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Abstract

This thesis is devoted to the mathematical and numerical analysis for the continuous
coagulation-fragmentation equation. This is a partial integro-differential equation.

There have been several investigations of existence and uniqueness of solutions to the
coagulation and binary fragmentation equation with different classes of kernels. However,
the case of multiple fragmentation was almost ignored. The first aim of this work is to
prove the existence of solutions to the continuous coagulation and multiple fragmentation
equation for large classes of kernels. Here we would like to cover those coagulation kernels
which are not included in the previous literature for the study of the continuous coag-
ulation equation with multiple fragmentation. It is also of great interest to investigate
the uniqueness of solutions. However, in order to prove the uniqueness, we need more
restrictive conditions on the kernels.

The second aim is to demonstrate the uniqueness of mass conserving solutions to the
continuous coagulation and binary fragmentation equation. In this case, the existence
of mass conserving solutions was established in Escobedo et al. [27] for a large class of
coagulation kernels with strong fragmentation. This strong fragmentation prevents the
occurrence of the gelation phenomenon and gives the existence of mass conserving solu-
tions when the class of coagulation kernels grows beyond linearity. Note that the gelation
phenomenon usually leads to solutions which are not mass conserving. Therefore, the
proof of uniqueness requires additional growth conditions on the fragmentation kernels.

The third target is to extend the previous existence result for the coagulation and mul-
tiple fragmentation equation. In this work we wish to include some classical multiple
fragmentation kernels which are not covered in the existence result mentioned above. It
should also be remarked that the classes of coagulation kernels are identical to those in
the above result.

The next goal is to develop the convergence analysis of sectional methods for solving the
non-linear pure coagulation equation. Here we examine the most popular of all sectional
methods the fixed pivot technique. We investigate the convergence of the fixed pivot
scheme on five different grid types. We found that the scheme is second order accurate
on uniform and non-uniform smooth grids while it shows first order accuracy on locally
uniform grids. The undesirable result is that the scheme is not convergent on oscillatory
and random grids. Finally, we demonstrate practical significance of the mathematical
results by performing a few numerical simulations.

The fixed pivot technique gives a consistent over prediction of the solution for the large
size particles when applied on coarse grids. To overcome this problem, the cell average
technique was introduced which preserves all advantages of the fixed pivot technique and



improves the numerical results. Further, we are also interested to evaluate the order of
convergence of the cell average technique for the pure coagulation equation by performing
several numerical experiments. Then we compare the numerical results with the result
obtained by the fixed pivot technique. This cell average technique yields second order ac-
curacy on uniform, non-uniform smooth and locally uniform grids. The scheme turns into
a first order accurate method on oscillatory and random grids. Therefore, the cell average
technique experimentally shows one order higher accuracy than the fixed pivot technique
for locally uniform, oscillatory and non-uniform random grids. The mathematical proof
of this higher order remains an open problem.
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Zusammenfassung

Diese Doktorarbeit ist der mathematischen und numerischen Analysis der Gleichung des
kontinuierlichen Koagulations- und Fragmentationsprozesses gewidmet. Dieses ist eine
partielle Integro-Differential-Gleichung.

Es gibt zahlreiche Untersuchungen zur Existenz und Eindeutigkeit von Lösungen einer
Koagulations- und binären Fragmentationsgleichung mit unterschiedlichen Klassen von
Kernfunktionen. Der Fall der mehrfachen Fragmentation ist dagegen noch nicht eingehend
untersucht worden. Das erste Ziel dieser Arbeit ist ein Existenznachweis für Lösungen
einer kontinuierlichen Koagulations- und mehrfachen Fragmentationsgleichung für eine
grosse Klasse von Kernfunktionen. Wir möchten hier solche Koagulationskerne behan-
deln, die in der bisherigen Literatur für das Studium einer kontinuierlichen Koagulations-
und mehrfachen Fragmentationsgleichung nicht berücksichtigt wurden. Auch ein Ein-
deutigkeitsnachweis für solche Lösungen ist in diesem Zusammenhang von grossem Inter-
esse. Jedoch müssen wir für diesen Eindeutigkeitsnachweis einschränkendere Bedingungen
an die Kernfunktionen stellen.

Das zweite Ziel ist der Eindeutigkeitsnachweis für Lösungen einer Koagulations- und
binären Fragmentationsgleichung mit Massenerhalt. In diesem Fall wurde die Existenz
massenerhaltender Lösungen von Escobedo et al. [27] für eine grosse Klasse von Koagula-
tionskernen mit starker Fragmentation gezeigt. Die starke Fragmentation verhindert das
Auftreten von Gelbildungsprozessen und liefert die Existenz massenerhaltender Lösungen
falls für die Klasse der Koagulationskerne ein Wachstum vorliegt, das stärker als linear ist.
Man beachte dabei, dass Prozesse mit Gelbildung im allgemeinen zu Lösungen führen,
die den Massenerhalt verletzen. Daher werden für den Eindeutigkeitsnachweis zusätzliche
Wachstumsbedingungen an die Fragmentationskerne gestellt.

Das dritte Ziel ist das vorher gewonnene Existenzresultat auf Gleichungen mit Koagulations-
und mehrfache Fragmentation zu erweitern. In diesem Teil konnten wir einige mehrfache
Fragmentationskerne abdecken, die in der Literatur noch nicht behandelt wurden. Die
Koagulationskerne sind die Gleichen wie im vorhergehenden Teil.

Das nächste Ziel ist die Entwicklung einer Konvergenzanalysis von Diskretisierungsmeth-
oden zur Lösung der nichtlinearen reinen Koagulationsgleichung. Zuerst untersuchen wir
die populärste Methode, nämlich die “fixed pivot”-Technik. Hier untersuchen wir die
Konvergenz des Schemas auf fünf unterschiedlichen Gittertypen. Wir erhalten ein Ver-
fahren, das zweiter Ordnung genau ist für äquidistante und nicht äquidistante glatte Git-
ter, während es für lokal äquidistante Gitter nur eine Genauigkeit erster Ordnung liefert.
Dabei tritt das unerwünschte Resultat auf, dass das Schema für oszillierende oder zufällige
Gitter gar nicht konvergiert. Schliesslich testen wir die mathematischen Resultate anhand
einiger numerischer Simulationen.
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Die “fixed pivot”-Technik gibt eine konsistente Überschätzung der Lösung bei grossen Par-
tikeln, wenn sie auf groben Gittern angewendet wird. Um dieses Problem zu bewältigen,
wurde die Technik der Zellmittelung eingeführt, die alle Vorteile der “fixed pivot”-Technik
enthält, aber die numerischen Ergebnisse verbessert. In der Arbeit haben wir dazu einige
numerische Experimente durchgeführt. Die gewonnenen Resultate haben wir mit den
Resultaten der ’fixed Pivot technik’ verglichen. Diese Zellteilungsmethode liefert Kon-
vergenz zweiter Ordnung auf gleichmässigen, ungleichmässigen aber glatten und lokal
gleichmässigen Gittern. Nimmt man oszillierende oder zufällige Gitter, konvergiert die
Methode nur mit erster Ordnung. Das heisst die Technik der Zellmittelung hat höhere
Konvergenzordnung als die Fix pivot Technik für gleichmässigen, ungleichmässigen aber
glatten und lokal gleichmässigen Gitter. Der mathematische Beweis der höheren Ordnung
ist ein offenes Problem.
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Chapter 1

Introduction

1.1 Overview

The continuous coagulation-fragmentation equations are a type of partial integro-different-
ial equations which are also known as aggregation-breakage equations. These models de-
scribe the dynamics of particle growth and the time evolution of a system of particles
under the combined effect of aggregation (or coagulation) and breakage (or fragmenta-
tion). Each particle is identified by its size (or volume) which is assumed to be a positive
real number. From a physical point of view the basic mechanisms taken into account are
the coalescence of two particles to form a larger one and the breakage of particles into
smaller ones. These models are of substantial interest in many areas of science and engi-
neering: kinetics of phase transformations in binary alloys such as segregation of binary
alloys [62, 100], aggregation of red blood cells in biology [76], fluidized bed granulation
processes [75, 74, 49], aerosol physics, i.e. the evolution of a system of solid or liquid par-
ticles suspended in a gas [83, 17, 85], formation of planets in astrophysics [79], polymer
science [101] and many more.

In 1917, Smoluchowski proposed [87] the following discrete model in order to describe
the coagulation of colloids moving according to a Brownian motion which is known as
Smoluchowski coagulation equation

d

dt
ci =

1

2

i−1∑

j=1

Kj,i−jcjci−j −
∞∑

j=1

Ki,jcicj ,

with

ci(0) = c0i , for i = 1, 2, 3, . . . .

Here the number density (or concentration) of particles of size i at time t is denoted by
ci(t). The coagulation rates Ki,j are non-negative real numbers such that Ki,j = Kj,i for
i, j ≥ 1. The first term on the right-hand side in the above equation gives the birth of
i-particles by coagulation of smaller particles while the second represents the death of

1



CHAPTER 1. INTRODUCTION

i-particles due to the coalescence with other particles. The factor 1
2
will come to avoid

the double counting in the birth term.

In 1928, Müller [71] provided the continuous version of the Smoluchowski coagulation
equation as

∂f(x, t)

∂t
=
1

2

∫ x

0

K(x− y, y)f(x− y, t)f(y, t)dy −
∫ ∞

0

K(x, y)f(x, t)f(y, t)dy,

with

f(x, 0) = f0(x).

Here the variables x ≥ 0 and t ≥ 0 denote the size of the particles and time, respectively.
The number density of particles of size x at time t is denoted by f(x, t). The coagulation
kernel K(x, y) ≥ 0 represents the rate at which the particles of size x coalesce with par-
ticles of size y and is assumed to be symmetric i.e. K(x, y) = K(y, x).

The Smoluchowski coagulation equation only considers the coagulation process for the
particles but does not include the fragmentation process. A straightforward generalization
of the Smoluchowski equations are the discrete coagulation-fragmentation equations [88].
This is introduced as a model of an infinite system of ordinary differential equations
which describes coagulation and binary fragmentation events together. The equations are
as follows

d

dt
ci =

1

2

i−1∑

j=1

(Ki−j,jci−jcj − Fi−j,jcj)−
∞∑

j=1

(Ki,jcicj − Fi,jci+j), (1.1)

with

ci(0) = c0i , for i = 1, 2, 3, . . . .

Here c = (ci) ≥ 0 denotes the expected number of i-particle clusters per unit volume at
time t. The coagulation rates Ki,j and fragmentation rates Fi,j are non-negative constants
with Ki,j = Kj,i and Fi,j = Fj,i.

In this thesis we deal with some issues related to the mathematical and numerical anal-
ysis of the continuous version of the coagulation-fragmentation equations, given by the
following integral differential equations [89, 21]:

∂f(x, t)

∂t
=
1

2

∫ x

0

K(x− y, y)f(x− y, t)f(y, t)dy−
∫ ∞

0

K(x, y)f(x, t)f(y, t)dy

− 1

2

∫ x

0

F (x− y, y)f(x, t)dy +

∫ ∞

0

F (x, y)f(x+ y, t)dy, (1.2)

2



1.1. OVERVIEW

with

f(x, 0) = f0(x) ≥ 0 a.e.

Note that this system is the continuous coagulation equation with binary fragmenta-
tion. Here the function f(x, t) with the variables x, t ≥ 0 and the coagulation kernel
K(x, y) ≥ 0 have the same interpretation as are in the case of continuous Smoluchowski
coagulation equation. Here f(x, t)dx represents the average number of particles between
the masses x and x+dx at time t. This average and all other averages are referred to a unit
volume. The coagulation kernel K(x, y) is introduced through the assumption that the
number of coalescence between particles of mass ]x, x+ dx[ and those of mass ]y, y + dy[
is K(x, y)f(x, t)f(y, t)dxdydt during the time interval ]t, t + dt[. In the same way, the
fragmentation kernel F (x, y) ≥ 0 gives the rate at which the particles of size x+ y break
up into two particles of sizes x and y and is assumed to be symmetric i.e. F (x, y) = F (y, x).

The integrals on the right-hand side of (1.2) represent, respectively,

• birth of particles of size x by the aggregation of particles with sizes y and x − y
(0 ≤ y ≤ x)

• death of particles of size x due to the aggregation with particles of size y (0 ≤ y <∞)

• death of particles of size x due to their breakage into particles of size y (0 ≤ y ≤ x)

• birth of particles of size x by the breakage of particles of size x+ y (0 ≤ y <∞).

Actually, we will work with a more general form that allows multiple fragmentation where
a particle may break into more than two fragments. A more general form of the above
equation is given by Melzak [70] as the coagulation and multiple fragmentation equation.
For the moment let us consider only the multiple-fragmentation process as

∂f(x, t)

∂t
=

∫ ∞

x

Γ(y, x)f(y, t)dy−
∫ x

0

y

x
Γ(x, y)f(x, t)dy, (1.3)

with

f(x, 0) = f0(x) ≥ 0 a.e.

where Γ(x, y) ≥ 0 is the multiple-fragmentation kernel. The fragmentation kernel Γ(x, y)
enters by assuming that f(x, t)Γ(x, y)dxdydt is the average number of particles of mass
]y, y+ dy[ obtained from the breakage of the particles of mass ]x, x+ dx[ during the time
interval ]t, t+ dt[. Conservation of mass implies that ∂f(x, t)/∂t is equal to a sum of two
terms which represent, respectively, the rates of

• birth of particles of size x by the breakage of particles of size y (x ≤ y <∞),

• death of particles of size x due to their breakage into particles of size y (0 ≤ y ≤ x).

3
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Now the continuous coagulation and multiple fragmentation equation can also be written
in the following form [56, 40]

∂f(x, t)

∂t
=
1

2

∫ x

0

K(x− y, y)f(x− y, t)f(y, t)dy−
∫ ∞

0

K(x, y)f(x, t)f(y, t)dy

+

∫ ∞

x

b(x, y)S(y)f(y, t)dy− S(x)f(x, t), (1.4)

with

f(x, 0) = f0(x) ≥ 0 a.e. (1.5)

Here the breakage function b(x, y) is the probability density function for the formation
of particles of size x from the particles of size y. It is non-zero only for x < y. The
selection function S(x) describes the rate at which particles of size x are selected to
break. The selection function S and breakage function b are defined in terms of the
multiple-fragmentation kernel Γ used in (1.3) as

S(x) =

∫ x

0

y

x
Γ(x, y)dy, b(x, y) = Γ(y, x)/S(y).

Equation (1.4) is usually referred as the generalized coagulation-fragmentation equation,
as fragmenting particles can split into more than two pieces. However, the continuous
coagulation and binary-fragmentation equation (1.2) can be obtained as a special case of
(1.4) by setting

S(x) =
1

2

∫ x

0

F (y, x− y)dy, b(x, y) = F (x, y − x)/S(y)

where F is assumed to be symmetric. In this binary-fragmentation model, the function
F (x− y, y) represents the rate at which particles of size x− y and y are produced from a
fragmenting particle of size x.

Before proceeding to the next section, it is important to define the moments of the number
density distribution. The rth moment of the number density distribution f(x, t) if it exists
is defined by

Mr(t) = Mr(f(t)) :=

∫ ∞

0

xrf(x, t)dx, r ∈ R≥0.

The first two moments represent some important properties of the distribution. The
zeroth (r = 0) and first (r = 1) moments give the total number and the total mass or
volume of particles, respectively.

4



1.2. EXISTING AND NEW RESULTS

1.2 Existing and new results

This work includes typical questions of mathematical and numerical analysis for the con-
tinuous coagulation-fragmentation equations. In particular, we deal mainly with the
problem of existence and uniqueness of solutions for these equations. Moreover, the con-
vergence analysis of sectional methods is also studied for non-linear coagulation problems.
Now we start to give a short description to each of the topic mentioned above.

1.2.1 Existence of solutions

In the study of any equation, one of the first mathematical questions is: Does the solution
exist? Many results on existence of solutions to the various forms of the coagulation-
fragmentation equation have already been established using a number of different meth-
ods. A precise review of existing literature gives an idea on the conditions which are
required to show the well-posedness of the coagulation-fragmentation equation. These
conditions include some bounds on the kernels as well as the finiteness of total number of
particles

∫∞

0
f0(x)dx and total mass

∫∞

0
xf0(x)dx taken initially.

Melzak and McLeod first discussed the existence of solutions in [70, 67, 68, 69]. Galkin,
Dubovkskii and Stewart extended their result in [36, 21] using compactness methods in
the space of continuous functions. Ball, Carr, Penrose, Spouge and Da Costa studied the
discrete system of equations [5, 4, 88, 14] and Stewart, Escobedo, Laurençot, Mischler
and Perthame [89, 27, 28, 57, 60] treated the continuous equations using compactness
methods in the space of integrable functions. However, the case of multiple-fragmentation
is not discussed too much. The first study of the coagulation equation with multiple
fragmentation is due to Melzak [70] where the first existence result was proved for bounded
coefficients. McLaughlin et al. [65] established the existence of solutions to the multiple-
fragmentation equation under the condition that

S(x) =

∫ x

0

y

x
Γ(x, y)dy ≤ Cn <∞ for all x ∈]0, n], n > 0

where the sequence Cn may be unbounded. This was extended in McLaughlin et al.
[66] to the combined coagulation and multiple-fragmentation equation (1.4) under the
assumptions that K is constant and

Γ ∈ L∞(]0,∞[×]0,∞[).

Using similar arguments, Lamb [56] discussed the existence of solutions to (1.4) under the
less restrictive conditions that K is bounded, S satisfies a linear growth condition, and
b(x, y) is such that the break-up of a particle of size y is a mass-conserving process that
produces an average number of smaller particles that is finite and independent of y. But
most of them used one particular method that involves the application of the theory of
semigroup of operators.

5



CHAPTER 1. INTRODUCTION

We prove the existence of solutions to (1.4). The proof is based on weak L1 compactness
methods applied to suitably chosen approximating equations. This approach originated
in the work of Stewart [89] who investigated the case when both the coagulation kernel
K and binary-fragmentation kernel F satisfy growth conditions almost up to linearity.
Existence results for the continuous coagulation equation with multiple fragmentation
were also established by Laurençot [57] with the approach of Stewart, the class of kernels
being different but with a non-empty intersection. He considered only those coagulation
kernels which have a product kernel as dominating part, see (B.19) in Appendix. But
this is not the case for the class of coagulation kernels for which we prove the existence
of solutions. We will also give some examples of coagulation kernels in Chapter 2 which
satisfy our hypotheses but are not included in Laurençot [57]. A more complete result is
available for the discrete coagulation equation with multiple fragmentation in Laurençot
[58].

Here, our aim in Chapter 2 is to prove the existence of solutions to (1.4) under the much
less restrictive conditions that K is unbounded and satisfies a certain growth condition
as well as that S satisfies an almost linear growth condition. The present work improves
the results of McLaughlin et al. [66] and Lamb [56] by relaxing the assumption of bound-
edness of the coagulation coefficient, the latter condition being crucial for the use of the
semigroup approach.

In Chapter 2, we missed some classical fragmentation kernels which are of substantial in-
terest in the engineering literature. Examples of these type of kernels are given in Chapter
2 which give the motivation for Chapter 4. The purpose of Chapter 4 is to extend the
previous existence result discussed in Chapter 2. Here we will prove the existence of so-
lutions to (1.4) under the same classes of coagulation kernels but more relaxed conditions
on multiple fragmentation kernels. This result includes those classical kernels which are
mentioned above.

1.2.2 Uniqueness

The next question in the study of any equation is the uniqueness of solutions if they ex-
ist. This has also been discussed by many researchers for the coagulation-fragmentation
equations. Mathematical results on the issue have been derived by Aizenman and Bak
[1] for constant kernels and by Melzak [70] for particular class of bounded kernels. Var-
ious existence and uniqueness results for unbounded coagulation kernels in the absence
of fragmentation, have been established by Burobin [8], Burobin and Galkin [9], Ernst
et al. [26], Galkin [35], Galkin and Dubovskii [36], McLeod [67]. Ziff and McGrady [103]
have demonstrated existence for certain explicit bounded and unbounded fragmentation
kernels. After this, Ball and Carr [4] considered the discrete coagulation-fragmentation
equations whereas Stewart [89, 90, 91], Dubovskii and Stewart [21] have proved the ex-
istence, mass conservation and uniqueness with unbounded kernels for the continuous
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equations. They considered linear growth on coagulation kernels with different classes
of fragmentation kernels. Laurençot [60] has extended the existence results up to the
bilinear growth, i.e. k(1 + x)(1 + y), of the kernels with some additional restrictions at
infinity. Escobedo et al. [29] have proved the uniqueness of self similar solutions only for
the fragmentation equation. But they required some regularity of solutions to prove the
uniqueness. Benjamin [6] has also investigated the uniqueness via a probabilistic inter-
pretation for the discrete coagulation-fragmentation equation.
It has been proved by McLeod [67, 69] that for the unbounded multiplicative coagulation
kernel K = xy in absence of fragmentation, the mass conservation law for solutions breaks
down at a finite time tc, i.e.

∫ ∞

0

xf(x, t)dx 6=
∫ ∞

0

xf0(x)dx for all time t > tc,

when the second moment blows-up. This phenomenon is known as gelation and is related
to a phase transition. Ball and Carr [4] as well as Stewart [91] have shown the mass conser-
vation when the coagulation kernels grow at most up to linearity. When the coagulation
kernels lie between linear and bilinear growth, the existence and uniqueness of mass con-
serving solutions for discrete equations under strong fragmentation have been proven by
Da Costa [14]. He noticed that a sufficiently strong fragmentation prevents the occurrence
of the gelation phenomenon. Escobedo et al. [27] have also obtained the existence of at
least one mass conserving solution with the same assumption on coagulation kernels with
strong fragmentation for continuous equations. But the uniqueness was left as an open
problem in this case. So the first objective of the Chapter 3 is to address this issue for co-
agulation equation with binary fragmentation (1.2). In this case, we make some additional
restrictions on the fragmentation kernels to prove the uniqueness of mass conserving so-
lutions. It should be pointed out that Laurençot and Mischler [59] also demonstrated the
uniqueness for continuous equation in the class C([0, T ], L1

φ(R>0))
⋂
L1(0, T ;L1

φ2(R>0)) for

each T > 0. Here L1
φ(R>0) is denoted as the space of functions f such that fφ ∈ L1(R>0).

They considered the following conditions on the kernels to investigate the uniqueness of
solutions:

K(x, y) ≤ φ(x)φ(y), (1.6)

and
∫ x

0

F (x− y, y)(φ(y) + φ(x− y)− φ(x))dy ≤ Bφ(x) (1.7)

where φ is a subadditive function i.e., φ(x + y) ≤ φ(x) + φ(y). In this case, the space
considered by Laurençot and Mischler becomes more restrictive than C(R≥0, L

1(R>0)),
which was used in Escobedo et al. [27]. This is due to the assumption of the finiteness
of higher moments of f by taking L1(0, T ;L1

φ2(R>0)). So, due to the restrictiveness of
the above space, it makes sense to demonstrate the uniqueness again in the larger space
C(R≥0, L

1(R>0)). Here we will prove the finiteness of these higher moments by using the

7



CHAPTER 1. INTRODUCTION

strong fragmentation condition.

The second task in Chapter 3 is to consider the question of uniqueness of solutions to
the continuous coagulation and multiple fragmentation equation (1.4) where we have the
existence of solutions from Chapter 2. Here we prove the uniqueness of solutions with
some additional restrictions on the coagulation and fragmentation kernels.

1.2.3 Convergence analysis

The coagulation-fragmentation equations can be solved analytically only for some specific
examples of kernels, see [20, 33, 34]. In general we need to solve them numerically. Many
numerical methods have been proposed to solve these equations: finite element methods
[30, 72, 78], finite volume methods [7, 31, 32], stochastic methods [24, 25, 61], moment
methods [94] and sectional methods [48, 50, 54, 55].

A large variety of finite element methods, finite volume methods, weighted residuals, the
method of orthogonal collocation and Galerkin’s method are implemented for solving these
equations. By using these methods, we may have a good prediction of number density
but a poor prediction of moments, see J. Kumar et al. [53]. These methods are com-
putationally very expensive and include stability problems. In moment methods, these
equations are transformed into a system of ordinary differential equations describing the
evolution of the moments of the particle size distribution or number density distribution.
The moment methods indeed predict very accurately the moments of the distribution but
are unable to give precise information about the density distribution. In recent times,
the sectional methods have become computationally very attractive because they not only
predict accurately some selected moments of the distribution, but also give satisfactory
results for the complete density distribution.

Several authors have proposed sectional methods for these equations: S. Kumar and
Ramkrishna [54, 55], J. Kumar et al. [48, 50] and Vanni [97]. Among all sectional methods,
the fixed pivot technique given by S. Kumar and Ramkrishna [54] is the most extensively
used method these days due to its generality and robustness. This technique also effi-
ciently works for a multi-dimensional size variable [13]. It predicts the first two moments
of the distribution very accurately. Despite the fact that the first two numerically cal-
culated moments are fairly accurate, the fixed pivot technique consistently over-predicts
the results of number density as well as its higher moments in the large size range when
applied on coarse grids [47]. A step to improve the fixed pivot technique by preserving
all advantages of the existing sectional methods has been recently made by J. Kumar et
al. [48, 50] as the cell average technique.

Recently J. Kumar and Warnecke [51, 52] have published the numerical analysis of sec-
tional methods for pure breakage or fragmentation problems. This case was simpler due
to the linearity of that equation. But the convergence analysis of these methods was still

8
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open for pure aggregation or coagulation problems. This is a challenging task due to the
non-linearity of the equation. The purpose of the Chapters 5 is to demonstrate the missing
numerical analysis of the most popular fixed pivot method among all sectional methods for
nonlinear aggregation problems. In this chapter, we discuss the convergence analysis of
the fixed pivot method for these equations and verify the mathematical results by several
numerical simulations. The aim of Chapter 6 is to compute the order of convergence of the
cell average technique for the same problem by taking a few numerical examples. Finally,
the numerical results obtained are also compared with those of the fixed pivot technique
which improve the order of convergence on coarse grids. The mathematical analysis of
the cell average technique for aggregation problems is still an open problem.

1.3 Outline of thesis

Let us now briefly outline the content of the thesis as follows:

In Chapter 2 we state and prove an existence theorem for the coagulation and multiple
fragmentation equation (1.4) with unbounded kernels. This existence proof is motivated
by the approach developed by Stewart [89] for the coagulation equation with binary frag-
mentation which was based on the weak L1 compactness methods. This approach is also
well-suited when the multiple fragmentation is taken into account with coagulation equa-
tion.

Chapter 3 deals with two different uniqueness results for coagulation-fragmentation equa-
tions. In the first result, we study the uniqueness of mass conserving solutions for coagula-
tion and binary fragmentation equation (1.2) under strong fragmentation. The existence
of mass conserving solutions is followed from Escobedo et al. [27]. The second result fo-
cuses on the uniqueness of solutions for coagulation equation with multiple fragmentation
(1.4) where Chapter 2 supports the existence of solutions.

Further, we prove a new result on existence of solutions to the continuous coagulation
equation with multiple fragmentation (1.4). The result is an extension of the previous
result in Chapter 2. The existence of solutions is achieved under much less restrictive
conditions on multiple fragmentation kernels.

We then proceed to introduce the convergence analysis of the fixed pivot technique [54]
for solving the pure nonlinear coagulation equations in Chapter 5. The order of conver-
gence is investigated on five different kind of uniform and non-uniform meshes, together
with some numerical examples that back up the validity of the mathematical observations.

The fixed pivot technique discussed in Chapter 5 yields a consistent over-prediction of
number density for the large size particles on coarse grids. This gives us a diverging be-
havior of higher moments. Therefore, the cell average technique came into the picture to

9
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improve the numerical results. In Chapter 6 we calculate the order of convergence of the
cell average technique to the pure coagulation problems numerically and the numerical
results obtained are also compared with the results for the case of the fixed pivot technique.

Chapter 7 presents some general conclusions regarding this work and some open problems
for the future developments.

At the end, some appendices are also given which play an important role in the construc-
tion of this thesis.

Chapter 2 and the second part of Chapter 3 is published in the Journal of Mathematical
Analysis and Applications [40]. The first part of Chapters 3 is under review in [39]. The
Chapters 4, 5 and 6 will be submitted for publications, see [41, 38, 37] respectively.
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Chapter 2

Existence of solutions

This chapter deals with our main result on existence of solutions to the continuous coag-
ulation equation with multiple fragmentation whenever the kernels satisfy certain growth
conditions. The proof relies on weak L1 compactness methods applied to suitably chosen
approximating equations. Solutions are shown to be in the space

X+ =

{
f ∈ L1 :

∫ ∞

0

(1 + x)|f(x)|dx <∞, f ≥ 0 a.e.

}

for non-negative initial data f0 ∈ X+. The result is an extension of previous results of
Lamb [56] that covers some kernels modeling particles in flows that were not included in
the previous results. The main novelty of the result is that it includes multiple fragmen-
tation.

The chapter is organized as follows. In Section 2.1, we repeat a brief description of equa-
tion from Chapter 1 and give some definitions and hypotheses which are required to study
the subsequent sections. In Section 2.2, we extract a weakly convergent subsequence in L1

from a sequence of unique solutions for truncated equations to (2.1)-(2.2). Then we prove
in Theorem 2.2.3 that the limit function obtained from weakly convergent subsequence is
indeed a solution to (2.1)-(2.2).

2.1 Introduction

Let us recall nonlinear continuous coagulation and multiple fragmentation equation from
chapter 1:

∂f(x, t)

∂t
=
1

2

∫ x

0

K(x− y, y)f(x− y, t)f(y, t)dy−
∫ ∞

0

K(x, y)f(x, t)f(y, t)dy

+

∫ ∞

x

b(x, y)S(y)f(y, t)dy − S(x)f(x, t), (2.1)

11
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with

f(x, 0) = f0(x) ≥ 0 a.e. (2.2)

Here the variables x ≥ 0 and t ≥ 0 denote the size of the particles and time, respectively.
The number density of particles of size x at time t is denoted by f(x, t). The coagulation
kernel K(x, y) represents the rate at which particles of size x coalesce with particles of
size y. The fragmentation terms have a similar interpretation. The breakage function
b(x, y) is the probability density function for the formation of particles of size x from the
particles of size y. It is non-zero only for x < y. The selection function S(x) describes
the rate at which particles of size x are selected to break. The selection function S and
breakage function b are defined in terms of the multiple-fragmentation kernel Γ as

S(x) =

∫ x

0

y

x
Γ(x, y)dy, b(x, y) = Γ(y, x)/S(y). (2.3)

The breakage function has the following properties

∫ y

0

b(x, y)dx = N <∞, for all y > 0 and b(x, y) = 0, for x > y, (2.4)

and
∫ y

0

xb(x, y)dx = y for all y > 0. (2.5)

The quantity N represents the number of fragments obtained from the breakage of par-
ticles of size y. In this work, we assume that this quantity is size independent, a more
general case is not treated here is to let N be a function of y. For the total mass in
the system to remain conserved during fragmentation events, b must satisfy the equation
(2.5). It states that the total mass of the fragments equals the original mass when a
particle of mass y breaks.

Let X be the following Banach space with norm ‖ · ‖

X = {f ∈ L1(0,∞) : ‖f‖ <∞} where ‖f‖ =
∫ ∞

0

(1 + x)|f(x)|dx.

We also write

‖f‖x =

∫ ∞

0

x|f(x)|dx and ‖f‖1 =
∫ ∞

0

|f(x)|dx

and set

X+ = {f ∈ X : f ≥ 0 a.e.}.
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Hypotheses 2.1.1. (H1) K is a continuous non-negative function on [0,∞[×[0,∞[ and
Γ is a non-negative locally bounded function,

(H2) K is symmetric, i.e. K(x, y) = K(y, x) for all x, y ∈]0,∞[,

(H3) K(x, y) ≤ φ(x)φ(y) for all x, y ∈]0,∞[ where φ(x) ≤ k1(1+ x)µ for some 0 ≤ µ < 1
and constant k1.

(H4) S :]0,∞[ 7→ [0,∞[ is continuous and satisfies the bound S(x) ≤ k2(1 + x)γ for
all x ∈]0,∞[ where 0 ≤ γ < 1 and k2 is a constant.

Definition 2.1.2. Let T ∈]0,∞]. A solution f of (2.1-2.2) is a function f : [0, T [→ X+

such that for a.e. x ∈]0,∞[ and all t ∈ [0, T [ the following hold

(i) f(x, t) ≥ 0,

(ii) f(x, .) is continuous on [0, T [,

(iii) the following integrals are bounded

∫ t

0

∫ ∞

0

K(x, y)f(y, s)dyds <∞ and

∫ t

0

∫ ∞

x

b(x, y)S(y)f(y, s)dyds <∞,

(iv) the function f satisfies the following weak formulation of (2.1)

f(x, t) = f0(x) +

∫ t

0

{
1

2

∫ x

0

K(x− y, y)f(x− y, s)f(y, s)dy

−
∫ ∞

0

K(x, y)f(x, s)f(y, s)dy+

∫ ∞

x

b(x, y)S(y)f(y, s)dy− S(x)f(x, s)

}
ds.

For the completeness of the Definition 2.1.2 of solutions to (2.1), we give the following
lemma

Lemma 2.1.3. For any f ∈ X+, the integrals in Definition 2.1.2 (iv) exist for a.e.
x ∈]0,∞[ under Hypotheses 2.1.1.

Proof. We consider the following integral, by changing the order of integration and sub-
stituting x− y = x′, y = y′ and (H3)
∫ ∞

0

∫ x

0

K(x− y, y)f(x− y, s)f(y, s)dydx =

∫ ∞

0

∫ ∞

0

K(x, y)f(x, s)f(y, s)dxdy

≤ k2
1

∫ ∞

0

∫ ∞

0

(1 + x)µ(1 + y)µf(x, s)f(y, s)dxdy

<∞.
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Thus, by applying Fubini’s Theorem [42, 21.13], we obtain

∫ x

0

K(x− y, y)f(x− y, s)f(y, s)dy and

∫ ∞

0

K(x, y)f(x, s)f(y, s)dy

exist for a.e. x ∈]0,∞[. Now for the following integral, by changing the order of integra-
tion, using(2.4) and (H4) we get

∫ ∞

0

∫ ∞

x

b(x, y)S(y)f(y, s)dydx =

∫ ∞

0

∫ y

0

b(x, y)S(y)f(y, s)dxdy

= N

∫ ∞

0

S(y)f(y, s)dy

≤ Nk2

∫ ∞

0

(1 + y)γf(y, s)dy <∞.

Similarly, we find that

∫ ∞

x

b(x, y)S(y)f(y, s)dy and S(x)f(x, t)

exist for a.e. x ∈]0,∞[.

We know a few specific coagulation kernels which satisfy the hypotheses mentioned above,
see the Appendix B.5. However, they do not satisfy the assumptions of previously existing
results on coagulation together with multiple fragmentation given in Lamb [56]. These
kernels are the following:

(1) Shear kernel (non-linear velocity profile) Aldous [2] or Smit et al. [86] who use the

length coordinate λ = x
1

3

K(x, y) = k0(x
1/3 + y1/3)7/3.

(2) The modified Smoluchowski kernel, see Koch et al. [46], is given as

K(x, y) = k0
(x1/3 + y1/3)2

x1/3 · y1/3 + c

with some fixed constant c > 0.

(3) Ding et al. [16] used the following kernel in the application of population balance
models to activated sludge flocculation

K(x, y) = k0
(x1/3 + y1/3)q

1 +

(
x1/3+y1/3

2y
1/3
c

)3 , 0 ≤ q < 3.
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Here q is the order of the kernel.

Further we point out that the modified Smoluchowski kernel was derived from the Smolu-
chowski kernel or Brownian motion kernel given as, see Aldous [2] or Smit et al. [86],

K(x, y) = k0(x
1/3 + y1/3)(x−1/3 + y−1/3)

which can be rewritten as

K(x, y) = k0
(x1/3 + y1/3)2

x1/3 · y1/3 .

The modification eliminates the singular behavior of this kernel. The original Smolu-
chowski kernel does not satisfy (H3) in contrast to the modified one by Koch et al. [46].

Now we take the following type of fragmentation kernels which also satisfy the hypotheses
mentioned above

S(x) = xσ(1 + x)γ−σ and b(x, y) =
α+ 2

y

(
x

y

)α

, 0 < x < y,

where σ ≥ 1 > γ ≥ 0 and α ≥ 0. This is the cut-off version of the classical selection
functions S(x) = xγ which have been studied in Peterson [77] and also in Ziff [102]. If we
write it rather as

S(x) = xσ(δ + x)γ−σ.

In the limit δ → 0 one recovers the classical kernel.

2.2 Existence

2.2.1 The truncated problem

We prove the existence of solutions to (2.1-2.2) by taking the limit of a sequence of
approximating equations obtained by replacing the kernel K and selection function S by
the ‘cut-off’ kernels Kn and Sn, motivated by Stewart [89], where

Kn(x, y) :=

{
K(x, y) if x+ y < n,

0 if x+ y ≥ n,

Sn(x) :=

{
S(x) if 0 < x < n,

0 if x ≥ n.
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The resulting equations, with solutions denoted by fn, are written as

∂fn(x, t)

∂t
=
1

2

∫ x

0

Kn(x− y, y)fn(x− y, t)fn(y, t)dy −
∫ n−x

0

Kn(x, y)f
n(x, t)fn(y, t)dy

+

∫ n

x

b(x, y)Sn(y)f
n(y, t)dy − Sn(x)f

n(x, t), (2.6)

with

fn
0 (x) :=

{
f0(x) if 0 < x < n,

0 if x ≥ n.
(2.7)

Choose T > 0. Proceeding as in [89, Theorem 3.1] we obtain the following result. For
each n = 1, 2, 3, . . ., (2.6-2.7) has a unique solution fn ∈ X+ with fn(x, t) ≥ 0 for a.e.
x ∈]0, n[ and t ∈ [0,∞[, see Walker [98] also. Moreover, the total mass remains conserved,
for all t ∈ [0,∞[, i.e.

∫ n

0

xfn(x, t)dx =

∫ n

0

xfn
0 (x)dx. (2.8)

From now on we consider the ‘zero extension’ of each fn on R, i.e.

f̂n(x, t) :=

{
fn(x, t) if 0 < x < n, t ∈ [0, T ]

0 if x ≤ 0 or x ≥ n.

For the simplicity we drop the .̂ notation for the remainder of the work and the suffixes
on the coagulation kernels and the selection functions.

Next, we need to prove the following lemma to apply the Dunford-Pettis-Theorem [23,
Theorem 4.21.2] and then equicontinuity of the sequence (fn)n∈N in time to use Arzelà-
Ascoli Theorem [3, Appendix A8.5].

Lemma 2.2.1. Assume that (H1), (H2), and (H4) hold. Then the following results are
true:

(i)

∫ ∞

0

(1 + x)fn(x, t)dx ≤ L for n = 1, 2, 3 . . . and all t ∈ [0, T ],

(ii) given ǫ > 0 there exists an R > 0 such that for all t ∈ [0, T ]

sup
n

{∫ ∞

R

fn(x, t)dx

}
≤ ǫ,
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(iii) given ǫ > 0 there exists a δ > 0 such that for all n = 1, 2, 3 . . . and t ∈ [0, T ]

∫

E

fn(x, t)dx < ǫ whenever λ(E) < δ.

Proof. (i) From (2.6) and Fubini’s Theorem, for each n ≥ 1 we have by integration with
respect to x and t

∫ 1

0

fn(x, t)dx =− 1

2

∫ t

0

∫ 1

0

∫ 1−x

0

K(x, y)fn(x, s)fn(y, s)dydxds

−
∫ t

0

∫ 1

0

∫ n−x

1−x

K(x, y)fn(x, s)fn(y, s)dydxds

+

∫ t

0

∫ 1

0

∫ n

x

b(x, y)S(y)fn(y, s)dydxds−
∫ t

0

∫ 1

0

S(x)fn(x, s)dxds

+

∫ 1

0

fn(x, 0)dx.

Since the integrands are all non-negative, we may estimate

∫ 1

0

fn(x, t)dx ≤
∫ t

0

∫ 1

0

∫ n

x

b(x, y)S(y)fn(y, s)dydxds+

∫ 1

0

fn(x, 0)dx

=

∫ t

0

∫ 1

0

∫ 1

x

b(x, y)S(y)fn(y, s)dydxds

+

∫ t

0

∫ 1

0

∫ n

1

b(x, y)S(y)fn(y, s)dydxds+

∫ 1

0

fn(x, 0)dx.

Using Fubini’s Theorem, (H4) and (2.4) in the size independent case, we obtain

∫ 1

0

fn(x, t)dx ≤
∫ t

0

∫ 1

0

∫ y

0

b(x, y)S(y)fn(y, s)dxdyds

+

∫ t

0

∫ n

1

∫ 1

0

b(x, y)S(y)fn(y, s)dxdyds+

∫ 1

0

fn(x, 0)dx

≤k2N
∫ t

0

∫ 1

0

(1 + y)γfn(y, s)dyds+ k2N

∫ t

0

∫ n

1

(1 + y)γfn(y, s)dyds

+

∫ 1

0

fn(x, 0)dx

≤k2N
∫ t

0

∫ 1

0

(1 + y)fn(y, s)dyds+ 2k2N

∫ t

0

∫ n

1

yfn(y, s)dyds

+

∫ 1

0

fn(x, 0)dx. (2.9)
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From equation (2.8), for s ∈ [0, T ]

‖fn(s)‖x = ‖fn(0)‖x ≤ ‖f(0)‖. (2.10)

Using (2.9) and (2.10) we obtain

∫ 1

0

fn(x, t)dx ≤ k2N

∫ t

0

∫ 1

0

fn(y, s)dyds+ 3k2NT‖f0‖+ ‖f0‖

= k2N

∫ t

0

∫ 1

0

fn(y, s)dyds+ ‖f0‖{3k2NT + 1}.

Applying Gronwall’s Lemma, see e.g. Walter [99, p. 310], we obtain

∫ 1

0

fn(x, t)dx ≤ ‖f0‖{3k2NT + 1} exp{k2NT}.

Thus, by using (2.8) again we may estimate

∫ ∞

0

(1 + x)fn(x, t)dx =

∫ 1

0

fn(x, t)dx+

∫ n

1

fn(x, t)dx+

∫ n

0

xfn(x, t)dx

≤
∫ 1

0

fn(x, t)dx+

∫ n

1

xfn(x, t)dx+ ‖f0‖

≤ ‖f0‖{(3k2NT + 1) exp(k2NT ) + 2} := L.

(ii) For ǫ > 0, let R > 0 be such that R > ‖f0‖/ǫ. Then, by (2.10), for each n = 1, 2, 3, . . .
and for all t ∈ [0, T ] we have

∫ ∞

R

fn(x, t)dx =

∫ ∞

R

(x/x)fn(x, t)dx

≤ 1

R

∫ ∞

R

xfn(x, t)dx ≤ 1

R
‖f0‖ < ǫ.

(iii) Choose ǫ > 0 and let E ⊂ R>0 :=]0,∞[. By part (ii) we can choose m > 1 such that
for all n = 1, 2, 3, . . . and t ∈ [0, T ]

∫ ∞

m

fn(x, t)dx < ǫ/2. (2.11)

Let χ denotes the characteristic function, i.e.

χE(x) :=

{
1 if x ∈ E,

0 if x /∈ E,

and for n = 1, 2, 3, . . . and t ∈ [0, T ], define

pn(E, t) = sup
0≤z≤m

∫

R>0

χE
⋂
]0,m](x+ z)fn(x, t)dx.
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2.2. EXISTENCE

Set

K0 = sup
0≤x≤m
0≤y≤m

1

2
K(x, y) and F0 = sup

0≤y≤r
0≤x≤m

Γ(y, x). (2.12)

Consider γ ∈ [0, 1[ and k2 as in (H4), N as given by (2.4). Then one can choose r > m
such that

k2NTL(1 + r)γ−1 < ǫ/{8 exp(TLK0)}. (2.13)

By the absolute continuity of integral, there exists a δ1 > 0 such that

pn(E, 0) ≤ sup
0≤z≤m

∫

R>0

χE
⋂
]0,m](x+ z)f0(x)dx < ǫ/{4 exp(TLK0)} (2.14)

for all n whenever λ(E) ≤ δ1 for the Lebesgue measure λ. Also, there exists a δ2 > 0 such
that

sup
0≤z≤m

∫

R>0

χE
⋂
]0,m](x+ z)dx < ǫ/{8TF0L exp(TLK0)} (2.15)

whenever λ(E) ≤ δ2. Set δ = min{δ1, δ2}. Using the non-negativity of each fn we can
use (2.6-2.7) to prove that for 0 < z < m and λ(E) < δ

∫

R>0

χE
⋂
]0,m](x+ z)fn(x, t)dx

≤1
2

∫ t

0

∫

R>0

∫

R>0

χE
⋂
]0,m](x+ z)χ]0,x]

⋂
]0,m](y)K(x− y, y)fn(x− y, s)fn(y, s)dydxds

+

∫ t

0

∫ m

0

χE
⋂
]0,m](x+ z)

∫ n

x

b(x, y)S(y)fn(y, s)dydxds+ pn(E, 0).

Using the substitution x′ = x − y, y′ = y and Fubini’s theorem in the first and second
integrals on the right hand side respectively we find that

∫

R>0

χE
⋂
]0,m](x+ z)fn(x, t)dx

≤1

2

∫ t

0

∫

R>0

∫

R>0

χE
⋂
]0,m](x+ y + z)χ]0,m](y)K(x, y)fn(x, s)fn(y, s)dydxds

+

∫ t

0

∫ m

0

∫ y

0

χE
⋂
]0,m](x+ z)b(x, y)S(y)fn(y, s)dxdyds

+

∫ t

0

∫ n

m

∫ m

0

χE
⋂
]0,m](x+ z)b(x, y)S(y)fn(y, s)dxdyds+ pn(E, 0).
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By the definition of pn(E, t), (2.12) and Lemma 2.2.1(i), this can be rewritten as

∫

R>0

χE
⋂
]0,m](x+ z)fn(x, t)dx

≤K0

∫ t

0

∫ m

0

fn(y, s) sup
0≤v≤m

∫

R>0

χE
⋂
]0,m](x+ v)fn(x, s)dxdyds

+

∫ t

0

∫ m

0

∫ m

0

χE
⋂
]0,m](x+ z)b(x, y)S(y)fn(y, s)dxdyds

+

∫ t

0

∫ r

m

∫ m

0

χE
⋂
]0,m](x+ z)b(x, y)S(y)fn(y, s)dxdyds

+

∫ t

0

∫ ∞

r

∫ m

0

χE
⋂
]0,m](x+ z)b(x, y)S(y)fn(y, s)dxdyds+ pn(E, 0),

≤K0L

∫ t

0

pn(E, s)ds+

∫ t

0

∫ r

0

∫ m

0

χE
⋂
]0,m](x+ z)Γ(y, x)fn(y, s)dxdyds

+

∫ t

0

∫ ∞

r

∫ y

0

χE
⋂
]0,m](x+ z)b(x, y)S(y)fn(y, s)dxdyds+ pn(E, 0). (2.16)

We use (2.12), (2.15) and Lemma 2.2.1(i) to consider the following integral

∫ t

0

∫ r

0

∫ m

0

χE
⋂
]0,m](x+ z)Γ(y, x)fn(y, s)dxdyds

≤ F0

∫ t

0

∫ r

0

fn(y, s)dyds · ǫ/{8TF0L exp(TLK0)}

≤ ǫ/{8 exp(TLK0)}. (2.17)

By using (2.4), (H4), Lemma 2.2.1(i) and (2.13) we consider the following integral

∫ t

0

∫ ∞

r

∫ y

0

χE
⋂
]0,m](x+ z)b(x, y)S(y)fn(y, s)dxdyds

≤ k2N

∫ t

0

∫ ∞

r

(1 + y)γfn(y, s)dyds

≤ k2NTL(1 + r)γ−1 < ǫ/{8 exp(TLK0)}. (2.18)

It can be deduced from (2.14), (2.16), (2.17) and (2.18) that

pn(E, t) ≤ K0L

∫ t

0

pn(E, s)ds+ ǫ/{2 exp(TLK0)}.

By using Gronwall’s inequality, see e.g. Walter [99, p. 310], we obtain

pn(E, t) ≤ exp(TLK0)ǫ/{2 exp(TLK0)} = ǫ/2. (2.19)
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By (2.11) and (2.19), we obtain for n = 1, 2, 3, . . . and t ∈ [0, T ]

∫

E

fn(x, t)dx =

∫
χE

⋂
]0,m](x)f

n(x, t)dx+

∫
χE

⋂
[m,∞[(x)f

n(x, t)dx

≤ pn(E, t) +

∫ ∞

m

fn(x, t)dx

<
ǫ

2
+

ǫ

2
= ǫ

whenever λ(E) < δ.

The above Lemma 2.2.1 implies that for each t ∈ [0, T ], the sequence of functions
(fn(t))n∈N lies in a weakly relatively compact set in L1]0,∞[ by the Dunford-Pettis-
Theorem.

2.2.2 Equicontinuity in time

Now we proceed in this section to show equicontinuity of the sequence (fn)n∈N in time.
It should be mentioned that (H3) is now assumed to be satisfied. Choose ǫ > 0 and
φ ∈ L∞]0,∞[. Let s, t ∈ [0, T ] and assume t ≥ s. Choose m > 1 such that

‖φ‖L∞2L/m < ǫ/2. (2.20)

For each n, by Lemma 2.2.1(i),

∫ ∞

m

|fn(x, t)− fn(x, s)|dx ≤ 1

m

∫ ∞

m

x{fn(x, t) + fn(x, s)}dx ≤ 2L/m. (2.21)

By using (2.6), (2.20) and (2.21), we get using t ≥ s

∣∣∣∣
∫ ∞

0

φ(x){fn(x, t)−fn(x, s)}dx
∣∣∣∣

≤
∣∣∣∣
∫ m

0

φ(x){fn(x, t)− fn(x, s)}dx
∣∣∣∣

+

∫ ∞

m

|φ(x)|{|fn(x, t)− fn(x, s)|}dx

≤‖φ‖L∞

∫ t

s

[
1

2

∫ m

0

∫ x

0

K(x− y, y)fn(x− y, τ)fn(y, τ)dydx

+

∫ m

0

∫ n−x

0

K(x, y)fn(x, τ)fn(y, τ)dydx

+

∫ m

0

∫ n

x

b(x, y)S(y)fn(y, τ)dydx

+

∫ m

0

S(x)fn(x, τ)dx

]
dτ + ǫ/2. (2.22)
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Now we consider the first term on the right hand side of (2.22), by Fubini’s Theorem,
(H1)-(H4) and Lemma 2.2.1 (i)

1

2

∫ m

0

∫ x

0

K(x− y, y)fn(x− y, τ)fn(y, τ)dydx

=
1

2

∫ m

0

∫ m

y

K(x− y, y)fn(x− y, τ)fn(y, τ)dxdy

=
1

2

∫ m

0

∫ m−y

0

K(x, y)fn(x, τ)fn(y, τ)dxdy

=
1

2

∫ m

0

∫ m−x

0

K(y, x)fn(y, τ)fn(x, τ)dydx

=
1

2

∫ m

0

∫ m−x

0

K(x, y)fn(x, τ)fn(y, τ)dydx

≤ k2
1

1

2

∫ m

0

∫ m−x

0

(1 + x)µ(1 + y)µfn(x, τ)fn(y, τ)dydx

≤ 1

2
k2
1L

2.

For the second term we may estimate

∫ m

0

∫ n−x

0

K(x, y)fn(x, τ)fn(y, τ)dydx

≤ k2
1

∫ m

0

∫ n−x

0

(1 + x)µ(1 + y)µfn(x, τ)fn(y, τ)dydx

≤ k2
1L

2.

For n > m, the third term using (2.4) gives that

∫ m

0

∫ n

x

b(x, y)S(y)fn(y, τ)dydx

≤k2
∫ m

0

∫ y

0

b(x, y)(1 + y)γfn(y, τ)dxdy

+ k2

∫ n

m

∫ m

0

b(x, y)(1 + y)γfn(y, τ)dxdy

≤k2N
∫ n

0

(1 + y)γfn(y, τ)dy ≤ k2NL.

Similarly we can obtain the above inequality for m > n.
For the fourth term we have

∫ m

0

S(x)fn(x, t)dx ≤ k2L.
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By using the above inequalities, the equation (2.22) reduces to
∣∣∣∣
∫ ∞

0

φ(x){fn(x, t)−fn(x, s)}dx
∣∣∣∣

≤ ‖φ‖L∞]0,∞[(t− s)

{
3

2
k2
1L

2 + k2(N + 1)L

}
+ ǫ/2 < ǫ (2.23)

whenever t − s < δ for some δ > 0. The argument given above similarly holds if s > t.
Hence (2.23) is true for all n and |t− s| < δ. This implies the time equicontinuity of the
family {fn(t), t ∈ [0, T ]} in L1(R>0). Thus, {fn(t), t ∈ [0, T ]} lies in a relatively compact
subset of the gauge space Ω. The gauge space Ω is the space L1(R>0) provided with a
certain weak topology. Details concerning the gauge space can be found in Stewart [89].
So, we may apply refined version of Arzelà-Ascoli Theorem, see Stewart [89, Theorem 2.1]
to conclude that there exists a subsequence fnk such that

fnk(t)→ f(t) in Ω as nk →∞

uniformly for t ∈ [0, T ] and for some f ∈ C([0, T ]; Ω).

2.2.3 Convergence of the approximations of the integrals

For simplicity of notation we mostly suppress the dependence on arbitrary but fixed
t ∈ [0, T ] when it is not explicitly needed. Now we have to show that the limit function
which we obtained above is indeed a solution to (2.1-2.2). Define the operators Qn

i , Qi,
i = 1 to 4, to be

Qn
1 (f

n)(x) =
1

2

∫ x

0

K(x− y, y)fn(x− y)fn(y)dy,

Q1(f)(x) =
1

2

∫ x

0

K(x− y, y)f(x− y)f(y)dy,

Qn
2 (f

n)(x) =

∫ n−x

0

K(x, y)fn(x)fn(y)dy, Q2(f)(x) =

∫ ∞

0

K(x, y)f(x)f(y)dy,

Qn
3 (f

n)(x) = S(x)fn(x), Q3(f)(x) = S(x)f(x),

Qn
4 (f

n)(x) =

∫ n

x

b(x, y)S(y)fn(y)dy, Q4(f)(x) =

∫ ∞

x

b(x, y)S(y)f(y)dy,

where f ∈ L1]0,∞[, x ∈]0,∞[ and n = 1, 2, 3, . . .. Set Qn = Qn
1 − Qn

2 − Qn
3 + Qn

4 and
Q = Q1 −Q2 −Q3 +Q4.

Lemma 2.2.2. Suppose (fn)n∈N ⊂ X+, f ∈ X+, where ||fn|| ≤ L, and fn ⇀ f in
L1]0,∞[ as n→∞. Then for each m > 0

Qn(fn) ⇀ Q(f) in L1]0, m[ as n→∞.
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Proof. Let χ denotes the characteristic function. Choose m > 0 and let φ ∈ L∞]0,∞[.
We show that Qn

i (f
n) ⇀ Qi(f) in L1]0, m[ as n→∞ for i = 1, 2, 3, 4.

Case i = 1

For f ∈ X+ and x ∈]0, m] define the operator h1 by

h1(f)(x) =
1

2

∫ m−x

0

φ(x+ y)K(x, y)f(y)dy.

Assume φ 6= 0. It can be easily shown that

∫ m

0

φ(x)Qn
1 (f

n)(x)dx =
1

2

∫ m

0

φ(x)

∫ x

0

K(x− y, y)fn(x− y)fn(y)dydx

=
1

2

∫ m

0

∫ m

y

φ(x)K(x− y, y)fn(x− y)fn(y)dxdy

=
1

2

∫ m

0

∫ m−y

0

φ(y + x)K(x, y)fn(x)fn(y)dxdy

=
1

2

∫ m

0

∫ m−x

0

φ(x+ y)K(x, y)fn(x)fn(y)dydx

=
1

2

∫ m

0

fn(x)

∫ m−x

0

φ(x+ y)K(x, y)fn(y)dydx

=

∫ m

0

fn(x)h1(f
n)(x)dx. (2.24)

Note that for a.e. x ∈]0, m] we have

1

2
χ]0,m−x](·)φ(x+ ·)K(x, ·) ∈ L∞]0,∞[.

Since fn ⇀ f in L1]0,∞[, it thus follows that

h1(f
n)(x)→ h1(f)(x) as n→∞ for a.e. x ∈]0, m]. (2.25)
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We have

|h1(f
n)(x))| =

∣∣∣∣
1

2

∫ m−x

0

φ(x+ y)K(x, y)fn(y)dy

∣∣∣∣

≤ 1

2

∫ m−x

0

|φ(x+ y)|K(x, y)fn(y)dy

≤ 1

2
||φ||L∞]0,m[

∫ m−x

0

K(x, y)fn(y)dy

≤ 1

2
||φ||L∞]0,m[k

2
1

∫ m

0

(1 + x)µ(1 + y)µfn(y)dy

≤ 1

2
||φ||L∞]0,m[k

2
1(1 +m)µ

∫ m

0

(1 + y)µfn(y)dy

≤ 1

2
||φ||L∞]0,m[k

2
1(1 +m)µL for a.e. x ∈]0, m]. (2.26)

This is similarly true for h1(f)(x). Thus h1(f
n) and h1(f) belong to L∞]0, m[.

It now follows by (2.25) and Egoroff‘s Theorem [3, Theorem 2.5.5] that

h1(f
n)→ h1(f) as n→∞ almost uniformly on x ∈]0, m]. (2.27)

In other words, for a given δ > 0 there exists a set A ⊆]0, m] such that λ(A) < δ and

h1(f
n)→ h1(f) uniformly on ]0, m] \ A.

Choose ǫ > 0. By Lemma 2.2.1(iii) there is a δ > 0 such that for all n

∫

E

fn(x)dx < ǫ/||φ||L∞]0,m[k
2
1(1 +m)µL (2.28)

whenever λ(E) < δ. By (2.27), there is a set A ⊆]0, m] such that λ(A) < δ
and h1(f

n)→ h1(f) uniformly on ]0, m] \ A. Thus
h1(f

n)→ h1(f) in L∞(]0, m] \ A) as n→∞. (2.29)

We now have, using Hölders inequality
∣∣∣∣
∫ m

0

fn(x){h1(f
n)(x)−h1(f)(x)}dx

∣∣∣∣

≤
∣∣∣∣
∫

]0,m]\A

fn(x){h1(f
n)(x)− h1(f)(x)}dx

∣∣∣∣

+

∣∣∣∣
∫

A

fn(x){h1(f
n)(x)− h1(f)(x)}dx

∣∣∣∣

≤||h1(f
n)− h1(f)||L∞(]0,m]\A) ·

∫

]0,m]\A

fn(x)dx

+ ||h1(f
n)− h1(f)||L∞(A)

∫

A

fn(x)dx.
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Now considering (2.26) and (2.28) we obtain

||h1(f
n)− h1(f)||L∞(A)

∫

A

fn(x)dx

= sup
x∈A
|h1(f

n)(x)− h1(f)(x)|
∫

A

fn(x)dx

≤ sup
x∈A
{|h1(f

n)(x)|+ |h1(f)(x)|}
∫

A

fn(x)dx

≤ ||φ||L∞]0,m[k
2
1(1 +m)µL · ǫ/{||φ||L∞]0,m[k

2
1(1 +m)µL}

≤ ǫ.

This together with Lemma 2.2.1 (i) leads to
∣∣∣∣
∫ m

0

fn(x){h1(f
n)(x)− h1(f)(x)}dx

∣∣∣∣
≤ ||h1(f

n)− h1(f)||L∞(]0,m]\A)L+ ǫ→ ǫ as n→∞.

Since ǫ > 0 is arbitrary and with (2.29) we see that
∣∣∣∣
∫ m

0

fn(x){h1(f
n)(x)− h1(f)(x)}dx

∣∣∣∣→ 0 as n→∞. (2.30)

Due to h1(f) ∈ L∞]0, m[ and fn ⇀ f in L1]0,∞[ as n → ∞ the definition of weak
convergence implies that

∣∣∣∣
∫ m

0

{fn(x)− f(x)}h1(f)(x)dx

∣∣∣∣→ 0 as n→∞. (2.31)

It now follows by (2.24), (2.30) and (2.31) that
∣∣∣∣
∫ m

0

φ(x){Qn
1 (f

n)(x)−Q1(f)(x)}dx
∣∣∣∣

≤
∣∣∣∣
∫ m

0

fn(x)h1(f
n)(x)dx−

∫ m

0

fn(x)h1(f)(x)dx

+

∫ m

0

fn(x)h1(f)(x)dx−
∫ m

0

f(x)h1(f)(x)dx

∣∣∣∣

=

∣∣∣∣
∫ m

0

fn(x){h1(f
n)(x)− h1(f)(x)}dx+

∫ m

0

{fn(x)− f(x)}h1(f)(x)dx

∣∣∣∣

≤
∣∣∣∣
∫ m

0

fn(x){h1(f
n)(x)− h1(f)(x)}dx

∣∣∣∣+
∣∣∣∣
∫ m

0

{fn(x)− f(x)}h1(f)(x)dx

∣∣∣∣
→ 0 as n→∞. (2.32)

Thus by the arbitrariness of φ it follows that

Qn
1 (f

n) ⇀ Q1(f) in L1]0, m[ as n→∞. (2.33)
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Case i = 2

Choose ǫ > 0 and an arbitrary φ ∈ L∞]0,∞[. By (H3) we have 0 ≤ µ < 1 and we can
therefore choose r > 0 large enough such that

2k2
1L

2||φ||L∞]0,m[(1 + r)µ−1 < ǫ. (2.34)

For f ∈ X+ and x ∈]0, m] we define the operator h2 by

h2(f)(x) =

∫ r

0

φ(x)K(x, y)f(y)dy. (2.35)

For a.e. x ∈]0, m] the function φx is defined by

φx = χ[0,r](·)φ(x)K(x, ·) ∈ L∞]0,∞[.

By a similar argument to that used in (2.25)-(2.30) it can also be shown that (2.30) and
(2.31) hold for the above defined h2. By Lemma 2.2.1 (i), (2.34), and (H3)

∣∣∣∣
∫ m

0

∫ ∞

r

φ(x)K(x, y){fn(x)fn(y)− f(x)f(y)}dydx
∣∣∣∣

≤ k2
1

∫ m

0

∫ ∞

r

|φ(x)|(1 + x)µ(1 + y)µ{fn(x)fn(y) + f(x)f(y)}dydx

≤ k2
1‖φ‖L∞]0,m[L

{∫ ∞

r

{(1 + y)/(1 + y)1−µ}{fn(y) + f(y)}dy
}

≤ k2
1‖φ‖L∞]0,m[2L

2(1 + r)µ−1

< ǫ. (2.36)

Also, for n > m,
∣∣∣∣
∫ m

0

∫ ∞

n−x

φ(x)K(x, y)fn(x)fn(y)dydx

∣∣∣∣

≤ k2
1

∫ m

0

∫ ∞

n−x

|φ(x)|(1 + x)µ(1 + y)µfn(x)fn(y)dydx

≤ k2
1‖φ‖L∞]0,m[

∫ m

0

(1 + x)µfn(x)dx

∫ ∞

n−m

(1 + y)µfn(y)dy

≤ k2
1‖φ‖L∞]0,m[L

∫ ∞

n−m

{(1 + y)/(1 + y)1−µ}fn(y)dy

≤ k2
1‖φ‖L∞]0,m[L

2(1 + n−m)µ−1.

It implies
∣∣∣∣
∫ m

0

∫ ∞

n−x

φ(x)K(x, y)fn(x)fn(y)dydx

∣∣∣∣→ 0 as n→∞. (2.37)
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By using (2.35), (H3) and the analogues of (2.30) and (2.31),
∣∣∣∣
∫ m

0

∫ r

0

φ(x)K(x, y){fn(x)fn(y)− f(x)f(y)}dydx
∣∣∣∣

=

∣∣∣∣
∫ m

0

[fn(x)h2(f
n)(x)− f(x)h2(f)(x)]dx

∣∣∣∣

=

∣∣∣∣
∫ m

0

[fn(x){h2(f
n)(x)− h2(f)(x)}+ {fn(x)− f(x)}h2(f)(x)]dx

∣∣∣∣

≤
∣∣∣∣
∫ m

0

fn(x){h2(f
n)(x)− h2(f)(x)}dx

∣∣∣∣+
∣∣∣∣
∫ m

0

{fn(x)− f(x)}h2(f)(x)dx

∣∣∣∣
→ 0 as n→∞. (2.38)

It follows by (2.36), (2.37) and (2.38), for n > m
∣∣∣∣
∫ m

0

φ(x){Qn
2 (f

n)(x)−Q2(f)(x)}dx
∣∣∣∣

=

∣∣∣∣
∫ m

0

∫ r

0

φ(x)K(x, y){fn(x)fn(y)− f(x)f(y)}dydx

+

∫ m

0

∫ ∞

r

φ(x)K(x, y){fn(x)fn(y)− f(x)f(y)}dydx

−
∫ m

0

∫ ∞

n−x

φ(x)K(x, y)fn(x)fn(y)dydx

∣∣∣∣
→ ǫ as n→∞.

Thus by the arbitrariness of φ and ǫ we have

Qn
2 (f

n) ⇀ Q2(f) in L1]0, m[ as n→∞. (2.39)

Case i = 3

For a.e. x ∈]0, m], by using (H4) we find that

|φ(x)S(x)| ≤ k2||φ||L∞]0,m[(1 +m)γ.

Then

χ]0,m[φS ∈ L∞]0,∞[. (2.40)

Thus by (2.40) and since fn ⇀ f in L1]0,∞[ as n→∞,
∣∣∣∣
∫ m

0

φ(x){Qn
3 (f

n)(x)−Q3(f)(x)}dx
∣∣∣∣

=

∣∣∣∣
∫ m

0

φ(x)S(x){fn(x)− f(x)}dx
∣∣∣∣→ 0 as n→∞.
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Since φ is arbitrary

Qn
3 (f

n) ⇀ Q3(f) in L1]0, m[ as n→∞. (2.41)

Case i = 4

Choose ǫ > 0. By (H4) we have 0 ≤ γ < 1 and we can therefore choose r > m such that
for N given by (2.4)

2k2N‖φ‖L∞]0,m[L(1 + r)γ−1 < ǫ. (2.42)

Then by Fubini’s theorem, (H4) and (2.42)
∣∣∣∣
∫ m

0

∫ ∞

r

φ(x)b(x, y)S(y){fn(y)− f(y)}dydx
∣∣∣∣

=

∣∣∣∣
∫ ∞

r

∫ m

0

φ(x)b(x, y)S(y){fn(y)− f(y)}dxdy
∣∣∣∣

≤ k2N‖φ‖L∞]0,m[

∫ ∞

r

(1 + y)γ{fn(y) + f(y)}dy

≤ 2k2N‖φ‖L∞]0,m[L(1 + r)γ−1 < ǫ. (2.43)

Also, for a.e. x ∈]0, m] the function

χ]x,r](·)φ(x)S(·)b(x, ·) = χ]x,r](·)φ(x)Γ(·, x) ∈ L∞]0,∞[.

Thus, since fn ⇀ f in L1]0,∞[, for a.e. x ∈]0, m]

φ(x)

∫ r

x

S(y)b(x, y){fn(y)− f(y)}dy→ 0 as n→∞. (2.44)

For a.e. x ∈]0, m] we take k3 = sup
x<y≤r
0<x≤m

Γ(y, x) and by using Lemma 2.2.1 (i)

|φ(x)|
∣∣∣∣
∫ r

x

S(y)b(x, y){fn(y)− f(y)}dy
∣∣∣∣

=|φ(x)|
∣∣∣∣
∫ r

x

Γ(y, x){fn(y)− f(y)}dy
∣∣∣∣

≤k3‖φ‖L∞]0,m[

∫ r

x

{|fn(y)|+ |f(y)|}dy

≤k3‖φ‖L∞]0,m[ · 2L. (2.45)

As a function of x this belongs to L1]0, m]. Hence by (2.44), (2.45) and the dominated
convergence theorem

∣∣∣∣
∫ m

0

∫ r

x

φ(x)S(y)b(x, y){fn(y)− f(y)}dydx
∣∣∣∣→ 0 as n→∞.
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Thus, by using Lemma 2.2.1 (i), (2.4), and (2.42) in the third integral on right-hand side,
we obtain for n ≥ m

∣∣∣∣
∫ m

0

φ(x){Qn
4 (f

n)(x)−Q4(f)(x)}dx
∣∣∣∣

=

∣∣∣∣
∫ m

0

∫ r

x

φ(x)S(y)b(x, y){fn(y)− f(y)}dydx

+

∫ m

0

∫ ∞

r

φ(x)b(x, y)S(y){fn(y)− f(y)}dydx

−
∫ m

0

∫ ∞

n

φ(x)S(y)b(x, y)fn(y)dydx

∣∣∣∣

≤
∣∣∣∣
∫ m

0

∫ r

x

φ(x)S(y)b(x, y){fn(y)− f(y)}dydx
∣∣∣∣+ ǫ

+ k2N‖φ‖L∞]0,m[L(1 + n)γ−1 → ǫ as n→∞.

By the arbitrariness of φ and ǫ, we obtain from above inequality

Qn
4 (f

n) ⇀ Q4(f) in L1]0, m[ as n→∞. (2.46)

Lemma 2.2.2 follows from (2.33), (2.39), (2.41) and (2.46).

2.2.4 The existence theorem

Now we are in a position to state and prove the main result.

Theorem 2.2.3. Suppose that (H1), (H2), (H3) and (H4) hold and assume that f0 ∈ X+.
Then (2.1) has a solution f on ]0,∞[.

Proof. Choose m > 0, T > 0, and let (fn)n∈N be the subsequence of approximating
solutions obtained above. We have from subsection 2.2.1, for t ∈ [0, T ]

fn(t) ⇀ f(t) in L1]0, m[ as n→∞. (2.47)

For any l > 0, since we know fn ⇀ f in L1]0,∞[, we obtain

∫ l

0

xf(x, t)dx = lim
n→∞

∫ l

0

xfn(x, t)dx ≤ ‖f0‖x <∞ (2.48)
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using (2.8), the non-negativity of each fn and f , and then l → ∞ implies that f ∈ X+.
Let φ ∈ L∞]0, m[. From Lemma 2.2.2 we have for each s ∈ [0, t]

∫ m

0

φ(x){Qn(fn(s))(x)−Q(f(s))(x)}dx→ 0 as n→∞. (2.49)

Also, for s ∈ [0, t], using Young’s Theorem for convolutions and Lemma 2.2.1 (i)
∫ m

0

|φ(x)||Qn(fn(s))(x)−Q(f(s))(x)|dx

≤ ‖φ‖L∞]0,m[

{
1

2

∫ m

0

∫ x

0

K(x− y, y){fn(x− y, s)fn(y, s) + f(x− y, s)f(y, s)}dydx

+

∫ m

0

∫ n−x

0

K(x, y)fn(x, s)fn(y, s)dydx+

∫ m

0

∫ ∞

0

K(x, y)f(x, s)f(y, s)dydx

+

∫ m

0

S(x){fn(x, s) + f(x, s)}dx

+

∫ m

0

∫ n

x

S(y)b(x, y)fn(y, s)dydx+

∫ m

0

∫ ∞

x

S(y)b(x, y)f(y, s)dydx

}

≤ ‖φ‖L∞]0,m[{3k2
1L

2 + 2k2(N + 1)L}. (2.50)

Since the left-hand side of (2.50) is in L1]0, t[ we have by (2.49), (2.50) and the dominated
convergence theorem

∣∣∣∣
∫ t

0

∫ m

0

φ(x){Qn(fn(s))(x)−Q(f(s))(x)}dxds
∣∣∣∣→ 0 as n→∞. (2.51)

Since φ is arbitrary, and the equation (2.51) holds for all φ ∈ L∞]0, m[, by the application
of Fubini’s Theorem we obtain

∫ t

0

Qn(fn(s))ds ⇀

∫ t

0

Q(f(s))ds in L1]0, m[ as n→∞. (2.52)

From the definition of Qn and equation (2.6) we have for t ∈ [0, T ]

fn(x, t) =

∫ t

0

Qn(fn(s))(x)ds+ fn(x, 0),

and thus it follows from (2.52)and (2.47) that
∫ m

0

φ(x)f(x, t)dx =

∫ t

0

∫ m

0

φ(x)Q(f(s))(x)dxds+

∫ m

0

φ(x)f(x, 0)dx, (2.53)

for any φ ∈ L∞]0, m]. Therefore it holds for all φ ∈ C∞
0 (]0, m]). This implies for almost

any x in ]0, m] we have

f(x, t) =

∫ t

0

Q(f(s))(x)ds+ f(x, 0).

It now follows from the arbitrariness of T and m that f is a solution to (2.1) on [0,∞[.
This completes the proof of Theorem 2.2.3.
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Chapter 3

Uniqueness of solutions

In this chapter we take into account two different issues concerning uniqueness of solutions.
First, the existence of at least one mass conserving solution for continuous coagulation
and binary fragmentation equation has been established by Escobedo et al. [27] for a large
class of coagulation kernels under strong binary fragmentation. In continuation of this,
we investigate the uniqueness of mass conserving solutions with some additional restric-
tions on the fragmentation kernels. This work is motivated by Stewart [90] and Da Costa
[14]. Secondly, to complement the existence of solutions for the coagulation and multiple
fragmentation equation in Chapter 2, the uniqueness of solutions is again demonstrated
under more stringent assumptions on the coagulation and fragmentation kernels.

The plan of this chapter is as follows. Section 3.1 recalls the coagulation and binary frag-
mentation equation from Chapter 1 and introduces some definitions, notations, a useful
lemma as well as the statement of the existence theorem given by Escobedo et al. [27]
for mass conserving solutions. Then, by proving the integrability of higher moments, we
show the uniqueness of mass conserving solutions for coagulation equation with binary
fragmentation in Section 3.2. Finally, Section 3.3 contains the uniquenss result for coag-
ulation equation with multiple fragmentation. Before proceeding to the Section 3.3, it is
recommended that readers review Chapter 2.

3.1 Introduction

The nonlinear continuous coagulation and fragmentation equation is given by

∂f(x, t)

∂t
=

1

2

∫ x

0

J(x− y, y, f(t))dy −
∫ ∞

0

J(x, y, f(t))dy (3.1)

with initial data

f(x, 0) = f0(x) ≥ 0. (3.2)
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The integral J is defined as

J(x, y, f(t)) = K(x, y)f(x, t)f(y, t)− F (x, y)f(x+ y, t) (3.3)

Let X be the following Banach space with norm ‖ · ‖

X = {f ∈ L1]0,∞[: ‖f‖ <∞} where ‖f‖ =
∫ ∞

0

(1 + x)|f(x)|dx

and set

X+ = {f ∈ X : f ≥ 0 a.e.}.

The rth moment of the number density distribution if it exists is defined by

Mr(t) = Mr(f(t)) :=

∫ ∞

0

xrf(x, t)dx, r ∈ R≥0.

The first two moments represent some important properties of the distribution. The
zeroth (r = 0) and first (r = 1) moments are proportional to the total number and the
total mass of particles, respectively.

Definition 3.1.1. Let 0 < T ≤ ∞. A solution f of (3.1) is a function f : [0, T [→ X+

such that for a.e. x ∈ [0,∞[ the following hold

(i) f(x, t) ≥ 0 for all t ∈ [0, T [,

(ii) f(x, .) is continuous on [0, T [,

(iii) for all t ∈ [0, T [

∫ t

0

∫ ∞

0

K(x, y)f(y, s)dyds <∞ and

∫ t

0

∫ ∞

0

F (x, y)f(x+ y, s)dyds <∞,

(iv) for all t ∈ [0, T [

f(x, t) = f(x, 0) +

∫ t

0

{
1

2

∫ x

0

J(x− y, y, f(s))dy −
∫ ∞

0

J(x, y, f(s))dy

}
ds.

Lemma 3.1.2. Let r : R2
≥0×]0,∞[ 7→ R≥0 be a real-valued function and

∫ t

0

∫ ∞

0

∫ ∞

0

r(x, y, s)dydxds <∞ for all t ∈]0, T [.

Then

lim
n→∞

∫ t

0

∫ n

0

∫ ∞

n−x

r(x, y, s)dydxds = 0.
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Proof. We know that
∫ t

0

∫ n

0

∫ ∞

n−x

r(x, y, s)dydxds =

∫ t

0

∫ ∞

0

∫ ∞

0

r(x, y, s)dydxds

−
(∫ t

0

∫ n

0

∫ n−x

0

r(x, y, s)dydxds+

∫ t

0

∫ ∞

n

∫ ∞

0

r(x, y, s)dydxds

)
.

This gives the inequality

0 ≤
∫ t

0

∫ n

0

∫ ∞

n−x

r(x, y, s)dydxds ≤
∫ t

0

∫ ∞

0

∫ ∞

0

r(x, y, s)dydxds

−
∫ t

0

∫ n

0

∫ n−x

0

r(x, y, s)dydxds.

Passing the limit n→∞, by dominated convergence theorem we obtain

lim
n→∞

∫ t

0

∫ n

0

∫ ∞

n−x

r(x, y, s)dydxds = 0.

Remark 3.1.3. A similar result as in Lemma 3.1.2 has been used by Dubovskii [21].

Let g : R → R be any continuous function. For convenience we define the following
integrals Ti, i = 1 to 4, for a, b ∈ R≥0 and s ∈ [0, T [:

T1(a, b, s) =
1

2

∫ b−a

a

∫ b−x

a

[g(x+ y)− g(x)− g(y)]J(x, y, f(s))dydx,

T2(a, b, s) =
1

2

∫ a

0

∫ a

a−x

g(x+ y)J(x, y, f(s))dydx,

T3(a, b, s) =

∫ a

0

∫ b−x

a

[g(x+ y)− g(y)]J(x, y, f(s))dydx,

T4(a, b, s) = −
∫ b

a

∫ ∞

b−x

g(x)J(x, y, f(s))dydx.

From Lemma 2.1 in Stewart [91], which is also true for the coagulation-fragmentation
equation, we have

∫ b

a

g(x)f(x, t)dx−
∫ b

a

g(x)f(x, 0)dx =

∫ t

0

4∑

i=1

Ti(a, b, s)ds. (3.4)
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Theorem 3.1.4. Assume that the kernels satisfy the following hypotheses for existence:
(H1): K(x, y) ≤ k[(1 + x)α(1 + y)β + (1 + x)β(1 + y)α] for all x, y ∈]0,∞[ for some
0 ≤ α ≤ β ≤ 1 and positive constant k.
(H2): (i) For each R ∈ R>0 there is a constant FR > 0 such that

F (x, y) ≤ FR for (x, y) ∈]0, R[2.

(ii) There are constants R0 > 0, S0 ≥ R0 and C0 such that

∫ R0

0

F (y, x− y)dy ≤ C0

∫ R0

0

yF (y, x− y)dy for any x ≥ S0.

(iii) For 1 < α + β ≤ 2, α, β as in (H1), there are constants B0 > 0 and γ > α + β − 2
such that

F (x− y, y) ≥ B(x) := B0(1 + x)γ for any x ≥ 1 and y ∈]0, x[. (3.5)

Then for any initial data f0 ∈ X+, there exists at least one mass conserving solution to
the initial value problem (3.1-3.3).

Proof. The proof can be found in Section 3 of Escobedo et al. [27].

The condition (H2)(iii) is called strong fragmentation condition. Thereby the the-
orem requires both 0 ≤ α ≤ β ≤ 1 and α+ β > 1 to hold.

3.2 Uniqueness for coagulation and binary fragmen-

tation equation

In order to prove the uniqueness, we consider the hypotheses (H1) with the following
restriction on (H2) i.e. (H2’)

(H2’): (i) there exists a C > 0 such that

∫ x

0

F (x− y, y)dy ≤ C(1 + x) for all x > 0.

(ii) There are constants B0 and γ > −1 such that (3.5) holds.

To prove the uniqueness, we require the integrability of higher moments Mλ, the moment
of order λ of f where λ ∈]1, 2] i.e.

∫ t

0

Mλ(f(s))ds <∞ for all t ∈ [0, T [
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3.2.1 Integrability of higher moments

First we introduce a new class of kernels both for coagulation and fragmentation.

Hypotheses 3.2.1. (HM1) K(x, y) ≤ k1(1 + x)β(1 + y)β for some 0 ≤ β ≤ 1.

(HM2) There are constants B0 > 0 and γ > −1 such that

F (x− y, y) ≥ B(x) := B0(1 + x)γ for any x ≥ 1 and y ∈]0, x[.

Note that the class of kernels satisfying (HM1) is larger than that satisfying (H1). This
is typical for the combined coagulation-fragmentation problem. There is always a trade
off between the hypotheses.

Theorem 3.2.2. Assume (HM1) and (HM2) hold. Let f ∈ X+ be any solution of equation
(3.1) on [0, T [, T > 0. Then, for every t ∈ [0, T [ and for every ǫ > 0,

∫ t

0

M2+γ−ǫ(f(s))ds <∞.

The proof of Theorem 3.2.2 consists of a repeated application of the following Lemma:

Lemma 3.2.3. Assume (HM1) and (HM2) hold. Let f ∈ X+ be any solution of equation
(3.1) on [0, T [, T > 0, and assume

∫ t

0

Mσ(f(s))ds <∞ for all t ∈ [0, T [ and some σ ≥ 1 with σ > β.

Then, with 1 + γ > β, for all t ∈ [0, T [,

∫ t

0

Mσ+γ−β+1(f(s))ds <∞ if σ − β < 1.

In case σ − β ≥ 1 we obtain

∫ t

0

M2+γ−ǫ(f(s))ds <∞ for any ǫ > 0.

Proof. We know from equation (3.4) that for any continuous function g : R→ R,

∫ b

a

g(x)f(x, t)dx−
∫ b

a

g(x)f(x, 0)dx =

∫ t

0

4∑

i=1

Ti(a, b, s)ds.
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Let us take some λ ∈ [0, 1[ and substitute g(x) = xλ, a = 0 and b = n to get

∫ n

0

xλ[f(x, t)− f0(x)]dx

+

∫ t

0

[
1

2

∫ n

0

∫ n−x

0

{xλ + yλ − (x+ y)λ}K(x, y)f(x, s)f(y, s)dydx

+

∫ n

0

∫ ∞

n−x

xλK(x, y)f(x, s)f(y, s)dydx

]
ds

=

∫ t

0

[
1

2

∫ n

0

∫ n−x

0

{xλ + yλ − (x+ y)λ}F (x, y)f(x+ y, s)dydx

+

∫ n

0

∫ ∞

n−x

xλF (x, y)f(x+ y, s)dydx

]
ds. (3.6)

Since λ < 1 and f ∈ X+, the first term on the left hand side is bounded independently
of n and is convergent as n→∞. For the last term on the left hand side, we have

∫ t

0

∫ n

0

∫ n

0

xλK(x, y)f(x, s)f(y, s)dydxds

≤k1
∫ t

0

∫ n

0

∫ n

0

xλ(1 + x)β(1 + y)βf(x, s)f(y, s)dydxds

=k1

∫ t

0

∫ n

0

∫ 1

0

xλ(1 + x)β(1 + y)βf(x, s)f(y, s)dydxds

+ k1

∫ t

0

∫ n

0

∫ n

1

xλ(1 + x)β(1 + y)βf(x, s)f(y, s)dydxds

=2βk1

∫ t

0

∫ n

0

∫ 1

0

xλ(1 + y)f(x, s)f(y, s)dydxds

+ 2βk1

∫ t

0

∫ n

0

∫ n

1

xλ+β(1 + y)f(x, s)f(y, s)dydxds.

Now in case λ+ β ≤ σ we obtain

∫ t

0

∫ n

0

∫ n

0

xλK(x, y)f(x, s)f(y, s)dydxds

≤ 2βk1 max
s∈[0,t]

‖f(s)‖
∫ t

0

[Mλ(f(s)) +Mσ(f(s))]ds <∞. (3.7)
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Now we consider the second term on the left hand side of equation (3.6) as follows

1

2

∫ t

0

∫ n

0

∫ n

0

{xλ + yλ − (x+ y)λ}K(x, y)f(x, s)f(y, s)dydxds

≤ k1
2

∫ t

0

∫ n

0

∫ n

0

(xλ + yλ)(1 + x)β(1 + y)βf(x, s)f(y, s)dydxds

≤ k1

∫ t

0

∫ n

0

∫ n

0

xλ(1 + x)β(1 + y)βf(x, s)f(y, s)dydxds

≤ 2βk1 max
s∈[0,t]

‖f(s)‖
∫ t

0

[Mλ(f(s)) +Mσ(f(s))]ds <∞.

Hence the left hand side of (3.6) converges as n → ∞ and so does the right hand side.
Since all the terms in it are non-negative, this implies that

∫ t

0

∫ ∞

0

∫ ∞

0

{xλ + yλ − (x+ y)λ}F (x, y)f(x+ y, s)dydxds <∞. (3.8)

Let us take the integral
∫ ∞

0

∫ ∞

0

{xλ + yλ − (x+ y)λ}F (x, y)f(x+ y, s)dydx.

By changing the order of integration and making a change of variable x + y = x′, y = y′

we obtain
∫ ∞

0

∫ ∞

y′
{(x′ − y′)λ + y′λ − x′λ}F (x′ − y′, y′)f(x′, s)dx′dy′.

Again changing the order of integration and drop the primes to get
∫ ∞

0

∫ x

0

{(x− y)λ + yλ − xλ}F (x− y, y)f(x, s)dydx

=

∫ ∞

0

Bxf(x, s)dx

where Bx =

∫ x

0

{(x− y)λ + yλ − xλ}F (x− y, y)dy.

Note that the integral Bx is non-negative due to λ ∈ [0, 1[ and y ∈ [0, x]. In Proposition
A.0.6 we take y′ = x

2
. Then there exists a constant kλ > 0 for each λ ∈ [0, 1[ such that

yλ + (x− y)λ − xλ ≥ kλy
λ

and

Bx ≥
∫ x/2

0

{(x− y)λ + yλ − xλ}F (x− y, y)dy

≥ kλ

∫ x/2

0

yλF (x− y, y)dy. (3.9)
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Using (HM2) in (3.9) we get

Bx ≥ B0
kλ

λ+ 1
(1 + x)γ(

x

2
)λ+1

= B0k
′
λ

(1 + x)γ+1

( 1
x
+ 1)

xλ

≥ B0

2
k′
λx

γ+λ+1 for any x ≥ 1. (3.10)

Substituting (3.10) for Bx and then into (3.8) we obtain

B0

2
k′
λ

∫ t

0

∫ ∞

0

xγ+λ+1f(x, s)dxds

≤
∫ t

0

∫ ∞

0

∫ ∞

0

{xλ + yλ − (x+ y)λ}F (x, y)f(x+ y, s)dydxds <∞.

There are two cases. For σ − β < 1 we may take the maximal λ = σ − β to give
∫ t

0

Mσ+γ−β+1(f(s))ds <∞.

Otherwise the condition λ < 1 is more restrictive, i.e. we may take λ = 1 − ǫ for any
ǫ > 0. This gives

∫ t

0

Mγ+2−ǫ(f(s))ds <∞.

Proof of Theorem 3.2.2. Let p be the smallest positive integer satisfying

p(µ− β) > β where µ := 1 + γ > β.

(a) If p > 1. Then p− 1 is a positive integer and

0 < (p− 1)(µ− β) < β.

Now we define σi := 1 + (i− 1)(µ− β) to have

1 = σ1 < σ2 < . . . < σp−1 < σp < 1 + β.

Applying Lemma 3.2.3 p times, starting with σ = σ1 = 1, gives
∫ t

0

Mσp+1
(f(s))ds <∞,

and one more application of Lemma 3.2.3 with σ = σp+1 = 1 + p(µ − β) > 1 proves the
result.

(b) If p = 1. Then we start with σ = 1 and apply Lemma 3.2.3 two times to obtain the
result.
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Theorem 3.2.4. Let f be a mass conserving solution of equation (3.1) subject to (3.2),
(3.3) with initial data f0 ∈ X+. If the hypotheses (H1) and (H2’) hold, then the solution
is unique.

Proof. For q ∈ R, define sgn(q) equal to 1, 0, -1 whenever q > 0, q = 0 or q < 0
respectively. Let f1 and f2 be two solutions to (3.1-3.3) on [0, T [, where T > 0, with
f1(0) = f2(0), and set Y = f1 − f2. For n = 1, 2, 3, . . ., we define

un(t) :=

∫ n

0

(1 + x)|Y (x, t)|dx. (3.11)

Multiplying |Y | by (1 + x) and applying Fubini’s theorem to Definition 3.1.1 (iv) above,
we obtain for each n and 0 < t < T ,

un(t) =

∫ t

0

∫ n

0

(1 + x)sgn(Y (x, s))

[
1

2

∫ x

0

(
J(x− y, y, f1(s))− J(x− y, y, f2(s))

)
dy

−
∫ ∞

0

(
J(x, y, f1(s))− J(x, y, f2(s))

)
dy

]
dxds.

(3.12)

Using the substitution x′ = x − y, y′ = y in the first integral on the right hand side of
(3.12), we find that

un(t) =

∫ t

0

∫ n

0

∫ n−x

0

[
1

2
(1 + x+ y)sgn(Y (x+ y, s))− (1 + x)sgn(Y (x, s))

]

×
[
J(x, y, f1(s))− J(x, y, f2(s))

]
dydxds

−
∫ t

0

∫ n

0

∫ ∞

n−x

(1 + x)sgn(Y (x, s))

[
J(x, y, f1(s))− J(x, y, f1(s))

]
dydxds. (3.13)

By interchanging the order of integration (and interchanging the roles of x and y), the
symmetry of J yields the identity

∫ n

0

∫ n−x

0

(1 + x)sgn(Y (x, s))J(x, y, f1(s))dydx

=

∫ n

0

∫ n−x

0

(1 + y)sgn(y(x, s))J(x, y, f1(s))dydx. (3.14)

The equation (3.14) analogously holds for solution f2. For x, y ≥ 0 and t ∈ [0, T [, define
c by

c(x, y, t) = (1 + x+ y)sgn(Y (x+ y, t))− (1 + x)sgn(Y (x, t))− (1 + y)sgn(Y (y, t)).
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Using (3.14) we can show that (3.13) can be rewritten as

un(t) =
1

2

∫ t

0

∫ n

0

∫ n−x

0

c(x, y, s)K(x, y)f1(x, s)Y (y, s)dydxds

+
1

2

∫ t

0

∫ n

0

∫ n−x

0

c(x, y, s)K(x, y)f2(y, s)Y (x, s)dydxds

− 1

2

∫ t

0

∫ n

0

∫ n−x

0

c(x, y, s)F (x, y)Y (x+ y, s)dydxds

−
∫ t

0

∫ n

0

∫ ∞

n−x

(1 + x)sgn(Y (x, s))

[
J(x, y, f1(s))− J(x, y, f2(s))

]
dydxds.

=:

∫ t

0

4∑

i=1

Sn
i (s)ds.

Here Sn
i , for i = 1, 2, 3, 4 are the corresponding integrands in the preceding lines.

We now consider each Sn
i individually. Note that for all q, q1, q2 ∈ R, we have

sgn(q1)sgn(q2) = sgn(q1q2) and |q| = qsgn(q).

We find that

c(x, y, s)Y (y, s) ≤
[
(1 + x+ y) + (1 + x)− (1 + y)

]
|Y (y, s)| = 2(1 + x)|Y (y, s)|. (3.15)

Now, we consider
∫ t

0

Sn
1 (s)ds

=
1

2

∫ t

0

∫ n

0

∫ n−x

0

c(x, y, s)K(x, y)f1(x, s)Y (y, s)dydxds

≤ k

∫ t

0

∫ n

0

∫ n−x

0

(1 + x)[(1 + x)α(1 + y)β + (1 + x)β(1 + y)α]f1(x, s)|Y (y, s)|dydxds

≤ 2k

∫ t

0

∫ n

0

∫ n−x

0

(1 + x)1+β(1 + y)βf1(x, s)|Y (y, s)|dydxds

≤ 2k

∫ t

0

[ ∫ 1

0

(1 + x)1+βf1(x, s)dx+

∫ n

1

x1+β(
1

x
+ 1)1+βf1(x, s)dx

]
un(s)ds

= 2β+2k

∫ t

0

[M0(f1(s)) +M1+β(f1(s))]u
n(s)ds

=

∫ t

0

ϕf1(s)u
n(s)ds

where
ϕf1(s) := 2β+2k[M0(f1(s)) +M1+β(f1(s))].
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Similarly we define
ϕf2(s) := 2β+2k[M0(f2(s)) +M1+β(f2(s))]

to get

∫ t

0

Sn
2 (s)ds ≤

∫ t

0

ϕf2(s)u
n(s)ds.

To solve Sn
3 we use the following inequality

−c(x, y, s)Y (x+ y, s) ≤
[
(1 + x) + (1 + y)− (1 + x+ y)

]
|Y (x+ y, s)|

= |Y (x+ y, s)|. (3.16)

By using (3.16), Fubini’s theorem, hypothesis (H2’) and the symmetry of F

∫ t

0

Sn
3 (s)ds ≤

1

2

∫ t

0

∫ n

0

∫ n−x

0

F (x, y)|Y (x+ y, s)|dydxds

=
1

2

∫ t

0

∫ n

0

∫ n

x

F (x, y − x)|Y (y, s)|dydxds

=
1

2

∫ t

0

∫ n

0

∫ y

0

F (x, y − x)|Y (y, s)|dxdyds

=
1

2

∫ t

0

∫ n

0

∫ x

0

F (x− y, y)|Y (x, s)|dydxds

≤ C

2

∫ t

0

∫ n

0

(1 + x)|Y (x, s)|dxds

=
C

2

∫ t

0

un(s)ds.

Thus,

∫ t

0

[
Sn
1 (s) + Sn

2 (s) + Sn
3 (s)

]
ds ≤

∫ t

0

ϕ(s)un(s)ds (3.17)

where ϕ(s) = ϕf1(s) +ϕf2(s) +
C
2
is integrable by Theorem 3.2.2. For the fourth term we

have

∣∣∣∣
∫ t

0

Sn
4 (s)ds

∣∣∣∣

=

∣∣∣∣−
∫ t

0

∫ n

0

∫ ∞

n−x

(1 + x)sgn(Y (x, s))

[
K(x, y)f1(x, s)f1(y, s)− F (x, y)f1(x+ y, s)

−K(x, y)f2(x, s)f2(y, s) + F (x, y)f2(x+ y, s)

]
dydxds

∣∣∣∣.
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This gives the estimate
∣∣∣∣
∫ t

0

Sn
4 (s)ds

∣∣∣∣

≤
∫ t

0

∫ n

0

∫ ∞

n−x

∣∣∣∣(1 + x)sgn(Y (x, s))K(x, y)[f1(x, s)f1(y, s)− f2(x, s)f2(y, s)]

∣∣∣∣dydxds

+

∫ t

0

∫ n

0

∫ ∞

n−x

∣∣∣∣(1 + x)sgn(Y (x, s))F (x, y)Y (x+ y, s)

∣∣∣∣dydxds. (3.18)

For the first term on the right hand side in the above inequality we have

∫ t

0

∫ ∞

0

∫ ∞

0

∣∣∣∣(1 + x)sgn(Y (x, s))K(x, y)[f1(x, s)f1(y, s)− f2(x, s)f2(y, s)]

∣∣∣∣dydxds

≤ k

∫ t

0

∫ ∞

0

∫ ∞

0

(1 + x)[(1+x)α(1 + y)β + (1 + x)β(1 + y)α]

×[f1(x, s)f1(y, s) + f2(x, s)f2(y, s)]dydxds

≤ 2k

∫ t

0

∫ ∞

0

∫ ∞

0

(1 + x)1+β(1 + y)β[f1(x, s)f1(y, s) + f2(x, s)f2(y, s)]dydxds.

(3.19)

Now we consider the first term on the right hand side of the above inequality (3.19).

2k

∫ t

0

∫ ∞

0

∫ ∞

0

(1 + x)1+β(1 + y)βf1(x, s)f1(y, s)dydxds

= 2k

∫ t

0

[ ∫ 1

0

(1 + x)1+βf1(x, s)dx+

∫ ∞

1

x1+β(1/x+ 1)1+βf1(x, s)dx

]
Mβ(f1(s))ds

= 2β+2k

∫ t

0

[M0(f1(s)) +M1+β(f1(s))]Mβ(c(s))ds <∞.

Similarly we can show the finiteness of the second term on the right hand side in (3.19).
Note that we have used the integrability of higher moments of solutions f1 and f2. So, by
using Lemma 3.1.2 we obtain

lim
n→∞

∫ t

0

∫ n

0

∫ ∞

n−x

∣∣∣∣(1 + x)sgn(Y (x, s))K(x, y)[f1(x, s)f1(y, s)− f2(x, s)f2(y, s)]

∣∣∣∣dydxds

= 0.
(3.20)

For the second term on the right hand side in (3.18) we substitute g(x) = x, a = 0 and
b = n in equation (3.4), we obtain

∫ n

0

xf1(x, t)dx−
∫ n

0

xf1(x, 0)dx = −
∫ t

0

∫ n

0

∫ ∞

n−x

xJ(x, y, f1(s))dydxds
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Taking limit as n→∞,
∫ ∞

0

xf1(x, t)−
∫ ∞

0

xf1(x, 0)dx = − lim
n→∞

∫ t

0

∫ n

0

∫ ∞

n−x

xJ(x, y, f1(s))dydxds (3.21)

Since f1 and f1 are mass conserving solutions we have from (3.21)

lim
n→∞

∫ t

0

∫ n

0

∫ ∞

n−x

xJ(x, y, f1(s))dydxds = 0 (3.22)

and similarly,

lim
n→∞

∫ t

0

∫ n

0

∫ ∞

n−x

xJ(x, y, f2(s))dydxds = 0. (3.23)

From equation (3.22), we obtain

lim
n→∞

∫ t

0

∫ n

0

∫ ∞

n−x

xK(x, y)f1(x, s)f1(y, s)dydxds

= lim
n→∞

∫ t

0

∫ n

0

∫ ∞

n−x

xF (x, y)f1(x+ y, s)dydxds.

By using same argument as used before we get

lim
n→∞

∫ t

0

∫ n

0

∫ ∞

n−x

xK(x, y)f1(x, s)f1(y, s)dydxds = 0.

This implies that

lim
n→∞

∫ t

0

∫ n

0

∫ ∞

n−x

xF (x, y)f1(x+ y, s)dydxds = 0. (3.24)

Analogously, we have

lim
n→∞

∫ t

0

∫ n

0

∫ ∞

n−x

xF (x, y)f2(x+ y, s)dydxds = 0. (3.25)

Now we consider
∫ t

0

∫ n

0

∫ ∞

n−x

∣∣∣∣xsgn(Y (x, s))F (x, y)Y (x+ y, s)

∣∣∣∣dydxds

≤
∫ t

0

∫ n

0

∫ ∞

n−x

xF (x, y)|Y (x+ y, s)|dydxds

≤
∫ t

0

∫ n

0

∫ ∞

n−x

xF (x, y)f1(x+ y, s)dydxds

+

∫ t

0

∫ n

0

∫ ∞

n−x

xF (x, y)f2(x+ y, s)dydxds.
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Using (3.24) and (3.25), we get

lim
n→∞

∫ t

0

∫ n

0

∫ ∞

n−x

∣∣∣∣xsgn(Y (x, s))F (x, y)Y (x+ y, s)

∣∣∣∣dydxds = 0. (3.26)

Now we use the symmetry of F , Fubini’s theorem and hypothesis (H2’) to have for each
s ∈ [0, t],

∫ n

0

∫ ∞

n−x

∣∣∣∣sgn(Y (x, s))F (x, y)Y (x+ y, s)

∣∣∣∣dydx

≤
∫ n

0

∫ ∞

n−x

F (x, y)|Y (x+ y, s)|dydx

=

∫ n

0

∫ ∞

n

F (x, y − x)|Y (y, s)|dydx

=

∫ ∞

n

∫ n

0

F (y − x, x)|Y (y, s)|dxdy

=

∫ ∞

n

∫ n

0

F (x− y, y)|Y (x, s)|dydx

≤
∫ ∞

n

∫ x

0

F (x− y, y)f1(x, s)dydx+

∫ ∞

n

∫ x

0

F (x− y, y)f2(x, s)dydx

≤ C

[ ∫ ∞

n

(1 + x)f1(x, s)dx+

∫ ∞

n

(1 + x)f2(x, s)dx

]
(3.27)

The right hand side of (3.27) is always bounded by the constant C[sups∈[0,t] ‖f1(s)‖ +
sups∈[0,t] ‖f2(s)‖] and therefore

∫ t

0

∫ n

0

∫ ∞

n−x

∣∣∣∣sgn(Y (x, s))F (x, y)Y (x+ y, s)

∣∣∣∣dydxds = 0 as n→∞. (3.28)

From (3.18), (3.20), (3.26) and (3.28) we can conclude that
∫ t

0

Sn
4 (s)ds→ 0 as n→∞.

The sequence un is bounded and monotone. Thus, from (3.15), (3.17) and (3.18) we
obtain

u(t) :=

∫ ∞

0

(1 + x)|Y (x, t)|dx = lim
n→∞

un(t) ≤ lim
n→∞

∫ t

0

ϕ(s)un(s)ds+ lim
n→∞

∫ t

0

Sn
4 (s)ds

=

∫ t

0

ϕ(s)

∫ ∞

0

(1 + x)|Y (x, s)|dxds.

This gives the inequality

u(t) ≤
∫ t

0

ϕ(s)u(s)ds
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with ϕ(s) ≥ 0. Then by Gronwall’s inequality, we obtain

u(t) =

∫ ∞

0

(1 + x)|Y (x, t)|dx = 0 for all t ∈ [0, T [.

Therefore,

f1(x, t) = f2(x, t) for a.e. x ∈ [0,∞[.

Remarks. If we consider multiplicative coagulation kernel, i.e. K(x, y) = kxy with the
following much larger class of fragmentation kernels F

(H2”): There are constants B0 > 0 and γ > −1 such that (3.5) holds.

Then the uniqueness of the solutions to (3.1)-(3.3) can be proved as in Theorem 3.2.4
by defining

un(t) :=

∫ n

0

x|Y (x, t)|dx

and

f(x, y, t) = (x+ y)sgn(Y (x+ y, t))− xsgn(Y (x, t))− ysgn(Y (y, t)).

It should also be pointed out that (H2’)(i) restricts the class of fragmentation kernels. It
would be interesting to find a more general hypothesis on fragmentation kernels to replace
(H2’)(i) which could help us to prove uniqueness of solutions in X+.

3.3 Uniqueness for the coagulation and multiple frag-

mentation equation

We refer the definition and the existence of solutions from chapter 2. The following fur-
ther restrictions on the kernels are needed to prove the uniqueness of solutions to the
coagulation equation with multiple fragmentation (2.1)-(2.2).

(HU1) K(x, y) is a continuous non-negative function on [0,∞[×[0,∞[ and Γ is a non-
negative locally bounded function,

(HU2) K is symmetric, i.e. K(x, y) = K(y, x) for all x, y ∈]0,∞[,

(HU3) K(x, y) ≤ φ(x)φ(y) for all x, y where φ(x) ≤ k(1 + x)
1

2 for some constant k.
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(HU4) for all x > 0, there exist m1, m2 > 0 such that

S(x) ≤ m1(1 + x)a

and ∫ x

0

(1 + y)
1

2 b(y, x)dy ≤ m2(1 + x)b

where a + b ≤ 1
2
.

Theorem 3.3.1. If (HU1), (HU2), (HU3) and (HU4) hold and initial data f0 ∈ X+ then
solutions to (2.1)-(2.2) are unique.

Proof. Let f and g be two solutions to (2.1)-(2.2) on [0, T [ where T > 0, with f(0) = g(0),
and set Y = f − g. For n = 1, 2, 3 . . . we define

un(t) =

∫ n

0

(1 + x)
1

2 |Y (x, t)|dx.

Multiplying |Y | by (1+x)
1

2 and applying Fubini’s Theorem to Definition 2.1.2 (iv) above,
we obtain for each n and 0 < t < T ,

un(t) =

∫ t

0

∫ n

0

(1 + x)
1

2 sgn(Y (x, s))

×
[
1

2

∫ x

0

K(x− y, y){f(x− y, s)f(y, s)− g(x− y, s)g(y, s)}dy

−
∫ ∞

0

K(x, y){f(x, s)f(y, s)− g(x, s)g(y, s)}dy

+

∫ ∞

x

b(x, y)S(y){f(y, s)− g(y, s)}dy − S(x){f(x, s)− g(x, s)}
]
dxds.

(3.29)

Using the substitution x′ = x − y, y′ = y in the first integral on the right-hand side of
(3.29) we find that

un(t) =

∫ t

0

∫ n

0

∫ n−x

0

[
1

2
(1 + x+ y)

1

2 sgn(Y (x+ y, s))− (1 + x)
1

2 sgn(Y (x, s))

]

×K(x, y){f(x, s)f(y, s)− g(x, s)g(y, s)}dydxds

−
∫ t

0

∫ n

0

∫ ∞

n−x

(1 + x)
1

2 sgn(Y (x, s))

×K(x, y){f(x, s)f(y, s)− g(x, s)g(y, s)}dydxds

+

∫ t

0

∫ n

0

∫ ∞

x

(1 + x)
1

2 sgn(Y (x, s))b(x, y)S(y){f(y, s)− g(y, s)}dydxds

−
∫ t

0

∫ n

0

(1 + x)
1

2 sgn(Y (x, s))S(x){f(x, s)− g(x, s)}dxds. (3.30)
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By interchanging the order of integration and interchanging the roles of x and y, the
symmetry of K yields the identity
∫ n

0

∫ n−x

0

(1 + x)
1

2 sgn(Y (x, s))K(x, y){f(x, s)f(y, s)− g(x, s)g(y, s)}dydx

=

∫ n

0

∫ n−x

0

(1 + y)
1

2 sgn(Y (y, s))K(x, y){f(x, s)f(y, s)− g(x, s)g(y, s)}dydx. (3.31)

For x, y > 0 and t ∈ [0, T [ we define the function r by

r(x, y, t) = (1 + x+ y)
1

2 sgn(Y (x+ y, t))− (1 + x)
1

2 sgn(Y (x, t))− (1 + y)
1

2 sgn(Y (y, t)).

Using (3.31) we can show that (3.30) can be rewritten as

un(t) =
1

2

∫ t

0

∫ n

0

∫ n−x

0

r(x, y, s)K(x, y)f(x, s)Y (y, s)dydxds

+
1

2

∫ t

0

∫ n

0

∫ n−x

0

r(x, y, s)K(x, y)g(y, s)Y (x, s)dydxds

+

∫ t

0

∫ n

0

∫ ∞

x

(1 + x)
1

2 sgn(Y (x, s))b(x, y)S(y)Y (y, s)dydxds

−
∫ t

0

∫ n

0

(1 + x)
1

2 sgn(Y (x, s))S(x)Y (x, s)dxds

−
∫ t

0

∫ n

0

∫ ∞

n−x

(1 + x)
1

2 sgn(Y (x, s))

×K(x, y){f(x, s)Y (y, s) + g(y, s)Y (x, s)}dydxds. (3.32)

Since the fourth integral and the last term in the fifth integral on the right-hand side of
(3.32) are non-negative. We may omit them. Thus we obtain, by interchanging the order
of integration for the third integral,

un(t) ≤1
2

∫ t

0

∫ n

0

∫ n−x

0

r(x, y, s)K(x, y)f(x, s)Y (y, s)dydxds

+
1

2

∫ t

0

∫ n

0

∫ n−x

0

r(x, y, s)K(x, y)g(y, s)Y (x, s)dydxds

+

∫ t

0

∫ n

0

∫ y

0

(1 + x)
1

2 b(x, y)S(y)|Y (y, s)|dxdyds

+

∫ t

0

∫ n

0

∫ ∞

n

(1 + x)
1

2 b(x, y)S(y)|Y (y, s)|dydxds

−
∫ t

0

∫ n

0

∫ ∞

n−x

(1 + x)
1

2 sgn(Y (x, s))K(x, y)f(x, s)Y (y, s)dydxds

=:

∫ t

0

5∑

i=1

Sn
i (s)ds. (3.33)
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Here Sn
i , for i = 1, . . . 5, are the corresponding integrands in the preceding lines.

We now consider each Sn
i individually. Note that for all q, q1, q2 ∈ R, we have

sgn(q1)sgn(q2) = sgn(q1q2) and |q| = qsgn(q).

We find that

r(x, y, s)Y (y, s) ≤ [(1 + x+ y)
1

2 + (1 + x)
1

2 − (1 + y)
1

2 ]|Y (y, s)|
≤ [(1 + x)

1

2 + (1 + y)
1

2 + (1 + x)
1

2 − (1 + y)
1

2 ]|Y (y, s)|
≤ 2(1 + x)

1

2 |Y (y, s)|. (3.34)

Now, by using (HU3) we consider

∫ t

0

Sn
1 (s)ds =

1

2

∫ t

0

∫ n

0

∫ n−x

0

r(x, y, s)K(x, y)f(x, s)Y (y, s)dydxds

≤
∫ t

0

∫ n

0

∫ n−x

0

(1 + x)
1

2K(x, y)f(x, s)|Y (y, s)|dydxds

≤ k2

∫ t

0

∫ n

0

∫ n−x

0

(1 + x)(1 + y)
1

2f(x, s)|Y (y, s)|dydxds

≤ R1

∫ t

0

un(s)ds, where R1 = k2 sup
s∈[0,t]

‖f(s)‖. (3.35)

Similarly, there is a constant R2 such that

∫ t

0

Sn
2 (s)ds ≤ R2

∫ t

0

un(s)ds. (3.36)

Now, we consider

∫ t

0

Sn
3 (s)ds =

∫ t

0

∫ n

0

∫ y

0

(1 + x)
1

2 b(x, y)S(y)|Y (y, s)|dxdyds. (3.37)

By interchanging the role of x and y in (3.37) and using (HU4) we obtain

∫ t

0

Sn
3 (s)ds =

∫ t

0

∫ n

0

∫ x

0

(1 + y)
1

2 b(y, x)S(x)|Y (x, s)|dydxds

≤ m1m2

∫ t

0

∫ n

0

(1 + x)a+b|Y (x, s)|dxds

≤ R3

∫ t

0

un(s)ds, where R3 = m1m2. (3.38)
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Next, using Fubini’s theorem and hypothesis (HU4) we have for each s ∈ [0, t]
∫ n

0

∫ ∞

n

(1 + x)
1

2 b(x, y)S(y)|Y (y, s)|dydx

=

∫ ∞

n

∫ n

0

(1 + y)
1

2 b(y, x)S(x)|Y (x, s)|dydx

≤
∫ ∞

n

∫ x

0

(1 + y)
1

2 b(y, x)S(x)[f(x, s) + g(x, s)]dydx

≤m1m2

∫ ∞

n

(1 + x)a+b[f(x, s) + g(x, s)]dydx. (3.39)

The right-hand side of (3.39) is always bounded by the constant m1m2 sups∈[0,t][‖f(s)‖+
‖g(s)‖] and therefore the dominated convergence theorem leads to

∫ t

0

Sn
4 (s)ds→ 0 as n→∞. (3.40)

To consider Sn
5 we first observe that
∣∣∣∣
∫ ∞

0

∫ ∞

0

(1 + x)
1

2 sgn(Y (x, s))K(x, y)f(x, s)Y (y, s)dydx

∣∣∣∣

≤ k2

∫ ∞

0

∫ ∞

0

(1 + x)(1 + y)
1

2f(x, s)|Y (y, s)|dydx

<∞.

Thus, from Lemma 3.1.2 we find that
∫ t

0

Sn
5 (s)ds→ 0 as n→∞. (3.41)

The sequence un is bounded and monotone. Thus, from (3.33), (3.35), (3.36), (3.38),
(3.40), (3.41) and taking R = R1 +R2 +R3 we obtain

u(t) :=

∫ ∞

0

(1 + x)
1

2 |Y (x, t)|dx = lim
n→∞

un(t)

≤ lim
n→∞

∫ t

0

5∑

i=1

Sn
i (s)ds

≤ lim
n→∞

R

∫ t

0

un(s)ds+ lim
n→∞

∫ t

0

[Sn
4 (s) + Sn

5 (s)]ds

= R

∫ t

0

∫ ∞

0

(1 + x)
1

2 |Y (x, s)|dxds.

This gives the inequality

u(t) ≤ R

∫ t

0

u(s)ds. (3.42)
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Then by applying Gronwall’s inequality to (3.42), we obtain

u(t) =

∫ ∞

0

(1 + x)
1

2 |Y (x, t)|dx = 0 for all t ∈ [0, T [.

Therefore, we obtain

f(x, t) = g(x, t) for a.e. x ∈]0,∞[.
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Chapter 4

An extension of existence theory

The purpose of this chapter is to study the existence of solutions to the continuous coag-
ulation equation with multiple fragmentation that includes some classical multiple frag-
mentation kernels that are not covered in Chapter 2. Here we consider the same classes of
coagulation kernels as are in Chapter 2. This is an extension of results studied in Chapter
2 and Giri et al. [40]. The existence of solutions is also proved in the same space as is in
Chapter 2.

We now organize the content of this chapter. For the completeness, a short description of
the continuous coagulation and multiple fragmentation equation from Chapter 1 is again
reviewed in the next section. In Section 4.1, we repeat some definitions of norm and
solutions from Chapter 2 and make some hypotheses on kernels which play an important
role in further analysis. In Section 4.2, we obtain a sequence of unique global solutions
truncated equations to (4.1)-(4.2) and extract a weakly convergent subsequence in L1.
Finally, we show that the limit function obtained from weakly convergent subsequence is
actually a solution to (4.1)-(4.2).

4.1 Introduction

The non-linear continuous coagulation and multiple fragmentation equation is given by

∂f(x, t)

∂t
=
1

2

∫ x

0

K(x− y, y)f(x− y, t)f(y, t)dy−
∫ ∞

0

K(x, y)f(x, t)f(y, t)dy

+

∫ ∞

x

b(x, y)S(y)f(y, t)dy − S(x)f(x, t), (4.1)

with

f(x, 0) = f0(x) ≥ 0 a.e. (4.2)

Here f(x, t) denote the number density of particles of size x ≥ 0 at time t ≥ 0. The
interpretation for coagulation and fragmentation terms can be followed from Chapter 2.
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We also repeat the definition of the selection function S and breakage function b in terms
of the multiple-fragmentation kernel Γ which are as follows

S(x) =

∫ x

0

y

x
Γ(x, y)dy, b(x, y) = Γ(y, x)/S(y). (4.3)

The breakage function has the following properties

∫ y

0

b(x, y)dx = N <∞, for all y > 0 and b(x, y) = 0, for x > y, (4.4)

and
∫ y

0

xb(x, y)dx = y for all y > 0. (4.5)

The above properties can be found with more details in Chapter 2. The main novelty of
the result is that it includes some classical multiple-fragmentation kernels which are not
considered in Chapter 2. The examples of such fragmentation kernels are given at the
end of this section. The classes of coagulation kernels are same as in Chapter 2. In order
to prove the existence of solutions to (4.1)-(4.2), we define the following Banach space X
with norm ‖ · ‖

X = {f ∈ L1(0,∞) : ‖f‖ <∞} where ‖f‖ =
∫ ∞

0

(1 + x)|f(x)|dx.

We also take again the norms

‖f‖x =

∫ ∞

0

x|f(x)|dx and ‖f‖1 =
∫ ∞

0

|f(x)|dx

and set

X+ = {f ∈ X : f ≥ 0 a.e.}.

Let us make the following hypotheses on the coagulation kernelsK, multiple-fragmentation
kernel Γ and selection rate S which will be used in the further analysis

Hypotheses 4.1.1. (H1) K is a continuous non-negative function on [0,∞[×[0,∞[,

(H2) K is symmetric, i.e. K(x, y) = K(y, x) for all x, y ∈]0,∞[,

(H3) K(x, y) ≤ φ(x)φ(y) for all x, y ∈]0,∞[ where φ(x) ≤ k1(1+ x)µ for some 0 ≤ µ < 1
and constant k1.
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For each R ≥ 1, we have

(H4) for R < y the estimate Γ(y, x) ≤ k(R)yθ, 0 < x < R < y for some θ ∈ [0, 1[,

(H5) for R ≥ y we define for any set E ⊂ R>0 the indicator function 1E with

1E(x) :=

{
1 if x ∈ E,

0 if x /∈ E,

and assume the estimates
∫ y

0

1E(x)Γ(y, x)dx ≤ ω(R, |E|), y ∈]0, R],

with

lim
δ→0

ω(R, δ) = 0,

where E is any measurable subset of ]0, R] with |E| ≤ δ,

(H6) S ∈ L∞]0, R[.

Definition 4.1.2. Let T ∈]0,∞]. A solution f of (4.1-4.2) is a function f : [0, T [→ X+

such that for a.e. x ∈]0,∞[ and all t ∈ [0, T [ the following hold

(i) f(x, t) ≥ 0,

(ii) f(x, .) is continuous on [0, T [,

(iii) the following integrals are bounded

∫ t

0

∫ ∞

0

K(x, y)f(y, s)dyds <∞ and

∫ t

0

∫ ∞

x

b(x, y)S(y)f(y, s)dyds <∞,

(iv) the function f satisfies the following weak formulation of (4.1)

f(x, t) = f0(x) +

∫ t

0

{
1

2

∫ x

0

K(x− y, y)f(x− y, s)f(y, s)dy

−
∫ ∞

0

K(x, y)f(x, s)f(y, s)dy+

∫ ∞

x

b(x, y)S(y)f(y, s)dy− S(x)f(x, s)

}
ds.

The examples of coagulation kernels which satisfy the growth conditions in hypotheses
4.1.1 are the same as in Chapter 2. Let us now take the following types of fragmentation
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kernels which also fit in the classes considered in Hypotheses 4.1.1. If we assume that

Γ = S · b ∈ L∞(]0,∞[×]0,∞[),

then these kernels have been analyzed in McLaughlin et al. [66] and Chapter 2 also. Now
let us take the examples of type

S(y) = yγ and b(x, y) =
α + 2

y

(
x

y

)α

, for 0 < x < y,

where γ > 0 and α ≥ 0. These have been studied in Peterson [77] and also in Ziff [102].
Then, we have

Γ(y, x) = (α + 2)xαyγ−(α+1).

Using Hölder’s inequality one obtains
∫ y

0

1E(x)Γ(y, x)dx = (α+ 2)yγ−(α+1)

∫ y

0

1E(x)x
αdx

≤ (α + 2)yγ−(α+1)|E|
γ

γ+1

(∫ y

0

xα(γ+1)dx

) 1

γ+1

≤ (α + 2)|E|
γ

γ+1 (1 + α(γ + 1))−
1

γ+1 yα+
1

γ+1
+γ−(α+1)

≤ C(α, γ)y
γ2

γ+1 |E|
γ

γ+1

≤ C(α, γ)R
γ2

γ+1 |E|
γ

γ+1 .

This shows that (H5) is fulfilled. As for (H4), we can write

Γ(y, x) ≤ (α + 2)yγ−1 ≤ α + 2

R1+θ−γ
yθ

provided γ < 1 + θ for some θ ∈ [0, 1[. Thus (H4) is satisfied for γ < 2. This shows that
these type of fragmentation kernels satisfy the hypotheses mentioned above but are not
included in Chapter 2.

4.2 Existence

4.2.1 Approximating equations

In order to prove the existence of solutions to (4.1-4.2), we take the limit of a sequence
of approximating equations obtained by replacing the kernel K and selection function S
by the ‘cut-off’ kernels Kn and Sn as in Chapter 2, where

Kn(x, y) :=

{
K(x, y) if x+ y < n,

0 if x+ y ≥ n,
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Sn(x) :=

{
S(x) if 0 < x < n,

0 if x ≥ n.

The approximating equations, with solutions denoted by fn, are written as

∂fn(x, t)

∂t
=
1

2

∫ x

0

Kn(x− y, y)fn(x− y, t)fn(y, t)dy −
∫ n−x

0

Kn(x, y)f
n(x, t)fn(y, t)dy

+

∫ n

x

b(x, y)Sn(y)f
n(y, t)dy − Sn(x)f

n(x, t), (4.6)

with

fn
0 (x) :=

{
f0(x) if 0 < x < n,

0 if x ≥ n.
(4.7)

Choose T > 0. We may argue as in Stewart [89, Theorem 3.1] and obtain the following
result. For each n = 1, 2, 3, . . ., (4.6-4.7) has a unique solution fn ∈ X+ with fn(x, t) ≥ 0
for a.e. x ∈]0, n[ and t ∈ [0,∞[, see Walker [98] also. Moreover, the total mass remains
conserved, for all t ∈ [0,∞[, i.e.

∫ n

0

xfn(x, t)dx =

∫ n

0

xfn
0 (x)dx. (4.8)

From now on we consider the ‘zero extension’ of each fn on R, i.e.

f̂n(x, t) :=

{
fn(x, t) if 0 < x < n, t ∈ [0, T ]

0 if x ≤ 0 or x ≥ n.

For the simplicity we drop the .̂ notation for the remainder of the work and the subscripts
on the coagulation kernels and the selection functions.

Next, we need to prove the following lemma to apply the Dunford-Pettis-Theorem [23,
Theorem 4.21.2] and then equicontinuity of the sequence (fn)n∈N in time to use the
Arzelà-Ascoli Theorem [3, Appendix A8.5].

Lemma 4.2.1. Assume that (H1), (H2), (H3), (H4), (H5) and (H6) hold. Then the
following results are true:

(i)

∫ ∞

0

(1 + x)fn(x, t)dx ≤ L for n = 1, 2, 3 . . . and all t ∈ [0, T ],

(ii) For any ǫ > 0 there exists an R > 0 such that for all t ∈ [0, T ]

sup
n

{∫ ∞

R

fn(x, t)dx

}
≤ ǫ,
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(iii) given ǫ > 0 there exists a δ > 0 such that for every measurable set E with |E| ≤ δ
and for all n = 1, 2, 3 . . . with t ∈ [0, T ]

∫

E

fn(x, t)dx < ǫ.

Proof. (i) By integrating (4.6) with respect to x and t, then using Fubini’s Theorem, for
each n ≥ 1 we have

∫ 1

0

fn(x, t)dx =− 1

2

∫ t

0

∫ 1

0

∫ 1−x

0

K(x, y)fn(x, s)fn(y, s)dydxds

−
∫ t

0

∫ 1

0

∫ n−x

1−x

K(x, y)fn(x, s)fn(y, s)dydxds

+

∫ t

0

∫ 1

0

∫ n

x

b(x, y)S(y)fn(y, s)dydxds−
∫ t

0

∫ 1

0

S(x)fn(x, s)dxds

+

∫ 1

0

fn(x, 0)dx.

Since the integrands are all non-negative, we may estimate

∫ 1

0

fn(x, t)dx ≤
∫ t

0

∫ 1

0

∫ n

x

b(x, y)S(y)fn(y, s)dydxds+

∫ 1

0

fn(x, 0)dx

=

∫ t

0

∫ 1

0

∫ 1

x

b(x, y)S(y)fn(y, s)dydxds

+

∫ t

0

∫ 1

0

∫ n

1

b(x, y)S(y)fn(y, s)dydxds+

∫ 1

0

fn(x, 0)dx.

We use Fubini’s Theorem in the first term on the right hand side to get

∫ 1

0

fn(x, t)dx ≤
∫ t

0

∫ 1

0

fn(y, s)

∫ y

0

b(x, y)S(y)dxdyds

+

∫ t

0

∫ 1

0

∫ n

1

b(x, y)S(y)fn(y, s)dydxds+

∫ 1

0

fn(x, 0)dx

≤
∫ t

0

∫ 1

0

fn(y, s)

∫ y

0

1]0,1[(x)Γ(y, x)dxdyds

+

∫ t

0

∫ 1

0

∫ n

1

Γ(y, x)fn(y, s)dydxds+

∫ 1

0

fn(x, 0)dx.

Using (H5) and (H4) in the first and second terms on the right hand side respectively, we
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obtain

∫ 1

0

fn(x, t)dx ≤ω(1, 1)
∫ t

0

∫ 1

0

fn(y, s)dyds

+ k(1)

∫ t

0

∫ 1

0

∫ n

1

yfn(y, s)dydxds+

∫ 1

0

fn(x, 0)dx

≤ω(1, 1)
∫ t

0

∫ 1

0

fn(y, s)dyds

+ k(1)

∫ t

0

∫ n

1

yfn(y, s)dyds+

∫ 1

0

fn(x, 0)dx

(4.9)

From equation (4.8), for s ∈ [0, T ]

‖fn(s)‖x = ‖fn(0)‖x ≤ ‖f(0)‖. (4.10)

Using (4.9) and (4.10) we obtain

∫ 1

0

fn(x, t)dx ≤ ω(1, 1)

∫ t

0

∫ 1

0

fn(y, s)dyds+ k(1)T‖f0‖+ ‖f0‖

= ω(1, 1)

∫ t

0

∫ 1

0

fn(y, s)dyds+ ‖f0‖(k(1)T + 1).

Applying Gronwall’s Lemma, see e.g. Walter [99, p. 310], we obtain

∫ 1

0

fn(x, t)dx ≤ ‖f0‖(k(1)T + 1) exp(ω(1, 1)T ).

Thus, by using (4.8) again we may estimate

∫ ∞

0

(1 + x)fn(x, t)dx =

∫ 1

0

fn(x, t)dx+

∫ n

1

fn(x, t)dx+

∫ n

0

xfn(x, t)dx

≤
∫ 1

0

fn(x, t)dx+

∫ n

1

xfn(x, t)dx+ ‖f0‖

≤ ‖f0‖[(k(1)T + 1) exp(ω(1, 1)T ) + 2] =: L.

(ii) For ǫ > 0, let R > 0 be such that R > ‖f0‖/ǫ. Then, by (4.10), for each n = 1, 2, 3, . . .
and for all t ∈ [0, T ] we have

∫ ∞

R

fn(x, t)dx =

∫ ∞

R

(x/x)fn(x, t)dx

≤ 1

R

∫ ∞

R

xfn(x, t)dx ≤ 1

R
‖f0‖ < ǫ.
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(iii) Let us consider a measurable subset E ⊂]0, R[ with |E| ≤ δ. For n = 1, 2, 3, . . . and
t ∈ [0, T ], we define

pn(δ, t) = sup

{∫ R

0

1E(x)f
n(x, t)dx : E ⊂]0, R[ and |E| ≤ δ

}
.

Using the non-negativity of each fn and (4.6)-(4.7), we have

∫ R

0

1E(x)f
n(x, t)dx

≤1
2

∫ t

0

∫ R

0

1E(x)

∫ x

0

K(x− y, y)fn(x− y, s)fn(y, s)dydxds

+

∫ t

0

∫ R

0

1E(x)

∫ ∞

x

b(x, y)S(y)fn(y, s)dydxds+ pn(δ, 0).

Application of Fubini’s Theorem to the first and second integrals on the right hand side
gives us

∫ R

0

1E(x)f
n(x, t)dx

≤1
2

∫ t

0

∫ R

0

fn(y, s)

∫ R

y

1E(x)K(y, x− y)fn(x− y, s)dxdyds

+

∫ t

0

∫ R

0

fn(y, s)

∫ y

0

1E(x)Γ(y, x)dxdyds

+

∫ t

0

∫ R

0

1E(x)

∫ ∞

R

Γ(y, x)fn(y, s)dydxds+ pn(δ, 0).

Using the substitution x′ = x− y, y′ = y in the first integral, we obtain

∫ R

0

1E(x)f
n(x, t)dx

≤1

2

∫ t

0

∫ R

0

fn(y, s)

∫ R−y

0

1E(x+ y)K(y, x)fn(x, s)dxdyds

+

∫ t

0

∫ R

0

fn(y, s)

∫ y

0

1E(x)Γ(y, x)dxdyds

+

∫ t

0

∫ R

0

1E(x)

∫ ∞

R

Γ(y, x)fn(y, s)dydxds+ pn(δ, 0).

For some y ∈ R>0 we denote by y + E the set

{z ∈ R>0 : z = y + x for some x ∈ E}.

60



4.2. EXISTENCE

We use (H3), (H5) and (H4) in first, second and third integrals on the right-hand side
respectively to get

∫ R

0

1E(x)f
n(x, t)dx

≤k
2
1

2
(1 +R)µ

∫ t

0

∫ R

0

(1 + y)µfn(y, s)dy

∫ R

0

fn(x, s)1−y+E
⋂
[0,R−y](x)dxds

+ ω(R, |E|)
∫ t

0

∫ R

0

fn(y, s)dyds

+ k(R)

∫ t

0

∫ ∞

0

yfn(y, s)dyds ·
∫ R

0

1E(x)dx+ pn(δ, 0).

By using Lemma 4.2.1(i), this can be rewritten as

∫ R

0

1E(x)f
n(x, t)dx ≤k

2
1

2
(1 +R)µL

∫ t

0

∫ R

0

fn(x, s)1−y+E
⋂
[0,R−y](x)dxds

+ LT [ω(R, |E|) + k(R)|E|] + pn(δ, 0). (4.11)

Since
−y + E∩]0, R − y[= {x ∈ [0, R], 0 < x < R− y, x+ y ∈ E}.

Then, we have
∣∣∣∣−y + E∩]0, R− y[

∣∣∣∣ =
∫ R−y

0

1−y+E(x)dx =

∫ R

y

1E(x)dx ≤ |E|. (4.12)

By using (4.12), the definition of pn(δ, t), and a suitable constant C(R) > 0 (4.11) can be
further rewritten as

∫ R

0

1E(x)f
n(x, t)dx ≤ C(R)

∫ t

0

pn(δ, s)ds+ LT [ω(R, δ) + k(R)δ] + pn(δ, 0).

Taking the supremum over all E such that E ⊂]0, R[ with |E| ≤ δ gives

pn(δ, t) ≤ pn(δ, 0) + LT [ω(R, δ) + k(R)δ] + C(R)

∫ t

0

pn(δ, s)ds.

By using Gronwall’s inequality, see e.g. Walter [99, p. 310], we obtain

pn(E, t) ≤ [pn(δ, 0) + LT{ω(R, δ) + k(R)δ}] exp {C(R)t}. (4.13)

By (4.13), we obtain for n = 1, 2, 3, . . . and t ∈ [0, T ]

∫

E

fn(x, t)dx =

∫ R

0

1E(x)f
n(x, t)dx

≤ pn(δ, t)

≤ [pn(δ, 0) + LT{ω(R, δ) + k(R)δ}] exp {C(R)t}.
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Due to the absolute continuity of the integral we have pn(δ, 0)→ 0 for δ → 0. This implies
that ∫

E

fn(x, t)dx→ 0 as δ → 0.

The above Lemma 4.2.1 implies that for each t ∈ [0, T ], the sequence of functions
(fn(t))n∈N lies in a weakly relatively compact set in L1]0,∞[ by the Dunford-Pettis-
Theorem.

4.2.2 Equicontinuity in time

Now we proceed in this section to show equicontinuity of the sequence (fn)n∈N in time.
In this section, the part of coagulation terms will be the same as in Chapter 2. For the
completeness, we repeat that also. Choose ǫ > 0 and φ ∈ L∞]0,∞[. Let s, t ∈ [0, T ] and
assume t ≥ s. Choose R > 1 such that

‖φ‖L∞2L/R < ǫ/2. (4.14)

For each n, by Lemma 4.2.1(i),

∫ ∞

R

|fn(x, t)− fn(x, s)|dx ≤ 1

R

∫ ∞

R

x{fn(x, t) + fn(x, s)}dx ≤ 2L/R. (4.15)

By using (4.6), (4.14) and (4.15), we get using t ≥ s

∣∣∣∣
∫ ∞

0

φ(x){fn(x, t)−fn(x, s)}dx
∣∣∣∣

≤
∣∣∣∣
∫ R

0

φ(x){fn(x, t)− fn(x, s)}dx
∣∣∣∣

+

∫ ∞

R

|φ(x)|{|fn(x, t)− fn(x, s)|}dx

≤‖φ‖L∞]0,∞[

∫ t

s

[
1

2

∫ R

0

∫ x

0

K(x− y, y)fn(x− y, τ)fn(y, τ)dydx

+

∫ R

0

∫ n−x

0

K(x, y)fn(x, τ)fn(y, τ)dydx

+

∫ R

0

∫ n

x

b(x, y)S(y)fn(y, τ)dydx

+

∫ R

0

S(x)fn(x, τ)dx

]
dτ + ǫ/2. (4.16)
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Now we consider the first term on the right hand side of (4.16), by Fubini’s Theorem,
(H1)-(H3) and Lemma 4.2.1 (i), we have

1

2

∫ R

0

∫ x

0

K(x− y, y)fn(x− y, τ)fn(y, τ)dydx

=
1

2

∫ R

0

∫ m

y

K(x− y, y)fn(x− y, τ)fn(y, τ)dxdy

=
1

2

∫ R

0

∫ m−y

0

K(x, y)fn(x, τ)fn(y, τ)dxdy

=
1

2

∫ R

0

∫ m−x

0

K(y, x)fn(y, τ)fn(x, τ)dydx

=
1

2

∫ R

0

∫ m−x

0

K(x, y)fn(x, τ)fn(y, τ)dydx

≤ k2
1

1

2

∫ R

0

∫ m−x

0

(1 + x)µ(1 + y)µfn(x, τ)fn(y, τ)dydx

≤ 1

2
k2
1L

2.

Similarly, for the second term we may estimate
∫ R

0

∫ n−x

0

K(x, y)fn(x, τ)fn(y, τ)dydx

≤ k2
1

∫ R

0

∫ n−x

0

(1 + x)µ(1 + y)µfn(x, τ)fn(y, τ)dydx

≤ k2
1L

2.

For n > R, the third term using (H4), (H5) and Lemma 4.2.1 (i) gives that
∫ R

0

∫ n

x

b(x, y)S(y)fn(y, τ)dydx

=

∫ R

0

∫ y

0

Γ(y, x)fn(y, τ)dxdy +

∫ R

0

∫ ∞

R

Γ(y, x)fn(y, τ)dydx

≤
∫ R

0

fn(y, τ)

∫ y

0

1]0,R[(x)Γ(y, x)dxdy +

∫ R

0

∫ ∞

R

Γ(y, x)fn(y, τ)dydx

≤ω(R,R)

∫ R

0

fn(y, τ)dy + k(R)

∫ R

0

∫ ∞

R

yfn(y, τ)dydx

≤[ω(R,R) +Rk(R)]L.

Similarly we can obtain the above inequality for R > n though this is not needed here.
For the fourth term, by using (H6) and Lemma 4.2.1 (i) we have

∫ R

0

S(x)fn(x, t)dx ≤ ‖S‖L∞]0,R[L.
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CHAPTER 4. AN EXTENSION OF EXISTENCE THEORY

By using the above inequalities, the equation (4.16) reduces to

∣∣∣∣
∫ ∞

0

φ(x){fn(x, t)− fn(x, s)}dx
∣∣∣∣

≤ ‖φ‖L∞]0,∞[(t− s)

[
3

2
k2
1L

2 + {ω(R,R) + k′(R) + ‖S‖L∞]0,R[}L
]
+ ǫ/2 < ǫ

(4.17)

whenever t− s < δ for some suitable δ > 0. The argument given above similarly holds if
s > t. Hence (4.17) is true for all n and |t− s| < δ. This implies the time equicontinuity
of the family {fn(t), t ∈ [0, T ]} in L1(R>0). Thus, {fn(t), t ∈ [0, T ]} lies in a relatively
compact subset of the gauge space Ω. So, we may apply refined version of Arzelà-Ascoli
Theorem, see [89, Theorem 2.1] to conclude that there exists a subsequence fnk such that

fnk(t)→ f(t) in Ω as nk →∞

uniformly for t ∈ [0, T ] and for some f ∈ C([0, T ]; Ω).

4.2.3 Passing to the limit

Similar to Chapter 2, we suppress the dependence on arbitrary but fixed t ∈ [0, T ] when it
is not explicitly needed. Now we have to show that the limit function which we obtained
above is actually a solution to (4.1-4.2). Define the operators Qn

i , Qi, i = 1 to 4, to be

Qn
1 (f

n)(x) =
1

2

∫ x

0

K(x− y, y)fn(x− y)fn(y)dy,

Q1(f)(x) =
1

2

∫ x

0

K(x− y, y)f(x− y)f(y)dy,

Qn
2 (f

n)(x) =

∫ n−x

0

K(x, y)fn(x)fn(y)dy, Q2(f)(x) =

∫ ∞

0

K(x, y)f(x)f(y)dy,

Qn
3 (f

n)(x) = S(x)fn(x), Q3(f)(x) = S(x)f(x),

Qn
4 (f

n)(x) =

∫ n

x

b(x, y)S(y)fn(y)dy, Q4(f)(x) =

∫ ∞

x

b(x, y)S(y)f(y)dy,

where f ∈ L1]0,∞[, x ∈]0,∞[ and n = 1, 2, 3, . . .. Set Qn = Qn
1 − Qn

2 − Qn
3 + Qn

4 and
Q = Q1 −Q2 −Q3 +Q4.

Lemma 4.2.2. Suppose (fn)n∈N ⊂ X+, f ∈ X+, where ||fn|| ≤ L, and fn ⇀ f in
L1]0,∞[ as n→∞. Then for each R > 0

Qn(fn) ⇀ Q(f) in L1]0, R[ as n→∞.

64



4.2. EXISTENCE

Proof. Let χ denotes the characteristic function. Choose R > 0 and let φ ∈ L∞]0,∞[.
We show that Qn

i (f
n) ⇀ Qi(f) in L1]0, R[ as n→∞ for i = 1, 2, 3, 4.

Case i = 1, 2
By proceeding the same computation as in Chapter 2, we can easily obtain

Qn
i (f

n) ⇀ Qi(f) in L1]0, R[ as n→∞. (4.18)

Case i = 3

For a.e. x ∈]0, R], by using (H6) we find that

|φ(x)S(x)| ≤ ‖φ‖L∞]0,R[‖S‖L∞]0,R[.

Then

χ]0,R[φS ∈ L∞]0,∞[. (4.19)

Thus by (4.19) and since fn ⇀ f in L1]0,∞[ as n→∞, we obtain

∣∣∣∣
∫ R

0

φ(x){Qn
3 (f

n)(x)−Q3(f)(x)}dx
∣∣∣∣

=

∣∣∣∣
∫ R

0

φ(x)S(x){fn(x)− f(x)}dx
∣∣∣∣→ 0 as n→∞.

Thus by the arbitrariness of φ it follows that

Qn
3 (f

n) ⇀ Q3(f) in L1]0, R[ as n→∞. (4.20)

Case i = 4

Consider next φ ∈ L∞]0, R[ and compute, for r > R,

∣∣∣∣
∫ R

0

φ(x){Qn
4 (f

n)(x)−Q4(f)(x)}dx
∣∣∣∣

=

∣∣∣∣
∫ R

0

∫ ∞

x

φ(x)S(y)b(x, y){fn(y)− f(y)}dydx
∣∣∣∣

=

∣∣∣∣
∫ R

0

∫ y

0

φ(x)Γ(y, x){fn(y)− f(y)}dxdy

+

∫ ∞

R

∫ R

0

φ(x)Γ(y, x){fn(y)− f(y)}dxdy
∣∣∣∣.
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This can be further written as
∣∣∣∣
∫ R

0

φ(x){Qn
4 (f

n)(x)−Q4(f)(x)}dx
∣∣∣∣

≤
∣∣∣∣
∫ R

0

{fn(y)− f(y)}
∫ y

0

φ(x)Γ(y, x)dxdy

∣∣∣∣
︸ ︷︷ ︸

=:Jn
1

+

∣∣∣∣
∫ r

R

{fn(y)− f(y)}
∫ R

0

φ(x)Γ(y, x)dxdy

∣∣∣∣
︸ ︷︷ ︸

=:Jn
2

+

∣∣∣∣
∫ ∞

r

{fn(y)− f(y)}
∫ R

0

φ(x)Γ(y, x)dxdy

∣∣∣∣
︸ ︷︷ ︸

=:Jn
3

. (4.21)

We use (H6) and (4.4) to observe that, for y ∈]0, R[

∣∣∣∣
∫ y

0

φ(x)Γ(y, x)dx

∣∣∣∣ ≤ ‖S‖L∞]0,R[‖φ‖L∞]0,R[

∫ y

0

b(x, y)dx

≤ N‖S‖L∞]0,R[‖φ‖L∞]0,R[.

This shows that the function y 7→
∫ y

0
φ(x)Γ(y, x)dx belongs to L∞]0, R[. Since fn ⇀ f in

L1]0,∞[ as n→∞, it thus follows that

lim
n→∞

Jn
1 = 0. (4.22)

Next, in a similar way, one shows that

lim
n→∞

Jn
2 = 0. (4.23)

Finally, by using (H4) and Lemma 4.2.1(i) we have

∣∣∣∣
∫ ∞

r

{fn(y)− f(y)}
∫ R

0

φ(x)Γ(y, x)dxdy

∣∣∣∣

≤k′(R)‖φ‖L∞]0,R[

∫ ∞

r

yθ{fn(y) + f(y)}dy

≤ 2

r1−θ
k′(R)‖φ‖L∞]0,R[L

which is asymptotically small (as r →∞) uniformly with respect to n. We thus conclude
that, also,

lim
n→∞

Jn
3 = 0. (4.24)
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Thus, by substituting (4.22), (4.23) and (4.24) into (4.21), we obtain
∣∣∣∣
∫ R

0

φ(x){Qn
4 (f

n)(x)−Q4(f)(x)}dx
∣∣∣∣→ 0 as n→∞.

Thus by the arbitrariness of φ we have

Qn
4 (f

n) ⇀ Q4(f) in L1]0, R[ as n→∞. (4.25)

Lemma 4.2.2 follows from (4.18), (4.20) and (4.25).

4.2.4 Main result

Now we are in a position to state and prove the main result.

Theorem 4.2.3. Suppose that (H1), (H2), (H3), (H4), (H5) and (H6) hold and assume
that f0 ∈ X+. Then (4.1) has a solution f on ]0,∞[.

Proof. Choose R > 0, T > 0, and let (fn)n∈N be the subsequence of approximating
solutions obtained above. We have from subsection 4.2.1, for t ∈ [0, T ]

fn(t) ⇀ f(t) in L1]0, R[ as n→∞. (4.26)

For any l > 0, since we know fn ⇀ f in L1]0,∞[, we obtain
∫ l

0

xf(x, t)dx = lim
n→∞

∫ l

0

xfn(x, t)dx ≤ ‖f0‖x <∞ (4.27)

using (4.8), the non-negativity of each fn and f , and then l → ∞ implies that f ∈ X+.
Let φ ∈ L∞]0, R[. From Lemma 4.2.2 we have for each s ∈ [0, t]

∫ R

0

φ(x){Qn(fn(s))(x)−Q(f(s))(x)}dx→ 0 as n→∞. (4.28)

Also, for s ∈ [0, t], using Young’s Theorem for convolutions and Lemma 4.2.1 (i)
∫ R

0

|φ(x)||Qn(fn(s))(x)−Q(f(s))(x)|dx

≤ ‖φ‖L∞]0,R[

{
1

2

∫ R

0

∫ x

0

K(x− y, y){fn(x− y, s)fn(y, s) + f(x− y, s)f(y, s)}dydx

+

∫ R

0

∫ n−x

0

K(x, y)fn(x, s)fn(y, s)dydx+

∫ R

0

∫ ∞

0

K(x, y)f(x, s)f(y, s)dydx

+

∫ R

0

S(x){fn(x, s) + f(x, s)}dx

+

∫ R

0

∫ n

x

S(y)b(x, y)fn(y, s)dydx+

∫ R

0

∫ ∞

x

S(y)b(x, y)f(y, s)dydx

}

≤ ‖φ‖L∞]0,R[[3k
2
1L

2 + 2{ω(R,R) +Rk(R) + ‖S‖L∞]0,R[}L]. (4.29)
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Since the left-hand side of (4.29) is in L1]0, t[ we have by (4.28), (4.29) and the dominated
convergence theorem

∣∣∣∣
∫ t

0

∫ R

0

φ(x){Qn(fn(s))(x)−Q(f(s))(x)}dxds
∣∣∣∣→ 0 as n→∞. (4.30)

Since φ is arbitrary, and the equation (4.30) holds for all φ ∈ L∞]0, R[, by the application
of Fubini’s Theorem we obtain

∫ t

0

Qn(fn(s))ds ⇀

∫ t

0

Q(f(s))ds in L1]0, R[ as n→∞. (4.31)

From the definition of Qn and equation (4.6) we have for t ∈ [0, T ]

fn(x, t) =

∫ t

0

Qn(fn(s))(x)ds+ fn(x, 0),

and thus it follows from (4.31)and (4.26) that

∫ R

0

φ(x)f(x, t)dx =

∫ t

0

∫ R

0

φ(x)Q(f(s))(x)dxds+

∫ R

0

φ(x)f(x, 0)dx,

for any φ ∈ L∞]0, R]. Therefore it holds for all φ ∈ C∞
0 (]0, R]). This implies for almost

any x in ]0, R] we have

f(x, t) =

∫ t

0

Q(f(s))(x)ds+ f(x, 0).

It now follows from the arbitrariness of T and R that f is a solution to (4.1) on [0,∞[.
This completes the proof of Theorem 4.2.3.
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Chapter 5

Convergence analysis of the fixed
pivot technique for coagulation
equation

This chapter contains a detailed study of convergence analysis for the fixed pivot technique
given by S. Kumar and Ramkrishna [54] for the nonlinear pure coagulation equations. In
particular, we investigate the convergence for five different types of uniform and non-
uniform meshes which turns out that the fixed pivot technique is second order convergent
on a uniform and non-uniform smooth meshes. Moreover, it yields first order convergence
on a locally uniform mesh. Finally the analysis exhibits that the method does not con-
verge on oscillatory and non-uniform random meshes. The mathematical results of the
convergence analysis are also demonstrated numerically.

Let us now briefly outline the contents of this chapter. The following section provides a
short introduction of the problem. Along with the general idea of sectional methods, a
concise review of the mathematical formulation of the fixed pivot technique is given in
Section 5.2. Some useful definitions and a theorem from Hundsdorfer and Verwer [44]
used in further analysis as well as the main result for the convergence of the fixed pivot
technique are also stated in Section 5.2. To show the convergence of the scheme, the
consistency and Lipschitz conditions are discussed in Sections 5.3 and 5.4, respectively.
Numerical simulations are performed in Section 5.5.

5.1 Introduction

The nonlinear continuous coagulation equation is given by, see [71]

∂f(t, x)

∂t
=

1

2

∫ x

0

K(x− y, y)f(t, x− y)f(t, y)dy −
∫ ∞

0

K(x, y)f(t, x)f(t, y)dy, (5.1)

69



CHAPTER 5. CONVERGENCE ANALYSIS OF THE FIXED PIVOT TECHNIQUE FOR
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with

f(x, 0) = f in(x) ≥ 0, x ∈]0,∞[.

where the variables x > 0 and t ≥ 0 denote the size of the particles and time respectively.
The number density of particles of size x at time t is denoted by f(x, t) ≥ 0. The coag-
ulation kernel K(x, y) ≥ 0 represents the rate at which particles of size x coalesce with
those of size y. It will be assumed throughout that K(x, y) = K(y, x) for all x, y > 0, i.e.
symmetric.

Mathematical results on existence and uniqueness of solutions to equation (5.1) can be
found in [18, 21, 27, 56, 57, 65, 66, 60, 89] for different classes of coagulation kernels. How-
ever, for the sake of simplicity in our analysis we consider them to be twice continuously
differentiable functions. The pure coagulation equation (5.1) can be solved analytically
only for some limited class of coagulation kernels, see [20, 33, 34]. Due to limited avail-
ability of analytical solutions, it is of great interest to develop new numerical techniques
to solve these equations and assess them by means of mathematical analysis. In the pure
coagulation equation (5.1) the volume variable x ranges from 0 to ∞. In order to ap-
ply a numerical scheme to the solution of the equation, the initial step is to set a finite
computational domain. In this work we consider the following truncated equation

∂n(t, x)

∂t
=

1

2

∫ x

0

K(x− y, y)n(t, x− y)n(t, y)dy −
∫ xmax

0

K(x, y)n(t, x)n(t, y)dy, (5.2)

with

n(x, 0) = nin(x) ≥ 0, x ∈ Ω :=]0, xmax].

Here the variable n(t, x) represents the solution to the preceding truncated equation. The
existence and uniqueness of non-negative solutions for the truncated pure coagulation
equation (5.2) has been derived in [4, 15, 21, 89]. In [21, 27, 89], it is proven that the
sequence of solutions to the truncated problems converge weakly to the solution of the
original problem in a weighted L1 space as xmax →∞ for certain classes of kernels.

5.2 The sectional methods

Sectional methods can be described by the following general mathematical derivation.
These methods approximate the total number of particles in finite number of cells.
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xi−1/2 xi+1/2

xi−1 xi+1xi

(i− 1)th cell ith cell (i+ 1)th cell

xi+3/2
xi−3/2

∆xi

Figure 5.1: A discretized size domain.

As a first step, the continuous interval Ω :=]0, xmax] is divided into a small number of
cells defining size classes

Λi :=]xi−1/2, xi+1/2], i = 1, . . . , I,

with
x1/2 = 0, xI+1/2 = xmax, ∆xmin ≤ ∆xi = xi+1/2 − xi−1/2 ≤ ∆x.

For the purpose of later analysis we assume quasi uniformity of the grids, i.e.

∆x

∆xmin

≤ C (5.3)

where C is a positive constant. The representative of each size class, usually the center
point of each cell xi = (xi−1/2 + xi+1/2)/2, is called pivot or grid point. This type of
partitioning of the spatial domain is known as cell centered representation of the mesh.
A typical cell centered partitioning of the domain is shown in Figure 5.1. The integration
of the equation (5.2) over each cell yields a semi-discrete system in R

I

dN

dt
= B−D, (5.4)

N(0) = Nin.

Here we consider Nin,N,B,D ∈ R
I whose semi-discrete ith components are defined as

Ni(t) =

∫ xi+1/2

xi−1/2

n(t, x)dx, (5.5)

N in
i =

∫ xi+1/2

xi−1/2

nin(x)dx,

Bi =
1

2

∫ xi+1/2

xi−1/2

∫ x

0

K(x− y, y)n(t, x− y)n(t, y)dydx. (5.6)
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and

Di =

∫ xi+1/2

xi−1/2

∫ xI+1/2

0

K(x, y)n(t, y)n(t, x)dydx. (5.7)

Here the vector N is formed by the vector of values of the step function obtained by
L2 projection of the exact solution n into the space of step functions constant on each
cell. Note that this projection error can easily be shown of second order, see Subsection
5.2.2. Various sectional methods for the numerical solutions of the equation (5.2) can
be obtained from different choices of numerical approximations of Bi and Di in terms of
Ni(t). Finally the sectional methods take the following spatially discretized form

dN̂

dt
= B̂(N̂)− D̂(N̂) =: F̂(t, N̂), (5.8)

N̂(0) = Nin, (5.9)

where B̂, D̂ ∈ R
I are some functions of N̂. The ith component, N̂i(t) of the vector N̂ is

the numerical approximation of the total number in ith cell Ni(t).

5.2.1 The fixed pivot technique

The fixed pivot technique is based on the idea of birth modification. According to Kumar
and Ramkrishna [54], the equation (5.2) is modified to

d

dt

∫ xi+1/2

xi−1/2

n(t, x)dx ≈1

2

∫ xi+1

xi

λ+
i (x)

∫ x

0

K(x− y, y)n(t, x− y)n(t, y)dydx

+
1

2

∫ xi

xi−1

λ−
i (x)

∫ x

0

K(x− y, y)n(t, x− y)n(t, y)dydx

−
∫ xi+1/2

xi−1/2

∫ xI+1/2

0

K(x, y)n(t, y)n(t, x)dydx. (5.10)

where

λ±
i (x) =

x− xi±1

xi − xi±1

. (5.11)

Now substituting the number density approximation

n(t, x) ≈
I∑

i=1

Ni(t)δ(x− xi),
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into the preceding equation, we obtain the following spatially discretized system

dNi(t)

dt
=

j≥k∑

xi≤xj+xk<xi+1

(
1− 1

2
δj,k

)
λ+
i (xk + xj)K(xk, xj)NjNk

+

j≥k∑

xi−1≤xj+xk<xi

(
1− 1

2
δj,k

)
λ−
i (xk + xj)K(xk, xj)NjNk

−Ni

I∑

j=1

K(xi, xj)Nj , i = 1, . . . , I

=B̂FP
i − D̂FP

i , i = 1, . . . , I (5.12)

where B̂FP
i and D̂FP

i represent the birth and death terms, respectively in the ith cell
obtained from the fixed pivot technique. The basic idea of the fixed pivot technique can
be described as follows. Assume that a new born particle of a size, which is not positioned
at a pivot point of any cell, appears due to the aggregation of two smaller particles. The
particle has to be assigned onto neighboring pivot points in such a way that the parti-
cles number and mass are conserved. This problem can be solved in a unique way. The
resulting technique very often gives quite satisfactory results. However, the undesirable
part is that the fixed pivot technique turns into a zero order method on oscillatory and
non-uniform random meshes for aggregation problems. At the last boundary cell Kumar
and Ramkrishna simply set the first integral on the right hand side in (5.10) to be zero in
their numerical computations. However, we have observed in our analysis for the aggre-
gation problem that this setting at the end boundary reduces by one order the accuracy
of the fixed pivot technique. To overcome this problem, we take an extra grid point xI+1

at a ∆xI distance away from the grid point xI . In the computations contributions that
are larger than xI are distributed to xI and xI+1. This is used in Lemma 5.3.1. A similar
modification should also be used at the first boundary cell for breakage problems in J.
Kumar and Warnecke [51].

It should be mentioned here that in this work we consider the following L1 norm

‖N‖ =
I∑

i=1

|Ni|.

We consider C2([a, b]) as a space of two times continuously differentiable functions on ]a, b[
with finite limits of the functions and their first as well as second derivatives at a and b.
Note that for the sake of simplicity in our analysis we assume that the aggregation kernel
and number density

K ∈ C2([0, xmax]× [0, xmax]) and n ∈ C2([0, xmax]) (5.13)

respectively.
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5.2.2 Projection error and spatially discretization error

Let n̂(t) for some t ∈ [0,∞[ be the numerical solution of the problem (5.2) which has a
weak solution n in the L1

1 space. The norm on L1
1 is the same as is on X+ in Chapters 2

and 3. Then the convergence error is defined as

ec(t, ·) = n(t, ·)− I∆xn̂(t). (5.14)

where

I∆xn̂(t) :=
I∑

i=1

n̂i(t)ϕi,

with

ϕi(x) :=

{
1 if x ∈ Λi,

0 elsewhere.

Suppose ñ is a vector in R
I whose ith component is defined as follows

ñi(t) =
Ni(t)

∆xi

=
1

∆xi

∫ xi+1/2

xi−1/2

n(t, x)dx.

Using

I∆xn(t, ·) =
I∑

i=1

ñi(t)ϕi,

we define the projection of elements in L1
1 onto step functions with respect to the mesh.

Taking the norm on both sides in (5.14), we estimate

‖ec(t, ·)‖ ≤ ‖n(t, ·)− I∆xn(t, ·)‖L1
1
+ ‖I∆xn(t, ·)− I∆xn̂(t)‖L1

1
. (5.15)

The first and second terms on the right hand side in (5.15) represent the projection error
and spatially discretization error, respectively for the number density n. Let us now
calculate each error separately.
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First, we consider the projection error from (5.15) as

‖n(t, ·)− I∆xn(t, ·)‖L1
1
=

∫ xmax

0

(1 + x)|n(t, x)− I∆xn(t, x)|dx

=

I∑

i=1

∫

Λi

(1 + x)|n(t, x)− I∆xn(t, x)|dx

≤(1 + xmax)
I∑

i=1

∫

Λi

|n(t, x)− ñi|dx

=(1 + xmax)
I∑

i=1

[ ∫

Λi

|n(t, x)− ñi|dx− |n(t, xi)− ñi|∆xi

]

+ (1 + xmax)

I∑

i=1

|n(t, xi)− ñi|∆xi.

Applying the midpoint rule twice, once in the integral that appears in the first term and
then in the definition of ñi for the second term on the right hand side, one can obtain

‖n(t, ·)− I∆xn(t, ·)‖L1
1
≤ (1 + xmax)O(∆x2).

Next, we take the spatially discretization error from (5.15) as

‖I∆xn(t, ·)− I∆xn̂(t)‖L1
1
=

∥∥∥∥
I∑

i=1

(ñi − n̂i)ϕi(x)

∥∥∥∥
L1
1

≤
∫ xmax

0

(1 + x)

I∑

i=1

|ñi − n̂i||ϕi(x)|dx

≤(1 + xmax)
I∑

i=1

|ñi − n̂i|
∫

Λi

|ϕi(x)|dx

≤(1 + xmax)

I∑

i=1

∣∣∣∣
Ni

∆xi
− N̂i

∆xi

∣∣∣∣∆xi

≤(1 + xmax)

I∑

i=1

|Ni − N̂i|

=(1 + xmax)‖N− N̂‖.
Finally we substitute the estimates on the projection error and spatially discretized error
in (5.15) to obtain

‖ec(t, ·)‖ ≤ (1 + xmax)[‖N− N̂‖+O(∆x2)].

So the order of convergence may depend on ‖N − N̂‖. Therefore, the purpose of rest of
the chapter is to check the convergence of the scheme (5.8).
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As we move on to the subsequent sections, it will be helpful to revisit some definitions
and an existing theorem given in Hundsdorfer and Verwer [44]. These will be of use while
discussing in detail the consistency and the convergence of the fixed pivot technique.

Definition 5.2.1. The spatial truncation error is defined by the residual left by sub-
stituting the exact solution N(t) into equation (5.8) as

σ(t) =
dN(t)

dt
−
(
B̂ (N(t))− D̂ (N(t))

)
. (5.16)

The scheme (5.8) is called consistent of order p if, for ∆x→ 0,

‖σ(t)‖ = O(∆xp), uniformly for all t, 0 ≤ t ≤ T.

Definition 5.2.2. The global discretization error is defined by

ǫ(t) = N(t)− N̂(t). (5.17)

The scheme (5.8) is called convergent of order p if, for ∆x→ 0,

‖ǫ(t)‖ = O(∆xp), uniformly for all t, 0 ≤ t ≤ T.

It is important that the solution obtained by the fixed pivot technique remains non-
negative for all times. This is shown in proposition 5.4.1 by using the next well known
theorem. In the following theorem we consider M̂ ≥ 0 for a vector M̂ ∈ R

I if all of its
components are non-negative.

Theorem 5.2.3. (Hundsdorfer and Verwer [44]). Suppose that F̂(t, M̂) is continuous
and satisfies the Lipschitz condition

‖F̂(t, P̂)− F̂(t, M̂)‖ ≤ L‖P̂− M̂‖ for all P̂, M̂ ∈ R
I .

Then the solution of the semi-discrete system (5.8) is non-negative if and only if for any
vector M̂ ∈ R

I with M̂ ≥ 0 we have for any i = 1, . . . , I and all t ≥ 0 that M̂i = 0 implies
F̂i(t, M̂) ≥ 0.

Proof. The proof can be found in Hundsdorfer and Verwer [44], Chap. 1, Theorem 7.1.

Now we shall state the main result which helps us to show the convergence of the fixed
pivot technique.

Theorem 5.2.4. Let us assume that the Lipschitz conditions on B̂(N(t)) and D̂(N(t))
are satisfied for 0 ≤ t ≤ T and for all N, N̂ ∈ R

I where N and N̂ are the projected
exact and numerical solutions defined in (5.4) and (5.8) respectively. Then a consistent
discretization method is also convergent and the convergence is of the same order as the
consistency.

To fulfill the requirements of Theorem 5.2.4, for the convergence of the fixed pivot tech-
nique we need to prove that the scheme is consistent and the birth B̂(N(t)) and death
D̂(N(t)) terms satisfy the Lipschitz conditions.
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5.3 Consistency

We need the following lemma from [51] to investigate the consistency of the fixed pivot
technique. For the completeness, we will also repeat the proof.

Lemma 5.3.1. Consider a function f ∈ C2([0, xmax]) and a cell centered partitioning of
the domain [0, xmax] given as 0 = x1−1/2 < . . . < xi−1/2 < xi+1/2 < . . . < xI+1/2 = xmax

with pivot points xi = (xi−1/2+xi+1/2)/2 and a bound ∆x ≥ ∆xi = (xi+1/2−xi−1/2) for all
i. If λ+

i (x) and λ−
i (x) are given by the relation (5.11), then the following approximations

can be obtained
∫ xi+1/2

xi−1/2

f(x)dx =

∫ xi+1

xi

λ+
i (x)f(x)dx+

∫ xi

xi−1

λ−
i (x)f(x)dx

+
f(xi)

2

[
∆xi −

(
∆xi−1 +∆xi+1

2

)]

− f ′(xi)

12

[
(∆xi+1 −∆xi−1)

{
∆xi +

(
∆xi−1 +∆xi+1

2

)}]

+O(∆x3), for i = 2, . . . , I − 1,

∫ xi+1/2

xi−1/2

f(x)dx =

∫ xi+1

xi

λ+
i (x)f(x)dx+

∫ xi

xi−1

λ−
i (x)f(x)dx+

f(xi)

4
[∆xi −∆xi−1] +O(∆x2),

for i = I,

∫ xi+1/2

xi−1/2

f(x)dx =

∫ xi+1

xi

λ+
i (x)f(x)dx+

f(xi)

4
[3∆xi −∆xi+1] +O(∆x2), for i = 1.

Note that xI+1 is the extra grid point introduced in subsection 5.2.1.

Proof. First, we consider the cases i = 2, . . . I − 1 and denote the following expression by
Ii.

Ii(f) =

∫ xi+1/2

xi−1/2

f(x) dx−
(∫ xi+1

xi

λ+
i (x)f(x) dx+

∫ xi

xi−1

λ−
i (x)f(x) dx

)
.

Taylor series expansion of f(x) about xi in Ii yields

Ii(f) =f(xi)

[
∆xi −

(∫ xi+1

xi

λ+
i (x)dx+

∫ xi

xi−1

λ−
i (x)dx

)]

− f ′(xi)

(∫ xi+1

xi

λ+
i (x)(x− xi)dx+

∫ xi

xi−1

λ−
i (x)(x− xi)dx

)
+O(∆x3).
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Substituting the values of λ+
i and λ−

i from (5.11) into the preceding equation, we obtain

Ii(f) =f(xi)

[
∆xi −

1

2
(xi+1 − xi−1)

]

− f ′(xi)

6

[
(xi+1 − xi−1)

{
(xi+1 − xi)− (xi − xi−1)

}]
+O(∆x3). (5.18)

For the cell centered grids, i.e. xi = (xi−1/2 + xi+1/2)/2, the equation (5.18) becomes

Ii(f) =
f(xi)

2

[
∆xi −

1

2
(∆xi+1 +∆xi−1)

]

− f ′(xi)

12

[
(∆xi+1 −∆xi−1)

{
∆xi +

(
∆xi−1 +∆xi+1

2

)}]
+O(∆x3).

Next, we take i = I

II(f) =

∫ xI+1/2

xI−1/2

f(x)dx−
∫ xI+1

xI

λ+
I (x)f(x)dx−

∫ xI

xI−1

λ−
I (x)f(x)dx.

Applying the midpoint, left rectangle and right rectangle rules in first, second and thirds
integrals respectively, we get

II(f) =f(xI)∆xI −
[
λ+
I (xI)f(xI)(xI+1 − xI)−

f(xI)

2
(xI+1 − xI)

]

−
[
λ−
I (xI)f(xI)(xI − xI−1)−

f(xI)

2
(xI − xI−1)

]
+O(∆x2)

=f(xI)∆xI −
f(xI)

2
(xI+1 − xI)−

f(xI)

2
(xI − xI−1) +O(∆x2)

=f(xI)

[
∆xI −

1

2
∆xI −

1

4
(∆xI +∆xI−1)

]
+O(∆x2)

=
f(xI)

4
(∆xI −∆xI−1) +O(∆x2).

Now we consider i = 1

I1(f) =

∫ x3/2

x1/2

f(x)dx−
∫ x2

x1

λ+
I (x)f(x)dx.

We apply midpoint and left rectangle rules in first and second integrals respectively to
obtain

I1(f) =f(x1)∆x1 −
[
λ+
1 (x1)f(x1)(x2 − x1)−

f(x1)

2
(x2 − x1)

]
+O(∆x2)

=f(x1)

[
∆x1 −

1

4
(∆x1 +∆x2)

]

=
f(x1)

4
(3∆x1 −∆x2).

Hence the proof of Lemma 5.3.1 is completed.
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Now we describe the three main subsections to inquire the consistency of the fixed pivot
technique. We evaluate the order of the birth term and the order of the death term
with the brief summary of all terms in Subsections 5.3.1 and 5.3.2, respectively. Finally,
we consider five different types of meshes to evaluate the local discretization error in
Subsection 5.3.3.

5.3.1 Order of the birth term

The integrated birth term can be written as follows

Bi =
1

2

∫ xi+1/2

xi−1/2

∫ x

0

K(x− y, y)n(t, x− y)n(t, y)dydx.

Let us denote

f(t, x) =
1

2

∫ x

0

K(x− y, y)n(t, x− y)n(t, y)dy. (5.19)

Birth term on internal cells

Considering i = 2, . . . , I − 1 and using Lemma 5.3.1, we can rewrite Bi as

Bi =
1

2

∫ xi+1

xi

λ+
i (x)

∫ x

0

K(x− y, y)n(t, x− y)n(t, y)dydx

+
1

2

∫ xi

xi−1

λ−
i (x)

∫ x

0

K(x− y, y)n(t, x− y)n(t, y)dydx+ Ji(f).

By changing the order of integration of the first two terms on the right hand side, we
obtain

Bi =
1

2

∫ xi

0

∫ xi+1

xi

λ+
i (x)K(x− y, y)n(t, x− y)n(t, y)dxdy

+
1

2

∫ xi+1

xi

∫ xi+1

y

λ+
i (x)K(x− y, y)n(t, x− y)n(t, y)dxdy

+
1

2

∫ xi−1

0

∫ xi

xi−1

λ−
i (x)K(x− y, y)n(t, x− y)n(t, y)dxdy

+
1

2

∫ xi

xi−1

∫ xi

y

λ−
i (x)K(x− y, y)n(t, x− y)n(t, y)dxdy + Ji(f).

79



CHAPTER 5. CONVERGENCE ANALYSIS OF THE FIXED PIVOT TECHNIQUE FOR
COAGULATION EQUATION

Each integral term on the right hand side can be further rewritten as

Bi =
1

2

i−1∑

j=1

∫ xj+1/2

xj−1/2

∫ xi+1

xi

λ+
i (x)K(x− y, y)n(t, x− y)n(t, y)dxdy

+
1

2

∫ xi

xi−1/2

∫ xi+1

xi

λ+
i (x)K(x− y, y)n(t, x− y)n(t, y)dxdy

+
1

2

∫ xi+1

xi

∫ xi+1

y

λ+
i (x)K(x− y, y)n(t, x− y)n(t, y)dxdy

+
1

2

i−2∑

j=1

∫ xj+1/2

xj−1/2

∫ xi

xi−1

λ−
i (x)K(x− y, y)n(t, x− y)n(t, y)dxdy

+
1

2

∫ xi−1

xi−3/2

∫ xi

xi−1

λ−
i (x)K(x− y, y)n(t, x− y)n(t, y)dxdy

+
1

2

∫ xi

xi−1

∫ xi

y

λ−
i (x)K(x− y, y)n(t, x− y)n(t, y)dxdy + Ji(f). (5.20)

Let us denote the integral terms on the right hand side by I1, . . . , I6 respectively and
calculate them separately.

The integrals I6 and I3.

I6 =
1

2

∫ xi

xi−1

∫ xi

y

λ−
i (x)K(x− y, y)n(t, x− y)n(t, y)dxdy

=
1

2

∫ xi

xi−1

g(t, y)dy,

where

g(t, y) :=

∫ xi

y

λ−
i (x)K(x− y, y)n(t, x− y)n(t, y)dx. (5.21)

Using Taylor series expansion of g(t, y) with respect to y about xi−1, we get

I6 = g(t, xi−1)
(∆xi−1 +∆xi)

4
+ gy(t, xi−1)

(∆xi−1 +∆xi)
2

16
+ . . . , (5.22)

where

gy(t, xi−1) =
∂g

∂y
(t, xi−1) =

∂g

∂y
(t, y)|y=xi−1

.
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Now we calculate gy(t, xi−1) using the Leibniz rule to differentiate under an integral using
λ−
i (xi−1) = 0

gy(t, xi−1) =

[
ny(t, y)

∫ xi

y

λ−
i (x)K(x− y, y)n(t, x− y)dx

+ n(t, y)
∂

∂y

∫ xi

y

λ−
i (x)K(x− y, y)n(t, x− y)dx

]

y=xi−1

,

= ny(t, xi−1)

∫ xi

xi−1

λ−
i (x)K(x− xi−1, xi−1)n(t, x− xi−1)dx

+n(t, xi−1)

[ ∫ xi

y

λ−
i (x)

∂

∂y
{K(x− y, y)n(t, x− y)}dx

]

y=xi−1

,

= ny(t, xi−1)

∫ xi

xi−1

λ−
i (x)K(x− xi−1, xi−1)n(t, x− xi−1)dx

+n(t, xi−1)

∫ xi

xi−1

λ−
i (x)

[
{ ∂
∂y

K(x− y, y)}y=xi−1
n(t, x− xi−1)

+K(x− xi−1, xi−1)ny(t, x− xi−1)

]
dx.

Then, we apply the left rectangle rule and use λ−
i (xi−1) = 0 and K(0, xi−1) = 0 to get

gy(t, xi−1) = 0 + 0 +O(∆x2).

Now we have to evaluate g(t, xi−1) from the equation (5.21)

g(t, xi−1) =

∫ xi

xi−1

λ−
i (x)K(x− xi−1, xi−1)n(t, x− xi−1)n(t, xi−1)dx.

Again apply the left rectangle rule use λ−
i (xi−1) = 0 and K(0, xi−1) = 0, and we obtain

g(t, xi−1) = 0 +O(∆x2).

By substituting the value of gy(t, xi−1) and g(t, xi−1) in the equation (5.22) we get

I6 = 0 +O(∆x3). (5.23)

Similarly, we can evaluate the third term

I3 = 0 +O(∆x3). (5.24)

The integrals I1 and I4.
Now we consider the first term in (5.20)

I1 =
1

2

i−1∑

j=1

∫ xj+1/2

xj−1/2

∫ xi+1

xi

λ+
i (x)K(x− y, y)n(t, x− y)n(t, y)dxdy
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and apply the midpoint rule to get

I1 =
1

2

i−1∑

j=1

∫ xi+1

xi

λ+
i (x)K(x− xj , xj)n(t, x− xj)dx× n(t, xj)∆xj +O(∆x3).

Furthermore we can use the relationship Ni(t) = n(t, xi)∆xi +O(∆x3) for the midpoint
rule to get the form

I1 =
1

2

i−1∑

j=1

Nj

∫ xi+1

xi

λ+
i (x)K(x− xj , xj)n(t, x− xj)dx+O(∆x3).

By using the substitution x− xj = x′ we obtain

I1 =
1

2

i−1∑

j=1

Nj

∫ xi+1−xj

xi−xj

λ+
i (x

′ + xj)K(x′, xj)n(t, x
′)dx′ +O(∆x3). (5.25)

We define li,j and γi,j to be those indices such that the following hold

xi − xj ∈ Λli,j and γi,j := H [(xi − xj)− xli,j ] (5.26)

where

H(x) :=

{
1 if x > 0,

-1 if x ≤ 0.

We will use the convention of Riemann integration that
∫ b

a
f(x)dx = −

∫ a

b
f(x)dx and the

equation (5.25) can be rewritten as

I1 =
1

2

i−1∑

j=1

Nj

∫ x
li,j+

1
2
γi,j

xi−xj

λ+
i (x

′ + xj)K(x′, xj)n(t, x
′)dx′

+
1

2

i−1∑

j=1

Nj

li+1,j+
1

2
(γi+1,j−1)∑

k=li,j+
1

2
(1+γi,j )

∫ xk+1/2

xk−1/2

λ+
i (x

′ + xj)K(x′, xj)n(t, x
′)dx′

+
1

2

i−1∑

j=1

Nj

∫ xi+1−xj

x
li+1,j+

1
2
γi+1,j

λ+
i (x

′ + xj)K(x′, xj)n(t, x
′)dx′ +O(∆x3).

Let p := #

{
n : li,j +

1
2
(γi,j + 1) ≤ n ≤ li+1,j +

1
2
(γi+1,j − 1)

}
to be the total number of

terms in the following sum

li+1,j+
1

2
(γi+1,j−1)∑

k=li,j+
1

2
(γi,j+1)

∫ xk+1/2

xk−1/2

λ+
i (x

′ + xj)K(x′, xj)n(t, x
′)dx′
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and set

k1 := li,j +
1

2
(γi,j + 1), k2 := k1 + 1, . . . , kp−1 := k1 + (p− 2).

Next, we shall show that p is finite. By using the definition of the indices li,j and γi,j in
(5.26), we can estimate

(p− 2)∆xmin ≤ ∆xk2 +∆xk3 + . . .+∆xkp−1
≤ 1

2
(∆xi +∆xi+1) ≤ ∆x

which implies using the assumption of quasi uniformity (5.3) that

(p− 2) ≤ ∆x

∆xmin
≤ C ⇒ p ≤ C + 2.

This means the above sum has uniformly bounded finite number of terms. So one can
apply the midpoint rule in the second term on the right hand side to get

I1 =
1

2

i−1∑

j=1

Nj

∫ x
li,j+

1
2
γi,j

xi−xj

λ+
i (x

′ + xj)K(x′, xj)n(t, x
′)dx′

+
1

2

i−1∑

j=1

Nj

li+1,j+
1

2
(γi+1,j−1)∑

k=li,j+
1

2
(1+γi,j )

λ+
i (xk + xj)K(xk, xj)n(t, xk)∆xk

+
1

2

i−1∑

j=1

Nj

∫ xi+1−xj

x
li+1,j+

1
2
γi+1,j

λ+
i (x

′ + xj)K(x′, xj)n(t, x
′)dx′

− 1

12

i−1∑

j=1

Nj

li+1,j+
1

2
(γi+1,j−1)∑

k=li,j+
1

2
(1+γi,j )

∆xk
3

∆xi +∆xi+1

∂

∂x′
{K(xk, xj)n(t, xk)}+O(∆x3).

This can be further rewritten as

I1 =
1

2

i−1∑

j=1

Nj

∫ x
li,j+

1
2
γi,j

xi−xj

λ+
i (x

′ + xj)K(x′, xj)n(t, x
′)dx′

+
1

2

i−1∑

j=1

Nj

∑

xi≤xj+xk<xi+1

λ+
i (xk + xj)K(xk, xj)Nk

+
1

2

i−1∑

j=1

Nj

∫ xi+1−xj

x
li+1,j+

1
2
γi+1,j

λ+
i (x

′ + xj)K(x′, xj)n(t, x
′)dx′

− 1

12

i−1∑

j=1

Nj

li+1,j+
1

2
(γi+1,j−1)∑

k=li,j+
1

2
(1+γi,j)

∆xk
3

∆xi +∆xi+1

∂

∂x′
{K(xk, xj)n(t, xk)}+O(∆x3). (5.27)
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Now we consider the fourth term given by

I4 =
1

2

i−2∑

j=1

∫ xj+1/2

xj−1/2

∫ xi

xi−1

λ−
i (x)K(x− y, y)n(t, x− y)n(t, y)dxdy.

Similarly as before, we obtain

I4 =
1

2

i−2∑

j=1

Nj

∫ x
li−1,j+

1
2
γi−1,j

xi−1−xj

λ−
i (x

′ + xj)K(x′, xj)n(t, x
′)dx′

+
1

2

i−2∑

j=1

Nj

li,j+
1

2
(γi,j−1)∑

k=li−1,j+
1

2
(1+γi−1,j )

λ−
i (xk + xj)K(xk, xj)n(t, xk)∆xk

+
1

2

i−2∑

j=1

Nj

∫ xi−xj

x
li,j+

1
2
γi,j

λ−
i (x

′ + xj)K(x′, xj)n(t, x
′)dx′

+
1

12

i−2∑

j=1

Nj

li,j+
1

2
(γi,j−1)∑

k=li−1,j+
1

2
(1+γi−1,j )

∆xk
3

∆xi +∆xi−1

∂

∂x′
{K(xk, xj)n(t, xk)}+O(∆x3).

Thus, we have

I4 =
1

2

i−2∑

j=1

Nj

∫ x
li−1,j+

1
2
γi−1,j

xi−1−xj

λ−
i (x

′ + xj)K(x′, xj)n(t, x
′)dx′

+
1

2

i−2∑

j=1

Nj

∑

xi−1≤xj+xk<xi

λ−
i (xk + xj)K(xk, xj)Nk

+
1

2

i−2∑

j=1

Nj

∫ xi−xj

x
li,j+

1
2
γi,j

λ−
i (x

′ + xj)K(x′, xj)n(t, x
′)dx′

+
1

12

i−2∑

j=1

Nj

li,j+
1

2
(γi,j−1)∑

k=li−1,j+
1

2
(1+γi−1,j )

∆xk
3

∆xi +∆xi−1

∂

∂x′
{K(xk, xj)n(t, xk)}+O(∆x3).

(5.28)

The integrals I2 and I5.
Now we consider the second term

I2 =
1

2

∫ xi

xi−1/2

∫ xi+1

xi

λ+
i (x)K(x− y, y)n(t, x− y)n(t, y)dxdy.

Here, we apply the right rectangle rule and get

I2 =
1

4

∫ xi+1

xi

λ+
i (x)K(x− xi, xi)n(t, x− xi)n(t, xi)∆xidx+O(∆x3).
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The above integral on the right hand side can be rewritten as

I2 =
1

2

∫ xi+1

xi

λ+
i (x)K(x− xi, xi)n(t, x− xi)Nidx

− 1

4

∫ xi+1

xi

λ+
i (x)K(x− xi, xi)n(t, x− xi)Nidx+O(∆x3).

We apply the left rectangle rule in the second integral on the right hand side and use
K(0, xi) = 0 which gives us a third order term. Therefore, we obtain

I2 =
1

2

∫ xi+1

xi

λ+
i (x)K(x− xi, xi)n(t, x− xi)Nidx+O(∆x3).

Using the substitution x− xi = x′, we get

I2 =
1

2
Ni

∫ xi+1−xi

0

λ+
i (x

′ + xi)K(x′, xi)n(t, x
′)dx′ +O(∆x3),

=
1

2
Ni

li+1,i+
1

2
(γi+1,i−1)∑

k=1

∫ xk+1/2

xk−1/2

λ+
i (x

′ + xi)K(x′, xi)n(t, x
′)dx′

+
1

2
Ni

∫ xi+1−xi

x
li+1,i+

1
2
γi+1,i

λ+
i (x

′ + xi)K(x′, xi)n(t, x
′)dx′ +O(∆x3).

Using the midpoint rule around xk in the first term on the right hand side, we obtain

I2 =
1

2
Ni

li+1,i+
1

2
(γi+1,i−1)∑

k=1

λ+
i (xk + xi)K(xk, xi)n(t, xk)∆xk

+
1

2
Ni

∫ xi+1−xi

x
li+1,i+

1
2
γi+1,i

λ+
i (x

′ + xi)K(x′, xi)n(t, x
′)dx′ +O(∆x3).

This can be further rewritten as

I2 =
1

2
Ni

∑

xi+xk<xi+1

λ+
i (xk + xi)K(xk, xi)Nk(t)

+
1

2
Ni

∫ xi+1−xi

x
li+1,i+

1
2
γi+1,i

λ+
i (x

′ + xi)K(x′, xi)n(t, x
′)dx′ +O(∆x3). (5.29)

Before combining all these integrals together, we have to discretize the integral I5 also.
Let us finally consider

I5 =
1

2

∫ xi−1

xi−3/2

∫ xi

xi−1

λ−
i (x)K(x− y, y)n(t, x− y)n(t, y)dxdy.
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Similarly as before in I2, we obtain

I5 =
1

2
Ni−1

li,i−1+
1

2
(γi,i−1−1)∑

k=1

λ−
i (xk + xi−1)K(xk, xi−1)n(t, xk)∆xk

+
1

2
Ni−1

∫ xi−xi−1

x
li,i−1+

1
2
γi,i−1

λ−
i (x

′ + xi−1)K(x′, xi−1)n(t, x
′)dx′ +O(∆x3).

The integral terms on the right hand side can be rewritten as

I5 =
1

2
Ni−1

∑

xi−1+xk<xi

λ−
i (xk + xi−1)K(xk, xi−1)Nk(t)

+
1

2
Ni−1

∫ xi−xi−1

x
li,i−1+

1
2
γi,i−1

λ−
i (x

′ + xi−1)K(x′, xi−1)n(t, x
′)dx′ +O(∆x3). (5.30)

Collecting together (5.23), (5.24), (5.27), (5.28), (5.29), (5.30) and substituting all these
terms into equation (5.20), we obtain

Bi =

j≥k∑

xi≤xj+xk<xi+1

(
1− 1

2
δj,k

)
λ+
i (xk + xj)K(xk, xj)NjNk

+

j≥k∑

xi−1≤xj+xk<xi

(
1− 1

2
δj,k

)
λ−
i (xk + xj)K(xk, xj)NjNk

+
1

2

i−1∑

j=1

Nj

∫ x
li,j+

1
2
γi,j

xi−xj

λ+
i (x

′ + xj)K(x′, xj)n(t, x
′)dx′

+
1

2

i∑

j=1

Nj

∫ xi+1−xj

x
li+1,j+

1
2
γi+1,j

λ+
i (x

′ + xj)K(x′, xj)n(t, x
′)dx′

+
1

2

i−2∑

j=1

Nj

∫ x
li−1,j+

1
2
γi−1,j

xi−1−xj

λ−
i (x

′ + xj)K(x′, xj)n(t, x
′)dx′

+
1

2

i−1∑

j=1

Nj

∫ xi−xj

x
li,j+

1
2
γi,j

λ−
i (x

′ + xj)K(x′, xj)n(t, x
′)dx′

− 1

12

i−1∑

j=1

Nj

li+1,j+
1

2
(γi+1,j−1)∑

k=li,j+
1

2
(1+γi,j)

∆xk
3

∆xi +∆xi+1

∂

∂x′
{K(xk, xj)n(t, xk)}

+
1

12

i−2∑

j=1

Nj

li,j+
1

2
(γi,j−1)∑

k=li−1,j+
1

2
(1+γi−1,j )

∆xk
3

∆xi +∆xi−1

∂

∂x′
{K(xk, xj)n(t, xk)}+O(∆x3) + Ji(f).
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The first two terms on the right hand side are exactly the fixed pivot discretization B̂FP
i

from (5.12). Therefore, we have

Bi =B̂FP
i +

1

2

i−1∑

j=1

Nj

∫ x
li,j+

1
2
γi,j

xi−xj

λ+
i (x

′ + xj)K(x′, xj)n(t, x
′)dx′

+
1

2

i∑

j=1

Nj

∫ xi+1−xj

x
li+1,j+

1
2
γi+1,j

λ+
i (x

′ + xj)K(x′, xj)n(t, x
′)dx′

+
1

2

i−2∑

j=1

Nj

∫ x
li−1,j+

1
2
γi−1,j

xi−1−xj

λ−
i (x

′ + xj)K(x′, xj)n(t, x
′)dx′

+
1

2

i−1∑

j=1

Nj

∫ xi−xj

x
li,j+

1
2
γi,j

λ−
i (x

′ + xj)K(x′, xj)n(t, x
′)dx′

− 1

12

i−1∑

j=1

Nj

li+1,j+
1

2
(γi+1,j−1)∑

k=li,j+
1

2
(1+γi,j)

∆xk
3

∆xi +∆xi+1

∂

∂x′
{K(xk, xj)n(t, xk)}

+
1

12

i−2∑

j=1

Nj

li,j+
1

2
(γi,j−1)∑

k=li−1,j+
1

2
(1+γi−1,j )

∆xk
3

∆xi +∆xi−1

∂

∂x′
{K(xk, xj)n(t, xk)}+O(∆x3) + Ji(f).

(5.31)

Let us denote the sum of first four integrals and the difference of remaining two terms on
the right hand side by E and E ′, respectively.

Finally, equation (5.31) can be written as

Bi = B̂FP
i + E + E ′ +O(∆x3) + Ji(f).

After substituting Ji(f) we get for i = 2, . . . , I − 1

Bi =B̂FP
i + E + E ′ +

f(xi)

2

[
∆xi −

(
∆xi−1 +∆xi+1

2

)]

− f ′(xi)

12

[
(∆xi+1 −∆xi−1)

{
∆xi +

(
∆xi−1 +∆xi+1

2

)}]
+O(∆x3). (5.32)

Birth term on boundary cells

Now we evaluate the order of the birth term on boundary cells. First we consider the
birth term for i = 1

B1 =
1

2

∫ x1+1/2

x1−1/2

∫ x

0

K(x− y, y)n(t, x− y)n(t, y)dydx.
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Using the Lemma 5.3.1, the birth term can be rewritten as

B1 =
1

2

∫ x2

x1

λ+
1 (x)

∫ x

0

K(x− y, y)n(t, x− y)n(t, y)dydx+ J1(f).

Changing the order of integration we get

B1 =
1

2

∫ x1

0

∫ x2

x1

λ+
1 (x)K(x− y, y)n(t, x− y)n(t, y)dxdy

+
1

2

∫ x2

x1

∫ x2

y

λ+
1 (x)K(x− y, y)n(t, x− y)n(t, y)dxdy + J1(f).

This can be further rewritten as

B1 =
1

2

∫ x1

x1/2

∫ x2

x1

λ+
1 (x)K(x− y, y)n(t, x− y)n(t, y)dxdy

+
1

2

∫ x1+1/2

x1

∫ x2

y

λ+
1 (x)K(x− y, y)n(t, x− y)n(t, y)dxdy

+
1

2

∫ x2

x1+1/2

∫ x2

y

λ+
1 (x)K(x− y, y)n(t, x− y)n(t, y)dxdy + J1(f).

We apply the right rectangle rule in outer and inner integrals respectively of the first term
as well as in the outer integral of the third term. Both of these terms are of second order
separately. Also one uses the left rectangle rule in the outer integral of the second term
to get

B1 =
1

4
∆x1

∫ x2

x1

λ+
1 (x)K(x− x1, x1)n(t, x− x1)n(t, x1)dx+O(∆x2) + J1(f).

Again by applying the right rectangle rule we obtain

B1 =
1

2
N1

∑

x1+xk<x2

λ+
i (xk + x1)K(xk, x1)Nk +O(∆x2) + J1(f).

In terms of fixed pivot discretization we have

B1 = B̂FP
1 +

f(x1)

4
[3∆x1 −∆x2] +O(∆x2). (5.33)

From (5.19), we have

f(t, x1) =
1

2

∫ x1

0

K(x1 − y, y)n(t, x1 − y)n(t, y)dy.
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The application of the right rectangle rule in the above integral gives f(x1) = O(∆x).
Substituting this value of f(x1) in (5.33), we obtain

B1 = B̂FP
1 +O(∆x2). (5.34)

Finally we consider the boundary cell i = I

BI =
1

2

∫ xI+1/2

xI−1/2

∫ x

0

K(x− y, y)n(t, x− y)n(t, y)dydx.

Using the Lemma 5.3.1, the birth term can be rewritten as

BI =
1

2

∫ xI+1

xI

λ+
I (x)

∫ x

0

K(x− y, y)n(t, x− y)n(t, y)dydx

+
1

2

∫ xI

xI−1

λ−
I (x)

∫ x

0

K(x− y, y)n(t, x− y)n(t, y)dydx+ JI(f).

After changing the order of integration, we get

BI =
1

2

∫ xI

0

∫ xI+1

xI

λ+
I (x)K(x− y, y)n(t, x− y)n(t, y)dxdy

+
1

2

∫ xI+1

xI

∫ xI+1

y

λ+
I (x)K(x− y, y)n(t, x− y)n(t, y)dxdy

+
1

2

∫ xI−1

0

∫ xI

xI−1

λ−
I (x)K(x− y, y)n(t, x− y)n(t, y)dxdy

+
1

2

∫ xI

xI−1

∫ xI

y

λ−
I (x)K(x− y, y)n(t, x− y)n(t, y)dxdy + JI(f).
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We split each integral on the right hand side into two parts as

BI =
1

2

I−1∑

k=1

∫ xk+1/2

xk−1/2

∫ xI+1

xI

λ+
I (x)K(x− y, y)n(t, x− y)n(t, y)dxdy

+
1

2

∫ xI

xI−1/2

∫ xI+1

xI

λ+
I (x)K(x− y, y)n(t, x− y)n(t, y)dxdy

+
1

2

∫ xI+1/2

xI

∫ xI+1

y

λ+
I (x)K(x− y, y)n(t, x− y)n(t, y)dxdy

+
1

2

∫ xI+1

xI+1/2

∫ xI+1

y

λ+
I (x)K(x− y, y)n(t, x− y)n(t, y)dxdy

+
1

2

I−2∑

k=1

∫ xk+1/2

xk−1/2

∫ xI

xI−1

λ−
I (x)K(x− y, y)n(t, x− y)n(t, y)dxdy

+
1

2

∫ xI−1

xI−3/2

∫ xI

xI−1

λ−
I (x)K(x− y, y)n(t, x− y)n(t, y)dxdy

+
1

2

∫ xI−1/2

xI−1

∫ xI

y

λ−
I (x)K(x− y, y)n(t, x− y)n(t, y)dxdy

+
1

2

∫ xI

xI−1/2

∫ xI

y

λ−
I (x)K(x− y, y)n(t, x− y)n(t, y)dxdy + JI(f).

By applying the midpoint, right, left and right rectangle rules to the outer integral of
the first and fifth, second and sixth, third and seventh as well as fourth and eighth terms
respectively, we obtain

BI =
1

2

I−1∑

k=1

∆xk

∫ xI+1

xI

λ+
I (x)K(x− xk, xk)n(t, x− xk)n(t, xk)dx+ 0

+
1

4
∆xI

∫ xI+1

xI

λ+
I (x)K(x− xI , xI)n(t, x− xI)n(t, xI)dx+ 0

+
1

2

I−2∑

k=1

∆xk

∫ xI

xI−1

λ−
I (x)K(x− xk, xk)n(t, x− xk)n(t, xk)dx+ 0

+
1

4
∆xI−1

∫ xI

xI−1

λ−
I (x)K(x− xI−1, xI−1)n(t, x− xI−1)n(t, xI−1)dx+ 0

+O(∆x2) + JI(f).
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This can be further rewritten as

BI =
1

2

I−1∑

k=1

Nk

∫ xI+1

xI

λ+
I (x)K(x− xk, xk)n(t, x− xk)dx

+
1

2
NI

∫ xI+1

xI

λ+
I (x)K(x− xI , xI)n(t, x− xI)dx

+
1

2

I−2∑

k=1

Nk

∫ xI

xI−1

λ−
I (x)K(x− xk, xk)n(t, x− xk)dx

+
1

2
NI−1

∫ xI

xI−1

λ−
I (x)K(x− xI−1, xI−1)n(t, x− xI−1)dx+O(∆x2) + JI(f).

The first, second, third and fourth term on the right hand side can be solved similar to
I1, I2, I4 and I5 respectively. Thus, we obtain

BI =
1

2

I−1∑

j=1

Nj

∑

xI≤xj+xk<xI+1

λ+
I (xk + xj)K(xk, xj)Nk

+
1

2
NI

∑

xI+xk<xI+1

λ+
I (xk + xI)K(xk, xI)Nk

+
1

2

I−2∑

j=1

Nj

∑

xI−1≤xj+xk<xI

λ−
I (xk + xj)K(xk, xj)Nk

+
1

2
NI−1

∑

xI−1+xk<xI

λ−
I (xk + xI−1)K(xk, xI−1)Nk +O(∆x2) + JI(f).

Hence,

BI =

j≥k∑

xI≤xj+xk<xI+1

(
1− 1

2
δj,k

)
λ+
I (xk + xj)K(xk, xj)NjNk

+

j≥k∑

xI−1≤xj+xk<xI

(
1− 1

2
δj,k

)
λ−
I (xk + xj)K(xk, xj)NjNk +O(∆x2) + JI(f).

In terms of fixed pivot discretization, we have

BI = B̂FP
I +

f(xI)

4
[∆xI −∆xI−1] +O(∆x2). (5.35)

5.3.2 Order of the death term and summary of all terms

The integrated death is given as follows

Di =

∫ xi+1/2

xi−1/2

∫ xI+1/2

0

K(x, y)n(t, y)n(t, x)dydx.
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The application of the midpoint rule in outer integral gives us

Di = ∆xi

∫ xI+1/2

0

K(xi, y)n(t, y)n(t, xi)dy +O(∆x3).

This can be rewritten as

Di = Ni(t)
I∑

j=1

∫ xj+1/2

xj−1/2

K(x, y)n(t, y)dy +O(∆x3)..

Again we apply the midpoint rule in the above integral and obtain

Di = Ni(t)

I∑

j=1

K(xi, xj)n(t, xj)∆xj +O(∆x3),

i.e.

Di = Ni(t)

I∑

j=1

K(xi, xj)Nj(t) +O(∆x3),

Thus, from (5.12) we have

Di = D̂FP
i +O(∆x3). (5.36)

Finally from the equations (5.32), (5.34), (5.35) and (5.36), we can summarize the spatial
truncation error σi(t) = Bi −Di − (B̂FP

i − D̂FP
i ) as follows

σ1 = O(∆x2), (5.37)

σi =E + E ′ +
f(xi)

2

[
∆xi −

(
∆xi−1 +∆xi+1

2

)]

− f ′(xi)

12

[
(∆xi+1 −∆xi−1)

{
∆xi +

(
∆xi−1 +∆xi+1

2

)}]

+O(∆x3), i = 2, . . . , I − 1, (5.38)

σI =
f(xI)

4
[∆xI −∆xI−1] +O(∆x2), (5.39)

where E and E ′ are defined in (5.31).

5.3.3 Meshes

Now let us consider the following five different types of meshes to calculate the order of
local discretization error. We repeat some details from J. Kumar and Warnecke [51].
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Uniform mesh

Let us begin with the case of uniform mesh i.e. ∆xi = ∆x and xi = (i−1/2)∆x for any i =
1, . . . , I. To estimate σi(t), first we have to evaluate the order of E and E ′. In case of
uniform grids, we have

xi − xj = (i− 1/2)∆x− (j − 1/2)∆x = (i− j)∆x = xi−j+1/2,

xi+1 − xj = (i+ 1/2)∆x− (j − 1/2)∆x = (i− j + 1)∆x = xi−j+3/2,

and

xi−1 − xj = (i− 3/2)∆x− (j − 1/2)∆x = (i− j − 1)∆x = xi−j−1/2.

By using the definition of indices in (5.26), one can obtain

xi − xj = xi−j+1/2 ∈ Λli,j .

This implies that

xi − xj = xi−j+1/2 = xli,j+
1

2
γi,j

.

Similarly, we can easily obtain

xi+1 − xj = xi−j+3/2 = xli+1,j+
1

2
γi+1,j

,

and

xi−1 − xj = xi−j−1/2 = xli−1,j+
1

2
γi−1,j

.

Therefore, from (5.31) we have E = 0. For uniform grids, we can observe from above
that xi−1 − xj , xi − xj , and xi+1 − xj are the right end boundaries of adjacent cells, i.e.
li−1,j = (i − j − 1)th, li,j = (i − j)th and li+1,j = (i − j + 1)th cells, respectively. Here
γi−1,j = γi,j = γi+1,j = 1. Thus, by substituting the values of all these indices in E ′

defined in (5.31) and using the taylor series expansion we obtain E = O(∆x3). Finally,
from the equations (5.37-5.39) we estimate

σi(t) =

{
O(∆x2) i = 1, I,

O(∆x3) i = 2, . . . , I − 1.

The order of consistency is given by

‖σ(t)‖ =|σ1(t)|+
I−1∑

i=2

|σi(t)|+ |σI(t)|

=O(∆x2).

Thus the method is second order consistent on a uniform mesh.
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ξ

x

smooth transformation
x = g(ξ)

uniform mesh

non-uniform mesh

for example
x = exp(ξ)

Figure 5.2: Non-uniform smooth mesh.

Non-uniform smooth mesh (xi+1/2 = rxi−1/2, r > 1, i = 1, . . . , I)

Suppose, grids to be smooth such that ∆xi − ∆xi−1 = O(∆x2) and 2∆xi − (∆xi−1 +
∆xi+1) = O(∆x3), where ∆x is the maximum mesh width. This again gives us second
order accuracy, which is similar to that of the uniform case. These smooth grids can be
obtained by applying some smooth transformation to uniform grids. Let us consider a
variable ξ with uniform grids and a smooth transformation x = g(ξ) such that xi±1/2 =
g(ξi±1/2) for any i = 1, . . . , I to get non-uniform smooth mesh, see Figure 5.2. Let h be
the uniform mesh width in the variable ξ. In case of smooth grids, Taylor series expansion
in the smooth transformation gives us

∆xi = xi+1/2 − xi−1/2 = g(ξi + h/2)− g(ξi − h/2).

By applying the Taylor series expansion we get

∆xi = hg′(ξi) +
h3

24
g′′(ξi) +O(h4).

Similarly, we have

∆xi+1 = hg′(ξi) + h2g′′(ξi) +O(h3),

and

∆xi−1 = hg′(ξi)− h2g′′(ξi) +O(h3).

Further, we can easily obtain obtain

∆xi −∆xi−1 = O(h2),

and

2∆xi − (∆xi−1 +∆xi+1) = O(h3).

The above values help us to simplify the equations (5.37-5.39) and give

σ1 = O(h2), σI = O(h2) and σi = E + E ′ +O(h3).
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To find the order of σi, we have to evaluate E and E ′ separately. First we consider E
from (5.31) and set f(x, y) := K(x, y)n(t, x). Then we can write

E =
1

2

i−1∑

j=1

Nj

∫ x
li,j+

1
2
γi,j

xi−xj

λ+
i (x

′ + xj)f(x
′, xj)dx

′

+
1

2

i∑

j=1

Nj

∫ xi+1−xj

x
li+1,j+

1
2
γi+1,j

λ+
i (x

′ + xj)f(x
′, xj)dx

′

+
1

2

i−2∑

j=1

Nj

∫ x
li−1,j+

1
2
γi−1,j

xi−1−xj

λ−
i (x

′ + xj)f(x
′, xj)dx

′

+
1

2

i−1∑

j=1

Nj

∫ xi−xj

x
li,j+

1
2
γi,j

λ−
i (x

′ + xj)f(x
′, xj)dx

′.

Applying the left rectangle rule in first and third integrals and the right rectangle rule in
second and fourth integrals, we obtain

E =
1

4

i−1∑

j=1

Nj

(xli,j+
1

2
γi,j
− xi + xj)

2

xi − xi+1
f(xi − xj , xj)

− 1

4

i∑

j=1

Nj

(xli+1,j+
1

2
γi+1,j

− xi+1 + xj)
2

xi − xi+1
f(xi+1 − xj , xj)

+
1

4

i−2∑

j=1

Nj

(xli−1,j+
1

2
γi−1,j

− xi−1 + xj)
2

xi − xi−1

f(xi−1 − xj , xj)

− 1

4

i−1∑

j=1

Nj

(xli,j+
1

2
γi,j
− xi + xj)

2

xi − xi−1

f(xi − xj , xj) + higher order terms.

Then we approximate f at (xi−xj , xj) by f evaluated at (xi+1−xj , xj) of first and fourth
terms, respectively to get

E =
1

4

i−1∑

j=1

Nj

(xli,j+
1

2
γi,j
− xi + xj)

2

xi − xi+1

{f(xi+1 − xj , xj) + (xi − xi+1)fx′(xi+1 − xj , xj)}

− 1

4

i∑

j=1

Nj

(xli+1,j+
1

2
γi+1,j

− xi+1 + xj)
2

xi − xi+1
f(xi+1 − xj , xj)

+
1

4

i−2∑

j=1

Nj

(xli−1,j+
1

2
γi−1,j

− xi−1 + xj)
2

xi − xi−1
f(xi−1 − xj , xj)

− 1

4

i−1∑

j=1

Nj

(xli,j+
1

2
γi,j
− xi + xj)

2

xi − xi−1
{f(xi−1 − xj, xj) + (xi − xi−1)fx′(xi−1 − xj , xj)}

+ higher order terms.
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Again approximating fx′ at point (xi+1 − xj , xj) by fx′ evaluated at point (xi−1 − xj , xj)
in the second term of the first summation, we obtain

E =
1

4

i−1∑

j=1

Nj

(xli,j+
1

2
γi,j
− xi + xj)

2

xi − xi+1
{f(xi+1 − xj, xj) + (xi − xi+1)fx′(xi−1 − xj , xj)}

− 1

4

i∑

j=1

Nj

(xli+1,j+
1

2
γi+1,j

− xi+1 + xj)
2

xi − xi+1

f(xi+1 − xj , xj)

+
1

4

i−2∑

j=1

Nj

(xli−1,j+
1

2
γi−1,j

− xi−1 + xj)
2

xi − xi−1
f(xi−1 − xj , xj)

− 1

4

i−1∑

j=1

Nj

(xli,j+
1

2
γi,j
− xi + xj)

2

xi − xi−1
{f(xi−1 − xj , xj) + (xi − xi−1)fx′(xi−1 − xj , xj)}

+ higher order terms.

Then we replace j by j+1 and j−1 respectively in first and third terms. We suppress the
dependence on t because it is not explicitly needed. Further we can use the relationship
Nj = n(xj)∆xj +O(∆x3) for the midpoint rule to obtain

E =
1

4

i−1∑

j=1

n(xj+1)∆xj+1

(xli+1,j+1+
1

2
γi+1,j+1

− xi+1 + xj+1)
2

xi+1 − xi

f(xi+1 − xj+1, xj+1)

− 1

4

i−1∑

j=1

n(xj)∆xj

(xli,j+
1

2
γi,j
− xi + xj)

2

xi+1 − xi
f(xi+1 − xj , xj)

+
1

4

i−1∑

j=2

n(xj−1)∆xj−1

(xli−1,j−1+
1

2
γi−1,j−1

− xi−1 + xj−1)
2

xi − xi−1
f(xi−1 − xj−1, xj−1)

− 1

4

i−1∑

j=1

n(xj)∆xj

(xli,j+
1

2
γi,j
− xi + xj)

2

xi − xi−1

f(xi−1 − xj , xj) + higher order terms.

Approximating the functions x 7→ f(xi±1 − x, x)n(x) at point xj by f(xi±1 − x, x)n(x)
evaluated at point xj±1 of the second and fourth sums on the right hand side respectively,
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we get

E =
1

4

i−1∑

j=2

n(xj+1)∆xj+1

(xli+1,j+1+
1

2
γi+1,j+1

− xi+1 + xj+1)
2

xi+1 − xi
f(xi+1 − xj+1, xj+1)

−1
4

i−1∑

j=2

∆xj

(xli,j+
1

2
γi,j
− xi + xj)

2

xi+1 − xi

{
n(xj+1)f(xi+1 − xj+1, xj+1)

+ (xj − xj+1)
∂

∂x′
{n(xj+1)f(xi+1 − xj+1, xj+1)}

}

+
1

4

i−1∑

j=2

n(xj−1)∆xj−1

(xli−1,j−1+
1

2
γi−1,j−1

− xi−1 + xj−1)
2

xi − xi−1
f(xi−1 − xj−1, xj−1)

−1
4

i−1∑

j=2

∆xj

(xli,j+
1

2
γi,j
− xi + xj)

2

xi − xi−1

{
n(xj−1)f(xi−1 − xj−1, xj−1)

+ (xj − xj−1)
∂

∂x′
{n(xj−1)f(xi−1 − xj−1, xj−1)}

}

+ higher order terms.

This can be rewritten as

E =
1

4

i−1∑

j=2

n(xj+1)(∆xj+1 −∆xj)
(xli+1,j+1+

1

2
γi+1,j+1

− xi+1 + xj+1)
2

xi+1 − xi
f(xi+1 − xj+1, xj+1)

+
1

4

i−1∑

j=2

n(xj+1)∆xj
f(xi+1 − xj+1, xj+1)

xi+1 − xi

×
{
(xli+1,j+1+

1

2
γi+1,j+1

− xi+1 + xj+1)
2 − (xli,j+

1

2
γi,j
− xi + xj)

2

}

+
1

4

i−1∑

j=2

∆xj
∂

∂x′
{n(xj+1)f(xi+1 − xj+1, xj+1)}

(xj+1 − xj)

xi+1 − xi
(xli,j+

1

2
γi,j
− xi + xj)

2

−1
4

i−1∑

j=2

n(xj−1)(∆xj −∆xj−1)
(xli−1,j−1+

1

2
γi−1,j−1

− xi−1 + xj−1)
2

xi − xi−1
f(xi−1 − xj−1, xj−1)

−1
4

i−1∑

j=2

n(xj−1)∆xj
f(xi−1 − xj−1, xj−1)

xi − xi−1

×
{
(xli,j+

1

2
γi,j
− xi + xj)

2 − (xli−1,j−1+
1

2
γi−1,j−1

− xi−1 + xj−1)
2

}

−1
4

i−1∑

j=2

∆xj
∂

∂x′
{n(xj−1)f(xi−1 − xj−1, xj−1)}

(xj − xj−1)

xi − xi−1
(xli,j+

1

2
γi,j
− xi + xj)

2

+ higher order terms.
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Let us denote the each sum on the right hand side by E1, . . . , E6 respectively. Therefore,
we have

E = E1 + E2 + E3 − E4 − E5 −E6 + higher order terms. (5.40)

In case of smooth grids, it is easy to show that

∆xj −∆xj−1 = O(∆x2).

This implies that E4 = O(∆x2). Then by using Taylor’s series expansion, we can easily
take a second order approximation of E4. This gives us

E4 =
1

4

i−1∑

j=2

n(xj+1)f(xi+1 − xj+1, xj+1)(∆xj −∆xj−1)
(xli−1,j−1+

1

2
γi−1,j−1

− xi−1 + xj−1)
2

xi − xi−1

+O(∆x3).

Let us first consider

E1 −E4 =
1

2

i−1∑

j=2

n(xj+1)f(xi+1 − xj+1, xj+1)

×
{
(∆xj+1 −∆xj)

∆xi +∆xi+1
(xli+1,j+1+

1

2
γi+1,j+1

− xi+1 + xj+1)
2

− (∆xj −∆xj−1)

∆xi +∆xi−1

(xli−1,j−1+
1

2
γi−1,j−1

− xi−1 + xj−1)
2

}
+O(∆x3).

To prove E1 −E4 = O(∆x3), we have to show that

(∆xi+∆xi−1)(∆xj+1 −∆xj)(xli+1,j+1+
1

2
γi+1,j+1

− xi+1 + xj+1)
2 (5.41)

− (∆xi +∆xi+1)(∆xj −∆xj−1)(xli−1,j−1+
1

2
γi−1,j−1

− xi−1 + xj−1)
2 = O(∆x6).

(5.42)

Since h is the uniform mesh width in the variable ξ, we have

∆xi = xi+1/2 − xi−1/2 = g(ξi + h/2)− g(ξi − h/2).

By applying the Taylor series expansion we get

∆xi = hg′(ξi) +
h3

24
g′′(ξi) +O(h4).

Similarly, we have

∆xi+1 = hg′(ξi) + h2g′′(ξi) +O(h3),
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and

∆xi−1 = hg′(ξi)− h2g′′(ξi) +O(h3).

Further, we have

∆xi +∆xi−1 = 2hg′(ξi)− h2g′′(ξi) +O(h3), (5.43)

and

∆xi +∆xi+1 = 2hg′(ξi) + h2g′′(ξi) +O(h3). (5.44)

Similarly, one can write

∆xj −∆xj−1 = h2g′′(ξj) +O(h3),

and

∆xj+1 −∆xj = h2g′′(ξj) +O(h3).

Furthermore, we obtain

(∆xi +∆xi−1)(∆xj+1 −∆xj) = 2h3g′(ξi)g
′′(ξj) +O(h4), (5.45)

and

(∆xi +∆xi+1)(∆xj −∆xj−1) = 2h3g′(ξi)g
′′(ξj) +O(h4). (5.46)

Let us consider ξ11, ξ12, ξ21, ξ22, ξ31 and ξ32 are corresponding points on uniform mesh
for xli+1,j+1+

1

2
γi+1,j+1

, xi+1 − xj+1, xli,j+
1

2
γi,j

, xi − xj, xli−1,j−1+
1

2
γi−1,j−1

and xi−1 − xj−1,
respectively.
Here we consider a particular type of non-uniform smooth grids i.e. xi+1/2 = rxi−1/2, r >
1, i = 1, . . . I. Such grids are called as geometric grids. These grids can be obtained
by applying exponential function as a smooth transformation. Here we have xi+1/2 =
exp(ξi+1/2) = exp(h + ξi−1/2) = exp(h) exp(ξi−1/2) = exp(h)xi−1/2 =: rxi−1/2, r > 1.
By the definition of the indices in (5.26), we know

xi+1 − xj+1 ∈ Λli+1,j+1
, xi − xj ∈ Λli,j and xi−1 − xj−1 ∈ Λli−1,j−1

.

For geometric grids, we have

xi+1 − xj+1 = r(xi − xj) = r2(xi−1 − xj−1).

Therefore, we have
li+1,j+1 = li,j + 1 = li−1,j−1 + 2.

Further, in case of geometric grids, we have

γi+1,j+1 = γi,j = γi−1,j−1.
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Let us consider

h1 = ξ11 − ξ12 =ln(xli+1,j+1+
1

2
γi+1,j+1

)− ln(xi+1 − xj+1)

= ln

(
xli+1,j+1+

1

2
γi+1,j+1

xi+1 − xj+1

)
= ln

(
xli,j+

1

2
γi,j

xi − xj

)
= ξ21 − ξ22

= ln

(
xli−1,j−1+

1

2
γi−1,j−1

xi−1 − xj−1

)
= ξ31 − ξ32.

Similarly, we can estimate

ξ12 − ξ32 = ln

(
xi+1 − xj+1

xi−1 − xj−1

)
= ln(r2) = 2h.

By the application of smooth transformation we can write

[xli+1,j+1+
1

2
γi+1,j+1

− (xi+1 − xj+1)]
2 = [g(ξ11)− g(ξ12)]

2 = h2
1{g′(ξ12)}2 +O(h3), (5.47)

and

[xli−1,j−1+
1

2
γi−1,j−1

− (xi−1 − xj−1)]
2 = [g(ξ31)− g(ξ32)]

2 = h2
1{g′(ξ32)}2 +O(h3). (5.48)

Substituting (5.45), (5.46), (5.47) and (5.48) into the left hand side of (5.41), we obtain

(∆xi+∆xi−1)(∆xj+1 −∆xj)(xli+1,j+1+
1

2
γi+1,j+1

− xi+1 + xj+1)
2

− (∆xi +∆xi+1)(∆xj −∆xj−1)(xli−1,j−1+
1

2
γi−1,j−1

− xi−1 + xj−1)
2

=[2h3g′(ξi)g
′′(ξj) +O(h4)][h2

1{g′(ξ12)}2 +O(h3)]

− [2h3g′(ξi)g
′′(ξj) +O(h4)][h2

1{g′(ξ32)}2 +O(h3)]

=2h3h2
1g

′(ξi)g
′′(ξj)[{g′(ξ12)}2 − {g′(ξ32)}2] +O(h6)

=2h3h2
1g

′(ξi)g
′′(ξj)[{g′(ξ12)}2 − {g′(ξ12 − 2h)}2] +O(h6)

=− 8h4h2
1g

′(ξi)g
′′(ξj)g

′(ξ12)g
′′(ξ12) +O(h6) = O(h6).

This implies that (5.41) holds. Therefore we have

E1 − E4 = O(∆x3). (5.49)

Let us consider

E5 =
1

2

i−1∑

j=2

n(xj−1)∆xj
f(xi−1 − xj−1, xj−1)

∆xi +∆xi−1

×
{
(xli,j+

1

2
γi,j
− xi + xj)

2 − (xli−1,j−1+
1

2
γi−1,j−1

− xi−1 + xj−1)
2

}
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By using smooth transformation and Taylor’s series expansions, we have

[xli,j+
1

2
γi,j
− (xi − xj)]

2 = [g(ξ21)− g(ξ22)]
2 = h2

1{g′(ξ22)}2 +O(h3),

and

[xli−1,j−1+
1

2
γi−1,j−1

− (xi−1 − xj−1)]
2 = [g(ξ31)− g(ξ32)]

2 = h2
1{g′(ξ32)}2 +O(h3).

Since

ξ22 − ξ32 = ln

(
xi − xj

xi−1 − xj−1

)
= ln(r) = h.

Now let us take

[xli,j+
1

2
γi,j
− (xi − xj)]

2 − [xli−1,j−1+
1

2
γi−1,j−1

− (xi−1 − xj−1)]
2

= h2
1[{g′(ξ22)}2 − {g′(ξ32)}2] +O(h3)

= h2
1[{g′(ξ32+h)}2 − {g′(ξ32)}2] +O(h3)

= h2
1[hg

′′(ξ32)g
′(ξ32) +O(h2)] +O(h3) = O(h3).

This implies that E5 = O(∆x2). Then by using Taylor’s series expansion, we can easily
take a second order approximation of E5. This gives us

E5 =
1

2

i−1∑

j=2

n(xj+1)∆xj
f(xi+1 − xj+1, xj+1)

∆xi +∆xi−1

×
{
(xli,j+

1

2
γi,j
− xi + xj)

2 − (xli−1,j−1+
1

2
γi−1,j−1

− xi−1 + xj−1)
2

}
+O(∆x3)

Now let us consider

E2 −E5 =
1

2

i−1∑

j=2

n(xj+1)∆xjf(xi+1 − xj+1, xj+1)

×
[

1

∆xi +∆xi+1

{
(xli+1,j+1+

1

2
γi+1,j+1

− xi+1 + xj+1)
2 − (xli,j+

1

2
γi,j
− xi + xj)

2

}

− 1

∆xi +∆xi−1

{
(xli,j+

1

2
γi,j
− xi + xj)

2 − (xli−1,j−1+
1

2
γi−1,j−1

− xi−1 + xj−1)
2

}]

+O(∆x3).

To prove that E2 − E5 = O(∆x3), we need to show that

(∆xi +∆xi−1)

{
(xli+1,j+1+

1

2
γi+1,j+1

− xi+1 + xj+1)
2 − (xli,j+

1

2
γi,j
− xi + xj)

2

}

−(∆xi +∆xi+1)

{
(xli,j+

1

2
γi,j
− xi + xj)

2 − (xli−1,j−1+
1

2
γi−1,j−1

− xi−1 + xj−1)
2

}

= O(∆x5). (5.50)
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By using smooth transformation and Taylor’s series expansions, we have

[xli+1,j+1+
1

2
γi+1,j+1

− (xi+1 − xj+1)]
2 = [g(ξ11)− g(ξ12)]

2

= h2
1{g′(ξ12)}2 + h3

1g
′(ξ12)g

′′(ξ12) +O(h4),

[xli,j+
1

2
γi,j
− (xi − xj)]

2 = [g(ξ21)− g(ξ22)]
2

= h2
1{g′(ξ22)}2 + h3

1g
′(ξ22)g

′′(ξ22) +O(h4),

and

[xli−1,j−1+
1

2
γi−1,j−1

− (xi−1 − xj−1)]
2 = [g(ξ31)− g(ξ32)]

2

= h2
1{g′(ξ32)}2 ++h3

1g
′(ξ32)g

′′(ξ32) +O(h4).

Since

ξ12 − ξ22 = ln

(
xi+1 − xj+1

xi − xj

)
= ln(r) = h

= ln

(
xi − xj

xi−1 − xj−1

)
= ξ22 − ξ32.

We substitute of all these values in the left hand side of (5.50) and use Taylor’s series
expansions to get

(∆xi +∆xi−1)

{
(xli+1,j+1+

1

2
γi+1,j+1

− xi+1 + xj+1)
2 − (xli,j+

1

2
γi,j
− xi + xj)

2

}

− (∆xi +∆xi+1)

{
(xli,j+

1

2
γi,j
− xi + xj)

2 − (xli−1,j−1+
1

2
γi−1,j−1

− xi−1 + xj−1)
2

}

=[hg′(ξi) +O(h2)]

×
[
h2
1{(g′(ξ12))2 − (g′(ξ22))

2}+ h3
1{g′(ξ12)g′′(ξ12)− g′(ξ22)g

′′(ξ22)}+O(h4)

]

− [hg′(ξi) +O(h2)]

×
[
h2
1{(g′(ξ22))2 − (g′(ξ32))

2}+ h3
1{g′(ξ22)g′′(ξ22)− g′(ξ32)g

′′(ξ32)}+O(h4)

]

=[hg′(ξi) +O(h2)]

×
[
2hh2

1g
′(ξ22)g

′′(ξ22) + h3
1

{
h{(g′′(ξ22))2 + g′(ξ22)g

′′′(ξ22)}
}
+O(h4)

]

− [hg′(ξi) +O(h2)]

×
[
2hh2

1g
′(ξ22)g

′′(ξ22) + h3
1

{
h{(g′′(ξ22))2 + g′(ξ22)g

′′′(ξ22)}
}
+O(h4)

]

=2h2h2
1g

′(ξ22)g
′′(ξ22)− 2h2h2

1g
′(ξ22)g

′′(ξ22) +O(h5) = O(h5).
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This shows that (5.50) holds. Therefore, we have

E2 − E5 = O(∆x3). (5.51)

Finally, by using the application of Taylor’s series expansion in E6 we consider

E3 −E6 =
1

4

i−1∑

j=2

∆xj
∂

∂x′
{n(xj+1)f(xi+1 − xj+1, xj+1)}

[
∆xj +∆xj+1

∆xi +∆xi+1
− ∆xj +∆xj−1

∆xi +∆xi−1

]
(xli,j+

1

2
γi,j
− xi + xj)

2.

To prove that E3 − E6 = O(∆x3), one has to show that

(∆xi +∆xi−1)(∆xj +∆xj+1)− (∆xi +∆xi+1)(∆xj +∆xj−1) = O(∆x3). (5.52)

By applying the smooth transformation and Taylor’s series expansion, we have

∆xj +∆xj−1 = 2hg′(ξj)− h2g′′(ξj) +O(h3),

and

∆xi +∆xi+1 = 2hg′(ξj) + h2g′′(ξj) +O(h3).

Furthermore, we obtain

(∆xi +∆xi−1)(∆xj +∆xj+1) = 4h2g′(ξi)g
′(ξj) +O(h3), (5.53)

and

(∆xi +∆xi+1)(∆xj +∆xj−1) = 4h2g′(ξi)g
′(ξj) +O(h3). (5.54)

Equations (5.53), (5.54) implies that (5.52) holds. Therefore, we have

E3 − E6 = O(∆x3). (5.55)

Finally, we substitute (5.49), (5.51) and (5.55) into (5.40) to obtain

E = O(∆x3).

Now let us consider E ′ from (5.31) and set fx(x, y) :=
∂
∂x
{K(x, y)n(t, x)}. Then we can

write

E ′ =− 1

12

i−1∑

j=1

Nj

li+1,j+
1

2
(γi+1,j−1)∑

k=li,j+
1

2
(1+γi,j)

∆xk
3

∆xi +∆xi+1
fx′(xk, xj)

+
1

12

i−2∑

j=1

Nj

li,j+
1

2
(γi,j−1)∑

k=li−1,j+
1

2
(1+γi−1,j )

∆xk
3

∆xi +∆xi−1
fx′(xk, xj).
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We replace j by j − 1 in the second term on the right hand side to get

E ′ =− 1

12

i−1∑

j=2

n(xj)∆xj

li+1,j+
1

2
(γi+1,j−1)∑

k=li,j+
1

2
(1+γi,j )

∆xk
3

∆xi +∆xi+1

fx′(xk, xj)

+
1

12

i−1∑

j=2

n(xj−1)∆xj−1

li,j−1+
1

2
(γi,j−1−1)∑

k=li−1,j−1+
1

2
(1+γi−1,j−1)

∆xk
3

∆xi +∆xi−1

fx′(xk, xj−1).

The application of Taylor’s series expansion about xj = xj−1 in n(xj)fx′(xk, xj) of the
first term on the right hand side gives

E ′ =− 1

12

i−1∑

j=2

n(xj−1)∆xj

li+1,j+
1

2
(γi+1,j−1)∑

k=li,j+
1

2
(1+γi,j )

∆xk
3

∆xi +∆xi+1

fx′(xk, xj−1)

+
1

12

i−1∑

j=2

n(xj−1)∆xj−1

li,j−1+
1

2
(γi,j−1−1)∑

k=li−1,j−1+
1

2
(1+γi−1,j−1)

∆xk
3

∆xi +∆xi−1

fx′(xk, xj−1) +O(∆x3).

This can be rewritten as

E ′ =
1

12

i−1∑

j=2

n(xj−1)(∆xj−1 −∆xj)

li+1,j+
1

2
(γi+1,j−1)∑

k=li,j+
1

2
(1+γi,j )

∆xk
3

∆xi +∆xi+1
fx′(xk, xj−1)

− 1

12

i−1∑

j=2

n(xj−1)∆xj−1

li+1,j+
1

2
(γi+1,j−1)∑

k=li,j+
1

2
(1+γi,j )

∆xk
3

∆xi +∆xi+1
fx′(xk, xj−1)

+
1

12

i−1∑

j=2

n(xj−1)∆xj−1

li,j−1+
1

2
(γi,j−1−1)∑

k=li−1,j−1+
1

2
(1+γi−1,j−1)

∆xk
3

∆xi +∆xi−1
fx′(xk, xj−1) +O(∆x3).

For smooth grids, it is easy to show that ∆j−1−∆xj = O(∆x2). Therefore, the first term
on the right hand side of the above equation is of third order. By using the Taylor series
expansion about xk = xj in fx′(xk, xj−1) in the remaining terms on right hand side, the
above equation can be further rewritten as

E ′ =
1

12

i−1∑

j=2

n(xj−1)∆xj−1

[ li,j−1+
1

2
(γi,j−1−1)∑

k=li−1,j−1+
1

2
(1+γi−1,j−1)

∆xk
3

∆xi +∆xi−1

−
li+1,j+

1

2
(γi+1,j−1)∑

k=li,j+
1

2
(1+γi,j)

∆xk
3

∆xi +∆xi+1

]
fx′(xj, xj−1) +O(∆x3).
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To prove E ′ = O(∆x3), we need to show that

li,j−1+
1

2
(γi,j−1−1)∑

k=li−1,j−1+
1

2
(1+γi−1,j−1)

∆xk
3

∆xi +∆xi−1

−
li+1,j+

1

2
(γi+1,j−1)∑

k=li,j+
1

2
(1+γi,j)

∆xk
3

∆xi +∆xi+1

= O(∆x3). (5.56)

For non-uniform smooth grids of the type (xi+1/2 = rxi−1/2, r > 1, i = 1, . . . , I, we have

xi+1 − xj = r(xi − xj−1) and xi+1 − xj ∈ Λli+1,j
, xi − xj−1 ∈ Λli,j−1

.

Therefore, we obtain

li+1,j = li,j−1 + 1.

Similarly, one can get

li,j = li−1,j−1 + 1.

In case of such smooth grids, it can easily be seen that γi−1,j−1 = γi,j and γi,j−1 = γi+1,j.
Let k1 := li−1,j−1 +

1
2
(1 + γi−1,j−1), k2 := li,j +

1
2
(1 + γi,j) = k1 + 1, . . . , kp := li,j−1 +

1
2
(γi,j−1 − 1) = kp−1 + 1, Kp+1 := li+1,j +

1
2
(γi+1,j − 1) = kp + 1. Then the left hand side

of (5.56) can be written as

li,j−1+
1

2
(γi,j−1−1)∑

k=li−1,j−1+
1

2
(1+γi−1,j−1)

∆xk
3

∆xi +∆xi−1
−

li+1,j+
1

2
(γi+1,j−1)∑

k=li,j+
1

2
(1+γi,j)

∆xk
3

∆xi +∆xi+1

=

[
∆xk1

3

∆xi +∆xi−1

− ∆xk2
3

∆xi +∆xi+1

]
+ . . .

+

[
∆xkp

3

∆xi +∆xi−1
− ∆xkp+1

3

∆xi +∆xi+1

]

=

p∑

m=1

[
∆xkm

3

∆xi +∆xi−1
− ∆xkm+1

3

∆xi +∆xi+1

]

where km+1 = km + 1. To show that (5.56) holds, one has to prove that

(∆xi +∆xi+1)∆x3
km − (∆xi +∆xi−1)∆x3

km+1
= O(∆x5). (5.57)

Let ξm1, ξm2, ξm3 are the corresponding points on the uniform mesh for xkm+3/2, xkm+1/2

and xkm−1/2, respectively. Since

ξm1 − ξm2 = ln

(
xkm+3/2

xkm+1/2

)
= ln(r) = h

= ln

(
xkm+1/2

xkm−1/2

)
= ξm2 − ξm3.
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Figure 5.3: Locally uniform smooth mesh.

Then by using smooth transformation and Taylor’s series expansion, we can write

(∆xi +∆xi+1)∆x3
km − (∆xi +∆xi−1)∆x3

km+1

= [2hg′(ξi) +O(h2)]× [g(ξm2)− g(ξm3)]
3 − [2hg′(ξi) +O(h2)]× [g(ξm1)− g(ξm2)]

3

= [2hg′(ξi) +O(h2)]× [hg′(ξm2) +O(h2)]3 − [2hg′(ξi) +O(h2)]× [hg′(ξm2) +O(h2)]3

= 2h4g′(ξi)[g
′(ξm2)]

3 − 2h4g′(ξi)[g
′(ξm2)]

3 +O(h5) = O(h5).

This implies that (5.57) holds. Therefore, we have

E ′ = O(∆x3).

This gives us

σi = O(h3).

Finally, analogous to the uniform mesh, the technique is second order consistent.

Locally uniform mesh

Figure 5.3 explains an example of a locally uniform mesh. First, the computational
domain is split into many finite sub-domains and each sub-domain is further split into an
equal size mesh. This yields us a locally uniform mesh. It is not easy to find the order of
consistency on locally uniform mesh from analysis. So we calculate it later numerically.
In this case, the scheme gives only first order consistency.

Oscillatory mesh

A mesh is known to be an oscillatory mesh, if for any r 6= 1 > 0, it is given as

∆xi+1 :=

{
r∆xi if i is odd,
1
r
∆xi if i is even.

Since there is no cancelation in the leading error terms of equations (5.37-5.39) as well as
E = O(∆x) and E ′ = O(∆x2) we have

σi(t) = O(∆x), i = 1, . . . , I, and ‖σ(t)‖ = O(1).
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Thus the fixed pivot method is unfortunately inconsistent on oscillatory meshes. This
type of mesh was not considered in J. Kumar and Warnecke [51] and [52] for breakage
problems. We have repeated such meshes on the local discretization error obtained in the
above mentioned papers. We observed that the fixed pivot method is inconsistent on such
meshes and the cell average technique is of first order only. These observations have been
also verified numerically.

Non-uniform random mesh

Finally the scheme is examined on non-uniform random grids. Similar to the case of
oscillatory mesh, we have ‖σ(t)‖ = O(1). Thus the method is again inconsistent on non-
uniform random meshes.

5.4 Lipschitz conditions on B̂(N(t)) and D̂(N(t))

Let us consider the birth term for 0 ≤ t ≤ T and for all N, N̂ ∈ R
I

‖B̂(N)− B̂(N̂)‖ =
I∑

i=1

|B̂i(N)− B̂i(N̂)|.

Using Kj,k ≤ C from (5.13) and 0 ≤ λ±
i (x) ≤ 1 from the definition in (5.11), we obtain

from (5.12)

‖B̂(N)− B̂(N̂)‖ ≤1
2
C

I∑

i=1

i∑

j=1

∑

xi≤xj+xk<xi+1

|NjNk − N̂jN̂k|

+
1

2
C

I∑

i=1

i−1∑

j=1

∑

xi−1≤xj+xk<xi

|NjNk − N̂jN̂k|

≤C
I∑

j=1

I∑

k=1

|NjNk − N̂jN̂k|.

Now we enjoy a useful equality NjNk−N̂jN̂k =
1
2
[(Nj+N̂j)(Nk−N̂k)+(Nj−N̂j)(Nk+N̂k)]

to get

‖B̂(N)− B̂(N̂)‖ ≤ 1

2
C

I∑

j=1

I∑

k=1

[
|(Nj + N̂j)||(Nk − N̂k)|+ |(Nj − N̂j)||(Nk + N̂k)|

]
.

(5.58)

It can be easily shown that the total number of particles decreases in a coagulation process,
i.e.

I∑

j=1

Nj ≤ N0
T := Total number of particles which are taken initially.
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The equation (5.58) can be rewritten as

‖B̂(N)− B̂(N̂)‖ ≤ N0
TC

[ I∑

k=1

|(Nk − N̂k)|+
I∑

j=1

|(Nj − N̂j)|
]

≤ 2N0
TC‖N− N̂‖. (5.59)

Now we consider the death term

‖D̂(N)− D̂(N̂)‖ =
I∑

i=1

|D̂i(N)− D̂i(N̂)|

≤
I∑

i=1

I∑

j=1

K(xi, xj)|NiNj − N̂iN̂j |

≤ C

I∑

i=1

I∑

j=1

|NiNj − N̂iN̂j |.

Again we use the same equality as before to get

‖D̂(N)− D̂(N̂)‖ ≤ 2N0
TC‖N− N̂‖. (5.60)

So we can apply Theorem 5.2.3 to check the positivity of the solution obtained by the
fixed pivot technique.

Proposition 5.4.1. The numerical solution by the fixed pivot technique is non-negative.

Proof. The Lipschitz condition on F̂(t, M̂) can be easily shown by using (5.59), (5.60)
and (5.8). The death term D̂i in (5.12) will become zero when M̂i = 0 and (5.8) gives
F̂i(t, M̂) ≥ 0. Thus, the Theorem 5.2.3 directly implies the non-negativity of the solution.

We need the following Gronwall Lemma to prove the Theorem 5.2.4. A slightly more
general result is given in Linz [63]. For completeness we give the short proof.

Lemma 5.4.2. If v(t) satisfies

|v(t)| ≤ k

∫ t

0

|v(τ)|dτ +

∫ t

0

|r(τ)|dτ, (5.61)

with k > 0,

max
0≤t≤T

|r(t)| ≤ R > 0,

then

|v(t)| ≤ R

k
[exp (kt)− 1]. (5.62)

108



5.4. LIPSCHITZ CONDITIONS ON B̂(N(T )) AND D̂(N(T ))

Proof. Let z(t) be the solution of

z(t) = k

∫ t

0

z(τ)dτ + tR.

Since z(t) is a positive and increasing function of t

z(t) ≥ k

∫ t

0

z(τ)dτ +

∫ t

0

|r(τ)|dτ,

and comparing this with (5.61) we have

z(t) ≥ |v(t)|.

But

z(t) =
R

k
[exp (kt)− 1].

and (5.62) follows.

Proof of Theorem 5.2.4

Using the equations (5.16) and (5.17) we have for ǫ(t) = N(t)− N̂(t)

d

dt
ǫ(t) = σ(t) + (B̂(N)− B̂(N̂))− (D̂(N)− D̂(N̂)).

We then take the norm on both sides to get

d

dt
‖ǫ(t)‖ ≤ ‖σ(t)‖+ ‖(B̂(N)− B̂(N̂))‖+ ‖(D̂(N)− D̂(N̂))‖.

Integrating with respect to t with ǫ(0) = 0 and using the Lipschitz conditions (5.59)-(5.60)
we obtain the estimates

‖ǫ(t)‖ ≤
∫ t

0

‖σ(τ)‖dτ + 2L

∫ t

0

‖ǫ(τ)‖dτ.

From this it follows by Gronwall’s Lemma 5.4.2 that

‖ǫ(t)‖ ≤ eh
2L

[exp (2Lt)− 1], (5.63)

where

eh = max
0≤t≤T

‖σ(t)‖.

If the scheme is consistent then lim
h→0

eh = 0. This completes the proof of the Theorem 5.2.4.

Remark 5.4.3. The proof of the Theorem 5.2.4 follows a related result by Linz [63].
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5.5 Numerical examples

We now justify our mathematical results on the convergence by taking a few numerical
examples where we numerically evaluate the experimental order of convergence (EOC).
The detailed comparisons of numerical results of number density and moments with an-
alytical solutions can be found in [54, 47].

Now we have to use a suitable ODE solver to solve the resulting set of ODEs. Integrating
the resultant system (5.12) by using a standard ODE routine, for example the ODE45,
ODE15S solvers in MATLAB, may lead to negative values for the number density at
large size classes. These negative values may lead in consequence to instabilities in the
overall computation. Therefore, one should take care of the positivity of the solution by
the numerical integration routine. The computation time t is set to as 0.3567 for all cases.

First, we consider the following normally distributed initial condition (NIC)

n(0, x) =
1

σ
√
2π

exp

[
−(x− µ)2

2σ2

]
. (5.64)

In addition, we take the following aggregation sum and product kernels

K(x, y) = k0(x+ y) and K(x, y) = k0xy. (5.65)

Since analytical solutions are not available for the above initial condition and aggregation
kernels, we use the following formula in order to calculate the experimental order of
convergence

EOC = ln

(
‖N̂h − N̂h/2‖
‖N̂h/2 − N̂h/4‖

)/
ln(2). (5.66)

Here N̂h represents the numerical solution on a uniform mesh of width h. The other
parameters are σ2 = 0.01, µ = 1 and k0 = 1. Now we will calculate the EOC on five
different types of uniform and non-uniform meshes.

Let us first calculate the EOC for uniform meshes. For a uniform mesh, we fix the mini-
mum and maximum values of x as 0 and 15, respectively in the numerical computation.
The numerical results are shown in Table 5.1. As expected from the mathematical anal-
ysis, the numerical results exhibit convergence of second order.
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(a) K(x, y) = k0(x+ y)

Grid Points Relative Error L1 EOC
60 - -
120 0.0598 -
240 0.0178 1.75
480 5.0E-3 1.82
960 1.3E-3 1.95

(b) K(x, y) = k0xy

Relative Error L1 EOC
- -
0.0306 -
8.4E-3 1.86
2.3E-3 1.89
6.0E-4 1.95

Table 5.1: Uniform grids (NIC)

Let us now consider the second case of non-uniform smooth meshes. As mentioned earlier,
these meshes can be obtained by applying some smooth transformation to uniform meshes.
In this case, we consider the exponential transformation as x = exp(ξ), where ξ is the
variable for which we have the uniform mesh. Such a mesh is also known as a geometric
mesh. The computational domain in this case is set as [1e − 6, 1000] which corresponds
to the ξ domain [ln(1e − 6), ln(1000)]. It is important to note that any small positive
real number can be chosen as the minimum value of x. The numerical results have been
summarized in Table 5.2. Once again the numerical results show that the fixed pivot
technique gives second order convergence on non-uniform smooth meshes.

(a) K(x, y) = k0(x+ y)

Grid Points Relative Error L1 EOC
60 - -
120 0.0456 -
240 0.0118 1.95
480 3.0E-3 1.97
960 7.6E-4 1.98

(b) K(x, y) = k0xy

Relative Error L1 EOC
- -
0.0374 -
9.6E-3 1.96
2.4E-3 2.00
6.0E-4 2.00

Table 5.2: Non-uniform smooth grids (NIC)

The third test case has been performed on a locally uniform mesh using the same compu-
tational domain as is in the previous case. In this case we started the computation on 30
geometric mesh points, and then each cell was divided into two equal parts in the further
refined levels of computation. In this way we obtained a locally uniform mesh. The EOC
has been summarized in Table 5.3. Table 5.3 clearly shows that the fixed pivot technique
is only first order accurate.
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(a) K(x, y) = k0(x+ y)

Grid Points Relative Error L1 EOC
60 - -
120 0.0416 -
240 0.0212 0.97
480 0.0105 1.01
960 5.1E-3 1.04

(b) K(x, y) = k0xy

Relative Error L1 EOC
- -
0.0254 -
0.0126 1.01
6.0E-3 1.07
2.8E-3 1.09

Table 5.3: Locally uniform grids (NIC)

Now we consider the fourth case of an oscillatory mesh to evaluate the EOC. Let us take
an example of oscillatory mesh, i.e.

∆xi+1 :=

{
2∆xi if i is odd,
1
2
∆xi if i is even.

Here the computational domain is same as for the first case. First, we divide the com-
putational domain in 30 equidistant mesh points, and then each cell into two parts with
1 : 2 as per further refined levels of computation. The numerical results has been shown in
Table 5.4. As expected, Table 5.4 exhibits that the fixed pivot technique is not convergent
on oscillatory meshes.

(a) K(x, y) = k0(x+ y)

Grid Points Relative Error L1 EOC
60 - -
120 0.0650 -
240 0.0632 0.04
480 0.0523 0.27
960 0.0518 0.01

(b) K(x, y) = k0xy

Relative Error L1 EOC
- -
0.0347 -
0.0309 0.16
0.0257 0.26
0.0253 0.01

Table 5.4: Oscillatory grids (NIC)

Finally we consider the fifth case of a non-uniform random mesh. The computations have
been performed on the same domain as is for the second case. We started again with the
30 geometric mesh points, and then each cell was divided into two parts of random width
in the further refined levels of computation. For each value of I = 60, 120, 240, 480, we
performed five runs on different random grids and the relative L1 errors were measured.
The mean of these errors over five runs is used to calculate the EOC. The numerical results
have been shown in Table 5.5. Table 5.5 shows clearly that the fixed pivot technique is
not convergent.
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(a) K(x, y) = k0(x+ y)

Grid Points Relative Error L1 EOC
60 - -
120 0.0229 -
240 0.0375 -0.71
480 0.0406 -0.11
960 0.0402 0.01

(b) K(x, y) = k0xy

Relative Error L1 EOC
- -
0.0112 -
9.4E-3 0.25
0.0135 -0.51
0.0129 0.06

Table 5.5: Non-uniform random grids (NIC)

Next, we take an exponentially decreasing initial condition (EIC), namely

n(0, x) = exp(−αx).

The sum and product aggregation kernels in (5.65) are again considered. Since the ana-
lytical solution is known for the above initial conditions and kernels and can be found in
[82, 2], then the experimental order of convergence can be determined by the formula

EOC = ln(EI/E2I)/ ln(2), (5.67)

where EI and E2I are the L1 error norms. The subscripts I and 2I correspond to the
degrees of freedom. We can calculate the error EI on a mesh with I cells. The relative
error has been calculated by dividing the error ‖N− N̂‖ by ‖N‖. The parameter α = 10
is taken in the above initial condition. In this case, we will again evaluate the EOC on
five different type of meshes as before.

In case of uniform mesh, we set the computational domain as [0,30] to evaluate the EOC
numerically. The numerical results are summarized in Table 5.6. Again, we obtain the
convergence of second order numerically.

(a) K(x, y) = k0(x+ y)

Grid Points Relative Error L1 EOC
60 0.0486 -
120 0.0135 1.84
240 3.5E-3 1.94
480 9.0E-4 1.96

(b) K(x, y) = k0xy

Relative Error L1 EOC
0.0274 -
7.2E-3 1.92
1.9E-3 1.92
4.8E-4 1.98

Table 5.6: Uniform grids (EIC)

Let us now evaluate the EOC on geometric grids which is a particular case of non-smooth
grids. The numerical computations have been performed on the same computational
domain as is for the case of geometric grids considered with the normal initial condition.
The numerical results are presented in Table 5.7 which shows once again the convergence
of second order.
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(a) K(x, y) = k0(x+ y)

Grid Points Relative Error L1 EOC

60 7.1E-3 -
120 1.8E-3 1.97
240 4.5E-4 2.00
480 1.1E-4 2.03

(b) K(x, y) = k0xy

Relative Error L1 EOC
6.3E-3 -
1.6E-3 1.98
4.0E-4 2.00
1.0E-4 2.00

Table 5.7: Non-uniform smooth grids (EIC)

In case of availability of analytical solutions, the EOC has been computed once more on
locally uniform, oscillatory and random meshes. The computational domain for locally
uniform and random meshes is identical as for the previous case. However, we perform
the computations on an oscillatory mesh using the same domain as is for the uniform
mesh. The numerical result are demonstrated in Tables 5.8, 5.9 and 5.10. These tables
show that we acquire the convergence of first order on locally uniform mesh while the
fixed pivot technique is zero order convergent on oscillatory and random meshes.

(a) K(x, y) = k0(x+ y)

Grid Points Relative Error L1 EOC
60 0.0303 -
120 0.0156 0.96
240 7.7E-3 1.02
480 3.8E-3 1.03

(b) K(x, y) = k0xy

Relative Error L1 EOC
0.0145 -
7.1E-3 1.04
3.3E-3 1.08
1.6E-3 1.06

Table 5.8: Locally uniform grids (EIC)

(a) K(x, y) = k0(x+ y)

Grid Points Relative Error L1 EOC
60 0.0554 -
120 0.0532 0.05
240 0.0539 -0.01
480 0.0524 0.04

(b) K(x, y) = k0xy

Relative Error L1 EOC
0.0295 -
0.0298 -0.01
0.0279 0.09
0.0256 0.12

Table 5.9: Oscillatory grids (EIC)
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(a) K(x, y) = k0(x+ y)

Grid Points Relative Error L1 EOC
60 0.0246 -
120 0.0292 -0.25
240 0.0319 -0.13
480 0.0380 -0.25

(b) K(x, y) = k0xy

Relative Error L1 EOC
0.0162 -
0.0204 -0.34
0.0222 -0.12
0.0232 -0.07

Table 5.10: Non-uniform random grids (EIC)
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Chapter 6

Convergence of the cell average
technique for coagulation equation

In this chapter, we investigate the numerical order of convergence of the cell average tech-
nique given by J. Kumar et al. [48] to solve the non-linear pure coagulation (aggregation)
equations. The convergence analysis of the scheme for these non-linear equations is still
an open problem. Here we evaluate the experimental order of convergence by perform-
ing several numerical simulations and compare the numerical results obtained with those
of the fixed pivot technique [38]. Similar to the previous chapter, which considered the
fixed pivot technique, the main emphasis here is to evaluate experimentally the order of
convergence for five different types of uniform and non-uniform meshes. The numerical
experiments show that the cell average technique is second order convergent on uniform,
non-uniform smooth and locally uniform meshes while the scheme is only first order ac-
curate on oscillatory and random meshes. In spite of this, the cell average technique gives
one order higher accuracy than the fixed pivot technique for locally uniform, oscillatory
and random meshes.

The plan of this chapter is as follows. A brief introduction is given in the following section.
The mathematical formulation of the cell average technique is reviewed in Section 6.2. In
Section 6.3, we compute the experimental order of convergence of the scheme by taking
few numerical examples and repeat the numerical results of the fixed pivot technique from
previous chapter for the comparison.

6.1 Introduction

The nonlinear continuous coagulation equation can be solved analytically for only a few
specific examples of kernels. These limitations urge us to develop new numerical tech-
niques and study their mathematical analysis. Among all numerical sectional methods
for solving these equations, the fixed pivot technique [54] is the most widely used method
[13, 47]. Recently J. Kumar et al. [48] have introduced the cell average technique which
preserves all advantages of the existing sectional methods. In Chapter 5, convergence
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analysis of the fixed pivot technique has been discussed for solving nonlinear pure coagu-
lation equation. It has been observed that the fixed pivot technique yields second order
convergence on uniform and non-uniform smooth meshes. Moreover, the scheme shows
first order convergence on a locally uniform mesh. Finally the scheme is analyzed on
oscillatory and random meshes, and it has been found out that unfortunately the fixed
pivot technique does not converge.

The purpose of this work is to compute the experimental order of convergence of the
cell average technique and to compare numerical results with the results of the fixed
pivot technique discussed in the previous chapter. A brief description of the sectional
methods will be directly taken from Chapter 5. In the case of uniform grids, it is easy
to show the convergence analysis of the scheme for aggregation problem since both of the
schemes have the same discretized formulation. In the following section, we will review
the mathematical formulation of the cell average scheme for aggregation problems.

6.2 The cell average technique

The truncated version of pure coagulation equation is given as

∂n(t, x)

∂t
=

1

2

∫ x

0

K(x− y, y)n(t, x− y)n(t, y)dy −
∫ xmax

0

K(x, y)n(t, x)n(t, y)dy, (6.1)

with initial condition

n(x, 0) = nin(x) ≥ 0, x ∈ Ω :=]0, xmax].

This technique approximates the total number of particles in finite number of cells. First
of all, the continuous interval Ω :=]0, xmax] is divided into a small number of cells defining
size classes

Λi :=]xi−1/2, xi+1/2], i = 1, . . . , I,

with
x1/2 = 0, xI+1/2 = xmax.

The representative of each size class, usually the center point of each cell xi = (xi−1/2 +
xi+1/2)/2, is called pivot or grid point. We introduce ∆xmin and ∆x to satisfy

∆xmin ≤ ∆xi = xi+1/2 − xi−1/2 ≤ ∆x.

For the purpose of analysis we assume quasi uniformity of the grids, i.e.

∆x

∆xmin
≤ C (6.2)

where C is a positive constant. The total number of particles in the ith cell is given as
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Ni(t) =

∫ xi+1/2

xi−1/2

n(t, x)dx.

Integrating the continuous equation (6.1) over the ith cell we obtain

dNi

dt
= Bi −Di, i = 1, . . . , I,

The total birth rate Bi and death rate Di are given as

Bi =
1

2

∫ xi+1/2

xi−1/2

∫ x

0

K(x− y, y)n(t, x− y)n(t, y)dydx. (6.3)

and

Di =

∫ xi+1/2

xi−1/2

∫ xI+1/2

0

K(x, y)n(t, y)n(t, x)dydx. (6.4)

The total discrete birth and death rates of particles are evaluated by substituting the
number density approximation

n(t, x) ≈
I∑

i=1

Ni(t)δ(x− xi)

into equations (6.12) and (6.13) as

B̂i =

j≥k∑

xi−1/2≤xj+xk<xi+1/2

(
1− 1

2
δj,k

)
K(xk, xj)NjNk, (6.5)

and

D̂i = Ni

I∑

j=1

K(xi, xj)Nj . (6.6)

Here B̂i and D̂i denote the discrete birth and death rates, respectively in the ith cell. The
total volume flux Vi into cell i as a result of aggregation is given by

Vi =
1

2

∫ xi+1/2

xi−1/2

∫ x

0

xK(x− y, y)n(t, x− y)n(t, y)dydx. (6.7)

Similarly to the discrete birth rate the discrete volume flux can be obtained as

V̂i =

j≥k∑

xi−1/2≤xj+xk<xi+1/2

(
1− 1

2
δj,k

)
K(xk, xj)NjNk(xj + xk). (6.8)
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Consequently, the average volume vi ∈ [xi−1/2, xi+1/2] of all new born particles in the ith
cell can be evaluated as

vi =
V̂i

B̂i

, B̂i > 0. (6.9)

We do not need volume average vi in case of B̂i = 0. However, for B̂i = 0 we can
set vi = xi. Here we consider that all new born particles in the ith cell are assigned
temporarily at the average volume v̂i. If the average volume v̂i is same as the pivot size
xi then the total birth B̂i of new born particles can be assigned to the pivot xi only.
But this is rarely possible and hence the total particle birth B̂i has to be assigned to
the neighboring pivots in such a way that the total number and mass remain conserved
during this reassignment. Finally, the resultant set of ODEs takes the following form

dN̂i

dt
= B̂CA

i − D̂CA
i . (6.10)

Let us consider the Heaviside function

H(x) :=





1 if x > 0,
1
2

if x = 0,

0 if x < 0.

and

λ±
i (x) =

x− xi±1

xi − xi±1
. (6.11)

Then the birth and death terms are given as

B̂CA
i =B̂i−1λ

−
i (vi−1)H(vi−1 − xi−1) + B̂iλ

+
i (vi)H(vi − xi)

+ B̂iλ
−
i (vi)H(xi − vi) + B̂i+1λ

+
i (vi+1)H(xi+1 − vi+1) (6.12)

and

D̂i = Ni

I∑

j=1

K(xi, xj)Nj . (6.13)

The first and the fourth terms on the right hand side of equation (6.12) can be set to zero
for i = 1 and i = I respectively. The numerical approximation of Ni(t) is defined by N̂i(t).
For the simplicity, we suppress the notation of parameter t for the rest of this chapter and
use Ni instead of Ni(t). The set of equations (6.10) is a discrete formulation for solving
a general aggregation problem. The form of coagulation kernel and type of grids can be
chosen arbitrarily. The set of equations (6.10) together with an initial condition can be
solved with any higher order ODE solver to obtain number of particles in a cell N̂i. An
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appropriate solver to solve these equations is recommended in Chapter 5. The detailed
formulation can be found in [48, 50].

By using (6.5) and (6.6) the cell average technique (6.10) can be written as

dN̂i

dt
= λ−

i (vi−1)H(vi−1 − xi−1)

j≥k∑

xi−3/2≤xj+xk<xi−1/2

(
1− 1

2
δj,k

)
K(xk, xj)NjNk

+[λ+
i (vi)H(vi − xi) + λ−

i (vi)H(xi − vi)]

×
j≥k∑

xi−1/2≤xj+xk<xi+1/2

(
1− 1

2
δj,k

)
K(xk, xj)NjNk

+λ+
i (vi+1)H(xi+1 − vi+1)

j≥k∑

xi+1/2≤xj+xk<xi+3/2

(
1− 1

2
δj,k

)
K(xk, xj)NjNk

−Ni

I∑

j=1

K(xi, xj)Nj . (6.14)

6.3 Order of convergence

In this section we take a few numerical examples where we evaluate the experimental
order of convergence (EOC) on five different types of meshes. Here we consider the same
test cases as are in Chapter 5. Some of numerical results of convergence from previous
chapter are restated to see the difference between the two techniques. All computational
details of the test cases can be found in Chapter 5. Here we discuss only numerical results
for the test cases presented in the preceding chapter.

First, we consider the test case of a uniform mesh. The numerical results are presented in
Tables 6.1 and 6.2. Both of the techniques show the convergence of second order. In case
of uniform mesh, the cell average and the fixed pivot techniques are same for aggregation
problems. Suppose analytical solutions are not available in this case. We can see from
Tables 6.1 and 6.2 that the relative errors for both the schemes in numerical results are
alike.
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(a) Fixed pivot technique

Grid Points Relative Error L1 EOC
60 - -
120 0.0598 -
240 0.0178 1.75
480 5.0E-3 1.82
960 1.3E-3 1.95

(b) cell average technique

Relative Error L1 EOC
- -
0.0598 -
0.0178 1.75
5.0E-3 1.82
1.3E-3 1.95

Table 6.1: Uniform grids and K(x, y) = k0(x+ y)

(a) Fixed pivot technique

Grid Points Relative Error L1 EOC
60 - -
120 0.0306 -
240 8.4E-3 1.86
480 2.3E-3 1.89
960 6.0E-4 1.95

(b) cell average technique

Relative Error L1 EOC
- -
0.0306 -
8.4E-3 1.86
2.3E-3 1.89
6.0E-4 1.95

Table 6.2: Uniform grids and K(x, y) = k0xy

Now we consider the second test case of non-uniform smooth meshes. Suppose the an-
alytical solution is available in this case. The numerical results for the EOC have been
summarized in Tables 6.3 and 6.4. Again, both the techniques clearly converge to second
order.

(a) Fixed pivot technique

Grid Points Relative Error L1 EOC
60 6.4E-3 -
120 1.6E-3 1.98
240 4.0E-4 1.98
480 1.0E-4 1.99

(b) cell average technique

Relative Error L1 EOC
6.1E-3 -
1.7E-3 1.86
5.0E-4 1.88
1.0E-4 1.87

Table 6.3: Non-uniform smooth grids and K(x, y) = k0(x+ y)

Let us now consider the third case of a locally uniform mesh. Here we study the same
problem as is in previous case. The EOC for both the techniques has been shown in
Tables 6.5 and 6.6. Once again the tables clearly show that the cell average technique is
of second order while the fixed pivot technique is only first order accurate.
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(a) Fixed pivot technique

Grid Points Relative Error L1 EOC
60 6.3E-3 -
120 1.6E-3 1.98
240 4.0E-4 2.00
480 1.0E-4 2.00

(b) cell average technique

Relative Error L1 EOC
5.7E-3 -
1.5E-3 1.93
3.9E-4 1.94
1.0E-4 1.96

Table 6.4: Non-uniform smooth grids and K(x, y) = k0xy

(a) Fixed pivot technique

Grid Points Relative Error L1 EOC
60 0.0303 -
120 0.0156 0.96
240 7.7E-3 1.02
480 3.8E-3 1.03

(b) cell average technique

Relative Error L1 EOC
0.025 -
8.8E-3 1.51
2.1E-3 2.08
5.0E-4 2.15

Table 6.5: Locally uniform grids and K(x, y) = k0(x+ y)

(a) Fixed pivot technique

Grid Points Relative Error L1 EOC
60 0.0145 -
120 7.1E-3 1.04
240 3.3E-3 1.08
480 1.6E-3 1.06

(b) cell average technique

Relative Error L1 EOC
0.0122 -
3.6E-3 1.75
9.0E-4 2.01
2.0E-4 2.17

Table 6.6: Locally uniform grids and K(x, y) = k0xy

The fourth case has been performed on an oscillatory mesh. In this case, we deal with the
same problem as is in first case. The numerical results have been summarized in Tables
6.7 and 6.8. Tables show that the cell average technique is first order convergent while
the fixed pivot technique is not convergent.

(a) Fixed pivot technique

Grid Points Relative Error L1 EOC
60 - -
120 0.0650 -
240 0.0632 0.04
480 0.0523 0.27
960 0.0518 0.01

(b) cell average technique

Relative Error L1 EOC
- -
0.0575 -
0.0273 1.07
0.0131 1.06
6.2E-3 1.07

Table 6.7: Oscillatory grids and K(x, y) = k0(x+ y)
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(a) Fixed pivot technique

Grid Points Relative Error L1 EOC
60 - -
120 0.0347 -
240 0.0309 0.16
480 0.0257 0.26
960 0.0253 0.01

(b) cell average technique

Relative Error L1 EOC
- -
0.0247 -
0.0105 1.22
4.8E-3 1.15
2.2E-3 1.13

Table 6.8: Oscillatory grids and K(x, y) = k0xy

At the end, we study the fifth case of random grids and take the same problem as are
in second and third cases. The numerical results of convergence have been given in Ta-
bles 6.9 and 6.10. Once more, we obtain the first order of convergence as is in case of
oscillatory grids. However, the fixed pivot technique is not convergent on oscillatory and
random meshes.

(a) Fixed pivot technique

Grid Points Relative Error L1 EOC
60 0.0246 -
120 0.0292 -0.25
240 0.0319 -0.13
480 0.0380 -0.25

(b) cell average technique

Relative Error L1 EOC
0.0127 -
8.3E-3 0.61
4.2E-3 0.99
2.6E-3 0.70

Table 6.9: Non-uniform random grids and K(x, y) = k0(x+ y)

(a) Fixed pivot technique

Grid Points Relative Error L1 EOC
60 0.0162 -
120 0.0204 -0.34
240 0.0222 -0.12
480 0.0232 -0.07

(b) cell average technique

Relative Error L1 EOC
0.0151 -
6.0E-3 1.33
3.4E-3 0.82
2.0E-3 0.75

Table 6.10: Non-uniform random grids and K(x, y) = k0xy
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Chapter 7

Conclusions

In this thesis, we studied the following different issues for the continuous coagulation-
fragmentation equations. Let us try to make some conclusions to each of the issue.

First, the existence of weak solutions to the continuous coagulation equation with multi-
ple fragmentation is discussed for a large class of kernels. In particular, we extracted a
weakly convergent subsequence in L1 from a sequence of unique solutions for truncated
problems by using the Dunford-Pettis-Theorem. Then it was proved that the limit func-
tion obtained from weakly convergent subsequence was actually a solution of the original
continuous coagulation and multiple fragmentation equation. The uniqueness of the weak
solutions was also established under more stringent assumptions on the coagulation and
fragmentation kernels.

Second, the uniqueness of mass conserving solutions to the continuous coagulation and
binary fragmentation equation was demonstrated with some additional restrictions on the
fragmentation kernels. Here the existence of at least one mass conserving solution was
due to Escobedo et al. [27] for a large class of coagulation kernels with strong binary frag-
mentation. More precisely, we first investigated the integrability of higher moments of the
number density distribution. Then the mass conservation and application of Gronwall’s
lemma helped us to get the uniqueness of mass conserving solutions.

Third, we established a new existence result for the continuous coagulation and multiple
fragmentation equation. The result was more general than the existence result published
in Giri et al. [40]. This includes some interesting multiple fragmentation kernels which
were not covered by the previous result. The existence of solutions is proven under much
less restrictive conditions on the fragmentation kernels. However, the conditions on the
coagulation kernels were same as before.

Next, a detailed study on the convergence analysis of the fixed pivot technique was given
for solving pure coagulation equation. To show the convergence of the scheme, we studied
that the scheme was consistent. The birth and death terms satisfied a Lipschitz condition.
It was ascertained that the order of convergence depends on the type of the meshes chosen

125



CHAPTER 7. CONCLUSIONS

for the computation. The technique was second order convergent on uniform and non-
uniform smooth meshes. However, it was only first order convergent on locally uniform
meshes numerically. At last, the scheme was examined closely on oscillatory and non-
uniform random meshes and it was observed that the technique was not convergent.
Furthermore, all observations were also validated numerically. But the case of locally
uniform mesh was not discussed mathematically.

Finally, we evaluated the order of convergence of the cell average technique for the pure
coagulation equation by taking a few numerical examples. All numerical examples were
taken from Chapter 5. The numerical results were compared with those for the case
of the fixed pivot technique. It was noticed that the cell average technique was second
order convergent on uniform, non-uniform smooth and locally uniform meshes. How-
ever, it gave only a first order convergence on oscillatory and random meshes. It should
be pointed out that the fixed pivot technique was only first order convergent on locally
uniform mesh and zero order convergent on oscillatory and random meshes. Therefore,
the cell average technique enhanced the results of the convergence on non-uniform meshes.

Next, we would also like to propose some open questions for the future developments
which are as follows.

• It would be interesting to know how one can enlarge the classes of kernels considered
in Chapter 3 for the uniqueness of solutions to the continuous coagulation and
multiple fragmentation equation.

• It is not easy to extend the classes of kernels where we proved the existence of
solutions for coagulation equation with multiple fragmentation. According to our
knowledge, the present approach is not sufficient for the extension. We think that,
to extend the classes of coagulation kernels in such a way that the case of singular
coagulation kernels can be covered, one has to restrict the initial data. This gives
us more restrictions on the space.

• The existence of equilibrium solutions and asymptotic properties for time-dependent
solutions for the continuous coagulation and binary fragmentation equation are dis-
cussed in [22, 92]. Asymptotic behaviour of solutions to the discrete coagulation-
fragmentation equation is also examined in [10, 11]. These issues should also be
covered for the continuous coagulation equation with multiple fragmentation.

• To show the existence and uniqueness for two-dimensional coagulation-fragmentation
equations in both the discrete and the continuous case.

• The possible occurrence of instantaneous gelation in discrete coagulation equation
is discussed in [12, 96]. This should also be demonstrated for the continuous coag-
ulation equation.
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• Here we did not discuss the mathematical convergence analysis of the cell average
technique for solving pure coagulation equation. However, the scheme enhances the
numerical order of convergence on locally uniform, oscillatory and random meshes.
It would be fascinating to explain how we can obtain the same orders of convergence
by means of mathematical analysis.
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Appendix A

Inequalities

To compare the classes of kernels in the study of continuous coagulation-fragmentation
equation, we need the following inequalities.

Proposition A.0.1. For any x, y > 0, the following inequalities hold

2p−1(xp + yp) ≤ (x+ y)p ≤ xp + yp if 0 ≤ p ≤ 1, (A.1)

2p−1(xp + yp) ≥ (x+ y)p ≥ xp + yp if p ≥ 1, (A.2)

and

2p−1(xp + yp) ≥ (x+ y)p if p < 0. (A.3)

Proof. For a given x > 0, we set

f(y) = (x+ y)p − (xp + yp).

We can see that f(0) = 0. By taking the derivative with respect to y, we obtain

f ′(y) = p[(x+ y)p−1 − yp−1].

This implies that f ′(y) ≤ 0 if p ≤ 1 and f ′(y) ≥ 0 if p ≥ 1 i.e. f(y) is monotonically
decreasing if p ≤ 1 and monotonically increasing if p ≥ 1. Thus, we have

(x+ y)p ≤ xp + yp if 0 ≤ p ≤ 1, and (x+ y)p ≥ xp + yp if p ≥ 1.

For p = 1, the first inequality of (A.2) is obvious. Assume p > 1 for that case. For a given
x > 0, we set

g(y) = 2p−1(xp + yp)− (x+ y)p.

Now taking the derivative with respect to y, we obtain

g′(y) = p[(2y)p−1 − (x+ y)p−1].
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To determine the critical point, we take

g′(y) = p[(2y)p−1 − (x+ y)p−1] = 0

which gives us y = x as the only critical point. Again taking the derivative with respect
to y, we get

g′′(y) = p(p− 1)[2p−1yp−2 − (x+ y)p−2].

So, we obtain

[g′′(y)]y=x = p(p− 1)2p−2xp−2 > 0 if p > 1 and p < 0

< 0 if 0 < p < 1.

Therefore we have a minimum at y = x if p > 1 and p < 0. For 0 < p < 1 we have a
maximum at y = x. Now we find

g(x) = 2p−1(2xp)− (2x)p = 0.

Thus, we have

g(y) ≥ 0 if p > 1 and p < 0

i.e.

2p−1(xp + yp) ≥ (x+ y)p if p ≥ 1 and p < 0

holds in (A.2) and (A.3). For the first inequality of (A.1) we see that

g(y) ≤ 0 if 0 < p < 1

giving

2p−1(xp + yp) ≤ (x+ y)p if 0 ≤ p ≤ 1.

Proposition A.0.2. For any x, y > 0, the following inequalities hold

xpyp ≤ xp + yp if 0 < x ≤ 1 or 0 < y ≤ 1 for any p ≥ 0, (A.4)

2xpyp ≥ xp + yp if x, y ≥ 1 and p ≥ 0, (A.5)

2xpyp ≤ xp + yp if x, y ≥ 1 and p < 0, (A.6)

2(1 + x)p(1 + y)p ≥ (1 + x)p + (1 + y)p if x, y > 0 and p ≥ 0, (A.7)

and

2(1 + x)p(1 + y)p ≤ (1 + x)p + (1 + y)p if x, y > 0 and p < 0. (A.8)
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Proof. For a given x > 0, we set

f(y) = xpyp − (xp + yp).

We can see that f(0) = −xp and f(1) = −1. Now taking the derivative with respect to
y, we obtain

f ′(y) = pyp−1[xp − 1].

This implies that f ′(y) ≤ 0 for p ≥ 0 if x ≤ 1. Thus, f(y) is monotonically decreasing for
p ≥ 0 if x ≤ 1. Therefore, the proof of (A.4) is complete. For the inequalities (A.5) and
(A.6), we have

2xpyp = xpyp + xpyp ≥ xp + yp if x, y ≥ 1 and p ≥ 0,

≤ xp + yp if x, y ≥ 1 and p < 0.

But the inequalities (A.7) and (A.8) can be directly obtained by (A.5) and (A.6) respec-
tively.

Proposition A.0.3. For any x, y > 0 and any α, β, p ∈ R, the following inequalities
hold

(1 + x)α(1 + y)β + (1 + x)β(1 + y)α ≤ 2(1 + x)p(1 + y)p where p ≥ max{α, β},

(1 + x)α(1 + y)β + (1 + x)β(1 + y)α ≥ 2(1 + x)p(1 + y)p where p ≤ min{α, β}.
Proposition A.0.4. For any x, y > 0, the following results are true

(1 + x+ y)p ≤ (1 + x)p + (1 + y)p ≤ 2(1 + x)p(1 + y)p if 0 < p ≤ 1, (A.9)

(1 + x+ y)p ≤ 2p−1[(1 + x)p + (1 + y)p] ≤ 2p(1 + x)p(1 + y)p if p ≥ 1, (A.10)

2(1 + x+ y)p ≤ (1 + x)p + (1 + y)p if p < 0, (A.11)

(1 + x)p + (1 + y)p ≤ 2p(1 + x+ y)p if p ≥ 1. (A.12)

Proof. The inequalities in (A.9) and (A.10) can be easily proved by using the second
inequality of (A.1) and the first inequality of (A.2) respectively with (A.7). For (A.11),
we find that

(1 + x)p + (1 + y)p

(1 + x+ y)p
=

(1 + x)p

(1 + x+ y)p
+

(1 + y)p

(1 + x+ y)p
≥ 1 + 1 = 2 if p < 0.

Finally for (A.12), we have

(1 + x+ y)p =
1

2p
(2 + 2x+ 2y)p ≥ 1

2p
(2 + x+ y)p ≥ 1

2p
[(1 + x)p + (1 + y)p] if p ≥ 1.
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Proposition A.0.5. For any x, y > 0, take α, β ∈ R with α · β ≥ 0 and set λ = α + β.
Then we obtain the estimates

xαyβ + xβyα ≤ xλ + yλ, (A.13)

and

(1 + x)α(1 + y)β + (1 + x)β(1 + y)α ≤ (1 + x)λ + (1 + y)λ. (A.14)

Proof. For α = 0 or β = 0 both inequalities (A.13) and (A.14) hold. Assume that α·β > 0.
We know that Young’s inequality holds, i.e.

ab ≤ ap

p
+

bq

q
where

1

p
+

1

q
= 1 with p, q ∈]1,∞[ and a, b ≥ 0.

Substituting a = xα and b = yβ in the above inequality, we find that

xαyβ ≤ xαp

p
+

yβq

q
.

Choose p = α+β
α

and q = α+β
β

then 1
p
+ 1

q
= 1. This implies for λ = α + β

xαyβ ≤ α

λ
xλ +

β

λ
yλ. (A.15)

Interchanging x and y in (A.15), we obtain

yαxβ ≤ α

λ
yλ +

β

λ
xλ. (A.16)

By adding (A.15) and (A.16), we obtain

xαyβ + xβyα ≤ xλ + yλ.

The above inequality gives us

(1 + x)α(1 + y)β + (1 + x)β(1 + y)α ≤ (1 + x)λ + (1 + y)λ.

Proposition A.0.6. For any λ ∈ [0, 1[, x > 0 and y′ ∈]0, x[, there exists a constant
kλ(y

′) > 0 such that

yλ + (x− y)λ − xλ ≥ kλ(y
′)yλ for any y ∈]0, y′[.

Note that kλ(y
′)→ 0 for y′ → x.
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Proof. Let us suppose that

f(y) = y−λ[xλ − (x− y)λ].

Then

f ′(y) = −λy−(λ+1)x[xλ−1 − (x− y)λ−1].

This implies that

f ′(y) ≥ 0 for any 0 < y < x.

Now choose c ∈]0, 1[ such that y ≤ cx = y′, then

f(y) ≤ f(cx)

i.e.

y−λ[xλ − (x− y)λ] = f(y) ≤ f(cx) = c−λx−λ[xλ − (x− cx)λ]

= c−λ[1− (1− c)λ].

Multiplying by yλ on both side, we get

xλ − (x− y)λ ≤ c−λ[1− (1− c)λ]yλ + yλ − yλ.

We set kλ(y
′) = 1− c−λ[1− (1− c)λ] and obtain

yλ + (x− y)λ − xλ ≥ kλ(y
′)yλ.

The limit y′ → x corresponds to c → 1. By using the second inequality of (A.1), it can
be easily shown that kλ(y

′) > 0.
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Appendix B

Kernels and their classes

This chapter is divided into four different sections. A list of a few specific coagulation
kernels from the literature is given in Section B.1. Sections B.2 and B.3 contain the
classes of coagulation kernels that were considered in conjuction with respectively binary
and multiple fragmentation by various authors. In Section B.4, we make an overview
of various classes of coagulation kernels and their relations to each other. Finally, some
bounds on non-singular coagulation kernels from Subsection B.1.1 are given in Section
B.5.

B.1 Coagulation kernels

In this section, we provide a list of coagulation kernels which are of substantial interest
in many areas of application. Let us divide them into the following two types.

B.1.1 Nonsingular coagulation kernels

In the following kernels k > 0 is a suitable constant.

Smoluchowski (1917) [87]: Shear kernel (linear velocity profile), see also [2, 86, 64]

K(x, y) = k(x1/3 + y1/3)3. (B.1)

Schumann (1940) [81]: Gravitational kernel, see also [2, 86]

K(x, y) = k(x1/3 + y1/3)2|x2/3 − y2/3|. (B.2)

Stockmayer (1943) [93]: Polymerisation kernel, see also [2, 86]

K(x, y) = k(x+ c)(y + c). (B.3)

Shiloh et al. (1973) [84]: Shear kernel (non-linear velocity profile), see also [2, 86]

K(x, y) = k(x1/3 + y1/3)7/3. (B.4)
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Ding et al. (2006) [16]: Activated sludge flocculation

K(x, y) = k
(x1/3 + y1/3)q

1 +

(
x1/3+y1/3

2y
1/3
c

)3 where 0 ≤ q < 3. (B.5)

Here q is the order of the kernel.

Koch et al. (2007) [46]: Modified Smoluchowski kernel

K(x, y) = k
(x1/3 + y1/3)2

x1/3 · y1/3 + c
. (B.6)

B.1.2 Singular at the origin or on the axes

Smoluchowski (1917) [87]: Brownian diffusion kernel, see also [2, 86]

K(x, y) = k(x1/3 + y1/3)(x−1/3 + y−1/3)

= k
(x1/3 + y1/3)2

x1/3 · y1/3 . (B.7)

Kapur (1972) [45]: Granulation kernel

K(x, y) = k
(x+ y)a

(x · y)b . (B.8)

Sastry (1975) [80]: Non-random coalescence kernel

K(x, y) = k(x2/3 + y2/3)

(
1

x
+

1

y

)
. (B.9)

Hounslow (1998) [43]: Equi-partition of kinetic energy (EKE) kernel (Granulation), see
also [95]

K(x, y) = k(x1/3 + y1/3)2
√

1

x
+

1

y
. (B.10)

Peglow (2005) [73]: A granulation kernel

K(x, y) = k
(x+ y)0.7105

(x · y)0.0621 . (B.11)
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BINARY FRAGMENTATION KERNELS

B.2 Classes of coagulation kernels considered in con-

junction with binary fragmentation kernels

This section presents a few classes of coagulation kernels which were used to prove the
existence of solutions for the continuous coagulation and binary fragmentation equation.
A coagulation kernel belongs to such a class if there exists a suitable constant k such that
an estimate of the type defining the class holds for all x, y ≥ 0. The following classes
were considered in the literature:

Stewart (1990) [89]

K(x, y) ≤ k[(1 + x)α + (1 + y)α] for some 0 ≤ α < 1 and positive constant k.
(B.12)

Dubovskǐi (1996) [21]

K(x, y) ≤ k(1 + x+ y), k > 0. (B.13)

Dubovskǐi (2001) [19]

K(x, y) ≤ k(1 + x)(1 + y), k > 0. (B.14)

Laurençot (2002) [60]

K(x, y) ≤ k(1 + x)(1 + y), k > 0 (B.15)

with the following growth condition. For each R ∈ R>0, there holds

lim
y→∞

sup
x∈]0,R[

K(x, y)

y
= 0.

Escobedo et al. (2003) [27]

K(x, y) ≤ k(1 + x+ y)λ, with λ ∈ [0, 2] and k > 0,

and

K(x, y) ≤ k[(1 + x)α(1 + y)β + (1 + x)β(1 + y)α], with 0 ≤ α ≤ β ≤ 1 and k > 0.
(B.16)
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B.3 Classes of coagulation kernels considered in con-

junction with multiple fragmentation kernels

In this section, we provide a few classes of coagulation kernels which were considered in
the literature to show the existence of solutions to the continuous coagulation and mul-
tiple fragmentation equation. A coagulation kernel belongs to such a class if there exists
a suitable constant k such that an estimate of the type defining the class holds for all x,
y ≥ 0. These classes are as follows:

McLaughlin et al. (1997) [66]

K(x, y) is constant. (B.17)

Melzak(1957) [70] and Lamb (2004) [56]

K(x, y) is bounded. (B.18)

Laurençot (2000) [57]

K(x, y) = r(x)r(y) + α(x, y), (B.19)

where r and α are non-negative functions satisfying




r ∈ C(R≥0;R≥0), α ∈ C(R2
≥0;R≥0),

0 ≤ α(x, y) = α(y, x) ≤ Ar(x)r(y), (x, y) ∈ [1,∞[2,

for some positive real number A.

Escobedo et al. (2005) [29]

K(x, y) = xαyβ + xβyα, with − 1 ≤ α ≤ 0 ≤ β ≤ 1. (B.20)

Giri et al. (2010) [40]

K(x, y) ≤ k(1 + x)α(1 + y)α, for some 0 ≤ α < 1 and k > 0. (B.21)

B.4 Summary of classes

For any x, y > 0, and p, α, β ∈ R and for some arbitrary constants k > 0 we consider the
following classes using various growth functions w(x, y).

A : w(x, y) = k(xp + yp), B : w(x, y) = k(x+ y)p,

C : w(x, y) = kxpyp, D : w(x, y) = k[(1 + x)p + (1 + y)p],

E : w(x, y) = k(1 + x)p(1 + y)p, F : w(x, y) = k[(1 + x)α(1 + y)β + (1 + x)β(1 + y)α],

G : w(x, y) = k(1 + x+ y)p, H : w(x, y) = k[xαyβ + xβyα].
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The constant k must be finite but may be arbitrarly large. A coagulation kernel K(x, y)
belongs to a class A, . . . , H if it is estimated by the growth function defining the class as
follows

K(x, y) ≤ w(x, y) for all x, y ≥ 0.

Now we will compare these classes by drawing the following pictures where X −→ Y or
X←→ Y imply that X is contained in Y or both are equivalent, respectively.

Case I p ≥ 0
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Case II p < 0

140



B.5. BOUNDS ON NON-SINGULAR KERNELS

B.5 Bounds on non-singular kernels

This section shows the bounds for class E on the non-singular coagulation kernels which
were listed in Subsection B.1.1. These bounds are obtained as follows by using (A.7) from
Proposition A.0.2. We distinguish the case p ≥ 1 and α ∈ [0, 1[.

(B.1) Shear kernel (linear velocity profile)

K(x, y) = k(x1/3 + y1/3)3

≤ k[(1 + x)1/3 + (1 + y)1/3]3 ≤ 23k(1 + x)(1 + y)

≤ k1(1 + x)p(1 + y)p for p = 1.

This kernel lies in the class (B.14) considered by Dubovskii (2001).

(B.2) Gravitational kernel

K(x, y) = k(x1/3 + y1/3)2|x2/3 − y2/3|
≤ k[(1 + x)1/3 + (1 + y)1/3]2[(1 + x)2/3 + (1 + y)2/3]

≤ 22k(1 + x)2/3(1 + y)2/3 · 2(1 + x)2/3(1 + y)2/3 ≤ k1(1 + x)4/3(1 + y)4/3

≤ k1(1 + x)p(1 + y)p where p =
4

3
.

This kernel lies in the class E for p = 4
3
.

(B.4) Shear kernel (non-linear velocity profile)

K(x, y) = k(x1/3 + y1/3)7/3

≤ k[(1 + x)1/3 + (1 + y)1/3]7/3 ≤ 27/3k(1 + x)7/9(1 + y)7/9

≤ k1(1 + x)α(1 + y)α where α =
7

9
∈ [0, 1[.

This kernel lies in the class (B.21) considered by Giri et al. (2010).

(B.5) Ding et al. (activated sludge flocculation)

K(x, y) = k
(x1/3 + y1/3)q

1 +

(
x1/3+y1/3

2y
1/3
c

)3 where 0 ≤ q < 3

≤ k(x1/3 + y1/3)q

≤ k[(1 + x)1/3 + (1 + y)1/3]q ≤ 2qk(1 + x)q/3(1 + y)q/3

≤ k1(1 + x)α(1 + y)α where α =
q

3
∈ [0, 1[.
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This kernel lies in the class (B.21) considered by Giri et al. (2010).

(B.6) Modified Smoluchowski kernel

K(x, y) = k
(x1/3 + y1/3)2

x1/3 · y1/3 + c
where c > 0

≤ k

c
(x1/3 + y1/3)2

≤ k

c
[(1 + x)1/3 + (1 + y)1/3]2 ≤ 22

k

c
(1 + x)2/3(1 + y)2/3

≤ k1(1 + x)α(1 + y)α where α =
2

3
∈ [0, 1[.

This kernel lies in the class (B.21) considered by Giri et al. (2010).
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[92] I.W. Stewart and P.B. Dubovskǐi. Approach to equilibrium for the coagulation-
fragmentation equation via a Lyapunov functional. Math. Meth. Appl. Sci., 19:171–
185, 1996.

[93] W.H. Stockmayer. Theory of molecular size distribution and gel formation in
branched-chain polymers. J. Chem. Phys., 11:45–55, 1943.

[94] J. Su, Z. Gu, Y. Li, S. Feng, and X.Y. Xu. Solution of population balance equation
using quadrature method of moments with an adjustable factor. Chem. Eng. Sci.,
62:5897–5911, 2007.

[95] H.S. Tan, M.J.V. Goldschmidt, R. Boerefijn, M.J. Hounslow, A.D. Salman, and
J.A.M. Kuipers. Building population balance model for fluidized bed melt granula-
tion: lessons from kinetic theory of granular flow. Powder Technology, 142:103–109,
2004.

[96] P.G.J. van Dongen. On the possible occurance of instantaneous gelation in Smolu-
chowski’s coagulation equation. J. Phys. A: Math. Gen., 20:1889–1904, 1987.

[97] M. Vanni. Approximate population balance equations for aggregation-breakage pro-
cesses. J. Colloid Interface Sci., 221:143–160, 2002.

149



BIBLIOGRAPHY

[98] C. Walker. Coalescence and breakage processes. Math. Meth. Appl. Sci., 25:729–748,
2002.

[99] W. Walter. Ordinary differential equations. Springer-Verlag New York, USA, 1st
edition, 1998.

[100] S.Q. Xiao and P. Haasen. On the coagulation-fragmentation equation. Acta Metall.
Mater., 39:651, 1991.

[101] R.M. Ziff. Kinetics of polymerization. J. Statist. Phys., 23:241–263, 1980.

[102] R.M. Ziff. New solution to the fragmentation equation. Journal of Physics A:
Mathematical and General, 24:2821–2828, 1991.

[103] R.M. Ziff and E.D. McGrady. The kinetics of cluster fragmentation and depolymer-
ization. J. Phys. A: Math. Gen., 18:3027–3037, 1985.

150



CURRICULUM VITAE

Curriculum Vitae

Personal Information

Name Ankik Kumar Giri

Date of birth 12.06.1982
Place of birth Roorkee, India

Education and Employment

1987 - 1999 Schooling, Meerut and Roorkee, India

1999 - 2002 Bachelor of Science (B.Sc.) in Mathematics, K.L.D.A.V. College,
Roorkee, C.C.S. University, Meerut, India

2003 - 2005 Master of Science (M.Sc.) in Applied Mathematics,
Indian Institute of Technology (IIT) Roorkee, India

2005 - 2006 Lecturer (P.G.) in Department of Mathematics, K.L.D.A.V. College,
Roorkee, H.N.B. University, Srinagar, India

2006 - 2007 Research and Teaching Assistantship, Department of Mathematics,
Indian Institute of Technology (IIT) Roorkee, India

2007 - 2010 Doctoral studies within the International Max-Planck Research School,
Analysis, Design and Optimization in Chemical and Biochemical
Process Engineering, Faculty of Mathematics,
Otto-von-Guericke University, Magdeburg, Germany

2010 - Research associate, Institute for Applied Mathematics,
Department of Mathematics and Information Technology,
Montan University, Leoben, Austria

151


	Introduction
	Overview
	Existing and new results
	Existence of solutions
	Uniqueness
	Convergence analysis

	Outline of thesis

	Existence of solutions
	Introduction
	Existence
	The truncated problem
	Equicontinuity in time
	Convergence of the approximations of the integrals
	The existence theorem


	Uniqueness of solutions
	Introduction
	Uniqueness for coagulation and binary fragmentation equation
	Integrability of higher moments

	Uniqueness for the coagulation and multiple fragmentation equation

	An extension of existence theory
	Introduction
	Existence
	Approximating equations
	Equicontinuity in time
	Passing to the limit
	Main result


	Convergence analysis of the fixed pivot technique for coagulation equation
	Introduction
	The sectional methods
	The fixed pivot technique
	Projection error and spatially discretization error

	Consistency
	Order of the birth term
	Order of the death term and summary of all terms
	Meshes

	Lipschitz conditions on (N(t)) and (N(t))
	Numerical examples

	Convergence of the cell average technique for coagulation equation
	Introduction
	The cell average technique
	Order of convergence

	Conclusions
	Appendices
	Inequalities
	Kernels and their classes
	Coagulation kernels
	Nonsingular coagulation kernels
	Singular at the origin or on the axes

	Classes of coagulation kernels considered in conjunction with binary fragmentation kernels
	Classes of coagulation kernels considered in conjunction with multiple fragmentation kernels
	Summary of classes
	Bounds on non-singular kernels

	Bibliography
	Curriculum Vitae

