available methods
almost exclusively focus on obtaining optimal parameter/state values. However, the
main features of biological systems are robustness and heterogeneity, therefore focus-
ing on the nominal system’s behavior alone is critical. Yet, one leading assumption of
many available (stochastical) methods is normally distributed noise. This assumption
is required, implicitly or explicitly, to assure unbiased results and convergence of meth-
ods, but is however often not given. Thirdly, a primary challenge considering biological
processes is that measurement data of is typically uncertain, sparse, and possibly er-
roneous, i.e. uncertainties can be very large, non-homogeneous, and the data may be
corrupted by outliers. This uncertainty extends to initial conditions and the model
parameters, which are often completely unknown. Furthermore, lack of information
about the underlying mechanisms or reactions frequently results in concurring model
hypotheses.

Keeping these requirements in mind, the following contributions are made in this
thesis.

1.3. Contribution

In this thesis, we elaborate a set-membership framework for falsification, estimation,
analysis, and design of experiments for polynomial dynamic systems. The methods are
in particular suited for modeling and analyzing biological processes, because uncertain-
ties are taken explicitly into account using a bounded error description. Furthermore,
we can integrate disturbances, a priori and qualitative data, which is of particular
relevance considering that available data for biological processes is typically sparse.
The presented methods provide a robust perspective yielding guaranteed results of in
principle desired precision, and are build on convex optimization and set-membership
approximation techniques. Convex optimization is a well established method and
efficient solvers for convex optimization problems are available. The setting of the
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proposed framework is flexible, and can thus be applied to a variety of processes
and research questions, as for example to identify the main influencing factors of cell
growth.

In addition to a falsification approach for hypothesis testing, we address the estima-
tion of parameter confidence intervals, sets, and optimal parameter values. An interval
observer is developed to reconstruct missing state values. Furthermore, we elaborate
several analysis methods. Reachability analysis, for example, allows to study the evo-
lution of the system under parametric uncertainties, as well as to analyze the influence
of those uncertainties on the system dynamics. As shown, such information is very
useful to direct model changes and allows us to detect outliers within a model-generic
setting. Focusing on systems that are linear in the parameters, we propose an experi-
mental design approach to obtain a minimum volume parameter set in worst case. The
predominant idea of this approach is to consider a number of independent one-step
experiments. We furthermore show that the necessary number of experiments (and
observations) is equivalent to the number of unknown parameters, and also derive a
sufficient criterion. Complementary, we investigate fundamental limits of experimental
design. The methods are illustrated by several examples.

Finally, the proposed methods for falsification, estimation, analysis, and design of
experiments are applied to a comprehensive real world application, a cell growth pro-
cess of a novel human cell line. Particularly, we identify qualitatively different growth
phases, and determine the main influencing factors of cell growth and metabolism for
the available experiments.

1.4. Outline

This work is structured as follows:
Chapter 2 introduces the problem of mathematical modeling within biological pro-

cesses as well as it outlines the bounded error description of commonly available data.
Particularly, we describe a priori knowledge, empirical or measurement data, and struc-
tural constraints. This description is considered throughout the thesis.

Chapter 3 focuses on the deduction of the set-membership framework intended for
estimation and analysis. First, the relevant premises and concepts are introduced and
the problems of estimation and analysis within the bounded-error notion are formu-
lated. In a second step, we describe the convexifying relaxation technique and provide
infeasibility and dual certificates. These certificates form the basis of set-membership
estimation techniques and branch-and-bound optimization and will be briefly outlined.
We furthermore present complexity reduction techniques to implement the trade-off
between the accuracy of estimation results and computational complexity. The main
results have been presented in parts in Borchers et al. [2009a,b,c, 2012], Rumschinski
et al. [2010a].
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In Chapter 4, the framework obtained in Chapter 3 is applied to model invalidation
and parameter estimation. We derive a coherent invalidity criterion and address the
estimation of parameter uncertainty intervals and sets. Furthermore, we elaborate the
estimation of optimal parameter values. The main results have been presented in parts
in Borchers et al. [2009c], Rumschinski et al. [2010a].

In Chapter 5, the same framework is applied to analyze model and data. More
precisely, we apply robust reachability analysis to examine uncertainties and propose a
model-dependent outlier detection approach. The results have been presented in parts
in Borchers et al. [2012, 2013].

Chapter 6 deals with the design of experiments in terms of parameter estimation.
We derive necessary as well as sufficient conditions for experiments and observations
so that the parameters can be clearly identified. We then turn to the design of optimal
experiments, considering a volume and worst-case setting under additive disturbances.
The results presented here are based on the works Borchers and Findeisen [2011] and
Borchers et al. [2011b].

Chapter 7 presents a genuine application of the proposed framework, the cell
growth and basic metabolism of a human cell line. The example demonstrates the
applicability of the proposed method besides providing new insights into the underly-
ing mechanisms of cell growth. This chapter is based on the work presented in Borchers
et al. [2013].

Chapter 8 closes the work with a brief discussion and outlook.
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The diversity of biological processes gives rise to a variety of modeling approaches
suited to capture the essential features of a particular system. The scope of possi-
ble models ranges from stochastic and deterministic descriptions with concentrated
or distributed parameters, toward cell ensemble models, Boolean networks, Markov
chains, etc.. In this work, we focus on biological processes which can be described by
ordinary differential equations. This class has drawn much attention in recent years,
among other reasons because they are accessible to many system theoretical tools, and
they cover e.g. biochemical reaction networks, and thus include metabolic and many
important signal transduction systems.

A pivotal step for testing and estimation of such models is an appropriate description
of the available information, i.e. all qualitative and quantitative knowledge about the
process. This includes classical time-course measurements and its uncertainty, as well
as a priori knowledge, e.g. about state restrictions or the initial parameters, and
qualitative data, e.g. certain compounds admit a monotonic or oscillatory dynamics.
For testing and estimation, it is of course advantageous to explicitly include as much
of such information as possible.

Next, we provide a background of modeling of such processes, and describe common
data and its characteristics. Section 2.1 briefly introduces the modeling of deterministic
biological processes, leading to ordinary differential equation systems and algebraic
constraints. Section 2.2 assorts the most frequent available data and provides a suitable
description of uncertainties.

2.1. Modeling biological processes

A variety of biological processes such as metabolic activities, signal transduction and
gene regulation processes can be approximated by a common modeling framework,
i.e. a reaction network. It is build on two main components, the compounds (species,
states), i.e. quantifiable entities X1, . . . , Xnx, e.g. proteins, metabolites, RNA etc.,
and the interactions (reactions) among the compounds. The compounds are typically
considered in terms of concentrations regarding a specified compartment (volume), e.g.
xi = Xi

Vi
, i ∈ [1 : nx], where Vi denotes the respective volume of the compartment. We

denote the collection of compounds by x = {x1, . . . , xnx}T ∈ R
nx. It is important to

note that if these compounds uniformly distribute within the compartment by diffu-
sion, and if the number of the compounds is large or the reactions are sufficiently fast,
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spatial and stochastic effects can be neglected. In the following, we will neglect spacial
effects, and exclusively consider deterministic process models.

The interactions generally describe the transformation of some specie into others;
the most common forms of interactions are (biochemical) reactions, transport, and
degradation processes. An interaction can be denoted in the form:

α1jX1 + · · · + αnxjXnx

νj←→ β1jX1 + · · · + βnxjXnx, (2.1)

where αij and βij, i ∈ [1 : nx], define the stoichiometric relations of the j-th reaction,
and νj denotes the reaction rate.

The reaction rates, and thereby the reaction kinetics, can be modeled in various
ways, see e.g. Cornish-Bowden [2004], Klipp et al. [2005] for comprehensive overview.
A frequently considered approach, in particular for elementary biochemical reactions,
is the law of mass action, which derives from first principles, and where the reaction
rates are proportional to the substrate concentrations, e.g.

νj(t)
.= p+

j

nx∏
i=1

x
αij

i (t) − p−
j

nx∏
i=1

x
βij

i (t). (2.2)

Here, p+
j and p−

j define the forward and backward reaction constants, and αij, βij,
i ∈ [1 : nx], j ∈ [1 : nη] define the stoichiometric factors of the j-th reaction.

In addition, there exist various phenomenological kinetics to describe the effect of
enzymes, e.g. limitation, saturation, or inhibition, which typically derive from limiting
cases of mass action kinteics. Examples are the Monod, Hill, and Michaelis-Menten
kinetics. Exemplary, the saturation effect of an enzyme can be described by the Monod
equation (see e.g. Zeng and Deckwer [1995]), given by

νj(t) = νj,max
xi(t)

Kj + xi(t)
, (2.3)

where νj,max denotes the maximum reaction rate, and Kj denotes the Monod constant.

Balancing the compounds considering the interactions, the process’ dynamics can
be described by

ẋ(t) = Sν(t), (2.4)

where ν(t) = (ν1(t), . . . , νnν (t))T ∈ R
nν denotes the vector collecting all reactions of

the considered network, and S ∈ R
nν×nx denotes the stoichiometric matrix (see e.g.

Horn and Jackson [1972]), constructed from the factors αij and βij with

Sij = βij − αij, i ∈ [1 : nx], j ∈ [1 : nν ]. (2.5)

We furthermore can include inputs u(t) ∈ R
nu to the system description, to model

external stimuli or changing environmental conditions of the process. Moreover, we

14



2.1. Modeling biological processes

can include systemic disturbances, i.e. process noise, denoted by w(t) ∈ R
nw , to the

system description.
Such (systemic) disturbances are typically unknown and not constant during a pro-

cess, and can be used to approximate environmental influences (e.g. temperature, pH,
etc.) besides modelling errors.

The overall dynamics can be summarized by the system of ordinary differential
equations

ẋi(t) = fi(x(t), p, u(t), w(t)), i ∈ [1 : nx], (2.6)

where p ∈ R
np collects all rate constants (i.e. p+

j , p−
j , νj,max, Kj) for all j ∈ [1 : nν ].

In the remainder, we consider the functions fi(.) : Rnx × R
np × R

nu × R
nw → R to be

rational, which is satisfied for above mentioned kinetics.
We are aiming to verify the validity of a given model based on physical measurements

or to estimate unknown parameters. These objective are challenging, since often not
all compounds can be measured, or only aggregated information might be available.
We therefore distinguish between the system state variables x(t) ∈ R

nx, representing
the components of the considered process, and the measured entities y(t) ∈ R

ny of the
process. Because a system output can be aggregated information of several compounds,
it is represented for the sake of generality by a nonlinear function of the form:

yi(t) = gi(x(t), p, u(t), w(t)), i ∈ [1 : ny], (2.7)

where ny defines the number of outputs, and for the sake of generality gi(.) : Rnx ×
R

np × R
nu × R

nw → R a polynomial/rational function in the variables. Typically, the
outputs deduce from the systems states, i.e. y(t) = Cx(t) with C ∈ R

ny×nx a known
matrix.

For many biological processes, the principle of mass conservation applies. This is,
the entities of a closed system do not change over time, although the entities can be
transformed into others. Biochemical reaction networks are often described as closed
systems, e.g. when no inputs or degradation processes are considered. Mathematically,
mass conservation can be expressed by vectors γ ∈ R

nx which satisfy

γT ẋ(t) = γT Sν(t) = 0. (2.8)

Such conservation relations allow to reduce the dimension of the system, i.e. by reduc-
ing the system’s order, see for details e.g. Heinrich and Schuster [1996], which can be
required for analysis purposes, for example to avoid numerical problems as in Waldherr
[2009]. Here, we take the conservation relations explicitly into account. By integrating
Equation (2.8), the conservation relations can be conveniently expressed in terms of
algebraic constraints of the form

γT
i x(t) = ci, i ∈ [1 : nc], (2.9)
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where γi ∈ N
nx denotes an integer vector satisfying Equation (2.9), and ci for all

i ∈ [1 : nc] a constant parameter. By including ci for all i ∈ [1 : nc] into the parameter
vector p, we summarize algebraic constraints for the sake of generality by

0 = hi(x(t), p, u(t), w(t)), i ∈ [1 : nc], (2.10)

where hi(.) : Rnx × R
np × R

nu × R
nw → R a rational function.

Example 2.1

We consider the reaction mechanisms proposed by Henri [1902] to build a product (P)
from a substrate (S) via an enzyme (E) and an enzyme-substrate complex (C):

E + S
ν1�
ν2

C
ν3→ E + P. (2.11)

By balancing, the simple reaction network can be described by:

[Ṡ] = −ν1 +ν2

[Ė] = −ν1 +ν2 +ν3

[Ċ] = +ν1 −ν2 −ν3

[Ṗ ] = +ν3,

where [X] denotes the concentration of compound X ∈ {S, E, C, P}, and νi, i = 1, 2, 3
the reaction rates. By assuming the law of mass action, the reaction rates are:

ν1 = p1[S][E], ν2 = p2[C], ν3 = p3[C],

where p1, p2, p3 are the reaction constants.
For the considered reaction system, the following two conservation relations are

found: [Ė] + [Ċ] = 0, and [Ṡ] + [Ċ] + [Ṗ ] = 0, and hence the algebraic constraints

h1 = [E] + [C] − c1, h2 = [S] + [C] + [P ] − c2

are derived, with c1 and c2 denoting the integration constants.
If we furthermore consider that only the concentration of the substrate and the

product are measurable, the system outputs are given by:

y1 = [S], y2 = [P ].

Next, we turn on describing the available information for testing such models and
estimating the unknown parameters.
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2.2. Data and uncertainty description

Information about the process is required to decide if a model hypothesis has to be
rejected or to infer unknown model parameters. Besides a priori and qualitative knowl-
edge, e.g. conservation relations and monotonic behavior, such information is gener-
ated from experiments with the studied process.

One of the most important features of measurements of biological processes however
is its uncertainty. Of course, “all physical measurements are subject to uncertainties”
[Tarantola, 2005], the situation for biological processes is however particularly challeng-
ing. A typical situation is depicted in Fig. 2.1. Errors of biological data are typically
non-homogeneous, outliers may corrupt the data, and the magnitude of uncertainty
is very often significant, e.g. due to superposition of inherent and observational noise.
A measurement therefore can not be understood only as an observed value, rather
as an acquired ‘state of information’ [Tarantola, 2005]. This information about the
(un-)certainties is crucial e.g. to evaluate the precision of the estimated parameters.

Figure 2.1.: Illustration of the characteristic challenges of biological measurement data.
Uncertainties are frequently non-homogeneous, the data may be corrupted by outliers,
and errors are significant.

The ‘state of information’ of the observations can be represented by probability
density functions. There are however practical and methodological issues concerning
this notion of errors. Firstly, the probability density functions of the observations in
general have to be inferred from statistical and calibration procedures of the hard-
ware sensing devices [Rāıssi et al., 2010]. To this end, the experiments may have to
be repeated several times. While this is a standard procedure for determining the
imprecision of measurement devises (observational errors), e.g. by calibration proce-
dures, this may be very resource intense when considering experiments with the actual
process. Then, only few repetitions may be realizable, which may be insufficient for
a reliable determination of the probability density functions. Secondly, the informa-
tion about the probability densities of the observations have then to be converted into
information about the process, e.g. to infer the a posteriori probability distributions.
This is in general a difficult task considering the nonlinear nature of the model and
non-homogeneity of the errors.
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2. Modeling and Data of Biosystems

For these reasons, we pursue an alternative approach to describe the ‘state of in-
formation’ by using the notion of bounded errors, i.e. we consider the uncertainties
to be unknown, but set-bounded1. Importantly, the bounded error description can
be derived from available probability density functions if this information is available.
This case is considered in Chapter 7. Otherwise, realistic uncertainty bounds can also
be derived if less information is available, e.g. from a few repetitions.

Next, we turn on describing commonly available data and its associated uncertainty.
We address more complicated scenarios such as outliers in the data separately in
Section 5.3.

2.2.1. Measurement data

Uncertainty in measurement data can be introduced by the observation, may be due
to disturbances, or may originate from the process itself. Typically, these three factors
superpose. Observational errors result from limitations of the precision of the utilized
measurement devices. Such errors are frequently accessible via a statistical analysis,
and are described later on in detail. Disturbances in turn reflect upon limitations of the
proposed model, and denote for example factors which influence the process although
they are not explicitly modeled. This may be because the underlying mechanisms are
not well known, or simply to keep the complexity of the model moderate. We explicitly
include disturbances, which are considered unknown, but bounded. Furthermore, one
key characteristic of biological processes, in comparison to many technical systems,
is variability, which can be, in particular for intra-cellular processes, “so great that
we rarely worry about measurement error” [Quinn and Keough, 2002]. Variability de-
scribes the phenomena that cells of the same type exhibit individuality and differences
in behavior when supposed to similar conditions; and it has been shown for a wide
variety of cellular processes in different cell types ranging from bacterial cells [Swain
et al., 2002] to complex mammalian cells [Eissing et al., 2004, Ramsey et al., 2006,
Weinberger et al., 2005]. This phenomena has drawn much attention in recent years,
see e.g. Borchers [2007], Colman-Lerner et al. [2005], Elowitz et al. [2002], Hayot and
Jayaprakash [2006], Levsky et al. [2002], Mantzaris [2005], Raser and O’Shea [2005],
Schliemann et al. [2011]).

From a modeling perspective, such heterogeneity is important to recognize for two
reasons. First, many biochemical measurement techniques such as Western Blotting
and Electrophoretic Mobility Shift Assays (EMSA) provide observations of an average
response combining many cells for analysis (bulk cell analysis), all of which might
contribute in a different way to the overall observed dynamics. Single cell all-or-none
or oscillatory behavior can be masked in the average response, and using average
data for (estimation of parameters of) single-cell models can be misleading, and vice

1This does not imply an uniform distribution with bounded support. We rather do not assume anything
about the distribution in the set.
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2.2. Data and uncertainty description

versa. Second, when we compare and utilize different experimental data to infer the
model parameters or to discriminate model hypotheses. If inherent variability is not
appropriately taken into account, e.g. by introducing additional uncertainty or by
allowing variations in initial conditions and parameters, hypotheses may be falsely
rejected.

Experiments and measurements

We refer to an experiment to a set of instructions which is performed with the pro-
cess under study for the purpose to obtain measurements. Particularly, the instruc-
tions consists in an initial condition x0 ∈ X0 and a known and well defined inputs2

u(t) ∈ U(t), applied continuously without delays. Note that we address the design of
experiments in Chapter 6.

By performing an experiment, denoted for shorthand by Exp(x0, u(t)), with the
process, measurements are taken at {t0, t1, . . . , tM}. The respective observations are
denoted by

ỹi(tj), i ∈ [1 : ny], tj ∈ [t0 : tM ]. (2.12)

Analogously, a state observation is denoted x̃i(tj). These observations represent a
state of information, i.e. they are uncertain to some extend. The uncertainty may be
the result of the observation process, i.e. due to measurement imperfection, or caused
by disturbances acting on the process. We next focus on the former case, and describe
how to model observational uncertainty.

Note that in general, we allow that not all system states are measured (permanently
incomplete measurements), and that not at every time instance tj ∈ [t0 : tM ] a mea-
surement is available (casually incomplete measurements). Also, the measurements
can be correlated. However, for the sake of simplicity, we focus next on the frequent
case that the measurements are independent from one another, i.e. component-wise
interval bounds instead of more general set-valued bounds are derived.

Observational uncertainty

The observational errors are related to the measuring process itself, in particular re-
sulting from imperfection of the measurement devises. Depending on the knowledge
of the devises and there characteristics, the observational error can be modeled appro-
priately.

Absolute uncertainty is used to describe homogeneous uncertainty of the data, e.g.
a possible bias of the measurements due to calibration errors. We model absolute

2which can be uncertain itself
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uncertainty by an additive disturbance ηa ∈ R+, superposed onto the observation
values. Then, the true measurement yi(tj) is located in the interval

yi(tj) ∈ [ỹi(tj) − ηa, ỹi(tj) + ηa],

Such absolute uncertainty can for instance be motivated from a statistical analysis
of the procedural errors. e.g. if one can show that uncertainties are homogeneously
distributed according to the F-test, see e.g. Funk et al. [2007]. Then, it is reasonable to
consider the standard deviation of the procedure ηa = κσi, e.g. the κ-sigma confidence
interval, as uncertainty bounds.

Relative uncertainty is a particular non-homogeneous error, where uncertainty
growth with the values of the observation. This type of uncertainty is modeled by
a relative error 0 � ηr � 1. The respective bounding interval is given by

yi(tj) ∈ [(1 − ηr)ỹi(tj), (1 + ηr)ỹi(tj)].

Such a choice can be motivated, if statistical analysis of validation assays shows non-
homogeneous uncertainty distribution with relative procedural standard deviation ri,
i.e. the variation coefficient (see e.g. Funk et al. [2007]). We then set ηr = ri.

Limit of detection We furthermore have to take into account that some compounds
may only detectable above a certain threshold. We denote the minimal detectable value
η

i
as the lowest level at which a compound can be detected. The detection threshold

is taken into account by

ỹi(tj) � η
i

⇒ y
i
(tj) = 0. (2.13)

(a) absolute error (b) relative error

Figure 2.2.: Illustration of the absolute (homogeneous) and relative (non-homogeneous)
measurement uncertainty.

The above descriptions of observational uncertainty are of course special cases, which
nevertheless are often sufficient in practice, compare also the application example in
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Chapter 7. In other cases however, these regular uncertainty distributions described
above may not be applicable, and then the uncertainty description may has to be
adapted to the particular case, e.g. by evaluating the concentration-dependent devia-
tions of the calibration function with respect to the validation assays.

Furthermore, a special case is if the probability densities of the observational er-
rors are known, or can be inferred because sufficient repetitions of an experiment are
available. For completeness, we consider a number R of repetitions of an experiment
Exp(x0, u) have been performed, and we have obtained the (independent) measure-
ments

ỹ
(l)
i (tj), l ∈ [1 : R], tj ∈ [t0 : tM ], i ∈ [1 : ny]. (2.14)

If R is sufficiently large, we can infer an approximate probability density distribution
for the measured outputs. Exemplary, if the measurements can be assumed indepen-
dently and normally distributed, i.e.

yi(tj) ∼ N(μi(tj), σ2
i (tj)), (2.15)

an estimate of the mean μ̂i(tj) and standard deviation σ̂2
i (tj) is given by

μ̂i(tj) =
1
nr

nr∑
l=1

ỹ
(l)
i (tj), (2.16)

σ̂2
i (tj) =

1
nr − 1

nr∑
l=1

(μ̂i(tj) − ỹ
(l)
i (tj))2. (2.17)

Based on the (so derived) probability densities, the uncertainty bounds can be chosen
according to the sigma-confidence levels. Exemplary, the uncertainty bound for yi(tj)
for the normal distributed observations ỹi,l(tj), the confidence-level based uncertainty
bound is given by

yi(tj) ∈ [μ̂i(tj) − κσ̂i(tj), μ̂i(tj) + κσ̂i(tj)], (2.18)

where κ = {1, 2, 3} define the {68.27%, 95.45%, 99.73%} confidence level. As suggested
by Fogel and Huang [1982], the confidence-level based uncertainty description can be
used to obtain confidence set estimators.

Inherent Variability

Besides observational uncertainty, the studied process may contain an inherent source
of uncertainty, e.g. heterogeneity, for example if data is obtained by Western Plots
or EMSA, or more generally by aggregation of independent experiments. This case is
accommodated by considering the observations are not single values ỹi(tj) but already
set valued, i.e. [ỹ

i
(tj), ỹi(tj)]. In this case, one proceeds with superimposing the
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observational errors onto the lower and upper measurement value, ỹ
i
(tj) and ỹi(tj)

respectively, and by deriving wost-case uncertainty bounds.

Summary uncertainty description The observational uncertainties can be evaluated
from validation assays of the utilized measurement devises. Commonly used descrip-
tions are the absolute and relative uncertainty, as well as the limit of detection. These
descriptions can be extended to the case information about inherent variability is
available. Furthermore, a set-valued uncertainty description of the observations can
be derived from known probability density distributions of the errors by considering the
κ-sigma confidence intervals. The uncertainty description is summarized by bounding
sets for each observation by

Dmeas :

⎧⎪⎪⎨
⎪⎪⎩

u(t) ∈ U(t) .= {u ∈ Rnu : Au(t)u � au(t)}, t ∈ [t0, tN ],
x(tj) ∈ X(tj)

.= {x ∈ Rnx : Ax(tj)x � ax(tj)} tj ∈ [t0 : tM ],
y(tj) ∈ Y (tj)

.= {y ∈ Rny : Ay(tj)y � ay(tj)} tj ∈ [t0 : tM ].
(2.19)

Note that very frequently the sets are simple component-wise intervals. A formal
description of the bounding sets in terms of polytopes is provided in the Appendix B.

2.2.2. A priori data

Data independently available of actual measurements is termed a priori knowledge
or data. Such knowledge might derive from first principles, or stem from further
observations.

The system’s states x(t) (and the systems outputs y(t)) can typically be constrained
from first principles, e.g. by considering symmetry properties or conservation relations
(energy, mass, entropy), see e.g. Ederer and Gilles [2007]. Furthermore, disturbances
are assumed unknown, but bounded in magnitude, i.e. w(t) ∈ Ω ⊂ R

nw . Finally, a
priori information might be available for the model parameters, e.g. an initial param-
eter domain p ∈ P ⊂ R

np. Such bounds often derive from first principles, or can be
based on literature values; if available, the bounding set can also be deduced from a
priori probability distributions.

In summary, we model a priori data for the system variables by (compact and convex)
bounding sets

Dprior :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

P
.= {p ∈ R

np : App � ap},

X
.= {x ∈ R

nx : Axx � ax}
U

.= {u ∈ R
nu : Auu � au}

Y
.= {y ∈ R

ny : Ayy � ay}
Ω .= {w ∈ R

nw : Aww � aw}

(2.20)

see Appendix B for further details.
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2.2.3. Structural constraints

Additional information, besides measurements and a priori knowledge, might be avail-
able in terms of dependencies of variables or about some a priori known qualitative
features the dynamics of the system. Exemplary, metabolites are often measurable
and physical entities such as chemical compounds, i.e. non-negative xi(t) � 0 for some
i ∈ [1 : nx]. Furthermore, some compounds might be known to obey a monotone
behavior, e.g. when considering exponential cell growth. A monotone non-decreasing
dynamics can be expressed by an inequality of the form ẋi(t) � 0, for some i ∈ [1 : nx],
and −ẋi � 0 a monotonic non-increasing dynamic respectively. More generally, struc-
tural information in form of barrier functions might be available, including positivity
and monotonicity. In summary, we include additional constraints which can be ex-
pressed by inequalities of the form

Dstr :
{

qi(p, ẋ(t), x(t), u(t), y(t)) � 0, i ∈ [1 : nq], (2.21)

where nq denotes the number of constraints motivated above. Note that we here
consider only qi(.) linear functions of the system variables (see Appendix B).

2.3. Summary

Many biological processes can be described by means of ordinary differential equations
with rational structure. The models equations derive from balancing, by considering
a set of relevant compounds x(t) ∈ R

nx and their interactions. By specifying the
reactions kinetics, reaction parameters p ∈ R

np are introduced.
Inputs u(t) ∈ R

nu, disturbances w(t) ∈ R
nw , and outputs y(t) ∈ R

ny can be intro-
duced to model external stimuli, perturbations, and the measurable entities; conser-
vation relations can be described by additional algebraic equations. The dynamical
(continuous-time) model is then summarized by

M c :

⎧⎪⎪⎨
⎪⎪⎩

ẋi(t) = fi(x(t), p, u(t), w(t)) i ∈ [1 : nx]
yi(t) = gi(x(t), p, u(t), w(t)) i ∈ [1 : ny]
0 = hi(x(t), p, u(t), w(t)) i ∈ [1 : nc]

, (2.22)

for t0 � t � tN denoting the time window of interest.
Data for biological systems is subjected to various sources of uncertainty. In con-

trast to classical approaches for estimation, we model uncertainties using the notion
of bounded errors. The uncertainty description can be based on knowledge about the
measurement devises, or can be derived from a priori probability distributions if avail-
able. To this end, we denote a priori data Dprior (2.20) as the information available
before experimentation. Measurement data and the associated observational uncer-
tainty, may be incomplete and sparse, and is expressed by state and output bounding
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2. Modeling and Data of Biosystems

sets for the time instances t0, t1, . . . , tM where observations are available. The mea-
surement data is summarized by Dmeas (2.19). We also include additional knowledge
e.g. about correlation of model variables or known qualitative features which can be
expressed by inequality constraints, summarized by Dstr (2.21).

With this preparations, we can now turn on the formulation of the estimation and
analysis problems, regarding the introduced dynamical models and utilizing all avail-
able data.
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3. Set-Membership Framework for
Falsification and Estimation

One of the most important issues when modeling biological processes is to determine
or to refine the models variables given the available data. For example, the estimation
of the model parameters is pivotal for analysis and experimental design, and has
fundamental impacts on the performance of model-based controllers. Prior to this,
it is important to decide whether a model can reproduce an observed behavior at
all, otherwise the model has to be rejected. As outlined in Chapter 2, data can be
given, besides measurements from experimentation, as a priori knowledge or qualitative
information, and the data is typically subjected to uncertainty such as measurement
noise. By describing data uncertainty in terms of bounded errors, we can consider
a set-membership setting for the hypothesis falsification and estimation problems.
Particularly, the parameter/state estimation problem then translates into determining
the set of feasible parameters/states of the model that respects the available data. For
falsification it is sufficient to show that this set is empty.

In general, the set of feasible parameters or states can be very complicated, and
for most applications outer-approximations are sufficient. Obtaining (simply-shaped)
outer-approximations of given sets defines the set-membership problem. Parameter es-
timation has been addressed in this setting already for linear systems considering ellip-
soids (e.g. Fogel and Huang [1982], Schweppe [1968, 1973]), orthotopes (e.g. Milanese
and Belforte [1982]), zonotopes (e.g. Mo and Norton [1990], Walter and Piet-Lahanier
[1989]), or general fixed shape approximations utilizing homothety [Borchers et al.,
2011b]. For nonlinear systems, these algorithms are not generally applicable, because
the underlying optimization problems are typically non-convex. To overcome this issue,
interval analysis and constraint propagation methods for parameter estimation have
been developed, see e.g. Jaulin et al. [2001] and references therein. Set-membership
approaches for nonlinear system identification have been established, e.g. for Wiener
[Cerone and Regruto, 2006] and Hammerstein [Cerone and Regruto, 2003] models,
and Aubin et al. [2002], Bemporad et al. [2005], Figueroa et al. [2008], Milanese and
Novara [2004], Sznaier [2009]. A barrier-certificate set-membership approach has been
considered [Prajna, 2006] to discard parameter sets.

An alternative certificate-based approach for parameter estimation of stationary
systems has been presented in Kuepfer et al. [2007]. The approach consists in deriv-
ing infeasibility-certificates by employing a suitable semi-definite relaxation [Parrilo,
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2003]. Using a bi-sectioning algorithm, the set of feasible parameters can be outer-
approximated. Such a relaxation approach has, for example, been extended to steady
state sensitivity analysis [Waldherr et al., 2008], steady state analysis of (bio-)chemical
processes [Hasenauer et al., 2010a], and linear dynamic systems [Cerone et al., 2010].
However, considering only stationary systems (as in Hasenauer et al. [2010a], Kuepfer
et al. [2007], Waldherr et al. [2008]) is in general not sufficient to analyse dynam-
ical systems and estimate their parameters, see e.g. Bullinger et al. [2008], Farina
et al. [2006]. In this thesis, we extend this approach to dynamical systems, following
Borchers et al. [2009a,b,c], Hasenauer et al. [2010b], Rumschinski et al. [2010a].

In this chapter, we extend the approach of Kuepfer et al. [2007] to nonlinear dynam-
ical systems. The proposed approach builds on polynomial relaxations (see e.g. Ko-
jima [2002], Lasserre [2001], Lasserre et al. [2008], Lovasz and Schrijver [1991], Parrilo
[2003], Sherali and Adams [1990]), and employs convex optimization techniques to ad-
dress the set-membership problem efficiently. Next, we formulate in Section 3.1 the
falsification and estimation problems in the set-membership setting in terms of solu-
tions to particular non-convex quadratic optimization/feasibility problems. In Section
3.2 we describe the procedure to relax the non-convex problem into a convex on, and
subsequently derive infeasibility and dual certificates. These certificates form the basis
for falsification, estimation, and branch-and-bound optimization as outlined in Section
3.3. In Section 3.4, we provide some computational notes how to reduce computational
complexity. We finally provide some insights in Section 3.5. Parts of this chapter are
based on Rumschinski et al. [2010a] and Borchers et al. [2009a,b,c, 2012].

3.1. The feasibility, estimation, and optimization problems

A preliminary step of the following set-membership falsification and estimation frame-
work consists in deriving an discrete time system, which is close by its properties to
the continuous ODE systems (2.22). In general, this is achieved by discretization, i.e.
choosing an appropriate discretization scheme and sampling. The required steps were
discussed in detail in Rumschinski [2012], Rumschinski et al. [2010b], and are outlined
in the Appendix A. We remark that the sampling steps have to be chosen sufficiently
small such that possible discretization errors are negligible, refer also Letellier et al.
[2004], Rumschinski et al. [2012] for a comprehensive discussion of possible numerical
stability issues. The resulting difference equation system with k ∈ [1 : N ] considered
in the remainder is summarized by:

M :

⎧⎪⎪⎨
⎪⎪⎩

fk
i (xk, xk−1, p, uk−1, wk−1) = 0, i ∈ [1:nx]

gk
i (yk, xk, p, uk−1, wk−1) = 0, i ∈ [1:ny]

hk
i (yk−1, xk, xk−1, p, uk−1, wk−1) = 0, i ∈ [1:nc]

(3.1)
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For the sake of simplicity of notation, we introduce the vector of variables z ∈ R
nz ,

which collects all (discrete) system variables for k ∈ [1:N ]:

z
.= (p1, . . . , pnp, x0, . . . , xN , u0, . . . uN−1, y0, . . . , yN , w0, . . . , wN−1).

By construction, we have nz = np + N(2 + nx + nu + ny + nw).
We furthermore denote the collection of available data, i.e. a priori, measurement,

and structural data, informally by

D
.= Dprior ∩ Dmeas ∩ Dstr. (3.2)

Formally, this collection can be seen as the intersection of the respective bounding sets
Zprior, Zmeas, Zstr, see for details Appendix B. The overall data D (3.2) can then be
summarized for simplicity of presentation by the set

Z = {z ∈ R
nz : Azz � az}.

With these preparation, we can now focus on the formulation of the considered
problems in membership setting. To this end, we first derive the set of consistent
solutions as follows:

Proposition 1 (Solution set)
All solutions of the dynamical model (3.1), which are consistent with the data (3.2),
belong to the set Z ⊂ R

nz with:

Z .=

⎧⎪⎪⎨
⎪⎪⎩z ∈ Z :

fk
i (z) = 0 k ∈ [1:N ], i ∈ [1:nx]

gk
i (z) = 0 k ∈ [1:N ], i ∈ [1:ny]

hk
i (z) = 0 k ∈ [1:N ], i ∈ [1:nc]

⎫⎪⎪⎬
⎪⎪⎭ (3.3)

where fk(z), gk(z) and hk(z) are respectively (3.1) with an appropriate choice of z-
components.

Proof. The proof is simply by construction. Let us choose a vector ξ ∈ R
nz , with

ξ ∈ Z so that ξ is consistent with the data D (3.2) (Z, see Appendix B.4). Only if
we have fk

i (ξ) = 0 for all k ∈ [1 :N ] and for all i ∈ [1 :nx], and respectively gk
i (ξ) = 0

for all k ∈ [1 : N ] and for all i ∈ [1 : ny], and hk
i (ξ) = 0 for all k ∈ [1 : N ] and for all

i ∈ [1:nc], then ξ is, by definition, a solution of M (3.1). �
In other words, the set of solutions Z contains all solutions of M (3.1) consistent

with D (3.2), denoted hereafter as strictly feasible solutions. Note, by construction,
Z ⊆ Z.

Feasibility The general feasibility problem can now be formulated in terms of the
solution set as follows:
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Problem 1 (Feasibility)
Prove that Model (3.1) is consistent (not consistent) with the Data (3.2). That is, prove
that there exists (no) solutions of the model respecting the data, i.e. Z is non-empty
(empty).

As we will outline later on, the feasibility problem templates several applications, for
example model invalidation, reachability analysis, and outlier detection.

Estimation The goal of an estimation problem is to describe and characterize the
solution set Z, if Z is non-empty, as good and as efficient as possible. More particular,
one is typically only interested an estimate of some components of z, denoted hereafter
by s ∈ R

ns (ns � nz). Exemplary, in case of parameter estimation, we are interested
in the np components of z corresponding to the parameters, i.e. s = p. In general, we
select some components s; this can be seen as an ns-dimensional axis-parallel subspace
of Rnz , formalized by the projection map fs(.) : Rnz → R

ns. The general estimation
problem can thus be formulated as:

Problem 2 (Estimation)
Given a selection s ∈ R

ns of system variables of interest. Provide the set bounding all
feasible solutions in s of M (3.1) respecting D (3.2), i.e. provide an estimate of the
set S .= fs(Z).

Note that in principle any desired selection of variables can be chosen, thus pos-
sibly defining estimation problems involving a combination of state, parameter, in-
put, and output variables. Note also that we are only interested in guaranteed esti-
mates/approximations in the remainder of this thesis, i.e. to find membership sets,
refer to Section 3.3 for details.

Optimal estimation Often, not only a set, but also an optimal value for the variables
of interest is required, referred to as the optimal estimation problem. The problem
of optimal estimation consists of finding the optimal values z∗ ∈ R

nz , or a selection
s∗ .= fs(z∗), minimizing some (polynomial) objective function c(z). The respective
optimum is denoted by c(z∗). In case of optimal parameter estimation, frequently
one considers a data fitting objective function measuring the distance of the output
trajectory from the measurements, e.g. cslq provided in (4.3). The problem of finding
the optimal value is formulated as follows:

Problem 3 (Optimal estimation)
Determine the (global) optimum c(z∗) and the optimal values z∗ of the objective func-
tion c(z). That is, find a solution of the polynomial optimization problem:

⎧⎨
⎩

min
z∈Rnz

c(z) s.t.
z ∈ Z.

(3.4)
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The polynomial optimization problem (3.4) forms the basis of the following considera-
tions in this chapter and applications considered in the following chapters. Note that
by construction, the argument of above optimization problem is also a strictly feasible
solution, and the optimum may not be unique.

3.2. Reformulation and relaxation

Due to set valued states and parameters and the (implicit) polynomial system equa-
tions, the solution set Z (3.3) is non-convex, and might be composed of disconnected
regions. Furthermore, (3.4) might admit several local optima, or the solutions might be
set-valued. Showing that no strictly feasible solution exists, characterizing the solution
set, or finding a global optimum, can therefore be very challenging.

We approach the feasibility and estimation problems via convexification, i.e. the
non-convex problems are relaxed into convex ones, which are close by their properties
to the original problems. In particular, the relaxation process is conservative: any
strictly feasible solution remains feasible for the relaxed problem. The converse does
not hold in general, as relaxations typically introduce ‘spurious’ solutions, that are
feasible for the relaxed problem but not strictly feasible.

Some convex relaxations have been developed for polynomial optimization prob-
lems, in particular the Reformulation-Linearization Technique (e.g. Sherali and Adams
[1990]) and semidefinite programming (SDP) relaxations (see e.g. Lasserre [2001], Lo-
vasz and Schrijver [1991], Parrilo [2003]). SDP relaxations have become very popular
due to their theoretical and practical properties. Semidefinite programming can be re-
garded as a generalization of linear programming over semi-definite cones, and efficient
software packages for SDP optimization are nowadays available. SDPs can be solved
with any desired precision in polynomial time by interior-point methods [Nesterov and
Nemirovski, 1994]. Furthermore, the optimum of a fairly general class of polynomial
problems with compact feasible region can be approximated with arbitrary precision
by a finite sequence of SDPs [Lasserre, 2001]. Several SDP solvers with state-of-the-
art implementations of the primal-dual interior-point algorithm are freely available, as
e.g. SeDuMi [Sturm, 1999] and SDPT3 [Tütüncü et al., 2003], and can be directly used
in Matlab using Yalmip [Lofberg, 2004] or GloptiPoly [Henrion and Lasserre, 2003] as
interfaces. The ADMIT toolbox [Streif et al., 2012], as considered here, is build upon
Yalmip.

In the following, we describe our framework using the SDP relaxation following
Parrilo [2003], but we remark that it is independent of the specific relaxation employed.
Indeed, relaxations to linear problems is numerically advantageous if problems with
a large number of variables are considered. We discuss the use of weaker relaxations
in Section 3.4, and refer to Kojima [2002] for a hierarchy of convex relaxations for
semi-algebraic problems that are applicable to our framework.
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3. Set-Membership Framework for Falsification and Estimation

We focus next on the optimal estimation problem, i.e. we aim to obtain a lower
bound on the objective value. The feasibility problem immediately derives from the
optimal estimation problem by considering a zero objective function. Lower bounds
on particular objective value are furthermore required for approximating the solution
set, as outlined in Section 3.1.

3.2.1. Reformulation of POP(Z)

Reconsider the polynomial optimization problem (3.4):

POP(Z) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
z∈Rnz

c(z) s.t.
fk

i (z) = 0 k ∈ [1:N ], l ∈ [1:nx]
gk

i (z) = 0 k ∈ [1:N ], l ∈ [1:ny]
hk

i (z) = 0 k ∈ [1:N ], l ∈ [1:nh]
z ∈ Z.

(3.5)

As a first step, we reformulate POP(Z) in terms of an equivalent quadratic opti-
mization problem using quadrification (see e.g. Sherali and Tuncbilek [1997]). To this
end, let S

n be the set of real symmetric n × n matrices, and

〈A, B〉 =
∑
i,j

aijbij

denote the usual Frobenius product. Quadrification [Sherali and Tuncbilek, 1997]
consists in deriving a monomial vector ξ for which

c(z) = 〈C, ξξT 〉, fk
i (z) = 〈F k

i , ξξT 〉, gk
i (z) = 〈Gk

i , ξξT 〉, hk
i (z) = 〈Hk

i , ξξT 〉,

for appropriate matrices C, F k
i , Gk

i , Hk
i ∈ S

nξ . Each monomial (of ξ) of degree two
or more is thus represented by the product of two other monomials of lower degree.
This is explicitly expressed by constraints of the form

〈Di, ξξT 〉 = 0 i ∈ [1:nd],

which enforce the inter-dependence between higher and lower degree monomials in ξ,
for appropriate matrices Di ∈ S

nξ . As a technical requirement, we ask without loss of
generality, that ξ1 = 1. The next nz components of the vector ξ are all the components
of z, i.e.,

(ξ2, . . . , ξnz+1) = z.

Note we have ξξT e1 = ξ, with e1 = (1, 0, . . . , 0)T ∈ R
nξ . Note also that the quadri-

fication is not unique. One can typicall find various monomials defining the same
polynomial. This degree of freedom can be exploited to decrease conservatism.
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3.2. Reformulation and relaxation

The polytopic constraints Z bound, by construction, the z equivalent components
of ξ. The remaining components, which are monomials of degree two or higher, can
be bounded directly from the data Z, particularly considering interval arithmetic, for
details see Appendix C. The resulting bounding constraints for all the components of
ξ are expressed by

AξξξT e1 = Aξξ � aξ.

The reformulation by quadrification is summarized by the quadratic program:

QOP(Z) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
ξ∈Rnξ

〈C, ξξT 〉 s.t.

〈F k
i , ξξT 〉 = 0 k ∈ [1:N ], i ∈ [1:nx]

〈Gk
i , ξξT 〉 = 0 k ∈ [1:N ], i ∈ [1:ny]

〈Hk
i , ξξT 〉 = 0 k ∈ [1:N ], i ∈ [1:nh]

〈Di, ξξT 〉 = 0 i ∈ [1:nd]
AξξξT e1 � aξ

ξ1 = 1.

(3.6)

Advantageously, the quadrification procedure is always possible for a system with the
considered structure, though it is not uniquely determined. In contrast to the moment
matrix approach [Lasserre, 2001], a simple quadrification yields a smaller representa-
tion which is less tight but computationally easier to solve [Kojima, 2002], and hence
pursued in the remainder. It is important to note that the moments relaxation can be
considered within the here proposed framework by choosing an appropriate monomial
vector ξ and considering further regularizations, for details see Lasserre [2001].

3.2.2. Semidefinite programming relaxation

The resulting QOP(Z) (3.6) is, still, non-convex. To overcome this problem, we pro-
pose to relax 3.6. Specifically, (3.6) can be casted as a linear matrix optimization prob-
lem by replacing the product matrix ξξT with a symmetric variable matrix Ξ ∈ S

nξ ,
with the additional non-convex constraint rank(Ξ) = 1, see Ramana [1994] for further
details. This problem can then be relaxed into a semidefinite problem by replacing the
rank constraint with the convex positive semidefinite constraint Ξ � 01. The resulting

1Note that other relaxations can be considered as discussed in Section 3.4, e.g. a relaxation of QOP (Z) into
a second order cone problem by imposing Ξ ∈ K2 (instead rank(Ξ) = 1) or into a linear program imposing
the non-negativity constraint Ξ � 0, see e.g. Kojima and Tuncel [2001].
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3. Set-Membership Framework for Falsification and Estimation

convex semidefinite program is thus:

SDP(Z) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
Ξ∈Snξ

〈C, Ξ〉 s.t.

〈F k
i , Ξ〉 = 0 k ∈ [1:N ], i ∈ [1:nx]

〈Gk
i , Ξ〉 = 0 k ∈ [1:N ], i ∈ [1:ny]

〈Hk
i , Ξ〉 = 0 k ∈ [1:N ], i ∈ [1:nh]

〈Di, Ξ〉 = 0 i ∈ [1:nd]
AξΞe1 � aξ

Ξ11 = 1
Ξ � 0.

(3.7)

For shorthand of notation, we denote in the sequel by zSDP = (Ξ1,2, . . . , Ξ1,nz+1) the
projection of the respective elements of the matrix Ξ ∈ S

nξ onto R
nz , formalized by the

(coordinate erasing) projection map fz(.) : Rnξ×nξ → R
nz . Furthermore, we denote

by ZSDP the set of all vectors fz(Ξ) with Ξ a feasible solution of SDP(Z), i.e. the
projection set of all feasible solutions of SDP(Z) onto z, for details see Appendix C.2.

Since the relaxation is conservative, the following key relation between POP(Z) (3.4)
and SDP(Z) (3.7) is as follows:

Theorem 1 (Relaxation)
If the SDP(Z) is infeasible, then the POP(Z) is infeasible. If both problems are feasible,
then the optimum of SDP(Z) is a lower bound for the minimum of POP(Z). All strictly
feasible solutions of POP(Z), i.e. Z, are feasible solutions of SDP(Z), i.e. Z ⊆ ZSDP.

Proof. For any z ∈ Z there is by construction a vector ξ ∈ R
nξ which is feasible for

the QOP (Z) such that 〈C, ξξT 〉 = c(z), and hence a rank-one matrix Ξ=̇ξξT which
is feasible for the SDP(Z) such that 〈C, Ξ〉 = c(z) and zSDP = z. This shows that
ZSDP ⊇ Z, and directly implies Theorem 1. �

Note also that, conversely, if Ξ ∈ S
nξ is rank-one and feasible for SDP(Z), then

zSDP ∈ Z and c(zSDP) = 〈C, Ξ〉. In other words, there is a bijection among strictly
feasible solutions and rank-one feasible matrices.

The SDP(Z) can be relaxed into a second order cone problem or into a linear
program, where the numerical efficiency over SDP is the major advantage. On the
other hand, adding valid (polynomial) constraints can yield tighter convex relaxations,
though this may affect the computational performance. For example, the constraints
AξΞe1 � aξ can be augmented to AΞΞ � aΞ, thus binding all the elements of Ξ.
Moreover, constraints AΞΞAT

Ξ � aΞ can be considered, refer to Appendix C.2.
Relaxation tightness is in general very difficult to assess, although for some classes

of non-convex quadratic optimization problems exact solutions are obtained by SDP
or SOCP relaxations [Kim and Kojima, 2003]. A comprehensive study of the effect
of SDP and further strengthening constraints can be found in Kojima [2002], and a
comparison of SDP and RLT relaxations can be found in Anstreicher [2009].
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3.2. Reformulation and relaxation

Theorem 1 requires a guarantee of infeasibility of SDP(Z), or a guarantee of opti-
mality of a given solution. Such a guarantee can be provided by dual certificates as
described next.

3.2.3. Dual certificate

Any feasible solution for the dual problem of a SDP provides by weak duality a lower
bound to the SDP optimum, see e.g. Boyd and Vandenberghe [2004]. Therefore, dual
unboundedness provides an (easy to check) certificate of primal infeasibility. Moreover,
if strong duality applies, then the optimum of the dual and of the primal coincide,
which provides a certificate of optimality.

Several SDP duals have been proposed (see Ramana et al. [1997] for a discussion of
SDP duals). For simplicity, we here consider the Lagrangean dual SDP(Z), which is
itself an SDP and for which strong duality holds under constraint qualification condi-
tions [Nesterov and Nemirovski, 1994]. To obtain the Lagrangian dual, non-negative
Lagrange multipliers (dual variables) are introduced to include the constraints to the
objective function. The dual problem then consists in maximizing the augmented ob-
jective function with respect the dual variables. We denote for shorthand of notation
the Lagrangian dual by SDP*(Z).

Using duality, we can derive guaranteed bounds of the objective function as follows:

Theorem 2 (Dual bound)
A feasible solution of SDP*(Z) gives a lower bound on the optimum of SDP(Z), and
hence on the optimum of POP(Z). If SDP*(Z) is unbounded, then POP(Z) is infea-
sible.

Proof. Theorem 2 is a direct consequence of Lagrangean weak duality and Theorem 1.
We denote by Ξ∗ an optimal solution of (the dual problem) SDP*(Z); by weak

duality, we have first that Ξ∗ provides a lower bound on the objective value for the
SDP(Z), i.e.

〈C, Ξ∗〉 � 〈C, Ξ〉, ∀ Ξ ∈ RSDP,

with RSDP the set of feasible solutions Ξ of SDP(Z), see Appendix C.2. By denoting
z∗ = fz(Ξ∗), following Theorem 1, the lower bound of POP(Z) is bounded from below
by

c(z∗) � c(z), ∀ z ∈ Z.

Furthermore, if c(z∗) → ∞, i.e. if it becomes unbounded, we have by weak duality that
SDP(Z) is infeasible, and hence that the POP(Z) is infeasible according to Theorem 1.
�

Theorem 2 therefore provides a sufficient criterion for infeasibility of POP(Z). This
provides a way to solve Problem 1 using the dual problem. This will be used for model
invalidation (Section 4.1), reachability analysis (Section 5.2), and outlier detection
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3. Set-Membership Framework for Falsification and Estimation

(Section 5.3). The dual bounds themselves are utilized for estimation (Problem 2) and
optimization (Problem 3) as shown in the next section.

3.3. Estimation

In this section, we consider the estimation problems, i.e. how to obtain an outer-
estimate of the solution set Z and fs(Z), and how to obtain an optimal estimate.

An overview of the considered estimation techniques is provided in Fig. 3.1. The
most efficient approach for outer-estimation is determining the uncertainty intervals
for the unknown variables using dual certificates, outlined hereafter in Section 3.3.1.
In Section 3.3.2, we present an approach by which fixed shape membership sets are
obtained using homothety. To assess the solution set in more detail, a partitioning
approach is presented in Section 3.3.3. Finally, in Section 3.3.4, we propose a branch-
and-bound approach for optimization purposes.

(a) interval bounding (b) homothetic bounding (c) partitioning

Figure 3.1.: Illustration of the basic estimation techniques.

3.3.1. Interval bounding

To obtain an as good as possible estimate of a (unknown) variable si, we choose for
POP(Z) the objective function c(z) = si. According to Theorem 2, the solution of the
respective dual SDP*(Z)

〈Ci, Ξ∗〉 .= si (3.8)

provides a lower bound for si. Analogously, by choosing c(z) = −si, the respective
dual solution

− 〈Ci, Ξ∗〉 .= si, (3.9)

i.e. an upper bound of the respective variable si. The lower and upper bounds define
the (a posteriori) uncertainty interval [si, si]2.

2The uncertainty interval can be regarded as an outer-approximation of the n-sigma confidence interval, if
the measurement uncertainties are modeled by their n-sigma confidence limits.
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3.3. Estimation

Proposition 2 (Uncertainty interval)
The interval [si, si] bounds all strictly feasible solutions of si, and is found by 2 dual

bounds of SDP(Z).

Proof immediately follows from construction and Theorem 2.
The length of the uncertainty interval, which is simply given by


(si)
.= si − si (3.10)

can be considered as a measure for the sensitivity of the variable, as outlined in the
next chapter.

If a number of unknown variables s ∈ R
ns has to be estimated, the uncertainty

intervals can be obtained independently from one another. We denote the overall
solution set (given by the collection of ns uncertainty intervals) as bounding orthotope

OI(S) .= OI

(
fs(ZSDP)

)
= [s1, s1] × . . . × [sns

, sns].

The properties of the bounding orthotope are summarized as follows:

Proposition 3 (Bounding orthotope)
The orthotope OI(S) contains all strictly feasible solutions of s, and is derived from
2ns dual bounds of SDP(Z).

Proof immediately follows from Proposition 2. The volume of the orthotope is simply
given by the product of the intervals length.

Remark 1 (Iterations) The quality of the relaxation ZSDP and thereby of the uncer-
tainty intervals strongly depends on the (initial) bounding sets Z. Tightening the bound
of one variable (e.g. by estimating the respective uncertainty interval) can propagate
to the other variables. This enables us to refine the outer-estimate by updating the
‘initial’ bounds. This can be iterated until a fixed point is attained, or some precision
threshold is reached.

Interval bounding is the most efficient way to obtain an estimate of the unknown
variables, i.e. the analytical complexity growth linearly with the number of unknown
variables. Interval bounding is therefore used e.g. if several (time-variant) variables
have to be estimated, e.g. for state estimation. Interval bounding often precedes a
more detailed analysis of the solution set. However, interval bounding does not provide
information about correlations of variables, nor the shape of the solution set. To this
end, we next consider more general bounding sets for analysis purposes.

3.3.2. Homothetic bounding

We now consider obtaining more general bounding sets for the solution set Z and
fs(Z). To this end, we consider a framework for fixed-shape membership estimation
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3. Set-Membership Framework for Falsification and Estimation

based on homothety, see e.g. Borchers et al. [2011b], Raković and Fiacchini [2008]. In
the following, we consider families of homothetic sets defined as follows:

Definition 1 (Homothetic sets)
Sets A ⊂ R

n and B ⊂ R
n are called (positively) homothetic if A = b + αB for some

b ∈ R
n and α ∈ R+.

Hereby, + denotes the sum of sets. In other words, the sets A and B are homothetic if
the one set can be obtained by appropriately orienting (shifting) and scaling the other
set.

A family of homothetic sets with the same shape H ⊆ R
nh is described by:

H(H) .= {h + αH, c ∈ R
nh, α ∈ R+}. (3.11)

Hereby, h ∈ R
nh is an orientation vector, and α ∈ R+ a scalar representing the ‘size’

of the set H. The set H ⊆ R
nh denotes the basic shape, is designed off-line, and can

in principle be an arbitrary non-empty compact, convex set.
We focus in the remained on an outer-bounding map, OH(·) : Rnh → R

nh, defined
by:

OH(X) .= arg inf
H

{γ(X, H) : H ∈ H and X ⊆ H}, (3.12)

where γ(·, ·) : Rn ×R
n → R

n is a selection criterion of the homothetic bounding set. In
other words, we search for the member H of H, which optimizes the selection criterion
γ such that the set X ∈ H. Exemplary, if we chose as selection criterion the scaling
factor α, we aim to determine the ‘smallest’ member of the family H in which the
basic shape X still fits.

Proposition 4 (Homothetic bounding)
Given a basic shape H ⊂ R

ns, a selection s of variables of interest, and the solution
set fs(ZSDP). The homothetic outer-bounding set of fs(ZSDP) is given by OH(S) .=
OH

(
fs(ZSDP)

)
(3.12).

Proof. Proof follows immediately from definition of the outer-bounding map (3.12)
and Thm. 2. �

Exemplary, we consider the basic shape to be an irreducible polytopic set H = {h ∈
R

ns : Ahh � ah} with known matrix-vector pair (Ah ∈ R
nh×ns, ah ∈ R

nh). Then we
have:

(h∗, α∗) = arg min
h,α

{α2} (3.13)

s.t.
⎛
⎝ Ah ah

−Ah −ah

⎞
⎠ ·

⎛
⎝h

α

⎞
⎠ �

⎛
⎝Ahh0 + ahα0

−h

⎞
⎠ ,
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3.3. Estimation

where (h0, α0) defines the initial basic shape, and with h = (h1, h2, . . . , hnh
)T obtained

by

hj = max
s

{Ah(j)s}
s.t. s ∈ fs(ZSDP),

with Ah(j) denoting the j−th row of Ah. Then, h∗ and α∗ are the orientation vector
and the scaling factor respectively of the homothetic family of polytopes H. The
volume of such a polytope, as required later on, can only be evaluated implicitly, e.g.
following Lawrence [1991], Sheynin and Tuzikov [2001].

The homothetic approach complements and generalizes the idea of using fixed shapes
such as polytopes or ellipsoids for outer-bounding purposes. The choice of the basic
shape H might depend on a particular application or on some quality criterion.

In general, low computational effort along with simple basic shapes, e.g. ellipsoids,
however to obtain a good approximation quality, more complicated basic shapes have
to be considered. Overall, the computational costs grow linearly with the number
of constraints defining the basic shape nh. In case the basic shape is a simple cube,
we have nh = 2ns, and the computational costs equals to the interval bounding (see
Section 3.3.1).

Thus, homothetic bounding may be advantageous in case knowledge about the shape
of the solution set is available, e.g. obtained from a principal component analysis, see
e.g. Jolliffe [2002]. However, neither homothety nor interval bounding e.g. allow to
verify whether the solution set is composed of disconnected regions. To this end, a
partitioning approach is considered next.

3.3.3. Partitioning

Interval bounding and homothety provide bounding sets of the desired variables with
relatively low computational demands, in particular interval bounding. Though, using
these approaches, only convex approximations of the solution sets can be obtained.
Sometimes however, a more detailed analysis of the solution set is required. To obtain
estimates of desired accuracy, we can consider a partitioning approach, e.g. bisection-
ing [Kuepfer et al., 2007]. In turn, this approach allows to study disconnected solution
sets and possibly nonlinear correlations of variables.

To this end, we consider a partition of the initial bounding set S = fs(Z) (e.g. the
initial parameter set) into a number of smaller subsets, i.e. Qj ⊆ S, j ∈ [1 :q]. Each
of these partitions can then be analyzed separately for infeasibility, whereas infeasible
partitions are discarded.

For partitioning, we consider the recursive bisectioning algorithm 1 up to some
desired volumetric resolution ε. We denote the union of partitions Qj for which
SDP ∗(Z ∩ Qj) is not infeasible, i.e. cj

.= 〈C, Ξ〉 of SDP ∗(Z ∩ Qj) is bounded, by
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OP (S) .=
⋃

cj<∞,
1�j�q

Qj. (3.14)

The union of feasible partitions OP (S) provide an outer-estimate of the solution set
as follows:
Proposition 5 (Partition)
OP (S) (3.14) bounds the solution set fs(Z) ⊆ OP (S), and is derived by 2ns/ε dual
bounds of SDP(Z).

Proof immediately follows from construction of OP (S) and Theorem 1.
To obtain the desired partition estimate, the following recursive bisection algorithm

can be used:

Algorithm 1 (Bisectioning(Q, ε))

1. If SDP ∗(Z ∩ Q) is unbounded then exit and return ∅
2. If ||Q|| � ε then exit and return Q

3. Partition Q into Q1 and Q2

4. Set Q′
1

.= Bisectioning(Q1)

5. Set Q′
2

.= Bisectioning(Q2)

6. Return Q′
1 ∪ Q′

2

Depending on the particular problem at hand, several exploration strategies can
be considered to increase performance (e.g. using multisection instead bisectioning).
Nevertheless, the computational costs of the partitioning approach grow exponentially
with the number of variables ns as well as with the threshold ε. Although the algorithm
can be easily and efficiently paralleled, this limits the applicability of the partitioning
approach.

3.3.4. Branch-and-bound optimization

For the purpose of optimization, e.g. to obtain optimal parameter values, an optimality
criterion is required. A classical choice for the objective function is e.g. the sum of
least squares, i.e. to minimize the deviation of the model outputs and the observations.

Theorem 2 immediately provides a lower bound for the objective value and the
respective argument. Though, due to relaxation errors, the lower bound may be pes-
simistic. To overcome this situation, a branch-and-bound approach can be considered.
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To this end, we slightly modify Algorithm 1. Instead only testing for feasibility, we
evaluate for each partition the lower bound of cslq (if not unbounded), and assign the
value obtained to the (feasible) partition Qj. Thus, we obtain a ‘heat map’ of the
solution set.

Together with strictly feasible solutions derived e.g. by numerical (Monte Carlo)
methods or, when applicable, by analytic methods, a branch-and-bound optimization
scheme is devised as follows. Given the objective value of a strictly feasible solution, all
the partitions with lower bound larger than this one are discarded. The location and
the value of the global optimum is thus narrowed, until a desired precision threshold
is attained.

3.4. Computational notes

With the proposed approaches, we showed that the estimation problems translates
into solving a number of SDPs of the form (3.7). This number in turn mainly de-
pends on the considered estimation approach, e.g. two SDPs per variable for interval
bounding. Advantageously, these SDPs are independent from one another, and hence
parallelization can be considered.

However, the tractable size of a single SDP problem, given by the number of variables
and constraints, is limited in practice for various reasons, e.g. memory demands. We
next discuss some strategies which allow us to overcome such limitations.

3.4.1. Relaxation hierarchy

Convex optimization problems with a large number of constraints and variables can be
treated efficiently only if their specific structure can be exploited [Mittelmann, 2003],
e.g. sparsity or symmetry properties. For biochemical reaction networks, this however
remains a challenging task, refer for a discussion to Rumschinski [2012], Rumschinski
et al. [2012].

Figure 3.2.: Illustration of the hierarchy of convex relaxations.
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A possibility to reduce the computational demands is by considering different re-
laxations chosen among a relaxation hierarchy (see Fig. 3.2 for an illustration). This
comes as second order cone programming (SOCP) and linear programming (LP) allow
handling much larger number of constraints and variables as semidefinite program-
ming [Kim and Kojima, 2003, Kojima, 2002]. The SOCP and LP relaxations are
obtained by replacing in (3.7) the positive semidefinite constraint Ξ � 0 by the second
order cone constraint Ξ ∈ K2 and the non-negativity constraint Ξ � 0 respectively.
This yields less tighter but efficient dual bounds. A comparison of LP and SDP relax-
ations for polynomial problems can be found in Anstreicher [2009].

From experience with the current implementation [Streif et al., 2012], to obtain an
infeasibility or dual certificate using semidefinite programming is in the order of fifty
variables, linear programming allows to consider more than three hundred variables.
Latter approximately corresponds to a dynamical system with ten state variables, each
represented by twenty samples, and approx. twenty parameters.

3.4.2. Decomposition & integration of multiple experiments

Often, several input-output experiments are available for estimation and analysis, or
different control objectives have to be met. Also, the experiments or control objectives
might be correlated (e.g. share the same system parameters, the same initial state,
etc.), and it is desirable to make use of such an interdependence.

For this, let D1, D2, . . . denote the available data sets, and let s denote the variables
of interest. Each data set Di relates to the solution set Si = fs(Zi), and the estimate
OI(Si), OH(Si), or OP (Si) as obtained e.g. via Proposition 3. An overall estimate
consistent with all available data sets Di, is given by:
Proposition 6 (Multiple data sets)
Any enclosure of the solution sets Si or of their intersection ⋂nj

j=1 Si encloses the
solution set S.

Figure 3.3.: Decomposition of the time window into smaller sequences that can be analyzed
separately (left). The corresponding sub-estimates are intersected to obtain the desired
estimate (right).

Hence, the integration of multiple data sets for estimation is straightforward, and
obtained by intersection. Moreover, Proposition 6 can be applied for decomposition
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3.5. Summary

purposes. To this end, let 0 � k � N be the time window to which the estimation
problem is confined. Each solution set, associated with the estimation problem defined
upon a smaller horizon, encloses by construction the overall solution set. Moreover,
any intersection of solution sets of smaller problems enclose the overall solution set
according to Proposition 6.

This decomposition approach can be generalized by reformulating SDP(Z) into an
equivalent problem with block-angular constraint matrix, whose structure can be
exploited by Lagrangean relaxation (see e.g. Lemaréchal [2001], Sivaramakrishnan
[2010]). Any decomposition strategy can be considered in principle, and a simple
practical option is to consider a sliding time window of fixed size.

3.5. Summary

In this chapter, we provided a solution approach for the feasibility, estimation, and
optimization problems. The framework applies to polynomial dynamical systems, and
allows us to integrate uncertain and incomplete a priori, measurement, and structural
data. The solution approach employs a convexifying relaxation, which transform the
non-convex feasibility, estimation, and optimization problems into convex ones. Via
duality, a sufficient criterion for infeasibility is provided, i.e. a solution to the feasibility
problem 1. This will be used e.g. for model invalidation in the following chapter.

To answer the estimation problem 2, set-membership techniques were considered.
The most efficient approach for outer-estimation consists in determining the uncer-
tainty intervals for the unknown variables using dual certificates. These certificates
were furthermore employed to obtain general fixed-shape membership sets using ho-
mothety. In addition, a partitioning approach based on infeasibility certificates and
a bisection algorithm has been presented. Latter approach has been adapted to a
branch-and-bound algorithm for answering the optimization problem 3.

A particular emphasis is put on balancing computational demands and precision.
While in principle arbitrary precise results can be obtained, e.g. considering the Mo-
ment relaxation [Lasserre, 2001], in practice computational limitations have to be con-
sidered. We therefore elaborate on strategies to balance accuracy and computational
costs, while still providing guaranteed results. A first and powerful option consists
in choosing the class of dual certificates according to a relaxation hierarchy. This al-
lows to choose, e.g., between semidefinite programming relaxations, yielding tightest
although most expensive results, and more efficient linear programming relaxations.
A second option regards the estimation technique employed. For estimation problems
with many unknown variables (and constraints), interval bounding is recommended
because it is the most efficient approach to obtain estimates. The most accurate esti-
mates, which are often required for an detailed analysis e.g. about correlations of the
variables, are obtained using partitioning. Additionally, general fixed shape sets can
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be considered for outer-bounding using homothety. In particular by choosing simple,
e.g. ellipsoids, or more complicated basic shapes, approximation quality and compu-
tational effort can be balanced. A third option to balance effort and precision is by
decomposition respectively the integration of several interdependent experiments.

A limit of the framework is that it can not provide inner approximations, however,
this can be overcome (when possible) by complementing the proposed approach with
methods yielding regular solutions. With these methods at hand, we can next apply
the framework to answer particular estimation and analysis problems.
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4. Model Invalidation and Parameter
Estimation

Modeling in systems biology is frequently complicated by limited knowledge about
the studied process resulting in several competing hypotheses. Deciding on validity
or invalidity of candidate hypotheses represents a particular challenge here, because
in most situations the available data is uncertain and the parameters are unknown.
Though, the selection of suitable hypotheses is only a first step toward the comprehen-
sive quantitative description of a process. To this end, it is important to investigate
how uncertainty affects the attainable precision of the parameter estimates, besides
determining the optimal parameter values.

In Section 4.1, we consider a falsification approach for hypothesis testing based
on the infeasibility certificates derived in the previous chapter. Thereafter, we focus
on the parameter estimation problem in Section 4.2 by considering the outlined set-
membership techniques. Parts of this chapter, particularly the carnitine example, are
based on Rumschinski et al. [2010a].

4.1. Model invalidation

Limited knowledge about the process, e.g. the underlying biochemical reactions and
mechanisms, often results in competing hypotheses. For instance, when modeling a
biochemical reaction network, the specific type of an interaction may be unknown, e.g.
if mass action or Hill kinetics has to be considered. Modeling hence often requires,
prior to estimation of the unknown parameters, to evaluate and if possible reject some
of the hypotheses by taking all available data into account, which is known as model
invalidation.

By now, very different approaches exist for model invalidation. An overview on
model invalidation approaches for systems biology can for example be found in Krem-
ling et al. [2004]. Exemplary, the issue can be approached from an analytic perspective,
i.e. to investigate the conditions such that two (or more) hypotheses can be distin-
guished. Schnell et al. [2006] proposed an approach which analyzes the structural
distinguishability, i.e. if a transformation exists so as to transfer a system (hypoth-
esis) into the other one. Whenever such a transformation exists, models can not be
structurally distinguished. However, the proposed approach only provides a partial
answer to the distinguishability problem, as the approach does not provide means to
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distinguish model alternatives based on available data: even if two hypotheses are
analytically distinguishable, they might not be regarding the measurements.

Therefore, a criterion is required which allows to distinguish model alternatives
using the available data. Intuitively, such a criterion might consist in choosing the
‘most appropriate’ hypothesis, i.e. a validation approach. An example is the Bayesian
information criterion. Here, a score, based on maximum likelihood and the number of
parameters, is assigned to each hypothesis. Among these hypotheses the one with the
minimum score is the most suitable one, see e.g. Jaqaman and Danuser [2006], which
however does not mean that this hypothesis actually allows to describe the observed
behavior. A time domain validation approach has been suggested in Poolla et al.
[1994]. A main criticism hereby is that validation criteria are inherently subjective
[Oreskes and Belitz, 2001, Smith and Doyle, 1992].

An alternative approach consists in falsification, i.e. to reject a model hypothesis
if it does not meet a certain criterion, e.g. if it is not consistent with the available
data inclusively the observed behavior. One example for a stochastical falsification
approach is the Neyman-Pearson Lemma. It is based on minimizing the probability
of false acceptance [Lehmann, 2009], and for this purpose the maximum likelihood
ratio can be considered as criterion. One general observation is that models with a
larger number of parameters are more flexible and fit the data ‘better’ than models
with a smaller number of parameters [Jaqaman and Danuser, 2006]. In addition, the
F-test can be used to clarify if the introduction of extra parameters, i.e. a more
complicated hypothesis, is justified, see e.g. Jaqaman and Danuser [2006]. Several
alternatives to stochastical approaches have been considered so far, which are based on
showing inconsistency of the model with the available data. For example, Anderson
and Papachristodoulou [2009] considered a worst-case approch using real algebraic
geometry and semidefinite programming. Prajna [2006] used barrier certificates to
show inconsistency, and Kuepfer et al. [2007] derived infeasibility certificates using
semidefinite relaxations applicable to stationary systems.

Here, we pursue a similar approach as in Kuepfer et al. [2007] for model invalida-
tion considering dynamic systems and uncertain data. To this end, consider a model
hypothesis M (3.1) and the available data D (3.2), and note that the parameters
are considered unknown or bounded (initial parameter region) if such information is
available. Model falsification then consists in proving that the model and the data
are inconsistent; i.e., there exists not a single trajectory (solution) of the model that
‘touches’ the data. In this case, we can conclude that the model is invalid (with re-
spect to the initial parameter bounds if available). This can be formally stated by the
following infeasibility formulation of model invalidation:

Corollary 1 (Model invalidation)
If the dual problem SDP ∗(Z) is unbounded, then model (3.1) is inconsistent with the
data (3.2), and therefore considered invalid.
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Proof is an immediate consequence of Theorem 2.

Remark 2 The proposed rejection criterion is rigorous only under the premise that
the uncertainty of the data is appropriately described. Particularly, we do not consider
here measurement outliers in the data set. Because this is a strong assumption which
may not be guaranteed in practice, we relax this assumption later on in Section 5.3, so
as to admit some, non-consecutive outliers in the data set.

Example 4.1: inhibition mechanisms

We consider three possible inhibition mechanisms of a Michaelis-Menten re-
action [Cornish-Bowden, 2004], depicted in the following enzymatic reaction
scheme:

S [x1] + E [x2]
p1−⇀↽−
p2

C [x3]
p3→ Z [x4] + E [x2]

+ + +
I [x5] I [x5] I [x5]

p4 �� p5 p4 �� p5 p4 �� p5

SI [x6] EI [x6] CI [x6]
(j = 1) (j = 2) (j = 3)

Here, the substrate S is catalyzed by an enzyme E via the complex C to form a
product Z. Three possible inhibition mechanisms [Cornish-Bowden, 2004] may inter-
fere the reaction. An inhibitor I may (reversibly) bind either the substrate (‘substrate
inhibition‘, j = 1)1, the enzyme (‘competitive inhibition’, j = 2), or the complex
(‘uncompetitive inhibition’, j = 3).

We assume the law mass action, and consider the Euler backward discretization
(see Appendix A.2) with time step size h = 0.05, which is sufficiently small in the
considered setup2. This way, we derive a discrete-time model for each of the three
possible inhibition mechanisms, given by:

x+
1 = x1 − ν1 + ν2 + δj1(−ν4(j) + ν5)

x+
2 = x2 − ν1 + ν2 + ν3 + δj2(−ν4(j) + ν5)

x+
3 = x3 + ν1 − ν2 − ν3 + δj3(−ν4(j) + ν5)

x+
4 = x4 + ν3

x+
5 = x5 − ν4(j) + ν5

x+
6 = x6 + ν4(j) − ν5,

where xi = xi[k] the current and x+
i = xi[k+1] the future state, the Kronecker δji with

j ∈ [1 : 3], and ν1 = hp1x1x2, ν2 = hp2x3, ν3 = hp3x3, ν4(j) = hp4xjx5, ν5 = hp5x6. In
1this mechanism can be considered as an additional pathway which utilizes the substrate
2Note that choosing an appropriate step size is in general difficult, e.g. because the discretization error varies

with the (unknown) parameters.
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addition, mass conservation implies the relations x1+x3+x4+x6 = p6, x2+x3+x6 = p7,
and x5 + x6 = p8, where pi are non-negative constants. The step size is h = 0.05.

We next demonstrate the ability of our approach to discriminate the three candi-
date mechanisms, and furthermore to evaluate the measurement error margins that
still lead to rejection. For this, we take one inhibition mechanism as reference, gen-
erate measurements, and invalidate the remaining two hypotheses. For the sake of
completeness, we check each possible combination of reference and hypothesis.

Reference model We consider either inhibition scheme (j = {1, 2, 3}) with reference
parameters p = (5, 1, 1, 5, 1, 1, 0.1, 0.1) and initial condition x[0] = (1, 0.1, 0, 0.1, 0, 0),
resulting in the reference trajectories x(j)[k], k ∈ [0 : N ]3. We generate the uncertain
measurements with the relative error (ηr) as given in Table 4.1:

xi[k] ∈
[
(1 − ηr)x(j)[k], (1 + ηr)x(j)[k]

]
.

Candidate models We consider a reference inhibition mechanism to be chosen, and
the remaining two mechanisms are tested for invalidity. We fix p6 = 1, p7 = 0.1,
p8 = 0.1, and the remaining five parameters are considered non-negative, and unknown
to the extend of two orders of magnitudes

P =
{
p ∈ R

5 : pi ∈ [0.1, 10], i = 1, . . . , 5
}
. (4.1)

Results The necessary computations were conducted using the ADMIT toolbox
[Streif et al., 2012] on a standard 2.4 GHz Intel desktop with 4 GB RAM. The com-
putation time to obtain the required infeasibility certificates varied with number of
measurements considered, i.e. between in average approximately 0.1 s for two mea-
surements and in average approximately 0.5 s for ten measurements.

Table 4.1 shows the estimated maximum error margins ηr of the measurement data
which still lead to rejection of the other two hypotheses. In case of uncompetitive in-
hibition, two measurements are insufficient for invalidation. The results show however
that the error margins (ηr) are increasing with the number of available measurements.
For example, in case of substrate inhibition and considering ten measurements, er-
ror margins of 42% and 45% still allows to reject the hypotheses uncompetitive and
competitive inhibition mechanism respectively.

4.2. Parameter estimation

For modeling, the selection of suitable hypotheses, e.g. by applying above invalidity
criterion, is only a first step toward comprehensive description of the process. Par-
ticularly, the models which can not be rejected need to be further analyzed. To this

3We here consider that all states are measured, though this is not necessary in general
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Table 4.1.: Model invalidation (inhibition mechanisms). Shown are the maximum relative
error margins (ηr) allowing to reject the respective hypotheses.

Reference Candidate # of Measurements (k)
2 3 5 10

competitive
inhibition

substrate
inhibition 0.5% 1.0% 2.0% 3.0%

uncompetitive
inhibition 4.5% 6.0% 12% 13%

uncompetitive
inhibition

substrate
inhibition − 8.5% 14% 15%

competitive
inhibition − 11% 23% 27%

substrate
inhibition

competitive
inhibition 20% 28% 39% 45%

uncompetitive
inhibition 23% 32% 40% 42%

end, it is necessary to determine the unknown model parameters, and to evaluate the
effects of measurement uncertainty on the parameter estimates.

We here address parameter estimation from two perspectives. Firstly, we show how
to obtain the set of consistent parameters, i.e. all parameters for which the model ad-
mits a solutions consistent with the data. To this end, the set-membership techniques
outlined in Section 3.3. This way, we obtain also information about the sensitivity and
possible correlations of the parameters. Secondly, we address the problem of finding
optimal parameter values regarding the sum of least squares (4.3).

The setup for parameter estimation is as follows: we consider a model M (3.1), and
the available data D (3.2), consisting of a priori knowledge, measurements with an
appropriate uncertainty description, and possibly structural data. The np parameters
are unknown.

We denote for simplicity of notation the desired solution set by P .= fp(Z) ⊂ R
np.

The solution set can be approximated following any of the proposed set-membership
estimation methods, in particular interval bounding, homothety, and partitioning as
outlined in Section 3.3. We start with the uncertainty intervals, i.e. the orthotopic
projections of the solution set P . They can be obtained - for each parameter - following
Proposition 2, summarized as follows:

Corollary 2 (Parameter uncertainty interval)
The parameter uncertainty interval [p

i
, pi] is derived from 2 dual bounds (Theorem 2).

Thus, overall 2np dual bounds are required to obtain an orthotopic parameter estimate,
i.e. the computational complexity growth linearly with the number of parameters.

Remark 3 Under the condition that measurement uncertainties are described by their
n-sigma confidence intervals, the obtained uncertainty intervals can be interpreted as
the outer-approximation of the n-sigma parameter confidence intervals.
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The uncertainty intervals provide valuable information about the precision and the
sensitivity of the parameters as shown next.

Parameter sensitivity Because any parameter value outside the interval leads to
invalidity of the model by construction, the larger the interval, the less important
is a parameter variation regarding invalidity; vice versa, a parameter is sensitive, if
already small variations leads to rejection of the model (hypothesis). To measure
this ‘sensitiveness’ of the parameters, we evaluate the largest possible variation of
a parameter pi which does not lead to rejection; the sensitivity is derived from the
interval bounds of the parameters, given by

ξ = ξ(pi)
.=

√
p

i

pi

. (4.2)

By definition, we have 0 � ξ � 1. The closer the sensitivity coefficient ξ of a parameter
pi is to 1, the more sensitive is the parameter (ξ = 1 means that already a small
variation of the parameter leads to rejection of the model). Sensitive parameters have
sensitivity coefficients between 0.5 � ξ � 1, i.e. less than a 4-fold variation of the
nominal parameter is possible. Values between 0.1 � ξ � 0.5 indicate less sensitive,
and ξ � 0.1 insensitive parameters (i.e. more than 100-fold variation is possible).

Parameter insensitivity may result from over-parametrization of the model, i.e. the
available information is not sufficient to determine all degrees of freedom (unknown
parameters). In these cases, it may be advantageous to perform a correlation analysis
as shown next.

Parameter correlation analysis An efficient approach to study parameter correla-
tions is by using homothety as outlined in Proposition 4. Here, differently oriented
basic shapes H ∈ R

ns can be used, e.g. by comparison of the volume, to obtain an
idea how the parameters are correlated. Though, this approach is limited to convex
basic shapes, and hence nonlinear correlation may not be suitably explored. To over-
come this limitation, parameter correlations can be studied by partitioning, following
Proposition 5:

Corollary 3 (Partitioning)
The set of consistent parameters P is bounded by the partition estimate OP (P), deriv-
able by 2np/ε dual bounds.

Because of the exponential complexity of the partitioning algorithm, typically only a
subset of parameters is analyzed, e.g. to answer how a pair s = {pi, pj} or a triple
s = {pi, pj, pk} of parameters are correlated among another. The respective partition
estimate then corresponds to the projection of the feasible solution set fp(Z) onto
the desired subspace. The analysis can be combined e.g. with a principal component
analysis [Le Roux and Rouanet, 2004].
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Optimal parameter estimation For optimal parameter estimation, we consider as
objective function the sum of least squares, i.e. to minimize the deviation of the model
outputs and the observations. The weighted sum of least squares objective function is
given by

cslq
.=

∑
1�i�ny

1�j�M

1
ai

(yi(tj) − ỹi(tj))2, (4.3)

where ai denotes the weighting factors and yi(tj)/ỹi(tj) the model output/observation
yi at tj respectively.

Theorem 2 immediately provides a lower bound for the objective value of the sum of
least squares. Though, due to relaxation errors, the lower bound may be pessimistic.
To overcome this situation, a branch-and-bound approach is considered. To this end,
we slightly modify Algorithm 1. Instead only testing for feasibility, we evaluate for
each partition the lower bound of cslq (if not unbounded), and assign the value obtained
to the (feasible) partition Qj. Thus, we obtain a ‘heat map’ of the solution set.

Together with strictly feasible solutions derived e.g. by numerical (Monte Carlo)
methods or, when applicable, by analytic methods, a branch-and-bound optimization
scheme is devised as follows. Given the objective value of a strictly feasible solution, all
the partitions with lower bound larger than this one are discarded. The location and
the value of the global optimum is thus narrowed, until a desired precision threshold
is attained.

Example 4.2: competitive inhibition

Setup We consider again the competitive inhibition (j = 2) from the previous
example in Section 4.1 with the reference parameter and initial condition p∗ =
(10, 1, 1, 10, 1, 1, 0.1, 0.1) and x∗[0] = (1, 0.1, 0, 0.1, 0, 0) respectively, resulting in the
reference sequence x∗

i [k], k ∈ [0 : 40], i ∈ [1 : 6]. We generate artificial measurements
by considering the relative error ηr = 0.1 and additional (randomly generated) abso-
lute measurement errors |ηa[k]| � 0.05 for k ∈ [0 : 40]. The uncertain and incomplete
measurements used in the following are described by the intervals

xi[k] ∈
[
(1 − ηr)(x∗

i [k] − ηa[k]), (1 + ηr)(x∗
i [k] + ηa[k])

]
(4.4)

for i ∈ {1, 2, 4, 5}4 and k ∈ [0:40].
All eight parameters are unknown to the extend of four orders of magnitudes:

P =
{
p ∈ R

8 : pi ∈ [0.01, 100], i = 1, . . . , 8
}
. (4.5)

Results We estimate the parameter uncertainty intervals according to Cor. 2 using
the ADMIT toolbox [Streif et al., 2012]. The results are shown in Figure 4.1 (left).

4we consider that x3 and x6 cannot be measured
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We found that all parameters are sensitive, with sensitivity coefficients ranging from
0.71–0.98.

(a) uncertainty intervals (b) partitioning

Figure 4.1.: Paramter estimation (competitive inhibition). 4.1(a): Estimated parameter
uncertainty intervals. 4.1(b): Partitioning and heat map of the consistent parameter set
{p4, p5}. Dashed lines indicate the reference parameters.

We furthermore analyze the correlation of the parameters p4 and p5 in more detail,
and determine the optimal parameter values regarding sum of least squares

∑
i∈I,

0�k�40

(xi[k] − x∗
i [k])2 (4.6)

where I = {1, 2, 4, 5}. To this end, we apply Corollary 3 and the bisection algorithm
(Alg. 1) to obtain the partitioning estimate of the pair {p4, p5}. The result is depicted
in Fig. 4.1 (right).

We furthermore associate to each (feasible) partition the respective lower bound of
the objective, using blue-scale heat map for the objective values from blue (partitions
with least sum of squares) to white (infeasible partitions). As it can be seen from
Fig. 4.1 (right), no clear correlation of the parameters p4 and p5 is apparent. The
partition with the minimum sum of least squares coincides with the one containing
the reference values of both parameters as expected.

Example 4.3: carnitine shuttle

We next consider the carnitine shuttle mechanism, which is a well known intra-cellular
transport system for fatty acids. This example is outlined in detail in Rumschinski
et al. [2010a], and taken from there to demonstrate the influence of uncertainty, sparsity
and incompleteness of measurements, as well as a priori knowledge on the quality of
the parameter estimates.
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I

II

IIIC

C

C∼FA

C∼FA

CoA∼FA

CoA∼FA

CoA

CoA

Figure 4.2.: Scheme of the carnitine shuttling system. Activated fatty acid (CoA∼FA)
are transferred to carnitine (C) via carnitine-acyltransferase [I] at the cytoplasm. The
carnitine-fatty acid complex (C∼FA) is then shuttled via a so called antiporter [II] into
the mitochondria in exchange for a free carnitine. There, a mitochondrial isoform of the
carnitine-acyltransferase [III] reactivates via Coenzyme A (CoA) the fatty acids. The
activated fatty acid inside the mitochondria is a precursor for β–oxidation. Note that
reactions [I] and [III] are reversible.

The carnitine shuttle is a step of mitochondrial β-oxidation, and is an important
mechanism for fat catabolism. The considered reaction scheme (see Figure 4.2) is
adapted from Bremer [1983], and models a specific transport system at the inner
mitochondrial membrane involving fatty acids (FA), carnitine (C) and Coenzyme A
(CoA). An activated fatty acid (CoA∼FA) is transferred to carnitine (C) via carnitine-
acyltransferase at the cytoplasm (reaction I). The carnitine-fatty acid complex (C∼FA)
is then shuttled via a so called antiporter into the mitochondria in exchange for a free
carnitine (reaction II). There, a mitochondrial isoform of the carnitine-acyltransferase
reactivates via Coenzyme A (CoA) the fatty acids (reaction III). The activated fatty
acid inside the mitochondria is a precursor for β–oxidation. Note that reactions I and
III are reversible.

Table 4.2.: Description of the variables for the carnitine shuttle model. *

Symbol Specie

x1 CoA∼FA (Cy)

x2 Carnitine (Cy)

x3 CoA∼FA (Mi)

x4 Carnitine (Mi)

By considering mass action kinetics and taking into account the conservation moi-
eties, se e.g. Bremer [1983], the dynamic of the shuttle system can be expressed by the
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following set of ordinary differential equations

ẋ1 = −p2x1x2 + p3(C0 − x2) + p1u

ẋ2 = −p2x1x2 + p3(C0 − x2) + p4(C0 − x2)x4

ẋ3 = −p2x3x4 + p3(Cm
0 − x4) − p5x3

ẋ4 = −p2x3x4 + p3(Cm
0 − x4) − p4(C0 − x2)x4,

where the variables x1 . . . x4 correspond to the participating compounds (as described
in Table 4.2), the parameters p1 . . . p5 denote the (unknown) constant reaction rates,
C0 and Cm

0 represent the initial concentrations of carnitine respectively outside and
inside the mitochondria, and the input u is regarded as a binary function corresponding
to active (u = 1) and inactive (u = 0, fat starvation) β–oxidation.

Applying Euler forward discretization (Appendix A.1, the difference equations for
the above continuous-time model are given by

x+
1 = x1 + h[−p2x1x2 + p3(C0 − x2) + p1u]

x+
2 = x2 + h[−p2x1x2 + p3(C0 − x2) + p4(C0 − x2)x4]

x+
3 = x3 + h[−p2x3x4 + p3(Cm

0 − x4) − p5x3]
x+

4 = x4 + h[−p2x3x4 + p3(Cm
0 − x4) − p4(C0 − x2)x4],

where h is the discretization time-step, xi = xi[k] t he current and x+
i = xi[k + 1] the

future state, and u = u[k] the current input.

Scenarios and Setup

The discrete-time model has been simulated with time step h = 5 seconds using
the reference parametrization p∗ and initial condition as in Table 4.3, with values
chosen from the literature [Bieber, 1988, Lysiak et al., 1986]. To test the robustness
of the approach and study the influence of measurement quality and availability on
the resulting estimates, we compare several experimental scenarios derived from the
above simulation. Each scenario is obtained as a combination of the following options,
as summarized in Table 4.4.

• A priori knowledge. Two prior knowledge cases are considered, denoted by
3-PAR and 5-PAR. In the former case, parameters p1 and p5 are known with rel-
ative bounds [0.95, 1.05], while the remaining parameters p2, p3, p4 are unknown.
In the latter case, all five parameters are unknown. For the unknown parameters
we assume as initial bounds the relative bounds [0.3̄, 3]. C0 and Cm

0 are treated
in the difference equations as constants, with values as in Table 4.3. Here relative
bounds [lb, ub] for a parameter pi mean pi ∈ [lb · p∗

i , ub · p∗
i ].
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Table 4.3.: Reference values for parameters and initial conditions for the simulation of the
carnitine shuttle model. The initial conditions are given by x1 = 0, x2 = C0, x3 = 0 and
x4 = Cm

0 .

Symbol Value Unit

p∗
1 5.00e-4 μMs−1

p∗
2 1.03e-1 μ(Ms)−1

p∗
3 2.36e-2 s−1

p∗
4 1.85e-2 μ(Ms)−1

p∗
5 2.50e-2 s−1

C0 0.33 μM

Cm
0 1.00 μM

Table 4.4.: Summary of the measurement and knowledge options. Each parameter estimate
scenario is obtained by selecting a value for each of the options.

Scenario Type Options

prior knowledge 3-PAR 5-PAR

measurement density DENSE SPARSE

measurement error ERR-1% ERR-2% ERR-4%

measured concentrations ALL NOT-X3 NOT-X4 NOT-X3-X4

• Measurement density. We consider two measurement density options, denoted
DENSE and SPARSE. The former consists of two sequences of 15 consecutive mea-
surements, taken in the transient phase (k = 0, . . . , 14) and in the equilibrium
phase (k = 300, . . . , 314) respectively. The latter consists of two sequences of
only five measurements, taken in the transient phase (k = 0, 3, 5, 10, 14) and in
the equilibrium phase (k = 300, 303, 305, 310, 314) respectively.

• Measurement errors. To analyze the influence of measurement errors, we
consider the three options ERR-1%, ERR-2%, and ERR-4%, with respectively 1%,
2% and 4% relative error (see Grube et al. [2005], Okamura et al. [2006] for
examples of practical measurement errors compatible with our setup).

• Measured concentrations. The influence of incomplete measurements is also
investigated. We consider four different cases, denoted ALL, NOT-X3, NOT-X4, and
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NOT-X3-X4, where respectively all concentrations, all concentrations but x3, all
concentrations but x4, and only concentrations x1 and x2 are measured. This
choice reflects the fact that the inner mitochondrial concentrations x3 and x4 are
more difficult to measure with simple techniques.

For each of the resulting 22 × 3 × 4 = 48 different experimental scenarios, the
parameter uncertainty intervals are estimated.

3-PAR 5-PAR

DENSE SPARSE DENSE SPARSE

ALL

p1
p2
p3
p4
p5

1 2 31/3 2/3 1 2 31/3 2/3 1 2 31/3 2/3 1 2 31/3 2/3

p1
p2
p3
p4
p5

NOT-X3

p1
p2
p3
p4
p5

1 2 31/3 2/3 1 2 31/3 2/3 1 2 31/3 2/3 1 2 31/3 2/3

p1
p2
p3
p4
p5

NOT-X4

p1
p2
p3
p4
p5

1 2 31/3 2/3 1 2 31/3 2/3 1 2 31/3 2/3 1 2 31/3 2/3

p1
p2
p3
p4
p5

NOT-X3-X4

p1
p2
p3
p4
p5

1 2 31/3 2/3 1 2 31/3 2/3 1 2 31/3 2/3 1 2 31/3 2/3

p1
p2
p3
p4
p5

: Initial parameter bounds
: Parameter estimation for the measurement error ERR-1%
: Parameter estimation for the measurement error ERR-2%
: Parameter estimation for the measurement error ERR-4%

Figure 4.3.: Parameter estimation results for the carnitine shuttle example. In the first group
of tests the parameters p1 and p5 are known (relative bounds fixed to [0.95, 1.05]), and the
three remaining ones are unknown (initial relative bounds [0.3̄, 3]). In the second group
all five parameters are unknown. The rows of the table report the parameter estimation
results for different state-measurement scenarios.

The relative bounds resulting from parameter estimation are summarized in Fig-
ure 4.3 for all the considered scenarios. The figure is structured in a table-like fashion,
with groups of experimental scenarios arranged from highest information (top-left)
to lowest information (bottom-right). In each group, the bounds for the three error-
measurement options are reported as nested intervals, using different colors.

The results clearly indicate that measurement error has a substantial impact on
the estimates. With measurement error ERR-1%, the unknown parameters can be
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(a) (b)
Figure 4.4.: Consistent parameter estimate OP (P) for the scenario(3-PAR, DENSE, NOT-X3,

ERR-1%), left, and (3-PAR, DENSE, NOT-X3, ERR-2%), right. The dots show consistent
parameterizations obtained by Monte Carlo tests. The coordinate axes show values
relative to the reference parameter p∗.

narrowed with sufficient precision for most scenarios. Conversely, with measurement
error ERR-4%, reasonable estimates can only be obtained for the 3-PAR case, where the
additional prior knowledge compensates for the larger uncertainty.

As for the influence of incomplete measurements, while clearly the best results are
obtained when all species are measured (ALL), some improvements can still be obtained
with incomplete measurements, in particular for the case NOT-X3. Note however that
the bounds on parameter p5 cannot be improved when x3 is not measured (cases NOT-X3
and NOT-X3-X4), as p5 only appears in the difference equation of x3. Considering the
3-PAR case, it is also interesting to note that the cases NOT-X3 and NOT-X4 have
opposite effects on the estimates, improving more the upper and the lower parameter
bounds respectively. As a remark, we noted in our tests that uncertainties with respect
to x2 (the carnitine-FA complex) have overall the largest impact on the quality of the
parameters estimates.

Comparing the SPARSE and DENSE scenarios, it can be seen that very similar results
are obtained when prior knowledge is available (3-PAR). As it can be expected, the
impact of measurement errors is in general more noticeable for the SPARSE cases.

The bounds in Fig. 4.3 are the single-parameter projections of the actual bounding
sets obtained with Alg 1. These sets, which provide additional information on the cor-
relation among the parameters, are depicted for the scenarios (3-PAR, DENSE, NOT-X3,
ERR-1%) and (3-PAR, DENSE, NOT-X3, ERR-2%) in Fig. 4.4(a) and 4.4(b) respectively.
To indicate the estimate quality, some consistent parameterizations derived by Monte
Carlo simulations are also plotted.

Note that this is a qualitative comparison, as the probability of finding a consistent
parametrization is not uniform. Conversely, our approach guarantees that outside of
the indicated sets there is no consistent parametrization. Considering larger initial
bounds for the unknown parameters does not affect the results for the 15 scenarios
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out of 48 in which all bounds are strictly improved. In the other cases, the param-
eter estimates will depend on how the feasible region extends outside of the area we
considered.

4.3. Summary and discussion

Modeling in systems biology is often complicated by limited knowledge about the pro-
cess. This frequently results in competing hypotheses, whereas the parameters might
be completely unknown. Therefore, a reliable criterion to evaluate and to reject the
hypotheses is required regarding the available data. We proposed a model selection
criterion based on falsification, that is if the model hypothesis and the data are incon-
sistent, respectively the relaxed problem does not admit a solution, i.e. an infeasibility
certificate can be provided. Hereby, the model parameters and, possibly, the initial
conditions, do not need to be known. The falsification is guaranteed, i.e. a ‘valid’
model can this way never be rejected; however, as ‘spurious’ solutions might have
been introduced by the relaxation, an invalid model might be considered as valid.
This can for instance occur if only few data are available, e.g. no a priori data for
the model parameters is available. Though, in this case, by estimating the parameters
and iteratively updating the parameter estimates, the relaxation is tightened, and a
certificate of infeasibility and hence model invalidity might result after refining the
parameters.

We furthermore applied the set-membership framework to parameter estimation in
this chapter. We take into account that not all states are measured, as it is frequently
the case for the transient phase of biological experiments. Moreover, it is possible to
include uncertain but set-bounded measurable inputs and disturbances. In case the
(measurement) data uncertainty bounding sets correspond to (n-sigma) confidence-
levels of the a priori uncertainty distributions, the obtained uncertainty intervals can
be interpreted as the (n-sigma) parameter confidence intervals; this way, a comparison
with established re-sampling techniques can be considered.

To investigate how data uncertainty influences the parameter estimates, and hence
to evaluate the precision and sensitivity of the parameters, the uncertainty intervals
are determined. Here, the evaluation of a single uncertainty interval requires to solve
two semidefinite problems. Although the estimation should be iterated, as tightening
of one variable might propagate to other variables, the number of computations, i.e.
solving the relaxed problem, linearly depend on the number of parameters, and can
therefore considered for systems with many unknown parameters.

Obtaining the optimal parameters, e.g. regarding a least squares objective, is typ-
ically required for (model-based) applications, e.g. control synthesis and prediction
purposes. The optimal parameters can be determined by partitioning of the (initial)
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parameter space and evaluating the lower bound of the objective value for each parti-
tion.

The achievable results will however depend on the problem at hand. If for instance
only few measurements with large uncertainty are given, a successful result will rely
on the available prior knowledge. Also, limited estimability with respect to measure-
ment and parameter uncertainties is an intrinsic limit when dealing with guaranteed
bounds. In such a case, it can be advantageous to study possible correlations among
the parameters, e.g. using the proposed homothetic approach or via partitioning.
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5. State Estimation, Reachability, and
Outlier Analysis

In the previous chapter, we considered model invalidation and parameter estimation
given uncertain measurements. The proposed methods yield rigorous results in case
measurement uncertainties are appropriately described. Otherwise, in particular if
uncertainties are underestimated, it is possible that a valid model is falsely rejected.
For this reason, outliers in measurement data constitute a particular challenge to the
considered framework, and it is thus important to identify outliers prior to hypothesis
testing and parameter estimation.

Furthermore, we aim to investigate how uncertainty in initial conditions and pa-
rameters propagates to the model outputs. This is of particular relevance because
investigating only the nominal system behavior (e.g. regarding fixed parameters and
initial condition) does not provide insight into qualitative features such as the robust-
ness of the model in general.

In this chapter, we analyze how uncertainties propagate to the model outputs and
detect outliers in the measurements by estimating the model states under paramet-
ric uncertainty. Therefore, we first consider state estimationand provide an interval
observer in Section 5.1. Then, we analyze reachability properties of the systems and
show how to obtain reachable sets in Section 5.2. In Section 5.3, we finally approach
the issue of detecting outliers in dependent data.

5.1. State estimation

State estimation denotes the problem of reconstructing unknown or missing state val-
ues, e.g. intra-cellular concentrations that cannot be assessed directly. For many
processes including biological ones, very often not all states can be measured (i.e. per-
manently missing values), or the measurement process might have been interrupted,
leading to casually missing values. In both cases, it might be required to reconstruct
the missing state values. State estimation can be categorized depending on whether
past, current, or future states are desired, which are respectively known as retrodiction,
online estimation, and prediction van der Heijden et al. [2004].

The classical setup for state estimation is stochastic, where the process and measure-
ment noises are assumed to be Gaussian [Rāıssi et al., 2010]. Kalman filtering and par-
ticle filtering are two representative methods, see Lendek et al. [2006]. Former works,
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under the assumption of linear state space systems, and that both state transition
and the measurement noise is unbiased and normally distributed, and is then shown
to be an optimal estimator in the mean least squares sense [Lendek et al., 2006]. The
Kalman filtering has been extended to the nonlinear case with non-Gaussian noise, e.g.
by considering the linearized system around the current estimate (extended Kalman
filtering Anderson and Moore [1979]), or by considering the unscented Kalman filter,
see e.g. Wan and Van Der Merwe [2000]. However, particularly if the parameters of
the system are not exactly known, or the measurement uncertainties are nonhomoge-
neously distributed, the Kalman filter might fail. To overcome these problems, particle
filtering, also known as sequential Monte Carlo methods, can be considered. A sur-
vey about particle filters is given e.g. in Crisan and Doucet [2002]. These methods
use many random samples (i.e. particles) to represent the posterior probability distri-
butions, which are then propagated over time [Crisan and Doucet, 2002]. Although
this approach is generally applicable to nonlinear systems and nonhomogeneous noise,
there exists no general rule how to choose ‘representative’ samples, and the required
number of samples grow exponentially with the number of variables.

As for state estimation in membership settings, three main approaches have been
considered so far (compare also the review given in Rāıssi et al. [2010]): A predic-
tion/correction mechanism as e.g. proposed in Jaulin [2002]. Applicability of this
approach however is limited, due to the wrapping effect, to small (measurement and
parametric) uncertainties [Raissi et al., 2012]. The second approach (e.g. Kieffer and
Walter [2006]) is again a prediction/correction approach, whereas the Müller Theo-
rem [Müller, 1927] is applied for the prediction step, and third closed loop interval
observers Bernard and Gouzé [2004], Mazenc and Bernard [2011], Moisan et al. [2009],
which have in parts also been applied to bioengineering processes. These interval ob-
servers have been devised initially for exponentially stable linear systems, where certain
robustness guarantees can be provided, see e.g. Gouzé et al. [2000] and Mazenc and
Bernard [2011]. Recently, the approach has been extended to some classes of nonlinear
systems considering e.g. partial exact discretization [Raissi et al., 2012].

As setup for state estimation in our setting, we consider a model M (3.1) with
unknown parameters p ∈ P , and summarize the available data, consisting in particular
of a priori knowledge, measurements, an structural data by D (3.2).

We confine the state estimation problem to the time window [α : β], with α �
0 � N � β. We aim to provide an interval estimate of the (missing) state variables
xk ∈ R

nx for a k ∈ [α :β]. We denote the desired consistent state set by Xk = fxk
(Z),

with fxk
: Rnz → R

nx the respective projection map. The result follows from Theorem 2
and Proposition 2:

Corollary 4 (State uncertainty intervals)
The state uncertainty intervals [xk, xk] are found by 2nx dual bounds.
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By appropriately choosing α and β, the retrodiction, online, and prediction problems
are addressed.

Remark 4 The applicability of the interval observer Cor. 4 for on-line (real time)
estimation will depend on the sampling time, the considered time horizon, and on the
precision demands.

Remark 5 To investigate the correlation of the state variables, or to locate steady
states (as in Hasenauer et al. [2009, 2010a]), homothety (Prop. 4) or the partitioning
approach (Prop. 5) can be considered analog to parameter estimation, see Section 4.2.

The proposed interval observer Cor. 4 is applied next to the competitive inhibition
mechanism.

Example 5.1: competitive inhibition

We again consider the competitive inhibition (j = 2) from Example 2 (Section 4.1),
where we considered that x3 and x6 are not measured (permanently missing state
values). Taking the obtained parameter uncertainty intervals and the uncertain mea-
surements of x1, x2, x4, x5 (4.4) into account, we can re-evaluate the measured states
(for instance x1) and reconstruct the missing states (e.g. x3), i.e. x1[k] and x3[k],
k = {1, . . . , 40} using Cor. 4. The results are shown in Fig. 5.1.

(a) (b)

Figure 5.1.: Interval observer. Reconstruction of the state values x1[k] (5.1(a)) and x3[k]
(5.1(b)), k = {1, . . . , 40} for the competitive inhibition mechanism. Depicted are the
prior (black) and the estimated (blue) state uncertainty intervals.

5.2. Reachability analysis

While state estimation as shown in the previous section is concerned with the problem
of reconstructing missing state values considering measurement data, reachability is
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concerned with the question if certain states regions can be reached from other ones,
considering parametric uncertainties and disturbances. Reachability is an important
property of dynamical systems with direct implications on various modeling and con-
trol problems [Rumchev and Adeane, 2004]. The reachable sets, i.e. the states reach-
able by the model trajectories, provide useful information to assess the capacity of a
proposed model, to analyze the influence of uncertainties on the system dynamics, and
to determine control possibilities, effectiveness and performance of control laws, in par-
ticular when considering disturbances or parametric uncertainty. Reachability-based
approaches have also been considered already for model verification in the context
of biological systems, see e.g. Dang et al. [2011], Yang and Lin [2010], i.e to verify
whether a certain model admits a desired dynamical behaviour.

Reachability under disturbances or parametric uncertainty has been studied inten-
sively for linear systems, in particular positive time-invariant and time-variant systems
[Rakovic et al., 2006, Sontag, 1998, Vincent and Grantham, 1997]. However for nonlin-
ear systems only partial results are available. There are two basic types of reachable
sets, depending on whether an initial or a final condition is specified [Mitchell and
Tomlin, 2003].

Given a state space domain X ⊆ R
nx, the weak reachability problem can be defined

as follows: Given an initial set X0 ⊂ X and an target set XN ⊂ X, and the input
domain uk ∈ U , k ∈ [1 : N − 1]; show that there exist points in X0 and points in
XN that are connected by trajectories of the system M (3.1), see e.g. Maler [2004],
Mitchell and Tomlin [2003].

To formalize the setup, consider a model of the form (3.1). The available data
includes a priori data, i.e. a parameter region P ⊂ R

np, a state space X ⊂ R
nx,

an input domain uk ∈ U ⊂ R
nu, k ∈ [0 : N − 1], and an initial and target set

X0 ⊆ X, XN ⊆ X respectively. If required, bounded disturbances can be included.
The available data including the design constraints X0, XN , is summarized by D (3.2).

Analogously to model invalidation, a sufficient criterion for non-reachability is as
follows:

Corollary 5 (Reachability)
If the optimum of the dual problem SDP ∗(Z) is unbounded, then no point in XN is
reachable from any point in X0 in N steps.

Furthermore, the reachable sets are the feasible future state sets considering a given
input domain with respect to a given initial set. Estimating these sets can be recasted
in terms of the state estimation problem as outlined in the previous section; the differ-
ence consists in the available data, i.e. to estimate the reachable sets no measurement
data is used but an initial set. Without loss of generality, we confine the reachable
set estimation problem to the time window [α :β], with α � 0 � N � β. We consider
the state xk ∈ R

nx of interest, i.e. aim to determine the respective reachable set, i.e.
s = {xk, k ∈ [α : β]}, and denote the desired reachable set state set Xk = fxk

(Z),

62



5.2. Reachability analysis

with fxk
: Rnz → R

nx the respective projection map. The respective state uncertainty
intervals OI(Xk) are obtained by Cor. 4. For a more detailed analysis, the reachable
sets can be approximated considering homothety OH(Xk) or via partitioning OP (Xk)
following Prop. 4 and Prop. 5 respectively.

Example 5.2: Van der Pol oscillator

Consider the nonlinear Van der Pol oscillator, which can e.g. be used to describe the
action potentials of neurons [FitzHugh, 1955]:

x+
1 = x2,

x+
2 = −p1 · x1 − p2 · (x2

1 − p3) · x2 + u, (5.1)

where pi are the system parameters, xi = xi[k], u = u[k] and x+
i = xi[k+1] the current

state, input, and future state. Let us assume the uncertain parameters

P = {p1 ∈ [0.08, 0.12], p2 = 1.1, p3 = 1}, (5.2)

and the (rectangular) initial set

X0 = {[0.47, 0.53] × [0.48, 0.52]}.

We estimate the reachable sets Xk (1 � k � 4) considering two feasible input domains

U(1) = {uk ∈ [0.00, 0.10], k ∈ [1 : 4]},

U(2) = {uk ∈ [0.20, 0.30], k ∈ [1 : 4]}.

The states are constrained, for all times, to the state constraint set X = {(x1 ∈
[0, 1], x2 ∈ [0, 1]}.

Fig. 5.2 shows the estimated reachable sets OP (Xk), k = [1 : 4] for the respective
input domains, compared with Monte Carlo tests (spots). Note that the remaining
state-regions are certified non-reachable.

5.2.1. Open loop control

An immediate application following the reachability considerations is the estimation
of admissible inputs, i.e. the finite-time open loop control problem to steer the system
from X0 to XN .

If, for a given system, there exists points in X0 which are connected by state
trajectories to some points in XN , then there exist (at least one) input sequence
u0, u1, . . . , uN−1 to steer the system (3.1) from a point in X0 to a point in XN . In this
case, we can estimate the feasible inputs U .= fu(Z), fu : Rnz → R

Nnu which allow for
this transition. The result immediately follows from Prop. 3/Prop. 5:
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(a) (b)
Figure 5.2.: Reachable sets OP (Xk), k = [1 : 4] and Monte Carlo tests for the Van der Pol

oscillator. (a) Reachable sets for input domain U(1), (b) for U(2).

Corollary 6 (Admissible inputs)
The admissible inputs U are bounded by OI(U) or OP (U), derivable by 2Nnu or 2Nnu/ε

dual bounds respectively.

Hereby, an optimal control problem can be considered by defining optimal values of
the target set, and to consider branch-and-bound scheme (Section 3.3.4) to obtain an
optimal input sequence.

Example 5.3: Open loop control

Reconsider the Van der Pol oscillator (5.1) with uncertain parameters (5.2). The inputs
are constrained to the domain U = [0.00, 0.30]. As initial and target sets we choose
the rectangles X0 = {[0.47, 0.53] × [0.48, 0.52]} and XN = {[0.75, 0.80] × [0.40, 0.45]},
respectively.

We have that no point in XN is reachable from any point in X0 for N = 1, 2. For
N = 3, the reachability problem is feasible, and the corresponding inputs are estimated
according to Corollary 6. The resulting set of admissible inputs OP (U) is depicted in
Fig. 5.3. Tightness of the result is demonstrated by comparing this set with strictly
feasible solutions obtained by Monte Carlo tests, see Fig. 5.3.

We now turn our attention to another topic, considering if measurements obtained
are physically possible or not. For this we will exploit reachability and state estimation
concepts.

5.3. Outlier analysis

Outlier analysis deals with the problem of detecting, and if appropriate removing,
anomalous observations in data, and is a primary step towards obtaining estimates
and coherent analysis [Ben-Gal, 2005]. As pointed out by Ben-Gal [2005], outliers
may carry valuable information, e.g. about variability of the process, although the may
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Figure 5.3.: Van der Pol oscillator. Partition estimate of the admissible inputs u[k] for
k = 0, 1, 2 to steer the oscillator from X0 to XN . Monte Carlo tests yield strictly feasible
inputs (dots).

conversely lead to model misspecification, biased parameter estimation and incorrect
results. Therefore it is important to identify them prior to modeling and analysis [Liu
et al., 2004, Williams et al., 2002].

Even so an exact definition of an outlier often depends on hidden assumptions re-
garding the data structure and the applied detection method [Ben-Gal, 2005], some
general definitions have been proposed. Hawkins [1980] defines an outlier as “an ob-
servation that deviates so much from other observations as to arouse suspicion that it
was generated by a different mechanism”, and Barnett and Lewis [1994] “an outlying
observation, or outlier, is one that appears to deviate markedly from other members
of the sample in which it occurs”. Furthermore, Johnson and Wichern [2001] defines
an outlier as “an observation in a data set which appears to be inconsistent with the
remainder of that set of data”. For more case-specific definitions, see e.g. Ben-Gal
[2005].

Outliers often arise due to faults, changes in system behavior, fraudulent behavior,
human error, instrument error or simply through natural deviations in populations
[Hodge and Austin, 2004]. There are many ways how to detect outliers, depending on
the specific applications. Existing outlier detection methods can be classified according
to whether a (error) model is utilized or not, i.e. parametric (model-based) and non-
parametric (non model-based) respectively, see e.g. Hodge and Austin [2004] and
Ben-Gal [2005] for a comprehensive survey. While latter typically deal with large data
sets and independent data, model-based outlier detection methods are commonly used
for detecting outliers in time-series data (dependent data). Model-based methods can
be further classified into model-specific or model-generic approaches [Ben-Gal et al.,
2003]. While model-specific approaches rely on a given model to perform the outlier
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analysis, model-generic approaches provide the flexibility to estimate the underlying
model parameters.

A general observation when considering data sets with multiple outliers are masking
and swamping effects Ben-Gal [2005]. An intuitive, though not mathematically rigor-
ous understanding of these phenomena is given by Acuna and Rodriguez [2004]. An
outlier masks another outlier, if the second outlier is an outlier by itself, but not in the
presence of the first outlier. Thus, only after the deletion of the first outlier, the second
outlier emerges as one. Conversely, an outlier is said to swamp a second observation,
if the latter is an outlier only due to the first one. In other words, after the deletion of
the first outlier the second observation becomes a non-outlying observation. Masking
and swamping effects hence may complicate the detection of outliers, and have to be
considered carefully, e.g. to avoid neglecting important information.

We here focus on model-generic outlier detection strategies for time-series data con-
sidering nonlinear and uncertain systems. To this end, we first devise a combinatorial
outlier detection approach to evaluate outlier hypotheses using infeasibility certificates.
Furthermore, we consider a second model-generic outlier detection procedure which is
based on reachability analysis.

Setup

We consider a model M of the form (3.1), and the available data D (3.2), including
a priori and structural knowledge as well as measurement data. Regarding the mea-
surements, we focus for simplicity on the single output case (ny = 1), and remark
that the extension to multiple outputs is straightforward. We assume that the time
instances, at which measurements for the output are available, correspond to the in-
dexes k ∈ [0 : N − 1] (Ass. 1). The uncertainty of the measurements is described by
intervals, i.e.

Dmeas =
{
yk ∈ [y

k
, yk]meas, k ∈ [0 : N − 1]

}
,

where [y
k
, yk]meas (k = 0, . . . , N − 1) denote the measurement uncertainty intervals.

Analogously, we denote the a priori uncertainty intervals by [y
k
, yk]prior (k = 0, . . . , N−

1).
We start from the observation that the model and the data are inconsistent accord-

ing to Corollary 1. Instead immediately rejecting the model, we now consider the
possibility that the data contains some outliers, i.e. the uncertainty of some measure-
ments is not appropriately described1. In this regard, we define an outlier as follows:

Definition 2 (Outlier)
An outlier denotes a measurement which is not appropriately described by the proposed
uncertainty description, i.e. the actual values are not covered.

1This case can for instance occur by natural probability if the confidence intervals of the measurements
probability density distribution are considered as measurement uncertainty intervals.
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The number of outliers in Dmeas is denoted by no, which is of course unknown in
the beginning of the detection process (and can be considered small in comparison
with N). When we say an outlier yk for a k ∈ [0 :N − 1] is discarded, we replace the
measurement uncertainty interval with the a priori interval [y

k
, yk]prior. We denote

this case with Dmeas \ yk.
Finally, we require a measure of the distance of two sets later on, in particular the

minimum distance of two intervals:
Definition 3 (Minimum distance)
We define the minimum distance between two non-empty compact sets A ∈ R

n, B ∈ R
n

by the minimum distances between any two of their respective points, i.e.

dmin(A, B) = min{‖a − b‖ : a ∈ A, b ∈ B}.

Note that this distance is zero if the two sets overlap.
With the preparations above, we can now focus on the outlier detection problem.

5.3.1. Combinatorial outlier detection approach

An approach to detect possible outliers in the data set Dmeas consists in formulating
outlier hypotheses, i.e. to select possible outlier candidates and discard them, and
subsequently to perform an inconsistency test utilizing Corollary 1. To this end, we
consider first the simple case where a single outlier is suspected.

Single outlier

We assume that a single outlier is present in the measurement data Dmeas, i.e. no =
1. Then, the combinatorial approach consists in systematically discarding a single
measurement yk (starting from k = 0) and perform the consistency test following
Corollary 1 with M and Dmeas \ yk. This leads to the following result:

Proposition 7 (Single outlier case)
A single outlier is detected by at most N infeasibility certificates according to Corol-
lary 1.

The respective outlier, yk, can be further analyzed, i.e. the distance of the outlier
from the reachable state can be estimated. To this end, we perform a state estimation
(see Section 5.1) with M and D \ yk. Then, according to Corollary 4, we obtain the
a posteriori uncertainty interval [y

k
, yk]post. The distance according to Definition 3 of

the obtained interval and the measurement interval is given by

dmin([y
k
, yk]meas, [y

k
, yk]post).

Remark 6 Note that, even in this most simple case, there exists the possibility that
there exists no unique solution to the outlier problem, i.e. there might exist alternative,
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possibly exclusive, outliers. This is independent from the proposed method, rather an
intrinsic issue of the (in this case ill-posed) outlier detection problem2.

Multiple outliers

The proposed outlier detection approach extends to the multiple outlier case. To this
end, we discard no measurements, not necessarily consecutive, from the data set analo-
gously to the single outlier case, and perform the consistency test following Corollary 1.
This leads to the result:
Proposition 8 (Combinatorial outlier detection)
To detect no outliers within N measurements, at most

⎛
⎝N

no

⎞
⎠ =

N !
no!(N − no)!

(5.3)

infeasibility certificates according to Corollary 1 are required.

Proof. The number of possible arrangements of no outliers in N measurements is
equivalent to the classical combinatorial problem, i.e. no-combinations (zero elements)
in a sequence of otherwise one elements of length N. Hence, the number of possible
combinations is the given by the binomial coefficient (5.3). �

Note that in practice the number of outliers is unknown. Therefore, a strategy in
this case consist in increasing successively the number of suspected outliers starting
from a single one. This ensures to obtain a minimal number of outliers, with the
advantage that masking and swamping are avoided, although uniqueness can not be
guaranteed in general, refer Remark 6. The so obtained outliers can be analyzed as
outlined in Section 5.3.1.

The disadvantage of this approach is that the number of combinations and therefore
the number of required evaluations according to Corollary 1 increases with the number
of the measurements N and with the number of suspected outliers no; particularly if N

is large, the complexity of the proposed approach is approximately Nno, i.e. exponen-
tial in the number of suspected outliers. Hence, the combinatorial outlier detection
approach is in general not suited for large data sets (with possibly many outliers),
given that no particular outlier hypotheses can be formulated and a comprehensive
combinatorial search has to be considered. This is because the outliers have to be
detected instantaneously (all at once).

For larger data sets, a sequential approach may be advantageous, e.g. to detect the
most extreme outliers first. To find the most extreme outliers, a possibility consists in
‘relaxing’ the uncertainty description of the measurements, i.e. to introduce an addi-
tional pessimism. For example, the 2-sigma confidence intervals of the measurement
probability density function can be considered as measurement uncertainty intervals

2This case can occur e.g. if N is very small, refer the following example.
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instead the 1-sigma confidence interval. This obviously will lead to a fewer number of
outliers in most cases, which in turn facilitates (combinatorial) detection. To formalize
this sequential approach, we introduce a tolerance as follows.

Definition 4 (Tolerance)
The tolerance ε � 0 admits the following properties:

• If ε = 0, then Dε
meas = Dmeas.

• For any 0 < ε, we have Dmeas ⊂ Dε
meas.

• For any ε2 < ε1, we have Dε2
meas ⊂ Dε1

meas.

Exemplary, a tolerance can be modeled by an additional absolute or relative error,
imposed onto the measurement data according to (2.2.1) or (2.2.1) respectively.

A sequential (model-generic) outlier detection procedure can be stated as follows:

1. Consider a tolerance ε and determine Dε
meas.

2. Perform the combinatorial outlier detection using Dε
meas (Prop. 8) and discard

detected outliers.

3. Decrease the tolerance ε and repeat until ε = 0 or a desired threshold is achieved.

The challenge hereby consists in choosing an appropriate initial tolerance, such that
only few (at best only one, i.e. the most extreme) outliers remain, which are easier
to detect. Note that, in general, the tolerance can be considered as a ‘weighting’
of uncertainty; if no additional knowledge is available, it is reasonable to consider
a tolerance which acts equally onto all measurements. Conversely, knowledge might
be available that certain outputs (or specific measurements) might be more prone to
errors than others; then, the tolerance may be adapted accordingly. Exemplary, initial
conditions or steady state measurements may be known with certainty, and then it is
reasonable to not relax the respective uncertainty description.

Example 5.3: linear and quadratic regression

As an illustrative example, we consider a regression problem given the six
input/measurements pairs (k, yk) with (0,0.8±0.25), (1,2±0.25), (2,2.2±0.25),
(3,4.1±0.25), (4,4.85±0.25), (5,5.2±0.25) subjected to an absolute measurement er-
ror (ηa = 0.5).

We first turn on a linear regression given by

yk = a1k + a0,

where a1 ∈ R and a0 ∈ R are the unknown parameters.
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5. State Estimation, Reachability, and Outlier Analysis

We found, regarding linear regression, at least two outliers according to Prop. 5.3,
i.e. at k = 2 and k = 5. Regarding the remaining measurements, the parameters are
estimated according to Cor. 3, see Fig.5.4(a), and the reachable states are depicted in
Fig.5.4(b).

(a) (b)
Figure 5.4.: Model-generic outlier detection (linear regression model). 5.4(a): Consistent

parameters. 5.4(b): Reachable sets and the detected outliers.

We furthermore consider the quadratic regression given by

yk = a2k
2 + a1k + a0,

where now a2 ∈ R, a1 ∈ R, a0 ∈ R are the unknown parameters. For this regression
model, we found one outlier at k = 2. With the remaining measurements, the param-
eters are estimated according to Cor. 3, see Fig.5.5(a), and the reachable states are
depicted in Fig.5.5(b).

(a) (b)
Figure 5.5.: Model-generic outlier detection. Quadratic regression model. 5.5(a): Consistent

parameters. 5.5(b): Reachable sets and the detected outlier.
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5.3.2. Reachability-based outlier detection

The difficulty to find appropriate tolerances motivates us to explore alternative ap-
proaches for outlier detection. Complementary to the combinatorial detection ap-
proach, reachability analysis can be used for detecting outliers as follows. We start
from the observation that the model M (3.1) and the data D (3.2) are inconsistent
according to Corollary 1. Subsequently, we follow the procedure given below:

1. Consider a tolerance ε and determine Dε
meas. The tolerance has to be chosen

sufficiently large, i.e. such that the model is not invalid according to Cor. 1.

2. Estimate the reachable sets [y
k
, yk]post, for all k ∈ [0 : N − 1] regarding the data

Dε (Cor. 4).

3. Compare the reachable sets and the measurements considering the minimum
distance (Def. 3): Each measurement with dmin([y

k
, yk]meas, [y

k
, yk]post) > 0 is an

outlier and discarded.

4. Decrease the tolerance ε and repeat the procedure until ε = 0 or a desired thresh-
old is achieved.

The main advantages of this approach are, first, that finding a sufficiently large tol-
erance is not difficult. Secondly, by computing the reachable sets, consecutive outliers
and thus possible model misspecification can be detected. Thirdly, the approach allows
to refine the parameters even if not all outliers are detected.

We provide a comprehensive example for outlier detection based on reachability in
Chapter 7.

5.4. Summary

In this section, we applied the set-membership framework to state estimation, reacha-
bility analysis, and the detection of outliers. Missing state values, e.g. concentrations
of intra-cellular metabolites, can be reconstructed by an interval observer. To evaluate
e.g. the influence of parametric uncertainties and disturbances onto the systems dy-
namic, a reachability analysis can be considered. This way, an insight into robustness
properties of the considered system can be obtained.

The here considered methods including model invalidation and parameter estima-
tion are based on a bounded error description of the measurement uncertainties. This
uncertainty description however is in general prone to outliers, which impose a par-
ticular challenge to the framework. Outlying observation might lead to reject a valid
model (false positive), or biased estimation results. Their detection is thus crucial for
the applicability of set-membership methods to actual process data.
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5. State Estimation, Reachability, and Outlier Analysis

We therefore considered the detection of outliers within a model-generic setting.
Particularly, we presented a combinatorial approach, based on a combinatorial eval-
uation of outlier hypotheses using infeasibility certificates. The approach is suitable
only if the number of outliers is small. For larger data sets with possibly several out-
liers, we proposed a different approach based on a reachability analysis. By estimating
the reachable states regarding a more conservative uncertainty description, the most
extreme outliers can be detected first, and the pessimism can be reduced sequentially.

An important consequence of the model-generic setting is that the detection of out-
liers depends on the model used for detection. In other words, the outliers detected
with respect to one model may deviate with the outliers detected with respect to
another model.
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6. Design of Experiments

The design of experiments is an important link between modeling and experimentation,
to address a priori how to perturb the process under study, as well as which states
to be observed, so as to learn and reveal the most important features of the system,
e.g. to learn the unknown model parameters. To this end, experiments have to be
performed to obtain measurements of the process which can be used for estimation
subsequently. However, poorly planned or designed experiments may only yield little
information, resulting in poor parameter estimates.

In this chapter, we address the problem of designing optimal experiments in member-
ship setting for the purpose of parameter estimation, focusing on polynomial systems
which are linear in the parameters. After reviewing existing concepts in Section 6.1,
we derive necessary and sufficient conditions such that the unknown parameters can
be identified at all (Section 6.3). We then take uncertainties explicitly into account,
and investigate fundamental limitations of experimental design in Section 6.4. Based
on these considerations, we propose a robust optimal experimental design method in
Section 6.5. Several examples illustrate the proposed approach. This chapter is based
in parts on the works Borchers and Findeisen [2011], Borchers et al. [2011b].

6.1. Review

Obtaining as good as possible estimates of the parameters of a mathematical model
describing a dynamic process is an ubiquitous problem and required for purposes such
as model selection, prediction, or control synthesis.

Fisher [1935] initiated the study of a priori experimental design, with the idea of “de-
ciding what patterns of factors combinations (inputs) will best reveal the properties of
the systems response, and how this response is influenced by the factors” [Franceschini
and Macchietto, 2008]. He focused on obtaining the most important information to
reveal an input-output relationship in the presence of variations of stochastical nature,
which is known nowadays as black box experimental design (see e.g. Franceschini and
Macchietto [2008] for applications and a more comprehensive review). The black box
approaches however are inappropriate for dynamical systems with constrained out-
puts, as they do not take into account the available (or at least partially available)
information about the system’s structure.

Therefore, experimental design approaches had to be extended to explicitly enclose
knowledge of the considered system’s structure[Franceschini and Macchietto, 2008].
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6. Design of Experiments

This is termed model-based experimental design. Early approaches admitted only
steady state systems, including linear and nonlinear models, e.g. to study reaction ki-
netics as in Box and Lucas [1959]. The extension to dynamical systems has been slow
[Shirt et al., 1994] and primarily been considered in a stochastical context. For exam-
ple, one objective for experimental design, which has been considered, is to minimize
either the variance (uncertainty of the estimates [Shirt et al., 1994]) or the bias [Ljung,
1998] of the transfer function. Various other optimality criteria have been pursued, all
based on the Fisher information matrix (FIM). Here, the parameter uncertainty can
be appropriately distinguished within the FIM “due to the asymptotic normality of
parameter estimators and the Cramer-Rao bound” [Pronzato, 2008]. Optimality crite-
ria are found by minimizing the (expected) variance of the unknown parameters, e.g.
functionals of the invariants of the FIM. In this context, a widely used criterion is the
D-optimal design which aims at maximizing the determinant of the FIM and thereby
minimising the parameter variances. Alternatively, designs such as A-optimality, E-
optimality, etc. have been considered (see e.g. [Boyd and Vandenberghe, 2004, p.
384–392] for a compact overview).

However, the proposed frequency domain and Fisher-information matrix based ap-
proaches all rely on the true system parameters, or at least on an appropriate and
accurate a priori guess of the nominal system parameters. Hence, the quality of ex-
periments designed using these standard techniques can be adversely affected by poor
starting values of the parameters[Asprey and Macchietto, 2002]; such information how-
ever is in many cases simply not available. Thus, design methods that are insensitive
to these starting values are required [Asprey and Macchietto, 2002]. This issue has
been recognized in literature, and some approaches to the so called robust experimen-
tal design have been taken into account, as for example the sequential design (e.g.
Walter and Pronzato [1997], Wynn [1970]), Bayesian approaches (see e.g. Chaloner
and Verdinelli [1995] for a review), or minimax design (see e.g. Rojas et al. [2007]
for an overview and references). However, apart from standard cases (linear systems,
white noise), there has been little study on robust experimental design for engineering
problems [Rojas et al., 2007], see also the survey presented in Hjalmarsson [2005]. In
membership setting only few approaches have been made so far towards the robust
design of experiments. Norton [1987] proposed a number of general guidelines, and
Belforte et al. [1987] described an orthotopic approximation approach. Pronzato and
Walter [1990] considered to use experimental design for linear regression models, by
choosing as design policy a volume criterion which compares to the classic D-optimal
design in stochastical settings. Novara [2007] considered experimental design for non-
linear system identification, and recently, Marvel and Williams [2012] set-membership
experimental design has been considered in the context of biological systems.
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6.2. Setup

6.2. Setup

The setup for experimental design considered in the following is less general than the
setting for estimation and analysis, see Chapter 3. The most important differences are
we consider polynomial systems that are linear in the parameters1, subject to additive
disturbances, and that all states can be measured. Although we can avoid some of
these simplifications as shown in the examples later on, for now, the systems have the
following form:

x+
i =

np∑
j=1

fij(x, u)pi + wi = Fi(x, u)p + wi, i = 1, 2, . . . , nx (6.1)

where x ∈ R
nx, u ∈ R

nu and w = (w1, w2, . . . , wnx)T ∈ R
nx are the current state,

control and the unknown disturbance respectively, x+
i is the successor state of xi;

fij(x, u) : Rnx × R
nu → R for all i ∈ {1, . . . , nx} and j ∈ {1, . . . , np} are polynomial

functions (in the states and inputs), and Fi(x, u) ∈ R
np for all i ∈ {1, . . . , nx}. p ∈ R

np

denote the vector of unknown parameters. Note that typically np � nx, and that
some fij(x, u) = 0 independent of the choice of x and u by construction.

We consider in the remainder that the parameters p ∈ R
np are (completely) unknown,

but constant. The disturbances wi, i = 1, . . . , nx, are not constant, and known only
to be bounded, e.g

wi ∈ [−wi, wi], (6.2)

with known wi for all i = 1, . . . , nx. The design variables consists in the initial state
and the inputs, which can be chosen from the domains

x ∈ X0 = [xi, xi]nx, u ∈ U = [ui, ui]nu, (6.3)

with known xi, xi for all i = 1, . . . , nx, and known ui, ui for all i = 1, . . . , nu.

Remark 7 The generalization to a comprehensive polytopic setting for the distur-
bances, initial conditions and inputs is possible, although not considered here for sim-
plicity of presentation.

A pivotal idea of the proposed design approach consists in designing and choosing a
number of one-step experiments and observations respectively, to provide as good as
possible parameter estimates.

We denote an one-step experiment by Exp(x, u), where x ∈ X0 and u ∈ U (6.3).
By performing such an one-step experiment, a state measurement (an observation)
zi

.= x+
i can be taken.

1as e.g. resulting from mass action kinetics
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6. Design of Experiments

Remark 8 One measurement zi is related to one experiment Exp(x, u), and hence
each experiment involves a choice which state is measured. The measurement further-
more depends on the current disturbance, i.e. zi = Fi(x, u)p + wi, where wi (6.2) not
constant. An important consequence is that the same experiment (e.g. a repetition) in
general does not lead to the same measurement, because wi can take any value from
the interval [−wi, wi]. However, the probability distributions of the disturbances are
unknown, and thus we focus on the worst case throughout this chapter.

Consider n experiments Exp(x(l), u(l)), and respectively n measurements z
(l)
i(l), with

l = 1, . . . , n and i(l) from the indexset i(l) ∈ [1 : nx], i.e. the choices which states will
be measured. Then, we have with

z =

⎛
⎜⎜⎜⎜⎝

z
(1)
i(1)
...

z
(n)
i(n)

⎞
⎟⎟⎟⎟⎠ ∈ R

n, A =

⎛
⎜⎜⎜⎝

Fi(1)(x(1), u(1))
...

Fi(n)(x(n), u(n))

⎞
⎟⎟⎟⎠ ∈ R

n×np, w =

⎛
⎜⎜⎜⎜⎝

w
(1)
i(1)
...

w
(n)
i(n)

⎞
⎟⎟⎟⎟⎠ ∈ R

n,

z = Ap + w. (6.4)

For shorthand, we denote the disturbance set by w ∈ Ω, constructed from (6.2).
For ease of notation, we call the matrix A the design matrix. Thus, the design

matrix depends the number of experiments, on the choice which states will be mea-
sured, and the initial conditions and inputs for all considered experiments. For sim-
plicity of presentation, we say that the possible design matrices A (with n experi-
ments/measurements) belong to the family of design matrices A, defined as

A .=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

Fi(1)(x(1), u(1))
...

Fi(n)(x(n), u(n))

⎞
⎟⎟⎟⎠ ∈ R

n×np : x(l) ∈ X0, u(l) ∈ U, l = 1, . . . n, i(l) ∈ [1 : nx]

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ .

(6.5)
We can next define the consistent parameter set depending on the design matrix:

Definition 5
The set of consistent parameters Θ induced by n experiments is given by

Θ = {p ∈ R
np : z = Ap + w, z ∈ R

n, A ∈ A,w ∈ Ω}. (6.6)

Remark 9 It is very important to note that the consistent parameter set Θ can be
interpreted as a ‘family’ of sets. As an anticipation of the following considerations,
the ‘members’ of the consistent parameter set (i.e. the possible a posteriori parameter
sets) have a certain ‘shape’ (which is determined by the disturbance set and the design
matrix), an a certain ‘orientation’ in R

np (which is determined by the actual measure-
ments z). Robust experimental design consists in choosing the design matrix from A
such that the ‘shape’ of Θ has minimum volume, which corresponds to minimizing the
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6.3. Parameter identifiability

volume of the a posteriori parameter set in worst case (Section 6.5). Beforehand, we
investigate how ‘small’ Θ can be made at all in this setting (Section 6.4).

The consistent parameter set can be interpreted geometrically as a set with a certain
orientation in R

np and a certain size/shape, i.e.

Proposition 9
The set of consistent parameters can be described by set addition

Θ = Θz + ΘΩ, (6.7)

where
Θz

.= {θz ∈ R
np : z = Aθz, A ∈ A}, (6.8)

and
ΘΩ

.= {η ∈ R
np : 0 = Aη + w,w ∈ Ω, A ∈ A}. (6.9)

Proof. By (6.7) and (6.8), we have respectively AΘz ∈ {z} and AΘΩ ∈ −Ω. For the
set Θz + ΘΩ it holds A(Θz + ΘΩ) ∈ {z} − Ω, i.e.

A(Θz + ΘΩ) + Ω ∈ {z} ≡ {A(θz + η) + w = z, θz ∈ Θz, η ∈ ΘΩ, w ∈ Ω},

respectively

Θz + ΘΩ = {θz + η ∈ R
np : A(θz + η) + w = z, w ∈ Ω}.

With p
.= θz + η, θz ∈ Θz, η ∈ ΘΩ, we have Θz + ΘΩ = Θ according to Def. 5. �

Particularly, we interpret the sets Θz as the orientation of the set ΘΩ. Note that
both sets depend on the design matrix themselves.

We show next that under a certain condition onto the choice of the design matrix,
Θz becomes a singleton set, i.e. a vector, in worst case. Then, the shape of the
set of consistent parameters only depends on the shape of ΘΩ, which we investigate
thereafter.

6.3. Parameter identifiability

We first turn on the question how to obtain a compact parameter set. Remind that
the parameters are completely unknown in the beginning. The necessary and sufficient
condition for obtaining a compact consistent parameter set is the following:

Proposition 10
The consistent parameter set Θ is compact if and only if the design matrix A has full
row rank, i.e. rank(A) = np.

Proof. Proof immediately follows from Prop. 9 the and compactness of Ω. �
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6. Design of Experiments

In consequence, np measurements (experiments) are required to bound all model
parameters. Note also the choice of full row rank design matrices implicitly involves
an appropriate choice which states are measured.

Remark 10 It is important to note, under mild assumptions on the domains X0 and
U , that a choice of np experiments such that A has full rank is always possible (for
polynomial systems). This is because the determinant of A are polynomials in the
states and the inputs, which are chosen from the compact domains X0 and U .

By choosing full rank design matrix, we achieve that Θz becomes a vector, denoted
hereafter by θz ∈ R

np. However, the vector θz does not correspond to the ‘true’
parameters in general, with the exception if no disturbances were acting (noise free
case), i.e. ΘΩ = {0}. In this case, full row rank of the design matrix is necessary
and sufficient for parameter identifiability, i.e. that the model parameters can be
determined uniquely. This result immediately follows from Proposition 10 and Def. 5.

Remark 11 Note that parameter identifiability here is motivated from a practical
point of view, i.e. the necessary and sufficient conditions such that an unique pa-
rameter estimate is actually obtained, differing from structural identifiability issue,
compare e.g. Bellman and Åström [1970], Cobelli and Distefano [1980]). Further-
more, due to the worst case setting, the results are globally valid, compare e.g. Audoly
et al. [2001].

With these theoretical results at hand, we can discuss how to obtain a full row rank
design matrix in practice.

A full row rank design matrix can be chosen in practice in two stages. First, an
appropriate choice of the states which have to be measured, has to be made. In a next
step, the initial conditions and inputs are chosen. To this end, the main idea is to
treat the unknown parameters separately for each system equation. We rewrite, for
all i = 1, . . . , nx, the system equations into

x+
i = F ′

i (x, u)pi + wi,

where now pi ∈ R
npi denotes the parameters appearing in the i-th state equation, and

F ′
i (x, u) containing only the non-zero elements fij.
Following Prop. 10, we require (necessary condition) npi state measurements z

(l)
i ,

l = 1, . . . , npi, (respectively npi experiments Exp(x(l), u(l))) for obtaining a compact
consistent parameter set of the now npi parameters. The respective (i-th) design matrix
is then given by

Ai =

⎛
⎜⎜⎜⎝

F ′
i (x(1), u(1))

...
F ′

i (x(npi), u(npi))

⎞
⎟⎟⎟⎠ ∈ R

npi×npi.

where x(l) ∈ X0 and u(l) ∈ U for l = 1, . . . , npi.
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6.4. Limits of design

In a next step, the inputs and initial conditions have to be chosen appropriately,
which is however not difficult, compare Remark 10. Note also that the matrices Ai for
i = 1, . . . , nx are smaller in general, which furthermore eases the choices.

Example 6.1: noise-free system

Consider the polynomial (noise-free) system

x+
i = pi1x1 + pi2x

2
1 + pi3x2 + pi4x

2
2 + pi5x1x2 + pi6u.

With pi
.= (pi1, . . . , pi6)T , i = {1, 2}, and zi = x+

i denoting the respective observations,
we can write

zi = Fi(x, u)pi =
(
x1 x2

1 x2 x2
2 x1x2 u

)
pi.

Following Prop. 10, twelve experiments/measurements are necessary to identify the
unknown parameters (six measurements per state, denoted by z1 ∈ R

6 and z2 ∈ R
6

respectively). Exemplary, we consider the following six experiments Exp(x1, x2, u):

Exp(x1, 0, 0), Exp(0x2, 0), Exp(
1
2

x1, 0, 0), Exp(0,
1
2

x2, 0), Exp(x1, x2, 0), Exp(0, 0, u).

The corresponding design matrices (i = {1, 2}) are

Ai =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 (x1)2 0 0 0 0
1
2x1 (1

2x1)2 0 0 0 0
0 0 x2 (x2)2 0 0
0 0 1

2x2 (1
2x2)2 0 0

x1 (x1)2 x2 (x2)2 x1x2 0
0 0 0 0 0 u

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It is then easy to see that for x1 �= 0, x2 �= 0, and u �= 0, the design matrices have full
rank. The parameters are

pi = (Ai)−1zi, i = {1, 2}.

Note that the choice of the experiments is of course not unique, and the remaining
degrees of freedom can be utilized for designing worst case optimal experiments as
shown later on.

6.4. Limits of design

We have shown in the previous section that np measurements/experiments are neces-
sary to obtain a compact estimate of the parameters. We furthermore showed that the
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consistent parameter set can be considered, following Prop. 9, as the set ΘΩ which is
oriented in R

np by the set Θz. Next, we consider the issue how ‘small’ Θ can be made
at all in worst case2, e.g. by considering infinitely many experiments.

To this end, reconsider the system equations given by

x+
i =

np∑
j=1

fij(x, u)pij + wi, i = 1, . . . , nx.

We focus on the case that Θz is a singleton set (the vector θz), i.e. we choose at
minimum np experiments with full row rank design matrix3. For simplicity of notation,
we denote the i-th component of the system by the superscript index (i).

By Proposition 9, we have given the consistent parameter set Θ(i) ⊂ R
np (for all

i = {1, . . . , nx}) by
Θ(i) = θ(i)

z + Θ(i)
Ω ,

where

θ(i)
z = (θ(i)

1 . . . θ(i)
np

)T ∈ R
np,

Θ(i)
Ω = {(ηi1, . . . , ηinp)T ∈ R

np :
np∑

j=1
fij(x, u)ηij ∈ [−wi, wi]}.

By linearity of ηij, it is easy to see that we have for all j = 1, . . . , np and for all
i = 1, . . . , nx:

ηij ∈ [−ηij, ηij]
.=

[−wi, wi]
|f ij|

, |f ij| .= max
x∈X0,u∈U

|fij(x, u)|, (6.10)

if |f ij| �= 0. Otherwise, i.e. if |f ij| = 0, the parameter pij is not identifiable via the
state measurement x+

i , and we have ηij ∈ (−∞, ∞)4.
In other words, considering X0 and U to be a given compact sets, the uncertainty

ηij (i.e. the uncertainty of the desired parameters pij) can not be decreased below
the interval given in Eq. (6.10), i.e. this uncertainty remains independent of the
experiments. Moreover, again due to linearity of the ηij,

ΘΩ = ConH({±ηij}, i = {1, . . . , nx}, j = {1, . . . , np}),

i.e. ΘΩ is the convex hull of the interval limits of all ηij (Eq. (6.10)), see Fig. 6.1.
Thus, the precision which can be obtained at all by experiments a priori is limited by
ΘΩ ⊆ Θ. We denote hereafter ΘΩ as the residual set. Geometrically, the residual set
is a rhombus in two dimensions, in three dimensions an octahedron. More generally,

2This is, we do not make any assumptions on the likelihood of measurements
3This is necessary to obtain a compact parameter estimate, and hence generality is not affected.
4i.e. the parameter pij remains completely unknown in this case
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6.4. Limits of design

by construction, ΘΩ is the dual body of the np dimensional hyper-rectangle defined by
the uncertainty intervals Eq. (6.10).

Figure 6.1.: Illustration of the residual set.

Allowing as many experiments as desired, the optimal experimental design translates
into finding those experiments such that the uncertainty of the consistent parameter
set is exactly the residual set. As shown in next example, the number of experiments
to achieve this can be finite, or may be impossible in other cases.

Example 6.2: linear systems

We consider the (input-free) linear system equation

x+
i =

nx∑
j=1

xjpij + wi, (6.11)

where wi ∈ [−wi, wi] denotes the unknown, but bounded disturbance, and xj/pij

denote the initial conditions/completely unknown parameters for i = {1, . . . , nx} and
j = {1, . . . , nx}. The overall number of unknown parameters is thus n2

x. The initial
conditions can be chosen from the intervals xj ∈ [xj, xj], with known xj and xj for all
j = 1, . . . , nx. We will investigate next how the initial condition domain influences the
best possible estimate in the worst case setting.

Particularly, we consider two different initial condition domains, a symmetric
and a non-negative5 one. To obtain the best estimate of the parameters pij for
j = {1, . . . , nx}, we consider the following augmented basis V = {v(1), . . . , v(q)} of
experiments obtained as follows:

• i) v(k) =

⎛
⎜⎜⎜⎝

v
(k)
1
...

v(k)
nx

⎞
⎟⎟⎟⎠ , v

(k)
j = {xj, xj}, ∀ j ∈ [1 : nx] and k ∈ [1 : q]

5Non-negative initial condition domains are typical for biological systems, because concentrations are in
general non-negative.
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• ii) any combination of np vectors v(k) ∈ V , i.e. {v(k(1)), . . . , v(k(nx))} with k(l) ∈
[1 : q], is linearly independent.

Each vector of the basis V correspond to a particular experiment, e.g. v(k) to the
experiment Exp(x) with x = (v(k)

1 , . . . v(k)
nx

). To obtain finally the optimal parameter
estimate pij, j = {1, . . . , nx}, we apply the experiments for k = {1, . . . , q} and measure
the state x+

i . The resulting consistent parameter sets are depicted in Fig. 6.2, where
pij = θ

(i)
j + wi

|xj | , p
ij

= θ
(i)
j − wi

|xj | , and θz = (θ(i)
j , θ

(k)
l )T for all i, j, k, l ∈ {1, . . . , nx}.

(a) (b)
Figure 6.2.: Consistent parameter set Θ for the linear system (6.11) depending on the initial

condition domain X0. 6.2(a): symmetric initial condition domain. 6.2(b): non-negative
initial condition domain.

In case we a symmetric initial condition domain is considered, i.e. xj = −xj for all i ∈
[1 : nx], we have q = 2nx−1. These q experiments and the respective nx ·q measurements
(q for each state) according to the basis V yield the best possible consistent parameter
set (in worst case), shown in Fig. 6.2(a). Under these conditions, the residual set is
actually obtained.

In case a non-negative domain of initial conditions is considered, i.e. xi = 0, we have
that q = 2np − 1 experiments provide the best possible estimate, shown in Fig. 6.2(b).
However, in this case, the consistent parameter set is larger than in the previous case.
Note that in both cases, a finite number of experiments is sufficient to obtain the best
possible estimate. This is however not in general the case.

6.5. Optimal experimental design

We have shown that the design matrix must have full row rank to obtain a compact
set estimate of the parameters Θ. To this end, np experiments/measurements are
required. To obtain furthermore the best possible estimate, considered in the previous
section, in general more than np experiments are required, possibly infinitely many
experiments. Because this may in practice not be realizable, we next consider the
issue of obtaining the np experiments which provide a maximum of information for
parameter estimation, thereafter denoted as the optimal experimental design problem.
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6.5. Optimal experimental design

The design of optimal experiments first requires a choice of an appropriate design
criterion, i.e. what defines the maximum of information. Our motivation is to design
the experiments which minimize the uncertainty in worst case. In other words, we aim
to design experiments which provide a volume-minimum6 set estimate Θ.

To formalize this, reconsider Prop. 9, where now the possible design matrices A have
np rows. As design criterion, we choose the volume of Θ, denoted by V ol(Θ), where
V ol : Rnp → R+ is the volume map, see e.g. Schneider [1993]. We denote by |.| the
absolute values.

Proposition 11 (Robust volume-optimal DOE)
The volume-optimal robust design criterion translates into maximizing the determinant
of the (full rank) design matrix, i.e.

min
A∈A |V ol(Θ)| ≡ max

A∈A |Det (A)|.

Proof. By Prop. 9, we have that |V ol(Θ)| = |V ol(Θz + ΘΩ)|. For full rank design
matrices (A−1 exists) Θz is a singleton set (compare Prop. 10), and we have |V ol(Θ)| =
|V ol(ΘΩ)| = |V ol(A−1Ω)|. With V ol(Ω) known and nonzero, we have |V ol(A−1Ω)| =
|Det(A−1)| · |V ol(Ω)|. Therefore, we have

min
A∈A |V ol(Θ)| = min

A∈A |Det(A−1)| · |V ol(Ω)| = max
A∈A |Det(A)| · |V ol(Ω)|.

�
We next show how to determine maximum determinant design matrices. To this

end, we exploit the special structure of the design matrix and compactness of the
design variables. It is easy to see that each entry of A, a(j, k), is bounded, and the
bound is the same for all elements within a column, i.e.

0 � a(j, k) � ak, j = 1, . . . , nx, k = 1, . . . , np, (6.12)

where ak = ∏
l xl

∏
m um for some l ∈ [1 : nx] and m ∈ [1 : nu].

We can then state, exemplary for non-negative domains X0 and U , the following
result:

Corollary 7
The maximum determinant of A is constrained by

max
A∈A |Det(A)| �

np∏
k=1

ak|Det(H)|, (6.13)

where H is a np×np {0,1} binary matrix with maximum determinant |Det(H)|. Equal-
ity holds in particular for linear systems.

6We focus on a volumetric criterion, although different criterias can be considered, e.g. a norm criterion.
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6. Design of Experiments

Proof. The proof follows immediately from construction of A, (6.12), and multi-
linearity of determinant. �

For n = 1, 2, 3, . . . the (absolute) maximum determinants of {0,1} binary matrices
are 1, 1, 2, 3, 5, 9, 32, 56, 144, 320, 1458, 3645, 9477, . . .7. In general, the maximum deter-
minant matrices are not unique, e.g. any row or column permutation does not change
the absolute value of the determinant. This leads to additional degrees of freedom
when considering optimal design, which can be used to choose experiments which are
easier to implement in practice. Exemplary, the first six Hadamard {0,1} matrices are
the square matrices from top left [Osborn, 2002]:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 0 0
1 1 0 1 0 0
0 1 1 0 1 0
0 0 1 1 0 1
1 0 0 1 1 0
1 1 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Note also, exemplary for the case n = 2,

|Det

⎛
⎝1 0

0 1

⎞
⎠ | = |Det

⎛
⎝1 0

∗ 1

⎞
⎠ | = |Det

⎛
⎝1 ∗

0 1

⎞
⎠ |, (6.14)

where ∗ denotes an arbitrary choice in the interval [0, 1]. This degree of freedom can be
exploited for choosing between optimal design matrices so as to ease implementation
as shown in the illustrative Examples 6.2 and 6.3.

It is possible to consider the symmetric domains X0 = [−xi, xi]nx and U =
[−ui, ui]nu. This leads to the {-1,1} Hadamard maximum determinant problem, see
e.g. Curtis and Kincaid [2006], Neubauer and Radcliffe [1997]. Respective matrices
and determinant values (currently up to the order 28x28) can be found at Sloane [2002]
(Sequence A003433).

In conclusion, for linear systems the Hadamard matrix based design is always pos-
sible under mild assumptions on the domains of the design variables. For polynomial
systems, the case is more complicated, because the design matrix may be additionally
constrained. In this case, Cor. 7 immediately provides an upper bound of the opti-
mum. However, the matrix determinant problem needs to be solved for the specific
case, e.g. by using matrix determinant algorithms under constraints such as presented
in Vandenberghe et al. [1998].

7see Sloane [2002], Sequence A003432
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Example 6.3: linear system

Consider the linear system
⎛
⎝x+

1
x+

2

⎞
⎠ =

⎛
⎝p11 p12

p21 p22

⎞
⎠

⎛
⎝x1

x2

⎞
⎠ +

⎛
⎝p13

p23

⎞
⎠ u +

⎛
⎝w1

w2

⎞
⎠ , (6.15)

where xi ∈ [0, xi] for i = {1, 2} and u ∈ [0, u] are non-negative domains, the distur-
bance wi ∈ [−wi, wi] for i = {1, 2}, pij the unknown parameters.

According to Proposition 10, six observations (three per state) are necessary to
estimate the unknown parameters. The design matrices for i = {1, 2} are given by

Ai =

⎛
⎜⎜⎜⎝

x
(1)
1 x

(1)
2 u(1)

x
(2)
1 x

(2)
2 u(2)

x
(3)
1 x

(3)
2 u(3)

⎞
⎟⎟⎟⎠ ,

with x
(j)
i ∈ [0, xi] and u(j) ∈ [0, u] for i = {1, 2} and j = {1, 2.3}. The maximum

determinant design matrices are given by 3 × 3 Hadamard matrices according to Cor.
7, e.g.

max
Ai∈Ai

|Det(Ai)| = x1x2u|Det(H3)| = x1x2u|Det

⎛
⎜⎜⎝

0 1 1
1 0 1
1 1 0

⎞
⎟⎟⎠ |.

The respective optimal three experiments Exp(x1, x2, u) are

Exp(0, x2, u), Exp(x1, 0, u), Exp(x1, x2, 0).

Then, we have the optimal design considering np experiments according Cor. 7, with

Det(A) = x1x2u · 2.

It is important to note that additional experiments (considering the aug-
mented basis V in Sec. 6.4, in total 7 experiments with the four remaining:
Exp(x1, x2, u), Exp(x1, 0, 0) Exp(0, x2, 0) Exp(0, 0, u)) allow to decrease the deter-
minant toward the fundamental limit, compare Fig. 6.2(b).

As illustrated by the previous example, the maximum determinant of the design
matrix along with the maximum amplitudes of initial conditions and inputs, i.e. that
only ‘strong’ stimulations are relevant. Otherwise, only poor parameter estimates
(large uncertainty) can be obtained.

The situation for polynomial systems is more intricate, because, in contrast to the
linear case, the elements of the design matrix A and respectively may be not indepen-
dent, and hence it is not always possible to directly implement the Hadamard design
as shown in the following example.
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6. Design of Experiments

Example 6.4: nonlinear system

Consider the nonlinear scalar system

x+ = p1x + p2x
2 + w,

with x ∈ [0, x] and w ∈ [−w, w]. According to Prop. 10, two experiments are necessary
to identify the two parameters p1 and p2; the design matrix is

A =
⎛
⎝x(1) (x(1))2

x(2) (x(2))2

⎞
⎠ .

Because the entries of the design matrix are not independent from one another, we
can not implement the Hadamard design. In this case however, we can determine the
maximum determinant by

max
x(i)∈X0
i=1,2

|Det (A)| = max |(x(1)(x(2))2 − (x(1))2x(2))| = |x(1)x(2)((x(2)) − x(1))|.

It is easy to see that the maximum is given by x(1) = x and x(2) = 1
2x, or vice versa.

The maximum determinant of the A is then

max
x(i)∈X0
i=1,2

|Det (A)| =
1
4

x3.

Example 6.5: Michaelis-Menten

In the following example, we consider the design of optimal experiments for a frequently
occurring reaction in systems biology, the Michaelis-Menten reaction:

S [x1] + E [x2]
k1−⇀↽−
k2

C [x3]
k3→ P [x4] + E [x2]

The enzyme-substrate mechanism can be expressed using mass action kinetics and
the Euler-forward discretization with step size h by

x+
1 = x1 + h(−k1x1 x2 + k2x3) + w1

x+
2 = x2 + h(−k1x1 x2 + (k2 − k3)x3) + w2

x+
3 = x3 + h(+k1x1 x2 − (k2 − k3)x3) + w3

x+
4 = x4 + h(+k3x3) + w4,

where xi and x+
i denotes the initial and future state respectively, and the disturbances

wi ∈ [−wi, wi]. k1, k2, and k3 denote the unknown reaction parameters.
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6.5. Optimal experimental design

We aim to determine the optimal experiments, denoted by Exp(x1, x2, x3, x4), for
identifying the three unknown parameters. We can choose non-negative initial condi-
tions with:

0 � x1 � S, 0 � x2 � E, 0 � x3 � C, 0 � x4 � P .

Let us furthermore consider that we cannot measure neither the enzyme’s x2 nor the
complex’ x3 concentration.

According to Prop. 10, three measurements are necessary to identify the model pa-
rameters. Thus, we choose three experiments pairs Exp(x(l)

1 , x
(l)
2 , x

(l)
3 , x

(l)
4 ), l ∈ {1, 2, 3},

measuring two times the substrate concentration (z(i)
1 , i = {1, 2}) and one time the

product concentration (z4). We have
⎛
⎜⎜⎜⎝

z
(1)
1

z
(2)
1
z4

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

x
(1)
1

x
(2)
1

x
(3)
4

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎝

−x
(1)
2 x

(1)
1 x

(1)
3 0

−x
(2)
2 x

(2)
1 x

(2)
3 0

0 0 x
(3)
3

⎞
⎟⎟⎟⎠ ·

⎛
⎜⎜⎝

hk1
hk2
hk3

⎞
⎟⎟⎠ +

⎛
⎜⎜⎜⎝

w
(1)
1

w
(2)
1

w4

⎞
⎟⎟⎟⎠ .

By Prop. 11, the optimal design consists in maximizing the determinant:

max |Det

⎛
⎜⎜⎜⎝

−x
(1)
2 x

(1)
1 x

(1)
3 0

−x
(2)
2 x

(2)
1 x

(2)
3 0

0 0 x
(3)
3

⎞
⎟⎟⎟⎠ | = C · max |Det

⎛
⎝−x

(1)
2 x

(1)
1 x

(1)
3

−x
(2)
2 x

(2)
1 x

(2)
3

⎞
⎠ |,

i.e. the first experiment is Exp(∗, ∗, C, ∗), where ‘∗’ denotes an arbitrary initial con-
centration.

To determine the remaining two experiments, we can apply here the Hadamard
design. The maximum 2 × 2 determinant corresponds e.g. to the Hadamard matrix

H2 =
⎛
⎝1 0

∗ 1

⎞
⎠ .

This optimum is achieved by the experiments

Exp(S, E, 0, ∗), Exp(∗, ∗, C, ∗),

which yield the parameters:

k1 ∈ −z
(1)
1 + S

hSE
+

[−w1, w1]
hSE

,

k2 ∈ −z
(2)
1 + S

hC
+

[−w1, w1]
hC

,

k3 ∈ z4 − P

hC
+

[−w4, w4]
hC

,
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6. Design of Experiments

where P is the initial product concentration. The example shows while the optimal
experimental design problem is non unique, the degrees of freedom can be utilized
to facilitate realizations of the proposed experiments, and thereby to select among
optimal experiments which, for instance, are easier to perform with the real process.
In the present case, we can first of all choose which states are measured. Among
the possible combinations, only some allow to provide a compact estimate of all the
parameters, e.g. (x1, x4). In the case (x2, x3) for instance however, k2 and k3 cannot
be estimated. If this choice is made, the Hadamard design provides additional degrees
of freedom, because the volume-optimal experiments are not unique.

In some cases, these degrees of freedom can be used to design (few) multi-step exper-
iments with optimal properties. For the Michaelis-Menten reaction, we can perform
the experiment Exp(S, E, 0, ∗), until the steady state is reached (batch experiment).
In the transient phase, the complex concentration will reach maximum levels, before
the steady state is reached. Hence, the transient dynamic of the single experiment
provides optimal information for parameter estimation, in particular at the beginning
of the experiment (to infer k1), and after the complex reached its maximum concen-
tration (for inferring k2 and k3). Note also that this integration in comes to the price
that more than three observations have to be made, since the timing when the complex
concentration is maximum depends on the unknown parameters.

6.6. Summary and conclusions

We considered the design of robust optimal experiments for the purpose of parameter
estimation and regarding this we studied the limits of the possible designs. Focusing
on polynomial systems which are linear in the parameters, we pursued a worst case
membership setting to design a number of one-step experiments so as to obtain a
maximum of information for parameter estimation.

Within this setting, we showed that the number of experiments necessary to guar-
antee a compact set estimate of the beforehand completely unknown parameters is
equivalent to the number of unknown parameters. For sufficiency, the design matrix,
which is constructed from the experiments, must have full row rank. The compact set
estimate of the parameters however can not be made as small as desired, even when
considering an infinite number of experiments. We showed that the residual set defines
a lower bound for the achievable results.

Having these fundamental limitations in mind, we finally considered the robust op-
timal experimental design problem considering the minimal number of experiments.
As optimality criterion, we considered the worst-case volume of the consistent pa-
rameter set. We showed that the optimal design then translates into maximizing the
determinant of the design matrix. For linear systems, this optimal design is always
realizable already under mild assumptions regarding the possible input and initial
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6.6. Summary and conclusions

conditions. For polynomial systems, the Hadamard design may not always be directly
implementable, because the elements of the design matrix may not be independent,
nevertheless it gives an lower bound on the achievable optimum. In such cases, the
determinant maximization can e.g. be solved using matrix determinant algorithms
under constraints, e.g. Vandenberghe et al. [1998].

The proposed approach provides some general insights into the problem of learning
the unknown system parameters. The initial conditions are of particular importance
for design of experiments; if the initial conditions can be manipulated, then the un-
known parameters can be bounded. Furthermore, strong stimulations (inputs as well
as initial conditions) are optimal to learn as good as possible the unknown parameters.
The limitations of the single-step approach are if some initial conditions can not be
manipulated. Then, it may not be possible to obtain a set-valued estimate at all. A
second limitation is if some states can not be measured; then, the parameters asso-
ciated with the respective system equation can not be estimated. To overcome these
limitations, a multi-step approach can be considered as in Borchers and Findeisen
[2011].
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7. Application Example: Cell Growth in
Batch

In this chapter, we present a comprehensive application of the proposed falsification,
estimation, analysis, and experimental design methods outlined in the Chapters 2–6
considering a cell growth process of AGE1.HN cells [Niklas et al., 2011]. This chapter
is based on the work presented in Borchers et al. [2013], a research collaboration
with S. Freund, A. Rath, and Udo Reichl from the Max-Planck Institute of Complex
Dynamical Systems, Magdeburg. The experiments were conducted by A. Rath, Max-
Planck Institute of Complex Dynamical Systems, Magdeburg, and the assay validation
was conducted and evaluated by Susann Freund and coworkers, in particular Verena
Lohr. For further details, on the cell cultivation and the experimental procedures,
refer to Borchers et al. [2013].

7.1. Introduction

Production of bio-pharmaceuticals, for instance in mammalian cell culture, are fre-
quently described by unstructured and segregated models. Although the compart-
mental structure of cells and the underlying metabolic pathways are not taken into
account explicitly, these models do provide a sound mechanistic description of the
considered process, which is required e.g. for model-based experimental design, op-
timization purposes, or controller synthesis. A main advantage of these models is
they can be tailored to particular growth phases and process conditions. This is im-
portant since cell growth and product formation is known to depend on a variety of
factors, e.g. the availability of substrates, inhibitors, or changes in the cultivation
conditions (e.g. oxygen, temperature, pH [Tziampazis and Sambanis, 1994, Yu et al.,
2011]). However, within a particular experimental setting, only some of these factors
actually contribute to the observed cell dynamics. To obtain a concise model of the
process, it is necessary to identify the main influencing factors of cell growth and basic
metabolism and to distinguish apparent growth phases.

Due to noisy and erroneous experimental data, unknown kinetic parameters, and the
large number of combinations of influencing factors, this issue however has only been
addressed by a limited number of studies, so far. We here consider set-membership
methods for falsification, estimation, analysis, and design of experiments to identify
different growth phases and factors influencing cell growth and metabolism for a mam-
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malian suspension cell line. Particularly, we investigate growth of AGE1.HN cells using
the data obtained from two batch culture experiments, in bioreactor and shaker flask in
serum-free medium. Besides cell concentrations, the uptake of glucose and glutamine
as well as the release of ammonia and lactate were measured. The uncertainty of the
experimental data is described in terms of bounded errors based on an assay validation
performed in a separate study (data not shown).

We first distinguish apparent cell growth phases based on an outer-approximation
of the specific growth rate as a function of time considering the observed increase of
viable cell concentration. This way, we can show that cell growth in batch culture for
the considered suspension cell line is divided into two main growth phases. The first
phase is characterized by a maximum and constant specific growth rate. This phase
is described consistently by a relatively simple segregated model including the main
metabolites and the dynamics of viable and dead cells. The second phase however
is more intricate, characterized by a declining specific growth rate until growth com-
pletely ceases. We demonstrated via falsification and analysis that glucose limitation
and the pH of the medium are the governing mechanisms for the decline of the spe-
cific growth rate in both cultivation systems. An extended model is provided which
describes the observed dynamics of cell growth and main metabolites, and the corre-
sponding kinetic parameters as well as their confidence intervals are estimated. The
study is complemented by an uncertainty and outlier analysis. Overall, we demonstrate
that the proposed models to describe the complete time course of the experiments were
in good accord with the observations.

The structure of this example is as follows: We first describe in Section 7.2 the cell
growth process and measurement uncertainties obtained from an assay validation. In
Section 7.3 we distinguish qualitatively different growth phases for AGE1.HN cells in
our batch experiments. Subsequently, the growth phases are analyzed in detail in the
Sections 7.4 and 7.5. Thereafter, we discuss briefly the design o experiments in Section
7.6, and finally provide some insights in the computational procedures in Section 7.7.

7.2. Data and process description

Growth of mammalian cells is known to be dependent on various factors, essentially on
the availability of the substrates glucose (Glc) and glutamine (Gln). As a by-product of
Glc and Gln consumption, lactate (Lac) and ammonia (Amn) are released. Basic prop-
erties of cell growth have been described in various publications for hybridoma [Batt
and Kompala, 1989, Pörtner and Schäfer, 1996], myeloma [Frahm et al., 2003] and
CHO cells considering unstructured models, refer also [Bailey and Ollis, 1986, Haag
et al., 2005], and metabolic shifts have been investigated for AGE1.HN cells using
metabolic flux analysis [Niklas et al., 2011].
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7.2. Data and process description

In general, substrate and by-product yield factors as well as specific growth rates
strongly depend on the cell line, the used medium, and the process strategy (batch
or continuous). In the present case, two batch culture experiments have been per-
formed, and the observations of the extra-cellular metabolites and cell concentrations
are denoted by

x̃i(tj), i ∈ {1, . . . , nx}, j ∈ {0, 1, . . . , N}. (7.1)

Measurement uncertainty in the present can be inferred by assay validation, see e.g.
Johnson and Wichern [2001], Wilkinson [1961]. First, we evaluate if the variances,
for each extra-cellular metabolite and the cell concentrations, are homogeneously dis-
tributed or not. Subsequently, the standard deviation or the relative standard devia-
tion of the method respectively is used to determine the respective 1-sigma confidence
intervals; they are used thereafter as uncertainty bounds for the measurements. To this
end, we used the F-test, i.e. comparing the variances at the lower and the upper mea-
surement range (obtained by 8-fold measurements at the respective concentrations).
We can then describe measurement uncertainty as follows:

Homogeneous (absolute) errors In case variances are homogeneously distributed
(according to the F-test), we consider the standard deviation of the method σi regard-
ing a calibration function of first order (two degrees of freedom) to derive the 1-sigma
confidence intervals, see e.g. Funk et al. [2007]. The 1-sigma confidence interval is
given by xi(tj) ∈ [xi(tj), xi(tj)], where

xi(tj) = x̃i(tj) − σi,

xi(tj) = x̃i(tj) + σi.
(7.2)

Non-homogeneous (relative) errors In case the variances are non-homogeneously
distributed (according to the F-test), we consider the relative standard deviation of
the method ri (variation coefficient), see Funk et al. [2007] for details. The confidence
intervals are then described by xi(tj) ∈ [xi(tj), xi(tj)], where

xi(tj) = x̃i(tj)(1 − ri/100),
xi(tj) = x̃i(tj)(1 + ri/100). (7.3)

We furthermore have to take into account that the compounds are only detectable
above a certain threshold. We denote the limit of detection (LOD) η

i
as the lowest

level at which a compound concentration can be detected. The detection threshold is
taken into account by

x̃i(tj) � η
i

⇒ xi(tj) = 0. (7.4)

A summary of the measurement errors obtained by assay validation (data not shown)
is provided in Tab. 7.1.
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Table 7.1.: Statistical analysis of the measurement errors by validation assay.

Amn Glc Gln∗ Lac Xd
∗ Xv

∗

[mM] [mM] [mM] [mM] [106 cells
ml ] [106 cells

ml ]

LOD (η
i
) 0.30 3.91 0.82 2.98 0.00 0.00

SD of the method (σi) 0.03 0.39 (0.08) 0.30 (0.02) (0.02)
% SD of the method (ri) (2.1%) (1.9%) 5.9% (1.7%) 6.2% 6.2%
monotonic behavior ↗ ↘ ↘ ↗ ↗ ↗

∗non-homogeneous variance. LOD: limit of detection. SD: standard deviation. % SD: relative
standard deviation.

7.3. Identification of growth phases

Cell growth in batch culture typically follows certain growth phases. Initially, sufficient
substrates for cell growth are available, while metabolic by-product concentrations are
low. In this situation, cells have ideal conditions to grow, where the specific growth rate
is at maximum. Subsequently, particularly when substrates are nearly depleted and by-
product concentrations rise, the specific growth rate declines until growth completely
ceases. This defines a second growth phase. Finally, because no substrates are available
any more and by-product concentrations are high, total cell number decreases.

Before analyzing the cell growth dynamics and the main metabolites in detail, we
aim to identify the cell growth phases based on the dynamics of the viable cell concen-
tration. A simple mechanistic description for the dynamics of the viable cells is given
by

Ẋv = (μ − Kd)Xv, (7.5)

where μ the unknown specific growth rate, Kd the specific cell death rate, and Xv

denotes the concentration of viable cells. For now, we consider for simplicity the
specific cell death rate fixed to the reference value (Kd = 0.003 h−1, data not shown).
To identify the growth phases for both experiments, we can consider the following
reverse engineering approach. We treat μ = μ(t) as an unknown and time-variant
parameter, and determine the values of μ(t) which are consistent with the data (i.e. Xv)
and the simple model (7.5), i.e. we estimate the lower and upper 1-sigma confidence
intervals of μ(t) at each time sample. The results are depicted in Fig. 7.1.

The time-dependent specific growth rates are used subsequently to distinguish qual-
itatively different phases of growth of AGE1.HN cells. We thus characterize the first
phase by assuming the specific growth rate μmax to be constant, i.e.

μ(t) = μmax = const. (7.6)
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7.4. Phase of exponential cell growth

Such a constant maximum specific growth rate corresponds to an exponential growth
dynamics. This first phase starts at the beginning of the experiments (t = 0 h),
and terminates at that time point when the specific growth rate can not be considered
constant any more, compare Fig. 7.1. The phase lasts in the bioreactor for a maximum
of 125 h, and in the shaker for a maximum of 128 h. After the phase of maximum
growth, the specific growth rate decreases until growth completely ceases, as shown in
Fig. 7.1. The second phase terminates when no cell growth is observed any more, i.e.
when μ(t) = 0. We determined therefore the second growth phase by

0 � μ(t) < μmax. (7.7)

For both experiments, cell growth is observed for a maximum of 180 h. The final phase
is characterized by a declining cell concentration, i.e.

μ(t) < 0, (7.8)

observed for t � 180 h.

Figure 7.1.: Specific growth rate μ(t) and growth phases. Depicted is the 1-sigma
confidence interval of the specific growth rate for the bioreactor (left) and the shaker
(right) experiment. Phase I: exponential cell growth. Phase II: decreasing cell growth.
Phase III: declining cell concentration.

The identification of the growth phases so far is based on the dynamics of the viable
cell concentration alone. In the following, we aim to investigate the first two indicated
growth phases more comprehensively by taking the dynamics of the metabolites into
account.

7.4. Phase of exponential cell growth

We first investigate the exponential growth phase. To this end, we consider a mech-
anistic description of the uptake of glucose (Glc) and glutamine (Gln), the release of
lactate (Lac) and ammonia (Amn), as well as the dynamics of dead (Xd) and viable
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cells (Xv), following [Bailey and Ollis, 1986] and references therein:

d/dt Amn = μmax
Y ′

X/Amn
Xv + KdegGln

d/dt Glc = − μmax
Y ′

X/Glc
Xv

d/dt Gln = − μmax
Y ′

X/Gln
Xv − KdegGln

d/dt Lac = μmax
Y ′

X/Lac
Xv

d/dt Xd = KdXv − KlysXd

d/dt Xv = (μmax − Kd)Xv.

(7.9)

Model (7.9) describes cell growth under ideal conditions. It includes the uptake of
Glc and Gln, the release of Lac and Amn, and the lysis of dead cells. In addition,
the spontaneous degradation of Gln to Amn is taken into account (see e.g. Bailey
and Ollis [1986] and references therein). Note that this basic model does not include
feedbacks, i.e. the specific growth rate μmax does not depend on the concentration of
substrates or released products. Note also that the simple model (7.9) is only valid for
non-negative concentrations and for low levels of accumulated by-products.

Parameter estimation and sensitivities Besides the values of the parameters Kdeg
and KLys, which are known from previous experiments (data not shown, see Tab. 7.2),
the parameters of the model (7.9) were unknown. To estimate the four yield factors,
the death rate Kd, and the specific growth rate μmax, we consider the available data
in Phase I.

Remark 12 Parameter and state estimation does not depend on a guess neither for
the initial parameters nor the initial conditions. Instead, the range of initial parameters
covers several orders of magnitudes, compare Tab. 7.2, and also the initial conditions
were uncertain.

Subsequently, we determine the 1-sigma (68.3%) parameter confidence intervals and
evaluated their sensitivity according to Eq. (4.2). The results are shown in Fig. 7.2 and
Tab. 7.2. Results show that all the unknown parameters are sensitive. Conversely, this
means that the experimental data contains sufficient information for identification of
the unknown parameters. The maximum specific growth rate μmax is the most sensitive
parameter (ξ ≈ 0.9); the sensitivities ξ of the yield factors range from 0.6–0.9.

In a next step, we estimate the optimal parameter values regarding the least squares
criterion (4.3) by using the proposed branch-and-bound scheme, refer Section 3.3.4.
The optimization results are depicted in Fig. 7.2. Note that the confidence intervals
are not symmetric regarding the optimal parameter values, which results from non-
homogeneous errors and nonlinearity of the estimation problem.
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7.4. Phase of exponential cell growth

Figure 7.2.: Optimal parameter estimation using branch-and-bound. Depicted are
the parameter confidence intervals (logarithmic scale, normalized), and the optimal pa-
rameters (vertical bars) regarding the sum of least squares.

Comparing both setups, the maximum specific growth rate is found to be larger in
the bioreactor than in the shaker flask. In conclusion, the bioreactor provided more
suitable growth conditions for AGE1.HN cells. Furthermore, the yield factors for the
substrates, Y ′

X/Glc and Y ′
X/Gln, are significantly lower in the in the bioreactor, i.e. the

substrates are utilized more efficiently in the bioreactor than in the shaker to form
viable cells.

Uncertainty and outlier analysis. To evaluate the effect of uncertain parameters
and to detect outliers, we estimate the reachable states of Model (7.9) regarding the
determined parameter confidence intervals. The results are depicted in Fig. 7.3. Re-
sults show that the model is rather robust with respect to parametric variations as
expected, because the variations did not lead to significant or qualitatively different
behavior.

Furthermore, by direct comparison of the reachable states with the measurement
data, outliers were detected, see Fig. 7.3. Besides some lactate measurements from the
shaker flask, we detected only few and isolated outliers. These isolated outliers can
probably be explained from sampling or sample preparation errors, as well as the fact
that we only considered the 1-sigma confidence limits of the parameters. Subsequently,
we remove the outliers from the data set.

On the other hand, consecutive outliers as found for lactate in the shaker flask (see
Fig. 7.3, right), can neither be explained by sampling nor sample preparation errors
nor by statistics. Consecutive outliers typically indicate a model mismatch, i.e. a
significant deviation of considered kinetics, e.g. additional metabolic pathways such
as pyruvate pathway.

In summary, both parameter and uncertainty analysis support the proposed model.
Only isolated outliers have been detected, besides lactate dynamics in the shaker flask.
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Figure 7.3.: Uncertainty analysis and outlier detection (exponential growth
phase). Reachable state sets are shaded, outliers indicated by circles.

The model parameters are all sensitive, and the uncertainty analysis demonstrate
robustness of the proposed model with respect to parametric uncertainties.

7.5. Phase of decreasing cell growth

We next consider the decrease in the specific growth rate with progressing time. In
particular, we aim to provide a concise model which describes consistently the ob-
served dynamics for 0 � t � 180 h, i.e. covering the complete time course of both
experiments.

To this end, it is necessary to modify the structure of the basic model (7.9), because
this model is based on the simplifying assumption that substrates were (indefinitely)
available and by-product concentrations were low, which is no longer the case toward
the end of the experiments. To describe a substrate uptake kinetics, we use the Monod
equation (see e.g. Zeng and Deckwer [1995], and below Eq. (7.11)). Substrate up-
take kinetics also affects the production of Amn and Lac, because Amn is primarily
produced from Gln (see Wahl et al. [2008]), and Lac from Glc, see Neermann and
Wagner [1996]. Therefore, the production of Amn and Lac directly depends on the
availability of the Gln and Glc, which had to be taken into account. The extended

98



7.5. Phase of decreasing cell growth

Table 7.2.: Summary of parameters corresponding to the bioreactor and shaker flask exper-
iment.

par. unit references bioreactor shaker
[p

i
, pi] opt ξ [p

i
, pi] opt ξ

μmax 1/h 2e-2–1.3e-1 [1.54,1.91]e-2 1.90e-2 0.90 [1.26,1.48]e-2 1.44e-2 0.92
Y′

X/Glc
109

mmol 6e-2–1.7 [0.93,1.93]e-1 1.44e-1 0.69 [1.41,3.75]e-1 2.21e-1 0.61
Y′

X/Gln
109

mmol 3e-2–1.6 [3.31,6.23]e-1 4.89e-1 0.73 [5.37,11.4]e-1 6.50e-1 0.69
Y′

X/Lac
109

mmol 7e-2–2.5e-1 [6.20,8.28]e-2 8.22e-2 0.87 [7.58,9.60]e-2 8.22e-2 0.89
Y′

X/Amn
109

mmol 5.0e-1–2.0 [3.98,6.03]e-1 5.48e-1 0.81 [4.69,7.55]e-1 5.78e-1 0.79
Kd 1/h 2.8e-4–3e-1 [1.66,3.45]e-3 2.66e-3 0.69 [5.09,12.4]e-4 7.20e-4 0.64

KGlc mM 1.5e-1–1.0 [0.89,2.43] 1.21 0.61 –∗

KGln mM 6e-2–8.0e-1 [0.01,1.35] 0.55 0.11 [0.13,1.52] 0.49 0.29
KpH pH –2 [0.51,4.91] 3.01 0.32
KAmn mM 1.0–2.0e1 –∗ [5.16,15.8] 7.21 0.57
KLac mM 8.0–1.4e2 –∗ [27.7,72.9] 54.4 0.62

Kdeg 1/h 1.5e-31 –
Klys 1/h 1.0e-21 –
N 1/h 7.15 –

Literature values taken from [Cruz et al., 1999, Doyle and Griffiths, 1998, Goergen et al.,
1993, Häggström, 2000, Meier et al., 1999, Ozturk and Palsson, 1990, Pörtner and Schäfer,
1996]. p

i
and pi denote the lower and upper limit of the 1-sigma parameter confidence in-

terval. ξ denotes the sensitivity coefficient (Eq. (4.2)). 1unpublished data. 2pH constant.
∗insensitive parameter.

model considered in the remainder is given by:

d/dt Amn = μmax

Y ′
X/Amn

Gln
Gln+KGln

Xv + KdegGln

d/dt Glc = − μmax

Y ′
X/Glc

Glc
Glc+KGlc

Xv

d/dt Gln = − μmax

Y ′
X/Gln

Gln
Gln+KGln

Xv − KdegGln

d/dt Lac = μmax

Y ′
X/Lac

Glc
Glc+KGlc

Xv

d/dt Xd = KdXv − KlysXd

d/dt Xv = (μ − Kd)Xv.

(7.10)

Furthermore, we have to identify the factors that explain the declining specific
growth rate. In particular, we assume that the decline of the specific growth rate
results from negative feedbacks, e.g. substrate depletion, by-product side effects, or
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the pH of the medium in the shaker flask. To evaluate which of these factors actually
contribute to the observed dynamics, we extend the model as described below.

First, we consider that the specific growth rate may be limited by either of the
substrates Glc or Gln, e.g. Bailey et al. [1996]:

μ = μmax
S

S + Ks
, (7.11)

where S denotes the substrates concentration, and Ks the (unknown) Monod constant.
Second, accumulation of by-products may influence cell growth, i.e. Amn or Lac
[Bailey et al., 1996]. Such an influence can be described by a non-competitive inhibition
mechanism by

μ = μmax
KI

I + KI
, (7.12)

where I is the by-product (inhibitor) concentration, and KI the respective (unknown)
inhibition constant. Third, for bacteria and hybridoma, the influence of the pH-value
on cell growth has been reported by McQueen and Bailey [1990] and Eagle [1973],
Ozturk et al. [1992]. Based on their studies, the influence of the pH on cell growth can
be described qualitatively by a parabola

μ = μmax · (KpH(−pH2 + 2NpH) − N2) + 1) = μmax · ηpH , (7.13)

where N = 7.15 (vertex) denotes the pH value where the specific growth rate is
at its maximum, and KpH an unknown parameter. Notice that all proposed feedback
hypotheses contain besides μmax one unknown parameter. The single factor hypotheses
for the specific growth rate are summarized in Tab. 7.3, and were analyzed hereafter.

Table 7.3.: Specific growth rates hypotheses.

factor hypothesis bioreactor shaker

Glc μ = μmax · Glc

Glc + KGlc
+3,4 –

Gln μ = μmax · Gln

Gln + KGln
–1 +

Lac μ = μmax · KLac

Lac + KLac
– +

Amn μ = μmax · KAmn

Amn + KAmn
–2 +

pH μ = μmax · ηpH – +4

+ valid, – invalid hypothesis. 1see Fig. 7.4A, 2see Fig. 7.4B, 3see Fig. 7.4C, 4compare Fig. 7.5.
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7.5. Phase of decreasing cell growth

Evaluating the feedback hypotheses. For evaluation, we choose again a reverse
engineering approach. We already estimated the specific growth rates μ(t), depicted in
Fig. 7.1, which reflects the ‘observed’ cell growth dynamics. In addition, we determine
the 1-sigma confidence limits for the specific growth rates according to the hypotheses
listed in Tab. 7.3. To this end, we consider the 1-sigma confidence interval μmax as
determined before and constrain the remaining unknown parameter to the range of
the reported literature values, compare Tab. 7.2. Thus, we obtain the ‘hypothetical’
specific growth rates, which we can compare with the ‘observed’ specific growth rate
for falsification purposes as shown in Fig. 7.4. Exemplary, Fig. 7.4A and Fig. 7.4B
show the results for Gln-limitation and Amn-inhibition in the bioreactor, respectively.
Because the ‘observed’ and the ‘hypothetical’ specific growth rates in both cases do
not overlap at any time, we conclude that neither Gln-limitation nor Amn-inhibition
alone explained the observed growth dynamics. On the contrary, Glc-limitation, see
Fig. 7.4C, may be a valid hypothesis.

Figure 7.4.: Evaluation of feedback hypotheses. Comparison of the ‘observed’ (biore-
actor) and three ‘hypothetical’ specific growth rates: Gln-limitation (A, falsified), Amn-
inhibition (B, falsified), and Glc-limitation (C, validated).

The results are summarized in Tab. 7.3. Results show that Glc is essential for
cell growth in the bioreactor. In contrast, Gln limitation does not affect growth
of AGE1.HN cells. Furthermore, the by-products Amn and Lac do not affect cell
growth within the observed concentration ranges significantly (considering physiolog-
ically meaningful inhibition constants).

The situation in the shaker flask is different, because Glc is available until the end
of the experiment, i.e. Glc is not responsible for the decrease of the specific growth
rate here. Instead, the decrease may be either explained by by-product inhibition, the
proposed pH-dependency, or Gln-limitation. Hence, without additional knowledge,
the results appear to be non-conclusive for the shaker flask. However, since we showed
that cell growth is not affected by Gln-limitation in the bioreactor, we can rule out
this hypothesis for the shaker flask. Furthermore, since the observed concentration
ranges of Amn and Lac are comparable in the bioreactor and in the shaker flask (both
slightly lower in the shaker), we can rule out Amn nor Lac inhibition too. For the
shaker, only the pH dependency hypothesis remains. This is plausible, because it
is known that the pH value decreases due to the release of the acid Lac; we thus
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conclude that the decrease of the specific growth rate in the shaker is the result of
the acidification of the medium by Lac. For further analysis, we determined the
unknown parameters and the corresponding confidence intervals for Glc-limitation
(KGlc) and pH-dependency (KpH), see Tab. 7.2. The parameters were found sensitive
and in accord with the literature values. Finally, for Glc-limitation (bioreactor) and
pH-dependence (shaker flask), we performed an uncertainty and outlier analysis as
described before, see Fig. 7.5; this analysis demonstrated robustness against parametric
variations, and only few (non-consecutive) additional outliers.

Figure 7.5.: Uncertainty analysis and outlier detection. Reachable state sets are
shaded, outliers indicated by circles. Bioreactor: Glc-limitation, Shaker: pH-dependency.

7.6. Design of experiments

We finally consider the design of experiments for the exponential growth phase for the
purpose of parameter estimation. To this end, reconsider the Model (7.9), where we
rename for shorthand of notation the states as follows: x1 and x4 denote the ammonia
and lactate concentration, x2 and x3 the glucose and glutamine concentration, and x5
and x6 the concentration of dead and viable cells respectively. Note that the Model
(7.9) is nonlinear in the parameters, but we can consider a (bijective) transformation
g : R

8 → R
8 of the model parameters, given by: p1 = 1

YAmn
μmax, p2 = 1

YGlc
μmax,

p3 = 1
YGln

μmax, p4 = 1
YLac

μmax, p5 = Kd, p6 = kdeg, p7 = Klys, p8 = (μmax − Kd). The
inverse transormation g−1 : R

8 → R
8 exists for p1 �= 0, p2 �= 0, p3 �= 0, and p4 �= 0,

given by: μmax = p8 + p5, YAmn = p8+p5
p1

, YGlc = p8+p5
p2

, YGln = p8+p5
p3

, YLac = p8+p5
p4

,
Kd = p5, kdeg = p6, Klys = p7.
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We furthermore consider the Euler forward discretization (Appendix A.1) with time
step h, and introduce disturbances for each state to model the measurement uncer-
tainties; thus, we obtain the difference equation system considered in the remainder:

x+
1 = x1 + h(p1x6 + p6x3) + w1

x+
2 = x2 + h(−p2x6) + w2

x+
3 = x3 + h(−p3x6 − p6x3) + w3

x+
4 = x4 + h(p4x6) + w4

x+
5 = x5 + h(p5x6 − p7x5) + w5

x+
6 = x6 + h(p8x6) + w6,

(7.14)

where xi and x+
i = zi denote the initial and future state concentrations respec-

tively, and pj, j = {1, . . . , 8}, the unknown parameters. We assume that the dis-
turbances wi ∈ [−wi, wi] are unknown but bounded. The possible initial conditions
are non-negative, i.e. xi ∈ [0, xi], i = {1, . . . , 6}. An experiment is denoted by
Exp(x1, x2, x3, x4, x5, x6).

We aim to design the optimal experiments to identify the unknown model parame-
ters. To this end, according to Prop. 10, eight experiments/observations are required.
Because each parameter is only appearing once, for each state equation, separate de-
sign matrices can be considered:

We have the one dimensional design matrices A2 = (x6), A4 = (x6), and A6 = (x6),
and hence consider the experiment Exp(∗, ∗, ∗, ∗, ∗, x6) (and measure z2, z4, z6, i.e.
Glc, Lac, and the viable cell concentration Xv after the time h).

The design matrix

A5 =
⎛
⎝−x

(1)
5 x

(1)
6

−x
(2)
5 x

(2)
6

⎞
⎠ ,

attains optimal determinant for e.g.

max |Det( A5)| = x5x6 ·
⎛
⎝1 0

∗ 1

⎞
⎠ .

Thus, we choose the two experiments Exp(∗, ∗, ∗, ∗, x5, 0) and Exp(∗, ∗, ∗, ∗, ∗, x6) (and
measure z

(1)
5 and z

(2)
5 , i.e. the dead cell concentrations Xd respectively).

The remaining design matrices A1 and A3, we have

A1 = A3 =
⎛
⎝x

(1)
3 x

(1)
6

x
(2)
3 x

(2)
6

⎞
⎠ ,

and choose the same maximum Hadamard matrix as before, corresponding to the
remaining experiments Exp(∗, ∗, x3, ∗, ∗, 0) and Exp(∗, ∗, ∗, ∗, ∗, x6) (and measure
z

(1)
1 , z

(2)
1 and z

(1)
3 , z

(2)
3 , i.e. Amn and Gln concentrations respectively).
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The optimal experiments are summarized as follows: We chose an experiment of the
form Exp(∗, ∗, ∗, ∗, ∗, x6), and measure all state concentrations. Furthermore, we chose
Exp(∗, ∗, ∗, ∗, x5, 0), and measure the dead cell concentration Xd. Last, we perform the
experiment Exp(∗, ∗, x3, ∗, ∗, 0), and measure Amn concentration if w1 � w3, otherwise
Gln concentration. This choice is possible because the parameter p6 can be identified
using either of the concentrations.

A multi-step experiment based on the above results can be considered as follows.
We start the batch process with the medium and no viable cells x6(0) = 0, particularly
with a high level of glutamine (i.e. x3(0) = x3). We then add a small portion of viable
cells after some time T , i.e. x6(T ) = x6. The cells will grow until the medium is
depleted. In this experiment setting, the most important information will be obtained
at the beginning of the process, after inserting the portion of viable cells, and shortly
before the medium will be depleted.

As for the second growth phase, a design of experiments should be considered by
which the possible influencing factors are investigated one by one. This avoids super-
position of several influencing factors, and hence more precise parameter estimates can
be expected. For evaluating by-product influences, a pulse administration during the
exponential growth phase will be advantageous. This pulse should be strong enough to
decrease the influence of uncertainties, within biologically meaningful limits. Similarly,
the influence of pH should be studied explicitly this way.

7.7. Conclusions

We investigated the growth and basic metabolism of AGE1.HN cells by using set-based
methods and batch experiments performed in two commonly used environments. To
this end, we described the uncertainty of the measurements by their 1-sigma confidence
intervals obtained from a validation assay.

By using the set membership methods for falsification and estimation, we identified
two qualitatively different growth phases. In both experiments, the first phase was
characterized by a constant maximum specific growth rate corresponding to exponen-
tial cell growth. We demonstrated that this phase could be described very well by a
relatively simple model including the main metabolites as well as dynamics of viable
and dead cells. We estimated the optimal model parameter and the 1-sigma confidence
intervals, and showed that the parameters are sensitive.

Using the outlier detection approach based on reachability analysis, besides lactate
dynamics for the shaker flask experiment, only few and isolated outliers were detected.
By comparing the results for both experiments, we showed that the bioreactor provided
more suitable growth conditions than the shaker.

The second phase was characterized by a declining specific growth rate. To describe
the observed dynamics for the complete time course of both experiments, we extended
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the previous model including substrate limitations, and identified the factors which
lead to the decrease of the specific growth rate using a falsification setting. Thus,
we demonstrated that the governing mechanism for this was glucose limitation in the
bioreactor, and the decrease of the pH value due to the release of lactate in the shaker.
Only few additional outliers were detected.

Overall, we showed that the proposed dynamical models were in good accord with
the experimental data, and we demonstrated that the set membership methods are
valuable tools for modeling and analyzing cell growth dynamics.
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8. Conclusions

8.1. Discussion and conclusions

In this thesis, we presented a set-membership framework for falsification, estimation,
analysis, and design of experiments for polynomial dynamic systems. The proposed
methods are based on the notion of bounded errors, and employ concepts from linear
algebra and convex optimization. Key to falsification and estimation are the semidef-
inite and linear programming relaxations, which make it possible to use efficient set-
membership techniques such as orthothopic bounding and homothety to obtain set-
valued estimates of the parameters, states, or inputs. For the design of optimal ex-
periments for the purpose of parameter estimation, a minimax strategy is considered,
i.e. a worst-case and minimum volume setting. The key joint features of the methods
are they apply to polynomial dynamic systems, they yield a robust perspective be-
cause uncertainties are taken explicitly into account, and they provide guaranteed and
conclusive results. For these reasons, the proposed set-membership methods provides
the means to address some of the challenges encountered when modeling biological
processes.

The methods take as its first premise that uncertainty of the available data and
disturbances can be described by bounded sets, for example that the actual value
of a measurement is unknown, but bounded. This approach is motivated from the
facts, firstly, that the probability density distributions, as e.g. required for hypothesis
testing and estimation in the classical stochastic setting, are frequently complicated,
very difficult to obtain, or not available at all considering biological systems. For
example, time-series measurements in biology are typically not independently and ho-
mogeneously distributed, and determining the probability density distributions may
require many repetitions of the experiment, which however is often not practicable;
moreover, a priori parameter density distributions, as e.g. required for state estimation
and outlier analysis, are frequently completely unknown. Secondly, even if the proba-
bility density distributions are known for a particular case, determining the unknown
probability density distributions, e.g. of the parameters, can be very challenging or
computationally demanding for biological systems due to the nonlinear model equa-
tions and non-homogeneity of the measurement’s distributions. On the other hand,
a bounded error description of the uncertainties can be easily derived from known
probability density distributions, e.g. by considering the n-sigma confidence intervals
of the measurement’s probability density distributions.
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Though, complications can arise from the bounded error description in regard to
real world applications. If the uncertainties are underestimated, a model may be
wrongly rejected, or the estimates may be biased. On the other hand, if uncertainties
are overestimated, the results may be too pessimistic or non-conclusive. In particular
outlying observations, or outliers, are a challenge to the proposed framework which
requires specific measures. We addressed this issue in Sec. 5.3, and proposed model-
generic outlier detection approaches. By allowing for few, non-consecutive outliers in
the measurements, we successfully investigated the cell growth process (Ch. 7).

Besides uncertain and possibly erroneous measurement data, lack of data is a pri-
mary challenge when modeling biological processes. It is thus, first of all, important
to integrate all available data for falsification, estimation, and analysis. Advanta-
geously, the proposed methods account for data alongside measurements, e.g. a priori
knowledge derived from first principles, information about possible correlations of the
model’s variables, as well as qualitative behavior such as monotonic dynamics, can be
used (Sec. 2.2).

Lack of knowledge about the underlying mechanisms or the type of reactions often
results in a number of competing model hypotheses with unknown parameters. To
this end, we proposed an invalidation criterion (Sec. 4.1), i.e. to reject the hypotheses
that are inconsistent with the available data. The parameter estimation problem (Sec.
4.2) in turn is considered from several perspectives in this thesis. To investigate how
data uncertainty propagates to the parameter estimates, and hence to evaluate the
precision of the estimates, the uncertainty intervals can be determined using interval
bounding. The uncertainty intervals furthermore provide a measure of the sensitivity
of the parameter with respect to model rejection. Optimal parameter values, e.g.
regarding the sum of least squares, can be determined via branch-and-bound strategy.
To study possible correlations among the parameters, homothety or partitioning can
be considered.

In addition, it is often not possible to measure all states of a process, e.g. the
concentrations of intra-cellular metabolites, or the measurement process might have
been casually interrupted and some state values are missing. To reconstruct the missing
state values we proposed an interval observer (Sec. 5.1). Conversely, to evaluate the
influence of parametric uncertainties and disturbances onto the system’s dynamics, a
reachability analysis can be considered (Sec. 5.2). The reachable sets provide valuable
information about the dynamical features, e.g. robustness with respect to parametric
uncertainty, of the studied system, which is required for a comprehensive uncertainty
and outlier analysis (Sec. 5.3).

Complementary, we considered in Ch. 6 the design of robust optimal experiments
and studied the limits of the possible designs so as to obtain as good as possible
estimates of the unknown parameters. For polynomial systems which are linear in
the parameters, e.g. biochemical reaction networks derived from law of mass action,
we derived necessary and sufficient conditions to obtain a bounded set estimate in
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worst case of the beforehand completely unknown parameters (Sec. 6.3) using one-
step experiments. The worst case parameter set however can not be made as small
as desired, even when considering an infinite number of experiments; particularly, the
attainable precision is bounded from below by the residual set (Sec. 6.4). Having these
fundamental limitations in mind, we showed that the robust optimal design translates
into maximizing the determinant of the design matrix (Sec. 6.5). For linear systems,
this optimal design corresponds to the Hadamard maximum determinant problem, and
is always realizable under mild assumptions regarding the possible input and initial
conditions only. For polynomial systems, the proposed design may not always be
implementable, nevertheless it gives an lower bound on the achievable optimum. In
such cases, the determinant maximization can e.g. be solved using matrix determinant
algorithms under constraints. These results provide general guidelines for designing
experiments for parameter estimation, e.g. that the initial conditions are particularly
important. If the initial conditions can be manipulated, then the unknown parameters
can be determined using one-step experiments, or more precisely, a compact set of
the parameters can be obtained. Furthermore, extreme stimuli (inputs as well as
initial conditions) are significant to learn as good as possible the unknown parameters,
compensating for additive disturbances.

A limitation of the proposed framework, which has to be considered whenever ap-
plying these methods for particular cases, is the computational cost. Overall, from
experience, the reasonable size of models that can be considered in this framework
using semidefinite programming relaxation is in the order of fifty variables, and using
linear programming relaxation approx. 300 variables. Latter corresponds e.g. to a
typical biochemical reaction network based on mass action, with ten state variables,
each represented by twenty samples, and approx. twenty parameters. This figure
refers to the current implementation [Streif et al., 2012]. Besides, there is a trade-off
between computational demands and precision. To find here appropriate compromises
for specific cases, it is e.g. possible to choose a specific relaxation from those applicable
to our framework (Sec. 3.2), by considering different estimation techniques (Sec. 3.3),
or to decompose an estimation problem into a number of smaller problems by taking
the time ordering explicitly into account (Sec. 3.4).

8.2. Outlook

In this thesis, we derived set-membership methods for falsification, estimation, anal-
ysis, and design of experiments within an off-line context. Extending the existing
methods to an on-line and real time setting, e.g. by allowing the optimization prob-
lems to be updated whenever a new measurement is available (see e.g. Mattingley and
Boyd [2010]), would expand the applicability and possibly improve performance of
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8. Conclusions

these methods, besides making new applications possible such as recursive estimation,
closed-loop control, and adaptive experimental design.

Further work should also focus on improving the performance of the proposed meth-
ods. To this end, it is possible to tailor the construction of the underlying optimization
problems to specific system structures, e.g. to exploit the special structure of biochemi-
cal reaction network based on the law of mass action. Here, the Horn-Jackson-Feinberg
scheme Feinberg [1987], may be considered e.g. following Bullinger et al. [2007]. Be-
sides, exploiting certain sparsity and symmetry properties of these specific systems
may be crucial to apply these methods to system with many variables.

An interesting future direction consist in integrating stability constraints into the
estimation and analysis problems, e.g. to investigate regions of robust stability and
convergence of uncertain systems. Stability constraints may derive from a bounded-
input bounded-output stability concept as e.g. considered in Cerone and Regruto
[2007], Cerone et al. [2011], or input-to-state stability for discrete-time nonlinear sys-
tems as in Jiang and Wang [2001]. In addition, such an approach would also benefit
from inner approximations of the solution which are so far not available.

The proposed approach for the design of optimal experiments may be extended to
more general setups, e.g. a comprehensive polytopic setting for the design variables and
disturbances, or a multi-step setting as considered already in Borchers and Findeisen
[2011] for linear systems. Also, alternative design criteria should be considered in
future, such as design of experiments for purpose of model falsification. To this end,
the graph-based approach presented in Borchers et al. [2011a] may be combined with
the proposed estimation methods.
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A. Discretization of ODE Systems

Discretization refers to the transformation of a continuous-time ordinary differential
equation system into an equivalent system of difference equations. Such a procedure is
often required when an analytical solution is difficult or impossible to derive, e.g. for
numerical integration (see e.g. Davis and Rabinowitz [1975]) or the implementation
of controllers.

For simplicity of presentation, we consider the scalar initial value problem for t0 �
t � tN :

ẋ(t) = f(x(t), p, u(t)), x(t0) = x0. (A.1)

Discretizationallows us to derive an approximate solution to the definite integral
∫ x(tN )

x0
dx = x(tN) − x0 =

∫ tN

0
f(x(τ), p, u(τ)) dτ. (A.2)

Numerous algorithms exists to approximate the definite integral, depending on the
desired properties of the approximation, i.e. the desired accuracy. The fundamental
concept here is to utilize the truncated Tailor-series expansion of the analytical func-
tion f(x(t), p, u(t)), while the truncation order defines the order of the approximation
method. Here, we describe for simplicity first-order approximation schemes to derive
an approximate discrete-time model. First order methods, particularly the Euler for-
ward and Euler backward method, are sufficient for most of the cases, and the accuracy
of the approximation can be influenced by the sampling size. Though, it is important
to note that higher order discretization schemes, such as trapezoidal, midpoint, or
generally Runge-Kutta methods, allow for an adaptive sampling (variable step size,
e.g. Runge-Kutta 45) and hence accurate solutions for a sparse sampling, and can be
considered if necessary. For a comprehensive overview of higher order discretization
schemes and related numerical stability issues, see e.g. Davis and Rabinowitz [1975],
Ralston and Rabinowitz [2001].

A.1. Forward Euler

The simplest numerical approximation scheme is the first-order forward Euler, which
advantageously leads to an explicit representation of the discrete-time model. A disad-
vantage of this approach is that it generally requires small sampling intervals leading
to many samples to avoid numerical stability issues (see e.g. Stuart and Humphries
[1996] for a numerical study on dynamical systems).
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A. Discretization

The scheme derives from the truncation of the Tailor series considering only the first
order derivative, i.e. the linear approximation (extrapolating the tangent at t0) with

x(t0 + h) ≈ x(t0) + hẋ(t0), (A.3)

where h denoted the step size, and we have

ẋ(t0) ≈ x(t0 + h) − x(t0)
h

. (A.4)

Denoting ẋ(t0) = f(x(t), p, u(t)), assuming u(t) being constant within the time interval
t ∈ [t0, t0 + h] (zero-order-hold), and denoting xk−1 = x(t0), uk−1 = u(t0), xk =
x(t0 + h), we finally obtain the discretization scheme (approximate solution of A.2)

xk = xk−1 + hf(xk−1, p, uk−1). (A.5)

To overcome numerical stability issues, the Backward Euler scheme can be considered
alternatively.

A.2. Backward Euler

The backward Euler scheme derives similarly from extrapolating the tangent at t0 +h,
i.e.

x(t0 + h) ≈ x(t0) + hẋ(t0 + h). (A.6)

With ẋ(t0 +h) = f(x(t+h), p, u(t+h)), assuming u(t) being constant within the time
interval t ∈ [t0, t0 + h] (zero-order-hold), and denoting xk−1 = x(t0), uk = u(t0 + h),
xk = x(t0 + h), we finally obtain the discretization scheme (numerical solution)

xk = xk−1 + hf(xk, p, uk). (A.7)

The backward Euler method hence yields an implicit difference equation, and has
advantageous numerical stability properties in contrast to explicit difference equation
obtained by the forward Euler.

Note both schemes allow to consider a variable step size h, which is relevant e.g.
when considering stiff systems or to adapt the sampling to the measurements. It
should also be noted that for the considered approach it is not significant whether an
explicit or implicit scheme is considered, thus we prefer the implicit Euler due to its
advantageous numerical properties, see also Rumschinski [2012], Rumschinski et al.
[2010b, 2012].
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A.3. Sampling

A.3. Sampling

Finally, an approximate solution of the finite integral is obtained by defining an ap-
propriate sampling of the time window, e.g. {t0, t1, . . . , tN}, and denote the corre-
sponding sample index by k with k ∈ {0, 1, . . . , N}. We furthermore consider the
general case where measurements are available at {t0, . . . , tM}. In this case, the tech-
nical requirement is that for each tj, j ∈ [0 : M ] there exists and corresponding index
kj, j ∈ [0 : M ] with kj ∈ [0 : N ] for all j ∈ [0 : M ]. For example, a simple choice
consists in choosing N = M , and a variable step size h = (h0, . . . , hN−1) with

hj = tj+1 − tj, ∀j ∈ [0 : N − 1]. (A.8)

Then, then time indexes k = {0, . . . , N} correspond to time instances {t0, . . . , tN}.
If the considered time window is large, the system admits stiff dynamics, or to use

adaptive sampling, it might be necessary to introduce more samples as measurements
are available. Although the sampling can in principle be chosen arbitrarily, we assume
in the remainder:
Assumption 1 (Appropriate sampling)
The sampling is chosen, such that for each time instance at which a measurement is
available, there is a corresponding integer time index. Furthermore, the sampling steps
are chosen sufficiently small such that discretization errors can be neglected.

Overall, the ODE system 2.22 is transformed into the difference equation system
3.1 by considering a (first order) approximation scheme and a sampling according to
Assumption 1. The resulting difference equation system is summarized by:

M :

⎧⎪⎪⎨
⎪⎪⎩

fk
i (xk, xk−1, p, uk−1, wk−1) = 0, i ∈ [1:nx]

gk
i (yk−1, xk−1, p, uk−1, wk−1) = 0, i ∈ [1:ny]

hk
i (yk−1, xk, xk−1, p, uk−1, wk−1) = 0, i ∈ [1:nc]

(A.9)

Here, xk, uk, yk, wk denote respectively the system states, inputs, outputs, and distur-
bances at the (integer) time index k ∈ [1 : N ], and p ∈ R

np the constant parameters.
Note that the functions fk

i (.), gk
i (.), hk

i (.) may be implicit, and we assume they are
polynomial in the system variables.
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B. Data Description

To formalize the data in terms of polytopic sets, we require the following definition:

Definition 6 (Direct sum)
The direct sum of two matrices A ∈ R

m×n and B ∈ R
o×q is defined by

A ⊕ B =
⎛
⎝A 0

0 B

⎞
⎠ ∈ R

m+o×n+q.

B.1. A priori data

A priori knowledge is modeled by polytopic sets bounding the possible variable’s values.
The a priori bounding sets of the parameters p, states x(t), inputs u(t), outputs y(t),
disturbances w(t), with t0 � t � tN are respectively given by:

Dprior :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

P
.= {p ∈ R

np : App � ap},

X
.= {x ∈ R

nx : Axx(t) � ax}
U

.= {u ∈ R
nu : Auu(t) � au}

Y
.= {y ∈ R

ny : Ayy(t) � ay}
Ω .= {w ∈ R

nw : Aww(t) � aw},

(B.1)

with known the matrix-vector pairs (Ap, ap), (Ax, ax), (Au, au), (Ay, ay), (Aw, aw) of
appropriate dimensions. For the sampled system with k ∈ [0 : N ] corresponding to
{t0, t1, . . . , tN}, we have respectively

Dprior :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

p ∈ P,

xk ∈ X k ∈ [0:N ],
uk ∈ U k ∈ [0:N − 1],
yk ∈ Y k ∈ [0:N ],
wk ∈ Ω k ∈ [0:N − 1].

(B.2)

For simplicity of notation, we collect in the remainder the variables induced by the
sampling by

z
.= (p1, . . . , pnp, x0, . . . , xN , u0, . . . uN−1, y0, . . . , yN , w0, . . . , wN−1),

where z ∈ R
nz , nz = np + N(2 + nx + nu + ny + nw).
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B.2. Measurement data

The a priori data can be summarized for shorthand of notation by

Zprior
.= P ×

N∏
k=0

X ×
N−1∏
k=0

U ×
N∏

k=0
Y ×

N−1∏
k=0

Ω,

i.e.,
Zprior

.= {z ∈ R
nz : Apriorz � aprior}, (B.3)

where
Aprior = Ap ⊕ Ax ⊕ . . . ⊕ Aw, aprior = (ap, ax, . . . , aw)T . (B.4)

Note that the block structure can be exploited to increase performance.

Example As a simple example, we consider the parameters p ∈ R
np to be unknown,

but bounded with 0 � pi � 1, for all i ∈ [1 : np]. We have

Pi =
⎧⎨
⎩pi ∈ R :

⎛
⎝ 1

−1

⎞
⎠ pi �

⎛
⎝1

0

⎞
⎠

⎫⎬
⎭ ,

i.e.
Pi = {Apipi � api}.

The overall bounding set is given by concatenation, i.e. the Cartesian product

P
.= P1 × P2 × . . . × Pnp = {p ∈ R

np : App � ap},

with

Ap =
np⊕

i=1
Api, p =

⎛
⎜⎜⎜⎝

p1
...

pnp

⎞
⎟⎟⎟⎠ , ap =

⎛
⎜⎜⎜⎝

ap1
...

apnp

⎞
⎟⎟⎟⎠ .

B.2. Measurement data

We consider the inputs known and well-defined for any time index k ∈ [0 : N ]. Further-
more, the measurements are given at {t0, t1, . . . , tM}, and the associated uncertainties
are known polytopic sets, i.e.

Dmeas :

⎧⎪⎪⎨
⎪⎪⎩

uk ∈ Uk
.= {u ∈ Rnu : Auk

u � auk
}, k ∈ [0 : N − 1],

xk ∈ X(tk) .= {x ∈ Rnx : Axk
x � axk

} k ∈ [0 : M ],
yk ∈ Y (tk) .= {y ∈ Rny : Ayk

y � ayk
} k ∈ [0 : M ],

(B.5)

with know matrix-vector pair (Auk
, auk

) for all k ∈ [0 : N −1], and (Axk
, axk

), (Ayk
, ayk

)
for all k ∈ [0 : M ].

The measurement data is summarized for shorthand by

Zmeas
.= {z ∈ R

nz : Ameasz � ameas}.
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B. Data Description

B.3. Structural data

The structural data defines interrelations of variables, defined for t0 � t � tN , i.e.
k = 0, . . . , N . We describe structural data by a set of inequalities of the form

Dstr :
{

qi(xk, xk−1, p, uk, yk) � 0 i ∈ [1 : nq] k ∈ [0 : N ], (B.6)

where nq denotes the number of constraints. Assuming that qi for all i ∈ [1 : nq] are
linear equations, we can write the equations by

Zqi

.= {z ∈ R
nz : Aqiz � aqi}, i ∈ [1 : nq],

with known matrix-vector pairs (Aqi, aqi). We summarize for shorthand the structural
data by

Zstr
.= Zq1 × . . . × Zqnq

= {z ∈ R
nz : Astrz � astr},

where

Astr =

⎛
⎜⎜⎜⎜⎜⎜⎝

Aq1

Aq2
...

Aqnq

⎞
⎟⎟⎟⎟⎟⎟⎠

, astr =

⎛
⎜⎜⎜⎜⎜⎜⎝

aq1

aq2
...

aqnq

⎞
⎟⎟⎟⎟⎟⎟⎠

.

B.4. Summary

Finally, for shorthand of notation, we can summarize the available data, denoted by
D = Dprior ∩ Dmeas ∩ Dstr, by

Z
.= {z ∈ R

nz : Azz � az},

where

Az =

⎛
⎜⎜⎝

Aprior

Ameas

Astr

⎞
⎟⎟⎠ , az =

⎛
⎜⎜⎝

aprior

ameas

astr

⎞
⎟⎟⎠ .

Note that (Az, az) typically contains some redundant constraints, which can be de-
tected and removed following e.g. Mattheiss [1973] to ease computations.
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C. Relaxation

C.1. Bounding sets for monomials

To derive bounds for the higher order monomials, which define the last nξ − nz − 1
components of nξ, we utilize simple interval arithmetic. Consider the monomial of
degree two, e.g.

ξnz+1 = zizj.

For each element of z we assume given interval bounds, i.e. zi ∈ [zi, zi] and zj ∈
[zj, zj]. Note that if the interval bounds are not given explicitly, they be easily derived
by linear optimization, i.e. via vertex enumeration. Since the components are assumed
positive, we have the bounding set

ξnz+1 ∈ [zizj, zizj] ⇔ {Aξnz+1ξnz+1 � aξnz+1},

with

Aξnz+1, aξnz+1 :
⎛
⎝ 1

−1

⎞
⎠ ,

⎛
⎝ zizj

−zizj

⎞
⎠ .

Finally, the matrix-vector pair (Aξ, aξ) is given by

(Az ⊕ Aξnz+1 ⊕ . . . ⊕ Aξnξ
, az ⊕ aξnz+1 ⊕ . . . ⊕ aξnξ

).

Similarly, a bounding set for each component of Ξ is obtained, e.g. considering the
relation Ξ = ξξT . We denote the respective matrix-vector pair by (AΞ, aΞ).

C.2. Feasible solution set

The set of solutions feasible for SDP(Z) (3.7) is given by

RSDP
.=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ξ ∈ R
nξ×nξ :

〈F k
i , Ξ〉 = 0 k ∈ [1:N ], i ∈ [1:nx],

〈Gk
i , Ξ〉 = 0 k ∈ [1:N ], i ∈ [1:ny],

〈Hk
i , Ξ〉 = 0 k ∈ [1:N ], i ∈ [1:nh],

〈Di, Ξ〉 = 0 i ∈ [1:nd]
AξΞe1 � aξ,

Ξ11 = 1,

Ξ � 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.
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C. Relaxation

We denote the projection of the (Ξ1,2, . . . , Ξ1,nz+1) elements of the matrix Ξ ∈ S
nξ

onto R
nz by fz(Ξ), R

nξ×nξ → R
nz . The set of feasible solutions can then be written as

ZSDP = fz(RSDP),

with ZSDP ⊆ Z according to Theorem 2.
Analogously, we denote by RLP the solution set of the LP relaxation,

RLP
.=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ξ ∈ R
nξ×nξ :

〈F k
i , Ξ〉 = 0 k ∈ [1:N ], i ∈ [1:nx],

〈Gk
i , Ξ〉 = 0 k ∈ [1:N ], i ∈ [1:ny],

〈Hk
i , Ξ〉 = 0 k ∈ [1:N ], i ∈ [1:nh],

〈Di, Ξ〉 = 0 i ∈ [1:nd]
AξΞe1 � aξ,

Ξ11 = 1,

Ξ � 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

In this case, it is easy to see that the set of solutions RLP and the respective projection
ZLP = fz(RLP) are polytopic sets by construction.
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