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Abstract

The early stage of phase transition is termed as nucleation. In this thesis we study one of the
widely used nucleation models, which was developed by Becker and Döring in 1935. The model
consists of large linear or nonlinear systems of ordinary differential equations. Our main em-
phasis is on the thermodynamically consistent Becker-Döring model which was introduced by
Dreyer and Duderstadt [J. Stat. Phys., 123, No. 1 (2006)]. Motivated by an industrial appli-
cation concerning nucleation of liquid droplets in crystalline semi-insulating Gallium Arsenide,
they developed a model which is consistent with the second law of thermodynamics. With
condensation rates from the kinetic theory of gases, their model contains a singularity in the
number of free molecules.

The mathematical theory of the Dreyer-Duderstadt version of the Becker-Döring model was
studied by Herrmann et al. [Physica D, 222:116 - 130 (2006)]. They avoided the singularity by
making a choice of condensation rates which transformed the model to a different time scale.
In this work we discuss conditions under which the solutions of the transformed problem can
be used to solve the original singular problem. We also show that the singular problem can be
solved directly if appropriate initial conditions are chosen. In particular, due to the structure of
the model solutions avoid the singularity.

With an aim of determining steady-state nucleation rates, we study in details the existence and
uniqueness of steady-state solutions to the thermodynamically consistent model. We consider
finite systems obtained by two different truncations. One is given by a zero flux to clusters
larger than a specified maximum size, say n. The second one is obtained by setting the number
of clusters larger than n to zero. We investigate the existence of steady-state solutions to the
model in the limit n → ∞.

Some applications such as fog formation as well as nucleation experiments include inert sub-
stances. For instance, experiments on homogeneous nucleation of water vapor, Argon and crys-
tallization in solutions. For this reason, we extend the thermodynamically consistent model of
Dreyer and Duderstadt by incorporating an inert substance. The extended model is non singu-
lar for all classes of condensation rates. The existence and uniqueness results for the extended
model are analogous to those by Herrmann et al. [Physica D, 222:116 - 130 (2006)]. We derive
a new correction for the classical nucleation rates from the extended model and compare the
results with those from experiments.

This thesis also contains the proof for the existence of a metastable class of solutions to the
thermodynamically consistent model. We make use of the theory of metastability by Penrose
[Commun. Math. Phys., 124:515 - 541 (1989)]. Interestingly, the results of this work show that
there is no metastability in the Gallium Arsenide system studied by Dreyer and Duderstadt.

To our knowledge there are no analytical solutions for the Becker-Döring models. Here we
describe an efficient numerical algorithm for solving the thermodynamically consistent model.
Finally, we give numerical results for a particular example.
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Zusammenfassung

Mit Nukleation bezeichnen wir das Anfangsstadium des Phasenüberganges. In der vorliegen-
den Arbeit untersuchen wir ein weitverbreitetes Nukleations- bzw. Tröpfchenmodell, welches im
Jahre 1935 von Becker und Döring entwickelt wurde. Es basiert auf einem großen System lin-
earer oder nichtlinearer gewöhnlicher Differentialgleichungen. Unser Hauptaugenmerk liegt auf
dem thermodynamisch konsistenten Becker-Döring-Modell, welches von Dreyer und Duderstadt
eingeführt wurde [J. Stat. Phys., 123, No. 1 (2006)]. Motiviert durch eine neue industrielle An-
wendung, die Nukleation von flüssigen Tropfen in christallinem halbleitendem Gallium-Arsenid
betreffend, entwickelten sie ein Modell, welches zum zweiten Hauptsatz der Thermodynamik
konsistent ist. Ausgehend von Kondensationsraten aus der kinetischen Gastheorie, enthält ihr
Modell eine Singularität in der Anzahl freier Moleküle.

Die mathematische Theorie der Dreyer-Duderstadt-Version des Becker-Döring-Modells wurde
von Herrmann et al. [Physica D, 222:116 - 130 (2006)] untersucht. Hierbei wurde die Singularität
durch eine neue Wahl von Kondenationsraten vermieden, welche das Modell auf eine andere
Zeitskala transformiert. In der vorliegenden Arbeit diskutieren wir Bedingungen, unter denen die
Lösungen des transformierten Modells zur Lösung des originalen singulären Problems benutzt
werden köennen. Ferner zeigen wir, dass das singuläre Problem sogar direkt gelöst werden
kann, wenn geeignete Anfangsbedingungen gewählt werden, da die Struktur des Modells die
Singularität vermeidet.

Im Detail untersuchen wir Existenz und Eindeutigkeit stationärer Lösungen des thermody-
namisch konsistenten Modells. Wir betrachten zwei unterschiedliche reduzierte endliche Sys-
teme. Eins erhält man, indem man Flüsse zu Clustern ab einer speziellen maximalen en Größe
n ausschließt. Das andere Modell gewinnt man durch Setzen der Anzahl der Cluster größer ”n
auf 0. Wir untersuchen jeweils die Existenz stationärer Lösungen für n → ∞.

Zahlreiche Anwendungen wie Nebelbildung oder Nukleationsexperimente enthalten inerte Sub-
stanzen, z.B. Experimente zur homogenen Nukleation von Wasserdampf, Argon und Christalli-
sation in Lösungen. Aus diesem Grund erweitern wir das Dreyer-Duderstadt-Modell durch
Berücksichtigung einer weiteren inerten Phase. Das erweiterte Modell ist nichtsingulär für alle
Klassen von Kondensationsraten. Die Existenz- und Eindeutigkeitsresultate für das erweiterte
Modell sind analog zu den Resultaten von Hermann et al. [Physica D, 222:116 - 130 (2006)].
Wir leiten eine neue Korrektur für die klassischen Nukleationsraten vom erweiterten Modell her
und vergleichen die Resultate mit experimentellen Daten.

Die vorliegende Arbeit enthält weiterhin einen Existenzbeweis für eine Klasse metastabiler
Lösungen des thermodynamisch konsistenten Modells. Dafür wird die Theorie metastabiler
Lösungen von Penrose [Commun. Math. Phys., 124:515 - 541 (1989)] benutzt. Interessanter-
weise zeigen die Resultate dieser Arbeit, dass es keine Metastabilität im Gallium-Arsenid-System
von Dreyer, Duderstadt gibt.

Nach Kenntnis des Verfassers gibt es keine analytische Lösung für das Becker-Döring-Modell.
In der vorliegenden Arbeit wird ein effizienter numerischer Algorithmus zur Lösung des ther-
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modynamisch konsistenten Modells beschrieben. Abschließend werden numerische Resultate für
ausgewählte Beispiele gegeben.
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Chapter 1

Introduction

In this chapter we give a general introduction to the Becker-Döring model, including the model
description and its different versions together with the terminologies and notation used. Simul-
taneously, we review some of the existing literature. In the end we outline the structure of the
thesis and briefly mention the new results of our work.

1.1 The standard Becker-Döring model

Burton [7] as well as Seinfeld and Pandis [52, Chapter 11] pointed out that it is widely believed
that cooling humid air to its dew point results into condensation. Similarly it is generally
thought that at a pressure of 1 atm, water boils at 1000C. These views are incorrect if taken
as generalizations applicable under all conditions. Clean water, free of foreign materials or wall
surfaces, can be superheated before boiling. Pure water vapor can as well be under-cooled before
condensation. These curious phenomena are manifestations of metastability, which is the ability
of a non-equilibrium physical state to persist for a long time.

A transformation of a phase α into β doesn’t occur the instant the free energy of β is lower than
that α. Rather tiny nuclei of β must form initially in α. This is schematically represented in
Figure 1.1. Initially, tiny clusters of β form in the α phase (a). These then grow (b) until the

α β

(a) (b) (c)

Figure 1.1: Schematic representation of a transformation from an unstable phase α to a stable
phase β.

transformation is complete (c). The first step in the transformation, the nucleation step, can
be extremely slow. Nucleation theory attempts to answer the question, ”What is the nucleation
rate at a given supersaturation?”. Attempts to answer this question led to what is commonly
known as the classical nucleation theory. The theory includes both purely thermodynamic

1



CHAPTER 1. INTRODUCTION

arguments, for instance by McDonald [37], and kinetic arguments, see Becker and Döring [5].
Kashchiev [27] gave a review of both approaches while Seinfeld and Pandis [52] have a chapter
on nucleation. Schmelzer [51] also gave a detailed account of nucleation theory together with
some applications, which include atmospheric aerosols, crystallization, polymerization and many
other phase transition processes.

The classical nucleation theory originated with the work of Volmer and Weber [65] in 1926. It
was mainly developed to describe nucleation of liquid droplets in vapor. By using the kinetic
theory of gases and equilibrium thermodynamics, they derived an expression for the nucleation
rates. However most experiments show that the theoretically calculated nucleation rates have a
stronger temperature dependence than the observed ones, see for instance Wölk and Strey [71],
Brus et al. [6], and Sinha et al. [57].

In 1935 Becker and Döring [5] established the steady-state version of the so called Becker-
Döring model. In this model, the smallest particle is referred to as a molecule and a cluster is
a composition of two of more molecules. The size of a cluster is determined by the number i
of molecules it constitutes. We call a cluster with i molecules an i−mer. Becker and Döring
assumed that during nucleation, an i−mer grows by an addition of a molecule at a rate Ci

referred to as the condensation rate or shrinks by losing a molecule at a rate Ei known as the
evaporation rate. The rates Ci and Ei may or may not depend on time. Moreover, it is even
possible to have size independent condensation and evaporation rates. The model considers
finite or infinite systems of free molecules and their clusters. In the standard Becker-Döring
model, we denote the concentration of free molecules and i−mers at time t by z1(t) and zi(t)
respectively. The concentration has units of number per unit volume. Let m be the molecular
mass. Denote the density of a system containing free molecules and i−mers of different sizes by
ρ. Then we have

ρ(z(t)) := m

∞
∑

i=1

izi(t). (1.1)

Unless otherwise specified, we assume that a molecule has a unit mass, that is, we set m = 1.

The Becker-Döring model is given by the following set of ordinary differential equations for
z(t) := (zi(t))i∈N

żi(t) =Ji−1(z(t)) − Ji(z(t)) for 2 ≤ i, (1.2)

where ż denotes differentiation of z with respect to t. The flux function Ji for i ∈ N is given in
the form

Ji(z(t)) = Cizi(t)− Ei+1zi+1(t). (1.3)

It is the net rate of conversion of an i−mer into an (i+ 1)−mer. We have not yet specified the
behavior of z1(t) . There are two common ways to do this. One is a result of the experimental
technique by Becker and Döring. They added free molecules to the system in order to keep
the outer pressure constant. In a steady state the concentration of free molecules is constant.
However, this steady state consequence was mis-interpreted by a number of authors and they
assumed that it holds even for time dependent solutions, see Kashchiev [27, Chapter 15] and

2



1.1. THE STANDARD BECKER-DÖRING MODEL

McDonald [37]. This led to the so-called constant free molecule model where the concentration
of free molecules is given by

z1(t) = z1(0) = µ (µ a constant). (1.4)

Schmelzer [50, p. 1920] suggested that this condition implies that the supersaturation does not
change in time. We point out that this case does not conserve the density (1.1).

The second prescription of z1(t) leads to the density-conserving model or equivalently the mass-
conserving model for which we have to take

ż1(t) =− 2J1(z(t)) −
∞
∑

i=2

Ji(z(t)), (1.5)

so that ρ becomes time independent. We note that the equation for ż1(t) is given differently
from those for bigger clusters. It is because free molecules are involved in all reactions. The
formation of a di-mer makes use of two free molecules. On the other hand, when a di-mer breaks
up, there are two free molecules that are formed. This explains the presence of the factor 2 in
equation (1.5). The density conserving version of the model was presented by Burton [7]. There
Burton also calculated the steady-state nucleation rates from the dynamic model.

The Becker-Döring model is complete when the rates Ci and Ei+1 are specified and it is solved
for initial conditions

zi(0) ≥ 0 for i ∈ N. (1.6)

In the standard Becker-Döring models, see for instance Burton [7], Penrose [46], as well as
Penrose and Lebowitz [48], the following constitutive assumptions are used

Ci(t) = aiz1(t), Ei(t) = bi, (1.7)

where ai and bi are referred to as kinetic coefficients and they depend neither on the solution z

nor on the time t. Typical are the following examples, see Herrmann et al. [24, p. 117]

ai = iα, bi = ai

(

µs +
p

iγ

)

,

with α ∈ [0, 1[, µs > 0, γ < 1, p > 0, and

α = 1/3, γ = 1/3 for diffusion controlled kinetics in 3D,
α = 0, γ = 1/2 for diffusion controlled kinetics in 2D,
α = 2/3, γ = 1/3 for interface reaction limited kinetics in 3D,
α = 1/2, γ = 1/2 for interface reaction limited kinetics in 2D.

It is important to emphasize here that the standard Becker-Döring model consists of equation
(1.2), (2.91) together with either (1.4) or (1.5) and (1.6) - (1.7), with z having units of concen-
tration.

Although the constant free molecule model is potentially less relevant in physical applications,
it provides an instructive mathematical problem as a precursor to the analysis of the more

3



CHAPTER 1. INTRODUCTION

demanding nonlinear density-conserving model. The mathematical properties of the standard
mass-conserving model were discussed by Ball et al. [4]. There the authors studied the existence
and uniqueness of time dependent and equilibrium solutions to the model, as well as the behavior
of solutions in the limit t → ∞ under some restrictions on the kinetic coefficients and initial
data. One notable restriction was the strong requirement

∑∞
i=1 i

2zi(0) < ∞ which they used in
order to prove the uniqueness of solutions. Laurençot and Mischler [34] later proved uniqueness
of the solution without such a restriction. Some of the important results regarding the solutions
for the standard Becker-Döring model are summarized below.

Define the cluster partition functions

Qi :=

i
∏

r=2

ar−1

br
, Q1 = 1. (1.8)

There exist Lyapunov functions Lµ(z) and Lρ(z) for the constant free molecule and constant
density models respectively. They are defined by, see Wattis [68]

Lµ(z(t)) :=

∞
∑

i=1

zi(t)

(

ln

(

zi(t)

Qiµi

)

− 1

)

and Lρ(z(t)) :=

∞
∑

i=1

zi(t)

(

ln

(

zi(t)

Qi

)

− 1

)

, (1.9)

where µ is given in (1.4). The simplest solutions for the model are those for which the fluxes in
(2.91) vanish. They are termed as equilibrium solutions and can be shown to be

z̄i = Qi(z̄1)
i. (1.10)

This structure is the motivation to consider µ = z̄1 as a free parameter. It is an arbitrary
positive number which can be interpreted as the activity or fugacity of the equilibrium state.
For the mass conserving model, the parameter µ is calculated from

ρ =
∞
∑

i=1

iQiµ
i, (1.11)

which makes sense only if the series on the right-hand side is convergent. It is therefore natural
to determine the radius µs of convergence of the series, which may be infinite, finite or zero
depending on the partition functions. The density ρs of saturated vapor is defined by

ρs :=

∞
∑

i=1

iQiµ
i
s (1.12)

and may be finite or infinite.

Ball et al. [4] showed for the mass-conserving model that in the limit t → ∞ all the mass can be
contained in an equilibrium solution only if the initial density in a given system is less or equal
to the saturation density, that is, if ρ ≤ ρs. In this case the solutions converge strongly to the
equilibrium (1.10), where µ = z̄1 is the unique solution of (1.11). On the other hand, they proved
that for ρ > ρs, the solutions converge in some weak sense to an equilibrium of the form (1.10)
with z̄1 = µs and density ρs. The density difference ρ−ρs goes to large and larger clusters. In this

4



1.1. THE STANDARD BECKER-DÖRING MODEL

regime the cluster evolution can be determined by the Lifshitz-Slyozov-Wagner (LSW) model of
coarsening, which describes the late stages of growth in a phase transition, see Laurençot and
Mischler [34], Penrose [47], Collet et al. [10], Velázquez [64] as well as Niethammer [43]. Other
results on the asymptotic behavior of solution for the Becker-Döring equations can be found in
Slemrod [58], Wattis and King [70], Jabin and Niethammer [26], Laurençot and Wrzosek [35] as
well as Niethammer [44]. For general information regarding the analysis of ordinary differential
equations, one can consult the books by Hartman [23], Walter [67], Arnol’d [1] and Mattheij
[36].

Other simple solutions of the standard Becker-Döring model are the non-equilibrium steady-
state solutions which were constructed by Becker and Döring [5] for the constant free molecule
model. Here the fluxes Ji are independent of both the size i and the time t, but are not equal
to zero. The common value of the fluxes, denoted by J(µ) is called the nucleation rate. It is
defined as the rate per unit volume at which clusters acquire new particles in the steady state.
It is given by

J(µ) =

[

∞
∑

i=1

1

aiQiµi+1

]−1

, (1.13)

while the steady-state distribution, denoted by f(µ) = (fi(µ))i∈N is such that

f1(µ) = µ and fi(µ) = J(µ)Qiµ
i

∞
∑

r=i

1

arQrµr+1
. (1.14)

Becker and Döring showed that for moderately small values of the difference µ−µs, the nucleation
rate J(µ) can be extremely small, so small as to be completely undetectable experimentally. This
made it possible to think of the steady state as representing a metastable state in which large
clusters are being formed extremely slowly. Penrose [46] went beyond the Becker-Döring steady-
state consideration. He proved that, subject to some further plausible conditions on the kinetic
coefficients ai and bi, there exists a class of time dependent metastable solutions for the model
with µ − µs positive and small. The solutions take an exponentially long time to decay to
their asymptotic steady states and have a lifetime which is proportional to exp{C(µ − µs)

ω}
for some constants C,ω > 0. His results were based on the theory of metastability which he
developed together with Lebowitz [48]. Kreer [30] extended Penrose’s results by allowing for a
bigger class of the initial data and using a different method to construct metastable solutions
for the constant free molecule model. Duncan and Dunwell [18] later showed that metastability
for the truncated constant free molecule model can be explained in terms of the eigensystem of
the resulting linear ordinary differential system.

Carr et al. [9] described an efficient numerical algorithm for solving the truncated standard mass-
conserving model. They observed that for small values of the difference µ − µs, one requires
numerical solutions of very large systems in order to distinguish between the metastable and
equilibrium states. Duncan and Soheili [19] described numerical techniques for solving large
systems of the truncated standard mass-conserving model on a reduced number of grid points.
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CHAPTER 1. INTRODUCTION

1.2 The modified Becker-Döring model

Motivated by an industrial application concerning nucleation of liquid droplets in crystalline
semi-insulating Gallium Arsenide (GaAs), Dreyer and Duderstadt [16] proposed a modification
to the standard mass-conserving formulation. They made three notable changes to the model.
Firstly they changed the interpretation of zi(t) from concentration to number of i−mers at time
t. Secondly, they reviewed the derivation of the condensation rate formula from the kinetic
theory of gases. They obtained condensation rates of the form

Ci = ai, (1.15)

which do not explicitly contain z1(t), in contrast to the ones in (1.7). For the third change, they
used the second law of thermodynamics to obtain a dynamic relationship between the conden-
sation and evaporation rates. The idea was to determine the total available free energy of closed
systems. Suppose the available free energy of a closed system containing an i−mer is denoted by
Ai and let k and T represent the Boltzmann constant and temperature respectively. Dreyer and
Duderstadt [16] determined expressions of Ai for two examples. These are summarized below.

Example 1.2.1. This corresponds to a simple liquid-vapor system in which a liquid droplet of
size i is surrounded by its vapor. At at a temperature T and outer pressure p0 the availability
Ai is given by, see Müller and Müller [39, p. 310]

A1 = 0, Ai = −kT i ln

(

p0
p̄(T )

)

+ γi2/3, i ≥ 2, γ > 0, (1.16)

where p̄(T ) is the vapor-liquid equilibrium pressure at the temperature T .

Example 1.2.2. Here the system consists of a single liquid droplet of size i contained in a
crystalline solid. Both are a binary mixture of gallium and arsenic. The solid is surrounded
by an inert gas with prescribed pressure. For large i, the availability grows linearly with i, see
Herrmann et al. [24]. This leads to the ansatz

Ai = β i, for i ≫ 1, β > 0. (1.17)

The availability Ai gives the energy change when a cluster of size i is formed. Therefore the
convention A1 = 0 was used by Dreyer and Duderstadt [16]. They defined the total available
free energy of a many cluster system as

A(z(t)) =
∞
∑

i=1

zi(t)Ai + kT
∞
∑

i=1

zi(t) ln

(

zi(t)

ND(z(t))

)

, (1.18)

where the total number ND of clusters and free molecules is defined as

ND(z(t)) :=

∞
∑

i=1

zi(t). (1.19)

The first term in (1.18) is the sum of all the free energies of single cluster systems whereas the
second term takes care of the entropy of mixing. Equivalently, the total energy can be written
as

A(z(t)) = kT

∞
∑

i=1

zi(t) ln

(

zi(t)

qiND(z(t))

)

, with qi = exp(−Ai/kT ). (1.20)
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Differentiating A with respect to t and using the mass-conserving model (1.2), (2.91), and (1.5)
we obtain

Ȧ(z(t)) = kT
∞
∑

i=2

(Cizi(t)− Ei+1zi+1) ln

(

zi+1qi
ziqi+1ND(z(t))

)

. (1.21)

Dreyer and Duderstadt [16] used the second law of thermodynamics, dA(t)/dt ≤ 0, to obtain
the following relation between the condensation and evaporation rates

Ei+1(t) =
qiND(z(t))

qi+1z1(t)
Ci, i ≥ 1. (1.22)

It is a sufficient condition to guarantee that the law holds for all t > 0. Thus they were able to
describe a dynamic model which is consistent with the second law of thermodynamics. Hence
we refer to it as the modified Becker-Döring model or the thermodynamically consistent model.
By using (1.22) to substitute for the evaporation rates in (2.91), the flux for the modified model
becomes

Ji(z(t)) = Ci

(

zi(t)−
qiND(z(t))

qi+1z1(t)
zi+1

)

for i ≥ 1, (1.23)

which is now singular in z1(t).

Some of the mathematical properties of the modified model were studied by Herrmann et al.
[24]. Instead of the condensation rates in (1.15), they used the ones in (1.7), thereby avoiding
the singularity of the new model. However, their choice of the condensation rates transformed
the problem to a different time scale. Under some conditions on the kinetic parameter ai and
qi, they proved the existence and uniqueness of mass-conserving solutions to the transformed
problem. Unfortunately they left the important question open, whether these results can be
transformed back to the original problem. This point will be addressed in this thesis.

Similarly to the standard mass-conserving model, Herrmann et al. [24] solved for the equilibrium
solutions to the modified model and discussed the conditions under which such solutions exist.
In the end they discussed the behavior of solutions in the limit t → ∞. In summary, they
obtained the results below. Define the following

R := lim
i→∞

qi
qi+1

, q̃i := Riqi f̃(µ) :=
∞
∑

i=1

q̃iµ
i and g̃(µ) :=

∞
∑

i=1

iq̃iµ
i, (1.24)

where qi is given in (1.20). For any given mass ρ̄ > 0, there exists an equilibrium state z̄ with
ρ(z̄) = ρ̄ if and only if

f̃(1) > 1, or f̃(1) = 1 and g̃(1) < ∞. (1.25)

Moreover, if (1.25) is satisfied, then

(a) there exists a unique value µ̄ ∈]0, 1] such that f̃(µ̄) = 1.

7
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(b) the equilibrium solution is given by

z̄i = ND(z̄)q̃iµ̄
i, i ≥ 1, ND(z̄) =

ρ̄

g̃(µ̄)
, (1.26)

where µ̄ is the unique solution of f(µ̄) = 1.

They proved that if (1.25) is satisfied, the solutions to the modified mass-conserving model con-
verge strongly to the above equilibrium distribution in the limit t → ∞. In fact the equilibrium
solution is the unique minimizer of the total available free energy function (1.20). On the other
hand, if (1.25) is not satisfied, the distribution z converges in some weak sense to zero and all
the mass is contained in larger and larger clusters. In this case the infimum of A(z(t)) is zero
but there is no minimizer. To conclude this section, we write the flux (1.23) in terms of the
kinetic coefficients ai and bi introduced already in (1.7). Our aim is to work with a notation
which is closer to the one used in the standard model. We use (1.15) and q̃i in (1.24) to define

bi+1 := Ci
q̃i

q̃i+1
= ai

q̃i
q̃i+1

. (1.27)

The flux (1.23) can then be written as

Ji(z(t)) = aizi(t)− bi+1R
ND(z(t))

z1(t)
zi+1 for i ≥ 1. (1.28)

This clearly differs from the flux Ji(z(t)) = aiz1(t)zi(t) − bi+1zi+1 for the standard mass-
conserving model. Moreover equations (1.8), the definition of q̃i in (1.24), and (1.27) imply
that

bi+1

ai
=

Qi

Qi+1
, q̃i = RQi, and qi = Qi(1/R)i−1 for i ≥ 1. (1.29)

1.3 Thesis structure and new results

The thesis is divided into three parts. The first part consists of Chapter 2 and it is devoted to
the modeling. Here we review some of the relevant formulas used in nucleation theory. These
include condensation, evaporation and nucleation rate expressions. We extend the results of
Dreyer and Duderstadt [16] by allowing for the possibility of having an inert substance in a
given system. This was motivated by the fact that some applications like fog formation as well
as nucleation experiments contain inert substances. For instance the results of Brus et al. [6] as
well as Wölk and Strey [71] on homogeneous nucleation of water vapor. Even the experiments
on Argon nucleation by Sinha et al. [57] contained Helium as a carrier gas. Similarly during
crystallization from solutions, the solvent can be regarded as an inert substance. Our results
show that the presence of an inert substance is reflected in the entropy of mixing. Like in
the standard mass-conserving model, we pose a constant-free molecule model for the modified
model of Dreyer and Duderstadt. This was also done recently by Wattis [69]. He used his
constant free molecule version as a stepping stone to construct approximations to the cluster size
distribution of the more demanding mass-conserving version by matched asymptotic expansions.
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In his formulation, Wattis used condensation rates of the form in (1.7) and evaporation rates
in (1.22), while setting z1(t) to a constant. He showed that the model constructed in this way
does not possess a Lyapunov function. Here we construct a constant free-molecule model which
is consistent with the second law of thermodynamics. During our discussion with Wolfgang
Dreyer, he pointed out that the constant free molecule model can be realized in practice only
for open systems. We therefore consider open systems to derive the model. In our version of
the constant free molecule model, we maintain the condensation rates (1.15) derived by Dreyer
and Duderstadt, while the expressions for the evaporation rates are now different from those for
the mass-conserving model given in (1.22).

The second part of the thesis consists of Chapters 3 - 6. It contains the mathematical theory
of the modified Becker-Döring models. In Chapter 3 we study the simple steady-state problem
for the two versions of the modified model, in which all time derivatives are equal to zero.
The method involves the analysis of the null space of the right-hand sides of the models. This
technique was used by Conradi et al. [11] to determine steady-state solutions for chemical and
biochemical networks. We introduce the method to the simpler constant-free molecule model
and later apply the same procedure to the more demanding mass-conserving version. For each
version of the model we construct finite systems of differential equations by applying two known
truncations. In the first truncation, we choose the maximum cluster size, say n, which is bigger
than the critical cluster and set the flux Jn to zero. We refer to this as the zero flux truncation.
The second one is obtained by setting the number of clusters larger than n to zero. We call it the
zero particle number truncation. The zero flux truncation was used by Dreyer and Duderstadt
[16] while the zero particle number truncation was described by Burton [7]. It is important to
note that the zero particle number truncation is equivalent to removing clusters of size n + 1
from the system as soon as they appear and thus leads to loss of mass. We remedy this for
the mass-conserving model by re-inserting a mass of free molecules which is equal to that of
the removed cluster. For the zero flux truncation, we prove the existence and uniqueness of
equilibrium solutions where Ji = 0 for all 1 ≤ i ≤ n. In the zero particle number truncation we
obtain unique steady-state solutions in which all the fluxes have a common non-zero value known
as the steady-state nucleation rate. We compare the steady-state solutions for the two models
and also study the case where n → ∞. We close the chapter by comparing the steady-state
nucleation rates for the more relevant mass-conserving model with the ones from the classical
nucleation theory. Interestingly, in the presence of an inert substance we derive a new correction
for the classical nucleation rate expression. We compare the new result with the rates observed
in experiments.

Chapter 4 contains the results for the existence and uniqueness of solutions to the modified
model. We study a general modified model which accounts for the presence of an inert substance
in a given system. The number of molecules of the inert substance is denoted by z0, which takes
on values greater or equal to zero depending on whether there is an inert substance present or
not. As mentioned in the introductory section, the existence and uniqueness of solutions for the
case z0 = 0 was already studied by Herrmann et al. [24]. They made a choice of condensation
rates, Ci = aiz1(t) which removed the singularity from the model, thereby transforming the
problem to a different time scale. In this chapter we discuss the conditions under which the
solutions of the transformed problem can be used to solve the original singular problem. We
also show that the singular problem can be solved directly if appropriate initial conditions are
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chosen. In particular, due to the structure of the model solutions avoid the singularity. However,
for the singular problem, we are able to prove uniqueness of solutions for all t ≥ 0 only for size
independent condensation rates. For z0 > 0 the resulting condensation rates lead to a model
without singularity. The existence and uniqueness results for this case are analogous to the
results by Herrmann et al. [24]. In the presence of an inert substance, the conditions for existence
of equilibrium solutions are more general than those for which there is no inert substance. In
all cases, there is an upper bound ρs on the mass contained in an equilibrium solution. This
is similar to the case for the standard mass-conserving model which was studied by Ball et al.
[4]. Moreover for z0 > 0 and large initial super-saturation, it is possible to have an asymptotic
solution consisting of two different phases. This is in contrast to the liquid-vapor system without
inert substance, which was considered by Dreyer and Duderstadt [16]. Although not included
in this thesis, we believe that for z0 > 0 and ρ > ρs the solutions to the model converge in some
weak sense to an equilibrium with mass ρs, the difference ρ− ρs being transferred to larger and
larger clusters.

In Chapter 5 we study the existence of metastable solutions to the modified mass-conserving
model. With careful choices of the various parameters in the model, we show that the results
by Penrose [46] also extend to this model. We consider the case where (1.25) is violated.
Unlike the standard mass-conserving model where metastability is related to the concentration
z1(t) of free molecules, here the results are related to the parameter µ̃(0) defined by µ̃(0) :=
z1(0)/RND(z(0)), where R is given in (1.24). We show that metastable solutions exist if µ̃(0) >
1. Since the result z1(t)/ND(z(t)) ≤ 1 holds, this condition requires that R < 1. This means
that there is no metastability in the Gallium Arsenide example which was studied by Herrmann
et al. [24]. Importantly, the kinetic coefficients ai = 1 and bi+1 = exp(ã{i2/3 − (i− 1)2/3}) with
ã = 1, which were used for the standard model by Carr et al. [9], do not qualify for metastability
in the modified model. In particular this parameter must satisfy ã > 1.2 in order to guarantee
the negation f̃(1) < 1 of (1.25).

Chapter 6 is devoted to constructing numerical solutions to the modified mass-conserving model.
Here we study only finite systems for the model, making use of the two truncations introduced in
Chapter 3. We modify the numerical algorithm for solving the standard mass-conserving model,
which was described by Carr et al. [9]. They reformulated the standard model into a system of
Differential Algebraic Equations (DAE) and used the simple Euler backward difference formula
to discretize the DAE. They applied the Newton method to solve the resulting non-linear system.
One advantage was that the Jacobian matrix has a sparse tridiagonal arrow head structure and
hence they used only two tridiagonal solves to compute the approximate cluster size distribution
at each time step. As noted in Section 1.2, there is a term ND in all the fluxes. Using the Newton
method directly would then lead to a dense Jacobian matrix. Of course the resulting non-linear
system can be solved by using an LU factorization, but for very large systems one may run into
memory problems. Instead of computing the distribution z, we introduce a new distribution F

defined by Fi(t) :=
∑n

j=i zj(t). Such a transformation is due to Laurençot and Mischler [34]
and is also used in Chapter 4 to prove uniqueness of solutions. Now, discretizing the resulting
system and applying the Newton’s method lead to a sparse Jacobian matrix. In the end we
solve for z by zi(t) = Fi(t) − Fi+1(t) for 1 ≤ i ≤ n − 1 and zn(t) = Fn(t). This is done at the
end of the algorithm in one step. We test the numerical algorithm for the pure free molecule
initial data and specific kinetic parameters. Our numerical results show that the steady states
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of the zero particle number truncation are actually the metastable states of the zero flux number
truncation. This is expected since the zero particle number truncation prevents the accumulation
of super-critical clusters in a given system thereby restricting the system into the metastable
region, see Penrose and Lebowitz [48]. There the authors described some techniques used to
restrict a given system into its metastable state, one of them being the prevention of the number
of super-critical clusters in a given locality from exceeding a certain prescribed bound.

The third and final part of the thesis consists of the conclusion and appendix. Chapter 7 contains
the conclusions of our research work. These include the results of all the previous chapters. The
Appendix contains some basic definitions and the proofs for some of the theorems used in the
thesis together with a few calculation details.

We prepared two manuscripts for publication out of Chapters 2 and 3. One, with the title
“Uniqueness of steady-state solutions for thermodynamically consistent Becker-Döring models”
was published in the Journal of Mathematical Physics, see [60]. The second one, entitled “A new
correction for the classical nucleation rates using a thermodynamically consistent Becker-Döring
model”, is to be submitted. The results of Chapters 4 - 6 are to be submitted soon.
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Chapter 2

Modeling issues

This chapter contains the necessary information required for the full specification of the Becker-
Döring models. In Section 2.1 we review some of the relevant formulae used in the classical
nucleation theory. These include condensation, evaporation and nucleation rate expressions.
Section 2.2 gives an extension to the liquid-vapor system which was considered by Dreyer and
Duderstadt [16]. We incorporate an inert gas and give the relevant formula for condensation
rates. Like Dreyer and Duderstadt, we derive the evaporation rates from the second law of
thermodynamics. In Section 2.3 we determine the total available free energy for the crystalliza-
tion process. We state the freezing and melting rate expressions for this process. To close the
chapter we pose a thermodynamically consistent constant free molecule version of the modified
Becker-Döring model. This is done in Section 2.4.2.

2.1 Classical nucleation theory

The classical nucleation theory originated with the work of Volmer and Weber [65]. It was
mainly developed to describe nucleation of liquid droplets in vapor. In 1935 Becker and Döring
[5] established a kinetic model which they used to calculate nucleation rates in a steady-state
process. Although the classical nucleation theory assumes spherical clusters, we modify the
relevant formulae by introducing a constant which takes care of the shape of an arbitrary cluster.

2.1.1 Condensation and evaporation rates

Consider a system containing vapor at a temperature T and outer pressure p0. Let m denote
the molecular mass of the vapor and Vv(t) the volume of vapor at time t. The condensation
rate for a cluster or i-mer of radius ri is given by the following well-known expression from the
kinetic theory of gases, see Landau and Lifshitz [33, §39],

Ci = αi4πr
2
i

z1(t)

Vv(t)

√

(

kT

2πm

)

, (2.1)

where k is the Boltzmann constant and αi a sticking coefficient. Suppose a molecule has a
volume V1. Then by assuming a uniform density ρ

L
of free molecules and clusters, the volume

Vi of an i-mer is given by

Vi =
4

3
πr3i = V1i, (2.2)

12



2.1. CLASSICAL NUCLEATION THEORY

from which we obtain

ri =

(

3V1i

4π

)1/3

. (2.3)

Combining (2.1) and (2.3) we obtain the following expression for the condensation rates in terms
of the number i of molecules in a cluster

Ci = αi4π
z1(t)

Vv(t)

(

3V1i

4π

)2/3
√

(

kT

2πm

)

. (2.4)

This formula works only for spherical clusters. For clusters of arbitrary shape we introduce a
constant ϑ known as the shape factor. In this case the condensation rates become, see kashchiev
[27, Equation 10.3]

Ci = αiϑ
z1(t)

Vv(t)
V

2/3
1 i2/3

√

(

kT

2πm

)

, (2.5)

where ϑ = (36π)1/3 for spheres and ϑ = 6 for cubes. The number of free molecules is related to
the volume of vapor via the thermal equation of state for an ideal gas as

p0
kT

=
z1(t)

Vv(t)
. (2.6)

Substituting this relation into (2.5) the condensation rates are equivalent to

Ci = αiϑ
p0
kT

V
2/3
1 i2/3

√

(

kT

2πm

)

. (2.7)

With ϑ = (36π)1/3 and αi = 1 this equation was also used by Dreyer and Duderstadt [16].
Seinfeld and Pandis [52] gave a slightly different formula for condensation rates as

Ci = αi(36π)
1/3 p0

kT
V

2/3
1 (1 +

1

i
)(1 + i1/3)2

√

(

kT

2πm

)

. (2.8)

The leading order term in i is exactly of the same form as in (2.7) for each i ∈ N. Therefore for
large i any of the two formulae can be used to give similar results.

Next we review the formulae for the evaporation rates. Kashchiev [27, Section 10.2] as well as
Seinfeld and Pandis [52, Chapter 11] derived the evaporation rates using constrained equilibrium
conditions. That is, each cluster is assumed to be in equilibrium with the surrounding vapor.
In terms of fluxes, this is equivalent to Ji = 0 for all i ≥ 1, leading to

Cib̄i = Ei+1b̄i+1, (2.9)

where b̄ := {b̄i}i∈N is the equilibrium Boltzmann distribution. It was defined by Burton [7] as

b̄i = b̄1 exp (−Ai/kT ) for i ∈ N, (2.10)
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where Ai is the energy of formation of an i-mer. Let σ and p̄(T ) denote liquid-vapor surface en-
ergy and vapor equilibrium pressure at a temperature T respectively. Define the supersaturation
ratio S and a constant γ by

S :=
p0

p̄(T )
and γ := ϑV

2/3
1 σ. (2.11)

Then the energy Ai is given by

Ai = −kT i lnS + γi2/3 for i ≥ 2 and A1 = 0. (2.12)

We give the derivation of this equation in Section 2.2. The equilibrium concentration b̄1 of free
molecules is given by the ideal gas equation of state as

b̄1 =
p0
kT

. (2.13)

Substituting (2.10) into (2.9) we get

Ei+1 = Ci
qi
qi+1

, where qi = exp(−Ai/kT ) for i ≥ 1. (2.14)

Slezov and Schmelzer [59] criticized the assumption of constrained equilibrium used in the deriva-
tion of (2.14). They derived the same equation using a different reasoning, see their paper for
details.

To derive another formula for evaporation rates we introduce the critical cluster which is defined
as the cluster in equilibrium with vapor at the given temperature T and outside pressure p0. In
1871 Thomson [63], who later became Lord Kelvin, derived the following formula for the critical
cluster radius rcrit, see also Becker and Döring [5, §1],

rcrit =
2mσ

kTρ
L
lnS

, (2.15)

where S is defined in (2.11). With V1 = m/ρL , this formula can be written in terms of the
number icrit of molecules in the critical cluster by using (2.3) and the constant γ in (2.11) for
ϑ = (36π)1/3. This gives

icrit =

(

2γ

3kT lnS

)3

. (2.16)

This is the classical Thomson formula for the number of molecules in the critical size cluster
and it is well defined only if S > 1. It serves as the basic law for the classical nucleation theory,
because it may be interpreted as follows: If an i-mer appears by fluctuation, it will grow further
for i > icrit, whereas it will disappear if i < icrit. The formula will serve as a basis for choosing
the largest cluster when studying truncated Becker-Döring models in Chapter 3.

Still by constrained equilibrium, one may write another evaporation rate E∗
i as

E∗
i = C∗

i , (2.17)
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where C∗
i is that particular value given by (2.7) when we therein change p0 to that particular

value, say pi, for which the i-mer would represent the critical cluster. Then we use the Thomson
formula (2.16) for each i with S = pi/p̄(T ) to obtain

pi = p̄(T ) exp

(

2γ

3kT i1/3

)

. (2.18)

Substituting this value for p0 in (2.7), equation (2.17) becomes

E∗
i = C∗

i = αiϑ
p̄

kT
V

2/3
1 i2/3 exp

(

2γ

3kT i1/3

)

√

(

kT

2πm

)

. (2.19)

We then eliminate the exponential function by using (2.16) to obtain

E∗
i = αiϑ

p̄

kT
V

2/3
1 i2/3S(icrit/i)

1/3

√

(

kT

2πm

)

. (2.20)

Finally we use (2.20), which is based on equilibrium, and (2.7) with p0 = Sp̄ to form the non
equilibrium ratio of E∗

i to Ci as
E∗

i

Ci
= S{(icrit/i)1/3−1}. (2.21)

This equation implies that sub-critical clusters tend to evaporate while super-critical clusters
grow. The critical cluster is in equilibrium with the surrounding vapor since Eicrit = Cicrit .
Formula (2.21) can be found in McDonald [37, p. 32] as well as Seinfeld and Pandis [52, p. 505].
In Figure 2.1 we show the rates Ei and E∗

i together with Ci for water vapor at T = 290K,
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Figure 2.1: Evaporation and Condensation rates for water vapor at T = 290K.

S = 4.0 and S = 0.8. We observe that the two evaporation formulas give similar results for
S > 1 which are independent of the values of S. For S ≤ 1 the evaporation rate E∗

i is not
defined. For S > 1 the evaporation rates intersect with the condensation rates at the critical
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cluster given by the Thomson formula (2.15). The figure shows that the evaporation rates are
higher than the condensation rates for sub-critical clusters. The reverse is true for super-critical
clusters. These confirm the fact that sub-critical cluster tend to evaporate while super-critical
clusters grow. For S ≤ 1 there is no finite intersection point for the rates. In this case the
evaporation rates are higher than condensation rates for the entire cluster size range. This
means that any cluster in a system at such a state will dissolve.

2.1.2 Steady states and nucleation rates

Steady-state solutions to the Becker-Döring model are those for which the time derivatives in
(1.2) and (1.5) are equal to zero. They were already studied by Kashchiev [27], Seinfeld and
Pandis [52] as well as Burton [7]. There are two scenarios which may lead to steady-state
solutions. One is the case where all fluxes vanish and leads to the equilibrium distribution,
given by the recursion

Cizi = Ei+1zi+1, i ≥ 1. (2.22)

The second one occurs when all the fluxes have a common nonzero value Js, that is, J1 =
J2 = . . . = Ji = . . . = Js. This was first studied by Becker and Döring [5] in 1935. In their
experimental set up, they removed clusters of a specified size, say n, bigger than the critical
cluster and added free molecules to the system so as to keep the outer pressure constant. In a
steady state the number of free molecules in the system is constant. The steady-state distribution
is written as

zsi =
Js

Ci

[

1 +

n
∑

j=i+1

j
∏

k=i+1

Ek

Ck

]

, i ≥ 1. (2.23)

The common constant flux Js is known as the nucleation rate. It depends on the values for Ci

and Ei via

Js = C1z
s
1

[

1 +

n
∑

i=2

i
∏

k=2

Ek

Ck

]−1

. (2.24)

Next we substitute for the evaporation rates by using (2.14) with q1 = 1 and simplify the result
to get

J = zs1

[

1

C1
+

n
∑

i=2

1

Ciqi

]−1

, where qi := exp (−Ai/kT ) . (2.25)

We point out that one could use formula (2.21) for the evaporation rates instead of (2.14). This
would not change the value of Js quantitatively since the two formulae give the same results,
see Figure 2.1.

Due to the definition of Ai in (2.12), the contribution of large clusters to the nucleation rate
formula (2.25) is negligible. Therefore with little loss of accuracy the value of n can be extended
to ∞. This gives

J ≈ zs1

[

1

C1
+

∞
∑

i=2

1

Ciqi

]−1

, where qi := exp (−Ai/kT ) . (2.26)
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By substituting for Ai using (2.12), this formula is equivalent to

J ≈ zs1

[

1

C1
+

∞
∑

i=2

1

CiSi exp(−ãi2/3)

]−1

, ã :=
γ

kT
. (2.27)

Next we follow Seinfeld and Pandis [52, Section 11.1.3] to simplify the above expression with
the assumption that S > 1. We use some mathematical simplifications by examining the de-
nominator of the infinite sum. We observe from (2.5) that Ci, increases as i

2/3 for large i. The
term Si grows exponentially with i since S > 1 by assumption. The expression exp(− γ

kT i
2/3)

decreases exponentially as i increases, as i2/3. The product Si exp(− γ
kT i

2/3) initially decreases
rapidly as i increases, reaches a minimum and then begins to increase as Si begins to dominate.
The terms in the summation are largest near the minimum in the denominator. The minimum
point of the denominator is obtained by solving

d

di
(CiS

i exp(− γ

kT
i2/3)) = 0. (2.28)

In practice, because Ci varies slowly with i relative to the other two terms, with little loss of
accuracy it is removed from the summation and replaced with its value Cicrit at the minimum.
If we let

g(i) :=
γ

kT
i2/3 − i lnS (2.29)

then (2.27) becomes

J ≈ zs1Cicrit

[

1 +
∞
∑

i=2

1

exp(−g(i))

]−1

, (2.30)

and (2.28) can be replaced by
d

di
exp(−g(i)) = 0. (2.31)

Solving this differential equation gives the classical Thomson formula (2.16) for the critical
cluster, repeated here for convenience as

icrit =

(

2γ

3kT lnS

)3

.

If icrit is sufficiently large, then the summation in (2.30) can be replaced with an integral where
the lower limit can be changed to zero to give

J ≈ zs1Cicrit

[
∫ ∞

0
exp(g(i))di

]−1

. (2.32)

It is clear that the main contribution to the integral is made by a small neighborhood of the size
of the critical cluster. We therefore write g(i) as a Taylor series expansion around icrit so that
the integral (2.32) becomes

J ≈ zs1Cicrit

[ ∫ ∞

0
exp(g(icrit)) exp

(

1

2

d2g

di2

∣

∣

∣

∣

icrit

(i− icrit)
2

)

di

]−1

. (2.33)
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From (2.29)
d2g

di2

∣

∣

∣

∣

icrit

= − 2γ

9kT
i
−4/3
crit := −θ. (2.34)

Finally we define a new integration variable, y = i−icrit. In doing so the lower limit of integration
becomes −icrit. We again use the approximation that icrit is large and replace the lower limit
by −∞. The integral is then transformed into a Gaussian integral giving

J ≈ zs1Cicrit exp(−g(icrit))

(

θ

2π

)1/2

. (2.35)

We then use (2.5), (2.6), (2.29) , and (2.34) to get

J ≈ αicritz
s
1

(

V1p0
kT

)(

2σ

πm

)1/2

exp

( −4ϑ3V 2
1 σ

3

27k3T 3(lnS)2

)

:= JCNT . (2.36)

Finally we apply the assumption zs1 = b1 mentioned in Burton [7] and then use equation (2.13)
for b1 to obtain

JCNT = αicritV1

(

p0
kT

)2( 2σ

πm

)1/2

exp

( −4ϑ3V 2
1 σ

3

27k3T 3(lnS)2

)

. (2.37)

With ϑ = (36π)1/3, this formula gives the classical nucleation rates. For more details about
nucleation rates see the review article by Oxtoby [45].

Although the classical nucleation theory gave a good basis of most modern treatments of nu-
cleation processes, it was not free of short comings. Cortney [12] argued that the theory over
approximates the nucleation rates by a factor of the supersaturation ratio. We denote his rates
by JC given by

JC =
1

S
JCNT . (2.38)

Girshick and Chiu [21] corrected the classical nucleation rates by arguing that in the Becker-
Döring treatment the free energy of formation of a molecule is nonzero. The nucleation rate
version by Girshick and Chiu includes a temperature dependent correction. It is denoted by
JGC and it is defined as

JGC =
1

S
exp

(

(36π)1/3V
2/3
1 σ

kT

)

JCNT . (2.39)

2.2 The liquid-vapor-inert gas system

2.2.1 Available free energy of a many droplet system

Here we extend the liquid-vapor system considerations of Dreyer and Duderstadt [16], see also
Müller and Müller [39, Section 11.1]. We investigate the effect of an inert gas on the availability
of the composite system. Müller and Müller [39, Section 11.2] derived an expression for the
available free energy of a system containing a single droplet in moist air. Our aim is to extend
their result to a system containing many droplets in moist air. In other words, we derive an
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2.2. THE LIQUID-VAPOR-INERT GAS SYSTEM

Figure 2.2: Ensemble of single droplet systems

expression for the available free energy of a system containing many droplets of a given liquid
in vapor and an inert gas.

Like Dreyer and Duderstadt [16], we consider an ensemble of n subsystems as illustrated above.
Each of them contains the same number of molecules N0, has the same mean composition and is
under the same external pressure p0. At time t, for 2 ≤ i ≤ n there are zi(t) subsystems with a
single droplet containing i molecules of liquid, NA

i (t) inert gas molecules and N0−(NA
i +i) vapor

molecules. There are z0(t) subsystems without droplets. Such subsystems contain NA
0 inert gas

molecules and N0 − NA
0 vapor molecules. We denote the total number of vapor molecules at

time t by z1(t) so that we may write

z1(t) = (N0 −NA
0 )z0(t) +

n
∑

i=2

(N0 − (NA
i + i))zi(t). (2.40)

The total number of inert gas molecules are given by

zA = NA
0 z0(t) +

n
∑

i=2

NA
i zi(t). (2.41)

The total number N of molecules in the system is given by

N = zA + z1(t) +

n
∑

i=2

izi(t) = constant. (2.42)

Substituting for z1(t) and zA by using (2.40) and (2.41) respectively, we obtain

N = (N0 −NA
0 )z0(t) +

n
∑

i=2

(N0 − (NA
i + i))zi(t) +NA

0 z0(t) +

n
∑

i=2

NA
i zi(t)

+
n
∑

i=2

izi(t).

This gives

N = N0z0(t) +

n
∑

i=2

N0zi(t). (2.43)
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Denote the molecular masses of the inert gas and the substance considered by ma and mw

respectively. Let gLi , g
V and gA be the specific Gibbs free energies of an i−mer liquid cluster,

vapor and inert gas respectively. The Gibbs free energies GL and GV for the liquid and vapor
phases can then respectively be written as

GL = mw

n
∑

i=2

izi(t)g
L
i (2.44)

and

GV = (N0 −NA
0 )z0(t)mwg

V +

n
∑

i=2

(N0 − (NA
i + i))zi(t)mwg

V

+NA
0 z0(t)mag

A +

n
∑

i=2

NA
i zi(t)mag

A. (2.45)

Furthermore we denote the surface free energies by ΩI and write

ΩI =
n
∑

i=2

4π

3
σr2i zi(t), (2.46)

see Dreyer and Duderstadt [16]. The total available free energy of a many droplet system
consisting of liquid droplets in vapor and inert gas is represented by

A(z(t)) = GV +GL +ΩI + kT

[

zA ln

(

zA
zA +ND(t)

)

+

n
∑

i=1

zi(t) ln

(

zi(t)

zA +ND(t)

)]

. (2.47)

The term in square brackets accounts for the entropy of mixing. The total number ND of liquid
droplets and vapor molecules is given by

ND(t) =

n
∑

i=1

zi(t). (2.48)

Substituting for GV and GL we obtain

A(z(t)) = N0

(

z0(t) +

n
∑

i=2

zi(t)

)

mwg
V +

(

NA
0 z0(t) +

n
∑

i=2

NA
i zi(t)

)(

mag
A −mwg

V

)

+ΩI

+
n
∑

i=2

mwizi(t)(g
L
i − gV ) + kT

[

zA ln

(

zA
zA +ND(t)

)

+
n
∑

i=1

zi(t) ln

(

zi(t)

zA +ND(t)

)]

.

Next we use (2.41) and (2.43) to obtain

A(z(t)) = Nmwg
V + zA

(

mag
A −mwg

V

)

+

n
∑

i=2

mwizi(t)(g
L
i − gV ) + ΩI

+kT

[

zA ln

(

zA
zA +ND(t)

)

+

n
∑

i=1

zi(t) ln

(

zi(t)

zA +ND(t)

)]

. (2.49)
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For spherical clusters, the difference gLi − gV is given according to Dreyer and Duderstadt [16,
eq (42) and (45)] by

gLi (T, p0 +
2σ

ri
)− gV (T, p0) = − kT

mw
ln

(

p0
p(T )

)

+
2σ

ρ
L
ri
, (2.50)

where p(T ) is the saturation pressure at temperature T and ρ
L
the liquid density. The derivation

of (2.50) uses the assumption that each i−mer cluster in the system is in mechanical equilibrium
with the gas phase. We use (2.46) and (2.50) into (2.49) and then apply the incompressibility
relation (2.2) with V1 = mw/ρL

to obtain

A(z(t)) = Nmwg
V + zA

(

mag
A −mwg

V

)

+
n
∑

i=2

[

− kT i ln

(

p0
p(T )

)

+ 4πr2i σ

]

zi(t)

+ kT

[

zA ln

(

zA
zA +ND(t)

)

+

n
∑

i=1

zi(t) ln

(

zi(t)

zA +ND(t)

)]

. (2.51)

We can use (2.3) to write the radius ri in terms of i. Up to a constant, the total available free
energy of the many droplet system containing an inert gas is given by

A(z(t)) =

n
∑

i=1

Aizi(t) + kT

[

zA ln

(

zA
zA +ND(t)

)

+

n
∑

i=1

zi(t) ln

(

zi(t)

zA +ND(t)

)]

, (2.52)

where Ai is given in (2.12) as

Ai = −kT i ln(S) + γi2/3, for 2 ≤ i ≤ n and A1 = 0.

The constants S and γ are defined in (2.11). The presence of the inert gas modifies the entropy
of mixing. Figure 2.3 shows the variation of the availability Ai with number of molecules in a
given cluster for water vapor at T = 290K and S = 4.

2.2.2 Condensation and evaporation rates

Here we consider condensation processes which result from collisions of vapor molecules with
a given liquid cluster. They are given by (2.5) with m = mw. We give the rates here for
convenience as

Ci = αiϑ
z1(t)

Vv(t)
V

2/3
1 i2/3

√

(

kT

2πm

)

.

Suppose the partial pressure pv(t) of vapor at time t is given by

pv(t) = ω(t)p0, 0 < ω(t) ≤ 1. (2.53)

Then by Dalton’s law the inert gas partial pressure pa(t) is

pa(t) = (1− ω(t))p0. (2.54)
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Figure 2.3: Available free energy for vapor containing a single liquid droplet.

We assume that the vapor and inert gas behave like ideal gases so that we can write, see Müller
and Müller [39, Chapter 10]

zA
Vv(t)

=
pa(t)

kT
=

(1− ω(t))p0
kT

, (2.55)

z1(t)

Vv(t)
=

pv(t)

kT
=

ω(t)p0
kT

. (2.56)

Dividing (2.55) by (2.56) we obtain

zA
z1(t)

=
1− ω(t)

ω(t)
or ω(t) =

z1(t)

z1(t) + zA
. (2.57)

The case ω = 1 corresponds to situation where there is no inert gas in the liquid-vapor system.
By using (2.56) the condensation rates become

Ci = αiϑ
ω(t)p0
kT

V
2/3
1 i2/3

√

(

kT

2πm

)

.

Next we substitute for ω(t) using (2.57) to obtain

Ci = ai
z1(t)

z1(t) + zA
, where ai := αiϑ

p0
kT

V
2/3
1 i2/3

√

(

kT

2πm

)

. (2.58)

By applying the second law of thermodynamics to (2.52) as was done by Dreyer and Duderstadt
[16], the evaporation rates are given by

Ei+1

Ci
=

qi
qi+1

(zA +ND(t))

z1(t)
, qi = exp(−Ai/kT ). (2.59)

Combining (2.58) and (2.59), the fluxes Ji in (2.91) become

Ji(z(t)) = ai

(

zi(t)
z1(t)

z1(t) + zA
− qi

qi+1

(

zA +ND(t)

z1(t) + zA

)

zi+1(t)

)

. (2.60)
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2.3 Crystal nucleation process

2.3.1 Available free energy of a single crystal in solution

We follow the classical nucleation theory consideration of a crystal germ. It is assumed that the
germ is of a spherical shape with an averaged value σ of the surface energy, see Debenedetti [13,
p. 189]. The liquid solution phase consists of the solvent and dissolved crystal molecules. We

- crystal germ

(+) solution

p0, T

Figure 2.4: crystal in solution

denote the solvent by w and the crystal particles in solution by c+. There is one solid crystal
which is assumed to be spherical with radius r. It is denoted by c−. The masses of the crystal
in the two phases are denoted by M+

c and M−
c while the mass of the solvent is denoted by Mw.

The available free energy for the system in Figure 2.4 is given by

A = F+ + F− + 4πr2σ + p0(V
+ + V −),

where F denotes the free energy. With F+ = Fw + F+
c we have

A = Fw(T,Mw, V
+) + F+

c (T,M+
c , V +) + F−

c (T,M−
c , V −) + 4πr2σ + p0(V

+ + V −).

There are four variables, M−
c ,M+

c , V − and V + of which only M−
c , V − := 4πr3/3 and V + are

independent since

M−
c +M+

c = Mc

is constant. We denote by G = F + pV the total Gibbs free energy of a given component. With
the chemical potential µα := ∂G/∂Mα = ∂F/∂Mα and p = −∂F/∂V , the necessary equilibrium
conditions are

∂A
∂M−

c
= − ∂F+

c

∂M+
c

+
∂F−

c

∂M−
c

= 0 ⇒ µ+
c = µ−

c , (2.61)

∂A
∂V −

=
∂F−

c

∂V −
+ p0 +

2σ

r
= 0 ⇒ p− = p0 +

2σ

r
, (2.62)

∂A
∂V +

=
∂F+

c

∂V +
+

∂Fw

∂V +
+ p0 = 0 ⇒ p+ := p+c + pv = p0. (2.63)

Equation (2.61) represents the condition for phase equilibrium while (2.62) and (2.63) are dy-
namical or mechanical equilibrium conditions. We assume that dynamical equilibrium is always
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established while phase equilibrium is slowly attained. Therefore the available free energy can
be written as

A = F+ + p+V + + F− + p−V − + 4πr2σ + (p0 − p+)V + + (p0 − p−)V −,

= G+ +G− + 4πr2σ − 2σ

r
V −,

= G+ +G− + 4πr2σ − 2

3
4πr2σ,

= G+ +G− +
4

3
πr2σ. (2.64)

The Gibbs free energies are given by

G+ = Mwµw +M+
c µ+

c and G− = M−
c g−c , (2.65)

where g−c is the specific Gibbs free energy of the crystal. If the chemical potentials are those of
an ideal dilute mixture we have, see Atkins [2, p. 173] and Müller and Müller [39, p. 218]

µ+
c = g+c (T, p

+) +
kT

mc
ln

(

N+
c

N+
c +Nw

)

, (2.66)

µw = gw(T, p
+) +

kT

mw
ln

(

Nw

N+
c +Nw

)

, (2.67)

where N denotes the number of molecules of a given kind. By using (2.65) - (2.67) the available
free energy in (2.64) becomes

A = Mw

[

gw(T, p
+) +

kT

mw
ln

(

Nw

N+
c +Nw

)]

+ (Mc −M−
c )

[

g+c (T, p
+) +

kT

mc
ln

(

N+
c

N+
c +Nw

)]

+M−
c g−c (T, p

−) +
4

3
πr2σ.

We define the energy Ā of formation of a crystal by Ā := A − Mcg
+
c (T, p

+) − Mwgw(T, p
+).

Then by using Nα = Mα/mα we obtain

Ā = kTNw ln

(

Nw

N+
c +Nw

)

+ kTN+
c ln

(

N+
c

N+
c +Nw

)

+M−
c

[

g−c (T, p
−)− g+c (T, p

+)

]

+
4

3
πr2σ. (2.68)

By writing p− = p+ + (p− − p+) and making a Taylor series expansion of g−c (T, p
−) about p+

we obtain

g−c (T, p
−) = g−c (T, p

+) + (p− − p+)
∂g−c
∂p

+
1

2
(p− − p+)2

∂2g−c
∂p2

+ . . .

We then use ∂g/∂p = 1/ρ. The incompressibility condition for the solid crystal means that ρ
is constant. This implies that ∂g/∂p is constant and all higher order derivatives in the above
expansion are equal to zero. We obtain

g−c (T, p
−) = g−c (T, p

+) +
1

ρ−c
(p− − p+),
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where ρ−c is the density of the solid crystal. Then the difference of the Gibbs free energies in
(2.68) becomes

g−c (T, p
−)− g+c (T, p

+) = g−c (T, p
+)− g+c (T, p

+) +
1

ρ−c
(p− − p+).

Next we use the dynamical equilibrium conditions (2.62) and (2.63) to substitute for p− and p+.
This gives

g−c (T, p
−)− g+c (T, p

+) = g−c (T, p0)− g+c (T, p0) +
M−

c

ρ−c

2σ

r
. (2.69)

Suppose that Te is the saturation temperature corresponding to the pressure p0. Following
Debenedetti [13, p. 188] we expand the Gibbs free energies g±c (T, p0) about Te to obtain

g−c (T, p0)− g+c (T, p0) = g−c (Te, p0)− g+c (Te, p0) + (T − Te)

(

∂g−c
∂T

− ∂g+c
∂T

)

+
1

2
(T − Te)

2

(

∂2g−c
∂T 2

− ∂2g+c
∂T 2

)

+ . . . (2.70)

Let s± and h±c denote the specific values of the entropies and enthalpies of the liquid and solid
phases. Since g±c := h±c − Ts±, we have, see Atkins [2, p. 128]

∂g±c
∂T

= −s± =
g±c − h±c

T
.

The first two terms on the right-hand side of (2.70) are equal. Therefore, with ∆T := Te − T ,
we have

g−c (T, p0)− g+c (T, p0) = −∆T

[

g−c (Te, p0)− h−c (Te, p0)

Te
− g+c (Te, p0)− h+c (Te, p0)

Te

]

+
1

2

(

∆T

Te

)2 [

Te

(

∂h+c
∂T

− ∂h−c
∂T

)

−
(

h+c − h−c
)

]

+ . . . (2.71)

Since the outside pressure p0 is constant, then by definition, see Atkins [2, p. 61]

∂h±c
∂T

= c±p ,

where c±p are the specific heat capacities at constant pressure. Then (2.71) becomes

g−c (T, p0)− g+c (T, p0) = −∆T

(

h+c − h−c
Te

)

+
1

2

(

∆T

Te

)2
[

Te

(

c+p − c−p
)

−
(

h+c − h−c
)]

+ . . .

The difference ∆h := h+c (Te, p0)−h−c (Te, p0) is the heat of fusion, see Atkins [3, p. 50]. Usually,
it is assumed that the heat capacity change upon solidification is negligible so that to a good
approximation, we have

g−c (T, p0)− g+c (T, p0) = −∆T∆h

Te
. (2.72)
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This equation was used by a number of authors, see for instance Miyazawa and Pound [38].
Combining (2.69) with (2.72), equation (2.68) becomes

Ā = kTNw ln

(

Nw

N+
c +Nw

)

+ kTN+
c ln

(

N+
c

N+
c +Nw

)

+
4

3
πr2σ +

M−
c

ρ−c

2σ

r

−M−
c ∆T

∆h

Te
.

Finally we use M−
c /ρ−c = V − = 4πr3/3 and simplify the result into

Ā = kTNw ln

(

Nw

N+
c +Nw

)

+ kTN+
c ln

(

N+
c

N+
c +Nw

)

+ 4πr2σ − 4πr3

3
ρ−c ∆T

∆h

Te
. (2.73)

This is an expression for the energy of formation of a spherical crystal cluster or radius r in
a solution. Now suppose that the crystal cluster is made up of i molecules. Then due to
incompressibility we can write

4πr3

3
ρ−c = mc i, (2.74)

so that (2.73) becomes

Ā = kTNw ln

(

Nw

N+
c +Nw

)

+ kTN+
c ln

(

N+
c

N+
c +Nw

)

+ γi2/3 −mc i ∆T
∆h

Te
, (2.75)

where γ is defined in (2.11) with ϑ = (36π)1/3 and V1 = mc/ρ
−
c . Differentiating Ā with respect

to i the maximum availability occurs at the critical size cluster given by

icrit =

(

2γTe

3mc∆T∆h

)3

. (2.76)

By using (2.74) we can write the critical cluster in terms of the radius as

rcrit =
2σTe

ρ−c ∆T∆h
. (2.77)

Equation (2.77) was also given in Debenedetti [13, p. 188]. The author uses the molecular
volume v−c := 1/ρ−c . Let c(T ) denote the solute concentration at temperature T . The classical
Thomson [63] formula for the critical cluster can also be written as

rcrit =
2σmc

ρ−c kT ln(c(T )/ce(T ))
, (2.78)

where the subscript e is used to denote equilibrium values. Comparing (2.77) with (2.78) implies
that

ln

(

c(T )

ce(T )

)

=
mc∆h

k

(

1

T
− 1

Te

)

, or ln

(

ce(Te)

ce(T )

)

=
mc∆h

k

(

1

T
− 1

Te

)

(2.79)

where k is Boltzmann constant. This relation is known in literature as the van’t Hoff equation
for ideal solutions, see Mullin [40, p. 98] or Myerson [41, p. 12]. In case of real solutions, a factor
β known as the activity coefficient is introduced to give

ln

(

βce(Te)

ce(T )

)

=
mc∆h

k

(

1

T
− 1

Te

)

. (2.80)
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2.3.2 Available free energy of a many crystal system

Here we consider a system consisting of many crystal germs of arbitrary shape in a solution. By
following the same procedure as was done for the liquid-vapor system, the total available free
energy is given by (2.52) with Ai taken from (2.75) as

Ai := −mc i ∆T
∆h

Te
+ γi2/3, for 2 ≤ i ≤ n and A1 = 0, (2.81)

where γ = ϑσ(mc/ρ
−
c )

2/3. The constant ϑ represents the shape factor.

2.3.3 Freezing and melting rates

We consider freezing as a result of transfer of liquid molecules across the crystal-liquid phase
boundary. The liquid molecule to be attached is in immediate contact with the crystal cluster.
It can join the cluster by making a random jump over a distance comparable with its diameter
d1. Let D and αi denote the diffusion and sticking coefficient respectively. The freezing rates
are given in Kashchiev [27, p. 155] as

Ci = αiϑ
V

2/3
1

d1
Dz1(t)i

2/3. (2.82)

In the above formula, z1(t) denotes the concentration of free molecules but not their number.
The diffusion coefficient is related to the radius r1 of a molecule and the viscosity η of the
solution by the Einstein’s equation, see Kashchiev [27, p. 143]

D =
kT

6πηr1
. (2.83)

The melting rates are given by (2.59) with zA replaced by zw. In this case the fluxes are defined
by

Ji(z(t)) = ai

(

zi(t)z1(t)−
qi
qi+1

(zw +ND(t))zi+1(t)

)

, ai = αiϑ
V

2/3
1

d1
Di2/3. (2.84)

In this equation, the terms z1(t) and (zw+ND(t)) have units of concentration while āi has units
of s−1. Hence the fluxes Ji give the number of i-mers per unit volume per second.

To conclude this section we give a general Becker-Döring model which allows for an inert sub-
stance in a given system. Suppose that z0(t) represents the number of the inert molecules in
the system at time t. Then the thermodynamically consistent mass-conserving Becker-Döring
model is given by

ż0(t) = 0, or z0(t) = z0, a constant,

ż1(t) =− J1(z(t)) −
∞
∑

i=1

Ji(z(t)), (2.85)

żi(t) =Ji−1(z(t)) − Ji(z(t)) for 2 ≤ i ≤ ∞,
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where, depending on the process, the fluxes are either given by

Ji(z(t)) = aizi(t)
z1(t)

z1(t) + z0
− bi+1R

ND(t)

z1(t) + z0
zi+1(t) (2.86)

or

Ji(z(t)) = aizi(t)z1(t)− bi+1RND(z(t))zi+1(t). (2.87)

The coefficients bi+1 and R were introduced already in (1.28). The total mass ρ and number
ND of clusters together with free molecules are now generally given by

ρ = z0 +
∞
∑

i=1

izi(t) and ND(z(t)) =
∞
∑

i=0

zi(t). (2.88)

2.4 Open systems

Here we consider two open systems containing free molecules and their clusters of different sizes
at a constant outer pressure p0 and temperature T . Large clusters of size n+1 are removed from
the system as soon as they appear. In one of the systems, we add free molecules so as to keep
their number z1(t) constant. In the second system we add a number of free molecules equivalent
to those which are removed through the large clusters. This procedure maintains a constant
number of molecules or mass in the system. Both processes are schematically represented in
Figure 2.5.

S =

(a) Constant free molecule model (b) Mass-conserving model

Figure 2.5: Open liquid-vapor systems

The formation of i−mers is modeled according to the Becker-Döring model as

żi(t) = Ji−1(z(t)) − Ji(z(t)), 2 ≤ i ≤ n, (2.89)

while the number of free molecules changes according to

ż1(t) = żin1 − 2J1(z(t)) −
n
∑

i=1

Ji(z(t)). (2.90)

In this equation, żin1 represents the rate at which free molecules are added to the system. It will
be determined from the nature of the system. The fluxes are defined by

Ji(z(t)) := Cizi(t)− Ei+1zi+1(t). (2.91)
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2.4.1 Energy balances

Let E, Q̇, hin, sin denote the total energy, heat power, molecular enthalpy and entropy respec-
tively. Denote the enthalpy and entropy per (n + 1)−mer by hout and sout respectively. Then
the first law of thermodynamics requires that

Ė(t) = Q̇(t)− p0V̇ (t) + hinżin1 (t)− houtżoutn+1(t). (2.92)

At a constant temperature, the entropy S evolves according to

Ṡ(t) ≥ Q̇(t)

T
+ sinżin1 (t)− soutżoutn+1(t), (2.93)

where the equality holds at equilibrium. These ideas were also used by Dreyer et al. [17] during
the modeling of hysteresis and phase transition in many-particle storage systems. Define the
following quantities

A(t) := E(t)− TS(t) + p0V (t), Gin := hin − Tsin and Gout := hout − Tsout. (2.94)

We now eliminate Q̇ from (2.92) and (2.93) to obtain

E(t)− TS(t) + p0V (t) +
(

hout − Tsout
)

żoutn+1(t)−
(

hin − Tsin
)

żin1 (t) ≤ 0.

Next we use (2.94) to get

Ȧ(t) +Goutżoutn+1(t)−Ginżin1 (t) ≤ 0. (2.95)

This inequality expresses the second law of thermodynamics for the considered open system.
For a many cluster system, the total available free energy is expressed as

A(z(t)) = kT
n
∑

i=1

zi(t) ln

(

zi(t)

qiND(z(t))

)

, with qi = exp(−Ai/kT ).

Differentiating this equation with respect to t gives

Ȧ(z(t)) = kT
n
∑

i=1

żi(t) ln

(

zi(t)

qiND(z(t))

)

. (2.96)

We point out that in all cases, large clusters are removed at a rate given by

żoutn+1(t) = Jn(z(t)). (2.97)

2.4.2 The modified constant free molecule model

Wattis [69] posed a constant free molecule version of the modified model of Dreyer and Duder-
stadt [16]. In his formulation, Wattis used condensation rates of the form in (1.7) and evaporation
rates in (1.22), while setting z1(t) to a constant. He showed that the model constructed in this
way does not possess a Lyapunov function. Here we construct a constant free-molecule model
which is consistent with the second law of thermodynamics. We must choose the rate żin1 (t)
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so as to have ż1(t) = 0. This maintains a constant number z1(t) = α of free molecules in the
system. The input rate of free molecules is therefore obtained from (2.90) as

żin1 (t) = 2J1(z(t)) +
n
∑

i=2

Ji(z(t)). (2.98)

Now we use (2.96) and (2.97) as well as (2.98) into (2.95) to get

Ȧ(z(t)) +Goutżoutn+1(t)−Ginżin1 (t) =kT
n
∑

i=1

żi(t) ln

(

zi(t)

qiND(z(t))

)

+GoutJn(z(t))

−Gin

(

2J1(z(t)) +

n
∑

i=2

Ji(z(t))

)

.

Define the following quantities

qin := exp
(

−Gin/kT
)

and qout := exp
(

−Gout/kT
)

. (2.99)

Then substitute for the time derivatives by using (2.89) and ż1 = 0 to get

Ȧ(z(t)) +Goutżoutn+1(t)−Ginżin1 (t) =kT

n
∑

i=2

(Ji−1(z(t)) − Ji(z(t))) ln

(

zi(t)

qiND(z(t))

)

− kTJn(z(t)) ln(q
out) + kT

(

2J1(z(t)) +
n
∑

i=2

Ji(z(t))

)

ln(qin).

This equation can be simplified to give

Ȧ(z(t)) +Goutżoutn+1(t)−Ginżin1 (t) =kT

[

J1(z(t)) ln

(

z2(q
in)2

ND(z)q2

)

+
n−1
∑

i=2

Ji(z(t)) ln

(

zi+1qiq
in

ziqi+1

)

]

− kTJn(z(t))

[

ln

(

zn(t)

qnND(z(t))

)

− ln

(

qin

qout

)]

. (2.100)

As a simpler case we consider the situation where no bigger clusters are removed from the
system. From (2.97), this means that

żoutn+1(t) = 0 or Jn(z(t)) = 0.

We then use (2.91) for the fluxes to get

Ȧ(z(t)) −Ginżin1 (t) = kT

[

(C1z1 − E2z2) ln

(

z2(q
in)2

ND(z)q2

)

+
n−1
∑

i=2

(Cizi − Ei+1zi+1) ln

(

zi+1qiq
in

ziqi+1

)

]

.

To guarantee the second law (2.95) of thermodynamics, we first consider the summation on the
right-hand side and compare each term with the function f(x) = (x− y) ln(y/x), which satisfies
f(x) ≤ 0. This then gives x = Cizi(t) and y = Ei+1zi+1(t) so that the quotient leads to

Ei+1 =
qiq

in

qi+1
Ci, qi = exp(−Ai/kT ), i ≥ 2. (2.101)
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Using the same trick for the first term on the right-hand side we obtain

E2 =
z1(q

in)2

q2ND(z(t))
C1. (2.102)

We point out that these choices of evaporation rates may also apply to the case where Jn(z(t)) 6=
0. This can be guaranteed by specifying the Gibbs free energy of in-coming free molecules and
then calculating the Gibbs free energy of the removed clusters such that the term involving Jn
in (2.100) vanishes. In this case we must have

qin

qout
=

zn(t)

qnND(z(t))
. (2.103)

By using (2.101) and (2.102) the fluxes for the constant free molecule model are given by

J1(z(t)) = C1

(

z1(t)−
z1(t)

(

qin
)2

q2ND(z(t))
z2(t)

)

, Ji(z(t)) = Ci

(

zi(t)−
qiq

in

qi+1
zi+1(t)

)

, i ≥ 2.

Like equation (1.28), we use Ci = ai and bi+1 = Ciq̃i/q̃i+1, where q̃i is defined in (1.24). The
fluxes can then be written as

J1(z(t)) = a1z1(t)− b2R
z1(t)

(

qin
)2

ND(z(t))
z2(t), Ji(z(t)) = aizi(t)− bi+1Rqinzi+1(t), (2.104)

for i ≥ 2. These fluxes constitute the modified constant free molecule model together with
equations (1.2) and (1.4). The model is nonlinear for i = 2 and linear for all the other sizes
i ≥ 3.

2.4.3 The mass-conserving model for open systems

Here we add free molecules in order to maintain a constant number ρ =
∑n

i=1 izi(t) of molecules
in the system. This means that the rate żin1 (t) of free molecule in-put is equivalent to the rate
at which molecules are removed through the large clusters of size n + 1. According to (2.97),
this must be given by

żin1 (t) = (n+ 1)żoutn+1 = (n+ 1)Jn(z(t)). (2.105)

Now we use (2.96) and (2.97) as well as (2.105) into (2.95). This leads to

Ȧ(z(t)) +Goutżoutn+1(t)−Ginżin1 (t) =kT

n
∑

i=1

żi(t) ln

(

zi(t)

qiND(z(t))

)

+
[

Gout − (n+ 1)Gin
]

Jn(z(t)).

Next we substitute for the derivatives żi(t) by using the model (2.89) and (2.90) as well as
(2.105). To minimize space we represent the left-hand side of the above equation by LHS. This
gives

LHS =kT

[

nJn(z(t)) ln

(

z1(t)

q1ND(z(t))

)

+

n−1
∑

i=1

Ji(z(t)) ln

(

zi+1(t)qiND(z(t))

zi(t)qi+1z1(t)

)

]

− kTJn(z(t)) ln

(

zn(t)

qnND(z(t))

)

+
[

Gout − (n + 1)Gin
]

Jn(z(t)).
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We then use q1 = 1 as well as (2.99) and simplify the result to obtain

LHS =− kTJn(z(t))

[

ln

{(

zn(t)

qnND(z(t))

)(

ND(z(t))

z1(t)

)n}

− ln

(

(qin)n+1

qout

)]

+ kT
n−1
∑

i=1

Ji(z(t)) ln

(

zi+1(t)qiND(z(t))

zi(t)qi+1z1(t)

)

.

A sufficient condition to guarantee the second law (2.95) is such that

Ei+1

Ci
=

qiND(z(t))

qi+1z1(t)
for i ≥ 1, (2.106)

and

qin

qout
=

(

zn(t)

qnND

)(

ND(z(t))

qinz1(t)

)n

. (2.107)
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Chapter 3

Steady-state solutions

In this chapter we study the simple steady-state problem for the modified Becker-Döring models.
This occurs when all the time derivatives involved are equal to zero. The aim is to determine
steady-state nucleation rates from these models. The method involves the analysis of the null
space of the right-hand sides of the models. This technique was used by Conradi et al. [11]
to determine steady-state solutions for chemical and biochemical networks. In Section 3.1 we
demonstrate the method to the simpler constant free molecule model and later adapt the results
to the more demanding mass-conserving version in Section 3.2. For each version we construct
finite systems of differential equations by applying two known truncations. In the first trunca-
tion, we choose the maximum cluster size, say n, which is bigger than the critical cluster icrit
defined by the Thomson formula (2.16) and set the flux Jn to zero. We refer to this as the
zero flux truncation. The second one is obtained by setting the number of clusters larger than
n to zero and we call it the zero particle number truncation. For each model and truncation we
study the existence of steady-state solutions in the limiting case n → ∞. Section 3.3 contains a
comparison of the steady-state solutions for the constant free molecule model with those for the
mass-conserving one. In Section 3.4 we make some assumptions to derive the nucleation rates
for the liquid-vapor-inert gas and crystal nucleation systems from the mass-conserving model.
The chapter is closed by Section 3.5 where we compare the rates derived in Section 3.4 with
those from experiments. For liquid-vapor-inert gas systems, we consider the experimental data
for water vapor by Brus et al. [6], Wölk and Strey [71] as well as that for Argon by Sinha et al.
[57]. For crystal nucleation, we use the data by Miyazawa and Pound [38] for crystallization of
Gallium from its melt.

3.1 Finite versions of the constant free molecule model

Here we truncate the infinite system (1.2) and (1.4) at i = n, where n > icrit, and either
set Jn = 0 or zi = 0 for i ≥ n + 1. The flux Jn = 0 means that there is no interaction of
clusters of size n with larger clusters. This truncation was used by Ball et al. [4, Section 2]
when approximating the infinite Becker-Döring system in order to study existence of solutions.
The condition is equivalent to taking Cn = 0 and zn+1 = 0 at the same time as in Dreyer and
Duderstadt [16]. It means that by some miracle or demon these are the largest possible clusters
in the system and they loose their power to bind free molecules. The other possibility zi = 0
for all i ≥ n + 1 means that size n+ 1 clusters are immediately removed from the system by a
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demon. This is part of the mechanism that Becker and Döring [5] already suggested in order to
achieve a steady state. Thermodynamics for the constant free molecule model was discussed in
Section 2.4.2.

3.1.1 The zero flux truncation for the constant free molecule model

Here we set Jn = 0 in (1.2) and obtain for a given µ ≥ 0 the finite system below

z1 = µ,

żi(t) = Ji−1(z(t)) − Ji(z(t)), 2 ≤ i ≤ n− 1, (3.1)

żn(t) = Jn−1(z(t)),

where the fluxes are given by (2.104), repeated here for the finite system as

J1(z(t)) = a1z1(t)− b2R
z1(t)

(

qin
)2

ND(z(t))
z2(t), Ji(z(t)) = aizi(t)− bi+1Rqinzi+1(t), (3.2)

for 2 ≤ i ≤ n− 1. We introduce an n× (n− 1) matrix

A =































0 0 . . . 0
1 −1 0
0 1 −1 0

...
. . .

...

0 1 −1 0
0 1 −1

0 . . . 0 1































,

with rank(A)= n− 1. Then the model can be written as

ż(t) = Aj(z(t)), (3.3)

where z = (z1(t), z2(t), . . . , zn(t)) and j(z(t)) = (J1(z(t)), J2(z(t)), . . . , Jn−1(z(t))). Our interest
here is to determine all the possible steady states for the system (3.3). The model is said to
have multiple steady states if for any given set of vectors (a1, a2, . . . , an−1)

T , (b2, b3, . . . , bn)
T

and any constants µ ≥ 0 and R > 0, two distinct positive vectors g,h ∈ R
n
>0 can be found such

that the following conditions hold

Aj(g) = 0, Aj(h) = 0 and g1 = h1 = µ. (3.4)

We now show that there is only one steady state which is an equilibrium.

Lemma 3.1.1 (Uniqueness). There exists at most one equilibrium solution to (3.1).

Proof. The first two equations in (3.4) can be satisfied if either j = 0 or if j ∈ ker(A). Since
rank(A) = n− 1 and j is a vector of size n− 1, these equations can only be satisfied if and only
if

j(g) = j(h) = 0. (3.5)
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This means that the fluxes must vanish. Therefore the steady states are equilibria in this case.
Using the flux definition, we have for the solution g

a1g1 = b2R
g1
(

qin
)2

ND(g)
g2, a2g2 = b3Rqing3, . . . , an−1gn−1 = bnRqingn. (3.6)

This system can also be written for the steady-state solution h as

a1h1 = b2R
h1
(

qin
)2

ND(h)
h2, a2h2 = b3Rqinh3, . . . , an−1hn−1 = bnRqinhn. (3.7)

We assume that ai > 0 and bi+1 > 0 for all 1 ≤ i ≤ n−1. Suppose there exists a zero component
of any of the equilibrium solutions g and h. Then equations (3.6) and (3.7) imply that such an
equilibrium is trivial with ND = 0. In this case the first equation in (3.6) is undefined. Therefore
equilibrium solutions to the model have positive components. We can thus apply logarithms to
each of the equations in systems (3.6) and (3.7). Subtracting the logarithmic equations for (3.7)
from the corresponding ones in (3.6) and using νi := ln(gi/hi) we obtain

ν2 = ν3 = · · · = νn, (3.8)

which implies that there exists a constant κ such that

gi = κhi, 2 ≤ i ≤ n. (3.9)

The first equations in (3.6) and (3.7) can be simplified to

a1ND(g) = b2Rqing2, and a1ND(h) = b2Rqinh2. (3.10)

Using the finite version of (1.19) and applying the last equation in (3.4) together with (3.9),
equations (3.10) can be solved to give κ = 1. This leads to gi = hi or equivalently νi = 0 for all
1 ≤ i ≤ n.

It therefore remains to solve for the unique equilibrium solution. We can easily show by solving
(3.6) and using z̄F := g, that

z̄Fi = RQiN̄
F
D

(

1

Rqin

)i

, for i ≥ 2 and z̄F1 = µ, (3.11)

where the constants Qi are defined in (1.8). The superscript F is represents the constant free
molecule model. The equilibrium number of clusters can directly be obtained by summing (3.11)
from 1 to n and rearranging to obtain

N̄F
D =

α

1−R
∑n

i=2 Qi (1/Rqin)i
, Qi =

i
∏

r=2

ar−1

br
, i ≥ 2. (3.12)

For positive values of N̄F
D we require that

R

n
∑

i=2

Qi

(

1/Rqin
)i

< 1. (3.13)

The above equilibrium solutions can be written in terms of q̃i or qi by using (1.29). In summary
we have obtained the result

Theorem 3.1.2. The system (3.1) has a unique equilibrium solution given by (3.11) - (3.13).
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3.1.2 The zero particle number truncation for the constant free molecule
model

Here we truncate the infinite Becker-Döring system (1.2) at n and set zi = 0 for all i ≥ n + 1.
We obtain the following system

z1 = µ,

żi(t) = Ji−1 − Ji, 2 ≤ i ≤ n− 1, (3.14)

żn(t) = Jn−1 − Jn,

with Ji given by (3.2) for 1 ≤ i ≤ n− 1 and Jn = anzn. We introduce an n× n matrix

B =































0 0 . . . 0
1 −1 0
0 1 −1 0

...
. . .

...

0 1 −1 0
0 1 −1 0

0 . . . 0 1 −1































,

with rank(B)= n− 1. Then the system can be recast into the form already used in (3.3) as

ż(t) = Bj(z(t)), (3.15)

where z = (z1(t), z2(t), . . . , zn(t)) and j(z(t)) = (J1(z(t)), J2(z(t)), . . . , Jn(z(t))).

Lemma 3.1.3 (uniqueness). There exists at most one steady state solution to (3.14).

Proof. Steady states for (3.15) imply that either j = 0 or j ∈ ker(B) ∩ R
n. Suppose that x and

y are two distinct steady states to (3.15). For j(x) = 0 or j(y) = 0 the definition of Jn would
imply that xn = 0 or yn = 0. By use of back substitution this would lead to the trivial equilibria
xi = 0 or yi = 0 for all 1 ≤ i ≤ n. This is not even a solution to the model due the presence of
ND as a denominator in the definition of J1 in (3.2). Therefore we must have j ∈ ker(B) ∩ R

n.
The kernel, ker(B), of B is generated by only one vector v = (1, 1, . . . , 1)T ∈ R

n. Then there
exist scalars γ > 0 and η > 0 such that

j(x) = γv = γ(1, 1, . . . , 1)T , j(y) = ηv = η(1, 1, . . . , 1)T , with x1 = y1 = µ. (3.16)

These equations imply that

J1(x) = J2(x) = . . . = Jn(x) = γ > 0 and J1(y) = J2(y) = . . . = Jn(y) = η > 0. (3.17)

Equations (3.16) show that the flux equations for the two steady state solutions x and y are
related by

Ji(x) = ξJi(y) for all 1 ≤ i ≤ n, where ξ := γ/η. (3.18)

Using (3.2) we consider (3.18) starting with i = n and go backwards to i = 2. It can easily be
seen that

xi = ξyi, for 2 ≤ i ≤ n. (3.19)
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Since we are assuming x 6= y the relations x1 = y1 and (3.19) both imply that ξ 6= 1. The
equations for the flux J1 are handled in a different way due to the presence of the term ND in
the denominator. We use (3.2) and (3.17) to get

J1(x) = a1x1 − b2R
x1
(

qin
)2

ND(x)
x2 = γ and J1(y) = a1y1 − b2R

y1
(

qin
)2

ND(y)
y2 = η. (3.20)

By using the relation x1 = y1 = µ and (3.19) in the definition of ND we obtain

ND(x) = x1(1− ξ) + ξND(y). (3.21)

Now taking the difference of the two equations in (3.20), with γ = ξη, and using (3.19) for i = 2
we obtain

b2R
(

qin
)2

x1y2

[

ND(x)− ξND(y)

ND(x)ND(y)

]

= η(ξ − 1). (3.22)

Inserting (3.21) into (3.22) it can easily be seen that for ξ 6= 1

η = −b2R
(

qin
)2

x21y2

ND(x)ND(y)
< 0. (3.23)

This contradicts the requirement that η > 0. Therefore we must have ξ = 1 which implies that
the zero particle number truncation gives only one steady-state solution to the model.

Next we determine the unique steady state zs,F and the steady-state flux JF := γ = η. We
start with the flux Jn = anz

s,F
n to express zn in terms of the common flux and then use back

substitution to determine all the sizes for 1 ≤ i ≤ n, see Appendix B.1 for details. This gives

zs,F1 = µ, zs,Fi = JFQi

(

1/Rqin
)i

n
∑

r=i

1

arQr(1/Rqin)r
, 2 ≤ i ≤ n, (3.24)

and the steady-state flux

JF = zs,F1

(

1

a1
+

λ̄

R

n
∑

r=2

1

arQr(1/Rqin)r

)−1

, λ̄ :=
zs,F1

ND(zs,F )
. (3.25)

The flux JF is the kinetic expression for the nucleation rate and it gives the number of nucleating
clusters per second. For fixed n and R the parameter λ̄ can be calculated by summing (3.24)
from 1 to n and using (3.25) to obtain

λ̄2

R

n
∑

r=2

1

arQr(1/Rqin)r
+ λ̄

[

1

a1
− 1

R

n
∑

r=2

1

arQr(1/Rqin)r

(

1−R

r
∑

i=2

Qi(1/Rqin)i

)]

=
1

a1
.

(3.26)

In order to convert the units of the nucleation rate JF into number per unit volume per second
we divide (3.25) by the total volume of the system which is constant in a steady state. In
summary we have obtained the result

Theorem 3.1.4. The system (3.14) has a unique steady state solution given by (3.24) - (3.26).
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3.1.3 The limiting steady-state solutions for the constant free molecule model

First we consider the existence of the equilibrium solutions (3.11) - (3.13) in the limit n → ∞.
By using the last equation in (1.29) we note that in this limit, the inequality (3.13) is equivalent
to

∞
∑

i=2

qi/
(

qin
)i

< 1, qi = exp

(

−Ai

kT

)

.

We then use (2.12) to substitute for Ai. This leads to the requirement

G(S) :=
∞
∑

i=2

Si exp
(

−ãi2/3 − i ln
(

qin
)

)

< 1, ã :=
γ

kT
. (3.27)

The radius R
G
of convergence of G(S) is given by

1

R
G

= lim sup
i=∞

[

exp
(

−ãi2/3 − i ln
(

qin
)

)]1/i
,

giving R
G
= qin. Moreover, the series converges also for S = R

G
because 1

G(R
G
) ≤

∫ ∞

0
exp(−ãi2/3) di =

3
√
π

4ã3/2
.

Note that the function G(S) is monotonically increasing in S on [0, R
G
]. Therefore in order to

satisfy the above inequality on this interval, it is sufficient to have

G(S) ≤ G(R
G
) ≤ 3

√
π

4ã3/2
< 1,

which leads to the sufficient condition

ã ≥
(

9π

16

)1/3

≈ 1.21. (3.28)

Typical values of ã for water vapor at temperatures in the range 00C − 1000C exceed the value
1.21 given by inequality (3.28),2 see Wagner and Kretzschmar [66]. Therefore within the above
temperature range the infinite system can be solved for all S ∈ [0, R

G
].

We now turn our attention to the non-equilibrium steady-state solution (3.24) - (3.26). By using
qi from (1.29) and Ai in (2.12) the limiting version of (3.26) becomes

1

a1
=λ̄

[

1

a1
−

∞
∑

r=2

1

ar(S/RG
)r exp(−ãr2/3)

(

1−
r
∑

i=2

(S/R
G
)i exp(−ãi2/3)

)]

+ λ̄2
∞
∑

r=2

1

ar(S/RG
)r exp(−ãr2/3)

.

1Using the substitution i1/3
√
ã = x, the expression

∫ ∞
0

exp(−ãi2/3) di becomes 3

ã3/2

∫∞
0

x2 exp(−x2) dx. This

can then be solved using integration by parts to give 3

ã3/2 {[− 1
2
x exp(−x2)]∞0 + 1

2

∫ ∞
0

exp(−x2) dx}. Therefore
∫ ∞
0

exp(−ãi2/3) di = 3
√

π

4ã3/2 .
2For example at T = 275[K], σ = 75[g/s2] or for T = 298.2[K], σ = 71.97[g/s2 ]. In both cases m =

2.99 × 10−23[g] and ρL = 9.97 × 105[g/m3]. With the Boltzmann constant k = 1.38 × 10−20[g · m2/K · s2],
temperatures of 275[K] and 298.2[K] lead to ã = 9.22 and ã = 8.16 respectively.
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The denominator of the first series on the left of this equation is dominated by the term Sr for
large r and will converge if S > R

G
. On the other hand, for very large values of r the sums from

2 to r lead to the series G(S) defined in (3.27). We have seen that this series converges only
for S ∈ [0, R

G
], which contradicts the convergence requirement S > R

G
obtained above. Hence

there are no non-equilibrium steady-state solutions for the constant free molecule model in the
limit n → ∞.

3.2 Finite versions of the mass-conserving model

In this section we consider the modified mass-conserving model which was introduced by Dreyer
and Duderstadt [16]. We study the finite versions of the model by considering the two truncations
introduced in the previous section. Essential to this model is the mass conservation property

ρ =

n
∑

i=1

izi(t) = constant. (3.29)

3.2.1 The zero flux truncation for the modified mass-conserving model

We truncate the system (1.2) and (1.5) at n > icrit and set Jn(z(t)) to zero. This gives

ż1(t) = −2J1(z(t)) −
n−1
∑

i=2

Ji(z(t)),

żi(t) = Ji−1(z(t)) − Ji(z(t)) 2 ≤ i ≤ n, (3.30)

żn(t) = Jn−1(z(t)),

where the fluxes are obtained from (1.28) as

Ji(z(t)) = aizi(t)−
bi+1R

λ(z)
zi+1 for 1 ≤ i ≤ n− 1, λ(z) :=

z1(t)

ND(z(t))
(3.31)

Define the n× (n − 1) matrix C by

C =































−2 −1 −1 . . . −1
1 −1 0 0
0 1 −1 0

...
. . .

...
...

0 1 −1 0
0 1 −1

0 . . . 0 1































.

The finite model (3.30) can then be reformulated as

ż(t) = Cj(z(t)), (3.32)

where z = (z1(t), z2(t), . . . , zn(t)) and j(z(t)) = (J1(z(t)), J2(z(t)), . . . , Jn−1(z(t))). We note
that the second up to the last row of C are linearly independent but due to mass conservation
the first one is a linear combination of all the others. Thus rank(C)= n− 1.
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Lemma 3.2.1 (Uniqueness). There exists at most one equilibrium solution to (3.30).

Proof. Since j is a vector of length n−1 , any two steady states g and h for (3.30) are such that

j(g) = j(h) = 0. (3.33)

For solution g we have

a1g1 =
b2R

λ(g)
g2, a2g2 =

b3R

λ(g)
g3, . . . , an−1gn−1 =

bnR

λ(g)
gn. (3.34)

This system of equations can also be written for the steady state solution h as

a1h1 =
b2R

λ(h)
h2, a2h2 =

b3R

λ(h)
h3, . . . , an−1hn−1 =

bnR

λ(h)
hn. (3.35)

By arguing in the same way as was done in the proof of Theorem 3.1.1, it can be shown that the
solutions g and h are positive. We can therefore divide the equations in (3.35) by corresponding
equations in (3.34) and use κ := λ(h)/λ(g) to obtain

hi
gi

= κi−1h1
g1

, for all 1 ≤ i ≤ n. (3.36)

Using this equation in the definition for κ and the finite version of (1.19), we require that

n
∑

i=1

κigi =
n
∑

i=1

gi.

This equation can only be satisfied if κ = 1. Next we apply the mass conservation condition
(3.29) to get

n
∑

i=1

i(hi − gi) = 0.

Substituting (3.36) for κ = 1 into this equation, we obtain

n
∑

i=1

igi

(

h1
g1

− 1

)

= 0.

Since we are interested in nontrivial solutions, this equation is satisfied if and only if h1 =
g1. Then (3.36) implies that hi = gi for all 1 ≤ i ≤ n, hence uniqueness of the equilibrium
solution.

It remains to solve for the equilibrium distribution z̄M . By solving (3.34) and setting g = z̄M

we get

z̄Mi = RN̄M
D Qi

(

λ

R

)i

, 1 ≤ i ≤ n where λ :=
z̄M1
N̄M

D

. (3.37)
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The constants Qi are defined in (1.8). This equation can equivalently be written as

z̄Mi = z̄M1 Qi

(

λ

R

)i−1

, 1 ≤ i ≤ n. (3.38)

By summing both sides of (3.37) from 1 to n we obtain the condition

n
∑

i=1

RQi

(

λ

R

)i

= 1, (3.39)

from which λ can be calculated, see [16] for more details. Multiplying (3.38) by i and summing
the result from 1 to n, the number z̄M1 of free molecules in equilibrium is obtained from the
mass-conservation property as

z̄M1 = ρ

[

n
∑

i=1

iQi (λ/R)i−1

]−1

. (3.40)

In summary we have obtained the result

Theorem 3.2.2. The system (3.30) has a unique equilibrium solution given by (3.37) - (3.40).

3.2.2 The zero particle number truncation for the modified mass-conserving
model

Note that this truncation would not conserve mass if we applied it without further modification
due to the out going flux Jn = anzn. Therefore we modify the equation for the free molecules
z1. We imagine a demon that breaks up a n−mer into molecules at a rate kd := an which are
then fed back into the system as free molecules. The finite system then becomes

ż1(t) = nJn − J1(z(t)) −
n−1
∑

i=1

Ji(z(t)),

żi(t) = Ji−1(z(t)) − Ji(z(t)) 2 ≤ i ≤ n− 1 (3.41)

żn(t) = Jn−1(z(t)) − Jn(z(t)).

This formulation comes close to the mechanism that Becker-Döring [5] suggested in order to
achieve a steady state dynamically with finite cluster sizes. It is based on the system suggested
by Burton [7, System (16)] with the modification that we allow the possibility of evaporation from
a cluster of size n to n−1. Via the flux Jn in the equation for zn clusters of size n+1 are formed
and inserted via the flux (n + 1)Jn into the equation for z1. We are reinserting the too large
clusters broken up into free molecules in a manner that conserves mass. The thermodynamics
for this open system was discussed in Section 2.4.3. Actually Becker and Döring suggested that
the free molecules be inserted in a manner that keeps the pressure constant while the system
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approaches the steady state. We introduce the n× n matrix

D =































−2 −1 −1 . . . −1 n
1 −1 0 0 0
0 1 −1 0

...
. . .

...
...

0 1 −1 0
0 1 −1 0

0 . . . 0 1 −1































.

Then the finite model (3.41) can be reformulated as

ż(t) = Dj(z(t)), (3.42)

where z = (z1(t), z2(t), . . . , zn(t)) and j(z(t)) = (J1(z(t)), J2(z(t)), . . . , Jn(z(t))).

Lemma 3.2.3 (Uniqueness). There exists at most one steady state solution to (3.41).

Proof. Steady states of (3.42) imply that either j = 0 or j ∈ ker(D). Analogously to the results in
Theorem 3.1.3 there are no solutions for the case j = 0. The mass conservation condition (3.29)
implies that the first row is linearly dependent on all the other rows. Thus rank(D) = n − 1.
The null space of D is generated by the vector v = (1, 1, . . . , 1)T . Now suppose x and y are two
distinct steady-state solutions of (3.42). Then there exist scalars γ > 0 and η > 0 such that

j(x) = γv = γ(1, 1, . . . , 1)T , j(y) = ηv = η(1, 1, . . . , 1)T with

n
∑

i=1

ixi =

n
∑

i=1

iyi. (3.43)

The first two equations in (3.43) imply that

Ji(x) = ξJi(y) for all 1 ≤ i ≤ n, where ξ := γ/η. (3.44)

We substitute for the fluxes starting from i = n with Jn(z) = anzn giving

xn = ξyn. (3.45)

Now we go backwards using (3.31), i.e Ji(z) := aizi − bi+1Rzi+1/λ(z) where λ(z) = z1/ND(z).
For i = n− 1 equation (3.44) states that

an−1xn−1 −
bnR

λ(x)
xn = an−1ξyn−1 −

bnR

λ(y)
ξyn.

Define κ := λ(x)/λ(y) so that this equation becomes

an−1xn−1 −
bnR

λ(x)
xn = an−1ξyn−1 − κ

bnR

λ(x)
ξyn.

Next we substitute for ξyn by using (3.45) and rearrange the result while eliminating the quotient
bn/an−1 with the first relation in (1.29) to give

ξyn−1 = xn−1 +
(κ− 1)

κ

(

κ

λ(x)

)

bnR

an−1
xn = xn−1 +

(κ− 1)

κ

(

κR

λ(x)

)

Qn−1

Qn
xn. (3.46)
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For i = n− 2 equation (3.44) leads to

an−2xn−2 −
bn−1R

λ(x)
xn−1 = an−2ξyn−2 −

bn−1R

λ(y)
ξyn−1.

We again write λ(y) in terms of κ and use the first equation in (1.29) to obtain

ξyn−2 = xn−2 +

(

κR

λ(x)

)

Qn−2

Qn−1
ξyn−1 −

1

κ

Qn−2

Qn−1

(

κR

λ(x)

)

xn−1.

Using (3.46) to substitute for ξyn−1 and simplifying the result give

ξyn−2 = xn−2 +
(κ− 1)

κ

[

(

κR

λ(x)

)

Qn−2

Qn−1
xn−1 +

(

κR

λ(x)

)2 Qn−2

Qn
xn

]

. (3.47)

The above procedure is repeated for i = n− 3, n− 4, . . . , 1. We obtain the general formula

ξyi = xi +
(κ− 1)

κ

n
∑

j=i+1

(

κR

λ(x)

)j−i Qi

Qj
xj , 1 ≤ i ≤ n− 1. (3.48)

By summing (3.48) from 1 to n− 1 and adding the result to (3.45) we obtain

ξND(y) = ND(x) +
(κ− 1)

κ

n−1
∑

i=1

n
∑

j=i+1

(

κR

λ(x)

)j−i Qi

Qj
xj.

Dividing this equation by ND(x) and using the definition (3.31) of λ for each of the solutions x
and y together with κ = λ(x)/λ(y), we obtain

κξy1 = x1 +
(κ− 1)λ(x)

κ

n−1
∑

i=1

n
∑

j=i+1

(

κR

λ(x)

)j−i Qi

Qj
xj. (3.49)

Inserting (3.48) for i = 1 into this formula and rearranging the result give

(κ− 1)

[

x1 +

n
∑

j=2

(

κR

λ(x)

)j−1 Q1

Qj
xj

]

=
(κ− 1)λ(x)

κ

n−1
∑

i=1

n
∑

j=i+1

(

κR

λ(x)

)j−i Qi

Qj
xj.

Now we change the order of summation in the right-hand side and simplify the result into

(κ− 1)



x1 +
λ(x)

κR

n
∑

j=2

(

κR

λ(x)

)j 1

Qj

(

Q1 −
j−1
∑

i=1

(

λ(x)

κR

)i

RQi

)

xj



 = 0. (3.50)

This equation is satisfied if either κ = 1 or if the term in square brackets is equal to zero. Since
we are interested only in situations where x1 > 0, then for a given R > 0 the latter case requires
that

λ(x)

κR

n
∑

j=2

(

κR

λ(x)

)j 1

Qj

(

Q1 −
j−1
∑

i=1

(

λ(x)

κR

)i

RQi

)

xj < 0, for all n.

43



CHAPTER 3. STEADY-STATE SOLUTIONS

For n = 2 this gives the inequality
λ(x)

κ
> 1,

or equivalently after substituting for κ we have

λ(x) >
λ(x)

λ(y)
.

This leads to
λ(y) =

y1
ND(y)

=
y1

y1 + y2
> 1, (3.51)

which is satisfied only if y2 < 0. This contradicts the requirement of positive solutions. Thus
(3.50) can only be solved if κ = 1. Equation (3.45) and (3.48) for κ = 1 imply that

ξyi = xi for all 1 ≤ i ≤ n. (3.52)

Finally we use the mass conservation condition in (3.43) to obtain ξ = 1 and therefore

xi = yi for all 1 ≤ i ≤ n.

This gives the uniqueness result.

Now we want to determine the formula for the unique steady-state solution which is denoted by
zs,M . It is given by, see Appendix B.2

zs,Mi = JMQi (λ/R)i
n
∑

r=i

1

arQr(λ/R)r
, λ :=

zs,M1

ND(zs,M )
, (3.53)

where the common flux JM is obtained by setting i = 1 in the above equation and using Q1 = 1.
This gives

JM = zs,M1

(

n
∑

r=1

1

arQr(λ/R)r−1

)−1

. (3.54)

Unlike the constant free molecule model, the value for zs,M1 is not yet specified for the mass-
conserving model. In the following we determine its value together with the parameter λ.
Summing both sides of (3.53) from 1 to n and simplifying the result, we obtain

n
∑

i=1

1

arQr(λ/R)r−1
= λ

n
∑

i=1

Qi (λ/R)i
n
∑

i=1

1

arQr(λ/R)r
. (3.55)

Changing the order of summation on the right-hand side leads to

fn(λ) :=

n
∑

r=1

1

arQr(λ/R)r−1

(

1−
r
∑

i=1

RQi (λ/R)i

)

= 0. (3.56)

Clearly there exists a solution λ ∈]0, 1] satisfying (3.56) since

fn(λ) → +∞ for λ → 0,
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and

fn(1) < 0 due to Q1 = 1 and Qi > 0 for 2 ≤ i ≤ n.

For a given R > 0 we fix the value of n and calculate λ from (3.56). Multiplying (3.53) by i,
summing the result from 1 to n and using the conservation relation (3.29) we can calculate the
value of zs,M1 from

zs,M1 = ρ

(

n
∑

i=1

1

arQr(λ/R)r−1

)(

n
∑

i=1

iQi (λ/R)i
n
∑

r=i

1

arQr(λ/R)r

)−1

. (3.57)

In summary we have obtained the result

Theorem 3.2.4. The system (3.41) has a unique steady state solution given by (3.53) - (3.57).

3.2.3 The limiting steady-state solutions for the modified mass-conserving
model

We point out that Dreyer and Duderstadt [16] have already discussed the limiting case for the
equilibrium solutions in the modified mass-conserving model. In their discussions they concluded
that in the limit n → ∞ the solution z̄M given by (3.37) exists only if the supersaturation ratio
S satisfies S ≤ 1/(1 − ε), where ε :=

∑∞
i=2 exp(−ãi2/3) for ã = γ/(kT ).

Thus our discussion here concerns only the non-equilibrium distribution (3.53) - (3.57). We
consider equation (3.56) in the limit n → ∞ as

∞
∑

r=1

1

arQr(λ/R)r−1

(

1−
r
∑

i=1

RQi (λ/R)i

)

= 0

In a similar way to the analysis used in Section 3.1.3 we note that, the series

∞
∑

r=1

1

arQr(λ/R)r−1

is convergent only if λ/R > 1. On the other hand in the limit r → ∞, the sum
∑r

i=1RQi (λ/R)i

converges only for λ/R ≤ 1. However, this contradicts the first requirement. Therefore there
are no non-equilibrium solutions for the infinite system.

3.3 Comparison of the steady states from the two models

Here we give a quantitative and qualitative comparison between the equilibrium and non-
equilibrium steady-state solutions for the constant free molecule and modified mass-conserving
models studied in the previous sections.

45



CHAPTER 3. STEADY-STATE SOLUTIONS

3.3.1 Equilibrium distributions

The equilibrium distribution z̄F for the constant free molecule model is given in (3.11) and (3.12)
as

z̄Fi = QiRN̄F
D

(

1

Rqin

)i

, for i ≥ 2 and z̄F1 = µ,

N̄F
D =

µ

1−R
∑n

i=2 Qi (1/Rqin)i
, Qi =

i
∏

r=2

ar−1

br
, i ≥ 2.

By using the last equation in (1.29) this distribution can be written as

z̄Fi = N̄F
Dqi/

(

qin
)i
, for i ≥ 2 and z̄F1 = µ,

N̄F
D =

µ

1−∑n
i=2 qi/ (q

in)i
, qi = exp(−Ai/kT ), i ≥ 2,

where Ai is given by (2.12), that is, Ai = −i lnS + γi2/3 and qin = exp (−mgv(T, p0)/kT ). The

constant γ is given by γ = (36π)1/3V
2/3
1 σ. We point out that the equilibrium distribution z̄F

has a minimum at some i∗ given by

i∗ =

(

2γ

3kT ln (S/qin)

)3

, (3.58)

which is different from the critical cluster predicted by the Thomson formula 2.16.

Similarly, by using the last equation in (1.29), the equilibrium distribution z̄M for the modified
mass-conserving model is obtained from (3.38) - (3.40) as

z̄Mi = z̄M1 λi−1qi, 1 ≤ i ≤ n,
n
∑

i=1

λiqi = 1, qi = exp(−Ai/kT ),

z̄M1 = ρ

[

n
∑

i=1

iλi−1qi

]−1

.

In both models the equilibrium flux is equal to zero. The zero flux truncation is therefore not
interesting since it implies zero steady-state nucleation rates. Figure 3.1 shows the equilibrium
distributions z̄F and z̄M obtained from the above equations. For the constant free molecule
model we have taken µ = z̄F = 1 while we have used ρ = 1 for the mass-conserving case. For
the different parameter values involved we used the values for water given in Table 3.1 which
were taken from steam tables by Wagner and Kretzschmar [66]. We observe that for S = 4.0 the
equilibrium distribution z̄F has a minimum at i∗ = 72 which is not identical to the value icrit = 69
obtained by the Thomson formula (2.16). For the mass-conserving equilibrium distribution z̄M

there exists a minimum exactly at the critical size cluster obtained independently by (2.16).
As predicted by the Thomson formula (2.16) the minima of equilibrium distributions depend
strongly on the supersaturation ratio S. The size of the critical cluster increases with a decrease
in supersaturation. At S = 1 the critical cluster will have an infinite size. Therefore in this
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Figure 3.1: Equilibrium cluster distributions for water vapor at 290K predicted by the two
models with zero flux truncation: (a) S = 4.0, (b) S = 0.8.
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Table 3.1: Values of various quantities used for calculation of different dependencies for nucle-
ation of water droplets in vapor.

Quantity T = 290K T = 300K T = 310K T = 320K

m(kg) 3× 10−26 3× 10−26 3× 10−26 3× 10−26

v0(nm
3) 0.03 0.03 0.03 0.03

p̄(kPa) 1.9 3.5 6.2 10.6
σ(mJ/m2) 73.2 71.5 69.9 68.3

αi 1 1 1 1

case there will be no nucleation since the new phase is only formed when clusters grow beyond
the critical size. For S = 0.8 the equilibrium distributions decrease monotonically with cluster
sizes. The results show that there are hardly any bigger clusters in the system at such a low
saturation.

3.3.2 Non-equilibrium steady-state distributions

The non-equilibrium steady-state distribution for the constant free molecule model is given by
(3.24) - (3.26) while equations (3.53) - (3.57) define that for the modified mass-conserving model.
By using the last equation in (1.29) to substitute for Qi(1/R)i−1 in the relevant formulae for
the constant free molecule model, we get

zs,F1 = α, zs,Fi = JF qi/
(

qin
)i

n
∑

r=i

1

arqr/ (qin)
r , 2 ≤ i ≤ n,

JF = zs,F1

(

1

a1
+ λ̄

n
∑

r=2

1

arqr/ (qin)
r

)−1

, λ̄ =
zs,F1

ND(zs,F )
,

where λ̄ is calculated from

λ̄2
n
∑

r=2

1

arqr/ (qin)
r + λ̄

[

1

a1
−

n
∑

r=2

1

arqr/ (qin)
r

(

1−
r
∑

i=2

qi/
(

qin
)i

)]

− 1

a1
= 0.

Similarly, the modified mass-conserving model gives

zs,Mi = JMqiλ
i

n
∑

r=i

1

arqrλr
, λ =

zs,M1

ND(zs,M )
,

JM = zs,M1

(

n
∑

i=1

1

arqrλr−1

)−1

,

zs,M1 = ρ

(

n
∑

i=1

1

arqrλr−1

)(

n
∑

i=1

iqiλ
i

n
∑

r=i

1

arqrλr

)−1

.
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For fixed S and n, the parameter λ is calculated from

fn(λ) :=
n
∑

r=1

1

arqrλr

(

1−
r
∑

i=1

qiλ
i

)

= 0.

 

 

zs,M
zs,F

L
og

1
0
(z

s
)

i (number of monomers in cluster)
0 40 80 120 160 200

−25

−20

−15

−10

−5

0

(a)

 

 

zs,M
zs,F

L
og

1
0
(z

s
)

i (number of monomers in cluster)
0 40 80 120 160 200

−150

−100

−50

0

(b)

Figure 3.2: Steady-state cluster distributions for water vapor at 290K predicted by the two
models with zero particle number truncation: (a) S = 4.0, (b) S = 0.8.

Figure 3.2 shows the constant free molecule steady-state distribution zs,F and the mass-conserving
one zs,M . For these plots we have used µ = zs,F1 = 1, ρ = 1 and all other parameters are taken
from Table 3.1. We observe from Tables 3.2 and 3.3 that the constant free molecule model
predicts slightly lower nucleation rates JF than the mass-conserving ones JM . Their orders of
magnitude differ much more at T = 320K than at T = 290K. We also observe that the values
of λ̄ = zs,F1 /N(zs,F ) and λ = zs,M1 /N(zs,M ) are very close to 1 for both models. From a physical
point of view this actually means that in a steady state there are very few large clusters. The
solution is dominated by the free molecules which can also be clearly seen in the logarithmic
plots in Figure 3.2. The results show that the nucleation rates are very low for small super-
saturations. For under-saturated systems, the nucleation rates are equal to zero. This means
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Table 3.2: Nucleation rates predicted by the two models at T = 290K for zs1,B = N = 1, ν = 200

S i∗ icrit λ̄ λ JB/s
−1 JM/s−1

2 594 554 0.999995 0.999995 5.72 × 10−60 1.25 × 10−58

3 145 139 0.999988 0.999988 3.64 × 10−27 3.32 × 10−26

4 72 69 0.999978 0.999978 3.35 × 10−14 9.92 × 10−14

5 46 44 0.999966 0.999965 1.50 × 10−08 2.98 × 10−08

6 33 32 0.999950 0.999949 2.13 × 10−05 3.48 × 10−05

Table 3.3: Nucleation rates predicted by the two models at T = 320K for zs1,B = N = 1, ν = 200

S i∗ icrit λ̄ λ JB/s
−1 JM/s−1

2 561 335 0.999968 0.999963 9.95 × 10−49 1.32 × 10−38

3 115 84 0.999925 0.999904 1.11 × 10−17 2.16 × 10−12

4 54 42 0.999863 0.999815 2.03 × 10−07 8.45 × 10−05

5 33 27 0.999780 0.999695 3.95 × 10−03 1.89 × 10−01

6 24 19 0.999671 0.999536 8.66 × 10−01 1.45 × 10+01

that the steady-state distributions for both models are actually the equilibria at such saturation.
This is depicted by the results in Figures 3.1(b) and 3.2(b).

Remark 3.3.1. For finite systems, it would be reasonable to calculate the steady-state con-
centration f1 of free molecules for the standard Becker-Döring model by multiplying the second
equation in (1.14) by i and summing the result from 1 to n. This would lead to

n
∑

i=1

1

aiQif i
1

(

ρ−
i
∑

r=1

rQrf
r
1

)

= 0.

However, like in the previous analysis, this equation would not be solvable in the limit n → ∞,
since it would lead to contradictory requirements f1 > 1 and f ≤ 1 for the two sums in the
equation. This explains why the boundary condition f1 = µ in (1.14) is necessary.

Burton [7] assumed that in a steady state the system has not consumed a sufficient number of free
molecules. In his consideration the parameter µ represents the initial equilibrium concentration
of free molecules. In the two thermodynamically consistent models considered here, Burton’s
assumption translates into the assumption that λ̄ = λ ≈ 1, which is justified by the results in
Tables 3.2 and 3.3.
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3.4 Nucleation rates for the modified mass-conserving model

Based on the results in Remark 3.3.1 we derive expressions for the nucleation rates from the
thermodynamically consistent mass-conserving model. We study the liquid-vapor systems and
the crystallization process introduced in Chapter 2.

3.4.1 The liquid-vapor system

We consider the steady-state flux JM given in (3.54) and assume that λ ≈ 1 according to Remark
3.3.1. This gives

JM = zs,M1

(

n
∑

r=i

1

arQr(1/R)r−1

)−1

.

Next we use the last equation in (1.29) to get

JM ≈ zs1

[ n
∑

i=1

1

aiqi

]−1

, qi = exp(−Ai/kT ),

where ai = Ci, with Ci given in (2.7). Dividing the right-hand side by the total steady-state
volume V

T
, the above approximation is exactly equal to J in (2.25) since q1 = 1. In this case

zs1 has units of concentration. Therefore by following the same simplification steps which were
used to derive the classical nucleation rates JCNT (2.37), we obtain the same formula for the
thermodynamically consistent mass-conserving model, i. e.

JM ≈ JCNT . (3.59)

Next we incorporate an inert gas into the liquid-vapor system.

3.4.2 The liquid-vapor-inert gas system

We recall that in this case the fluxes are given by (2.86) as

Ji(z(t)) = aizi(t)
z1(t)

z1(t) + z0
− bi+1R

ND(t)

z1(t) + z0
zi+1(t), ND(z(t)) =

n
∑

i=0

zi(t),

where z0 represents the inert gas molecules. Now we determine the non-equilibrium steady-state
distribution with the above fluxes, starting with Jn = anz

s
nz

s
1/(z0 + zs1). This has already been

done in Section 3.2.2 for the case z0 = 0. The steady-state distribution zs is given by

zsi = Js

(

zs1 + z0
zs1

)

Qi(λ/R)i
n
∑

r=i

1

arQr(λ/R)r
1 ≤ i ≤ n, where λ =

zs1
ND(zs)

. (3.60)

The steady-state flux is obtained by setting i = 1 and using Q1 = 1. This gives

Js =
(zs1)

2

zs1 + z0

(

n
∑

r=1

1

arQr(λ/R)r−1

)−1

. (3.61)
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Using the distribution (3.60) and the definition of λ, we note that

λND(z
s) = λz0 + λJs

(

zs1 + z0
zs1

) n
∑

i=1

Qi(λ/R)i
n
∑

r=i

1

arQr(λ/R)r
.

By substituting for Js we obtain

zs1 = λz0 + zs1λ

(

n
∑

r=1

1

arQr(λ/R)r−1

)−1 n
∑

i=1

Qi(λ/R)i
n
∑

r=i

1

arQr(λ/R)r
,

which is equivalent to

zs1

[

n
∑

r=1

1

arQr(λ/R)r−1
− λ

n
∑

i=1

n
∑

r=i

Qi(λ/R)i

arQr(λ/R)r

]

= λz0

(

n
∑

r=1

1

arQr(λ/R)r−1

)

. (3.62)

Using the mass-conservation condition and (3.29) we observe that

ρ = z0 + zs1

(

n
∑

r=1

1

arQr(λ/R)r−1

)−1 n
∑

i=1

iQi(λ/R)i
n
∑

r=i

1

arQr(λ/R)r
. (3.63)

We then substitute for zs1 by using (3.62) to obtain

ρ

[

n
∑

r=1

1

arQr(λ/R)r−1
− λ

n
∑

i=1

n
∑

r=i

Qi(λ/R)i

arQr(λ/R)r

]

= z0

[

n
∑

r=1

1

arQr(λ/R)r−1
+ λ

n
∑

i=1

n
∑

r=i

(i− 1)Qi(λ/R)i

arQr(λ/R)r

]

.

When z0 = 0, this equation and (3.62) lead to the steady state condition

n
∑

r=1

1

arQr(λ/R)r
− λ

n
∑

i=1

n
∑

r=i

Qi(λ/R)i

arQr(λ/R)r−1
= 0,

which was already derived in (3.55).

It was shown earlier that the non-equilibrium distribution is only restricted to finite systems. In
the limit n → ∞, the steady-state number ND(z

s) is divergent. We therefore use the common
assumption that in the steady state the system has not yet consumed a sufficient number of free
molecules. In this case the parameter λ becomes

λ ≈ zs1
z0 + zs1

=: ωs. (3.64)

We again denote by S the supersaturation ratio of the vapor in the system. Then by definition
we now have

S =
pv

p(T )
=

ωsp0
p(T )

. (3.65)
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With Qi(1/R)i−1 = qi, the steady state flux (3.61) then becomes

Js ≈ zs1

[

1

a1
+

∞
∑

i=2

1

aiqi

]−1

, qi = Si exp(−γ i2/3/kT ). (3.66)

Next we follow the simplifying procedure used to derive JCNT in (2.37). This leads to

Js ≈ aicrit
zs1
3
i
−2/3
crit

(

γ

kTπ

)1/2

exp

( −4γ3

27k3T 3(lnS)2

)

=: Js2 (3.67)

With aicrit = Cicrit we use (2.7) and (2.11) to substitute for aicrit and γ respectively. We obtain

Js2 = αicritz
s
1

(

V1p0
kT

)(

2σ

πm

)1/2

exp

( −4ϑ3V 2
1 σ

3

27k3T 3(lnS)2

)

. (3.68)

This approximation gives the number of nuclei formed per second. We can change the units
of the nucleation rates by diving (3.68) by the total volume VT in the steady state. Since the
system is assumed to be dominated by free molecules together with the inert gas, the total
volume is approximately equal the volume of the vapor phase. Therefore we can use (2.56) to
approximate the quotient zs1/VT . This gives

Js ≈ αicritV1ω
s
( p0
kT

)2
(

2σ

πmw

)1/2

exp

( −4ϑ3V 2
1 σ

3

27k3T 3(lnS)2

)

=: JSW .

By using pv = ωsp0, this approximation can equivalently be written as

JSW = αicrit

V1

ωs

( pv
kT

)2
(

2σ

πmw

)1/2

exp

( −4ϑ3V 2
1 σ

3

27k3T 3(lnS)2

)

=
1

ωs
JCNT . (3.69)

The formula now gives the number of nuclei formed per second per unit volume. Setting ωs = 1
yields the classical nucleation rate JCNT .

It is important to note here that when calculating nucleation rates in the presence of an inert
gas, the same formula JCNT in (2.37) is used in various literature with p0 replaced by pv, see
for instance Wölk and Strey [71]. However, we observe that in addition to these changes for
pressure, the new formula JSW in (3.69) multiplies JCNT by the reciprocal of the vapor fraction
ωs. Therefore JSW gives a correction for JCNT if ωs 6= 1.

3.4.3 Crystal nucleation process

Here the fluxes are given in (2.87) as

Ji(z(t)) = aizi(t)z1(t)− bi+1RND(t)zi+1(t).

The steady-state distribution is given by

zsi =
Js

zs
Qi(λ/R)i

n
∑

r=i

1

arQr(λ/R)r
where λ =

zs1
ND(zs)

,

53



CHAPTER 3. STEADY-STATE SOLUTIONS

with the steady-state flux

Js = (zs1)
2

(

n
∑

r=1

1

arQr(λ/R)r−1

)−1

. (3.70)

Similar to the discussions in the previous section, we can use the approximation

λ ≈ ωs =
zs1

z0 + zs1
.

Then with Qi(1/R)i−1, the steady state flux Js in (3.70) becomes

Js = zs1(z
s
1 + z0)

[

1

a1
+

n
∑

i=2

1

ajqj

]−1

, qj = S̄i exp(−γ i2/3/kT ). (3.71)

The supersaturation ratio S̄ is now given by

S̄ := ωs exp

(

mc∆T∆h

kTTe

)

. (3.72)

An approximation for (3.71) similar to the derivation of (3.69), is given by

Js ≈ αi
(zs1)

2

ωs

(

2V1D

d1

)

( σ

kT

)1/2
exp

( −4ϑ3V 2
1 σ

3

27k3T 3(ln S̄)2

)

=: JCRY . (3.73)

We can use the molecular volumes V1 and Vw of solute and solvent molecules respectively to
approximate the concentration of free molecules via

[zs1] =
zs1
VT

≈ zs1
zs1V1 + zwVw

=
1

V1 +
zw
zs1

Vw

,

where the square brackets represent the concentration. By using ωs = zs1/(zw + zs1) we can
eliminate the quotient zw/z

s
1 to get

[zs1] ≈
1

V1 +

(

1

ωs
− 1

)

Vw

. (3.74)

A similar approximation was used by Kashchiev [27, p. 153] for crystallization in melts, where
ωs = 1. Furthermore, by assuming a spherical shape for free molecules we can write

d1 ≈
(

6V1

π

)1/3

.

The nucleation rate JCRY in (3.73) then becomes

JCRY ≈ αicrit

1 +

(

1

ωs
− 1

)

Vw

V1

(

D

ωsV1

)(

4π

3V1

)1/3 ( σ

kT

)1/2
exp

( −4ϑ3V 2
1 σ

3

27k3T 3(ln S̄)2

)

. (3.75)

For ωs = 1, a similar equation was reported in Kashchiev and Rosmalen [28] for interface
controlled condensation rates. With S̄ from (3.72), the flux JCRY in (3.75) is equivalent to

JCRY ≈ αicrit

1 +

(

1

ωs
− 1

)

Vw

V1

(

D

ωsV1

)(

4π

3V1

)1/3 ( σ

kT

)1/2
exp

( −4ϑ3V 2
1 T

2
e σ

3

27kT (mc∆T∆h)2

)

. (3.76)
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3.5 Comparison with experiments

Here we compare the nucleation rates derived in the previous section with some of the available
experimental data. We include results for homogeneous nucleation in liquid-vapor-inert gas
systems as well as crystallization in melts. In all the examples we assume that clusters have a
spherical shape so that we use ϑ = (36π)1/3 in all the relevant formulas.

3.5.1 The liquid-vapor-inert gas system

In this section we consider the nucleation of liquid droplets in vapor in the presence of an inert
gas. We use two examples one of which concerns water vapor nucleation and the other on
nucleation of Argon.

Homogeneous nucleation of water vapor

Here we set αicrit = 1 and compare the nucleation rates JCNT obtained by using (2.37), JC from
(2.38), JGC from (2.39) and JSW from (3.69) with experimental data taken from Wölk and
Strey [71] and from Brus et al. [6]. Figure 3.3 shows nucleation rates for light water in Argon at
different temperatures as functions of supersaturation. We observe that JC and JGC give similar
values which are both lower than JCNT . On the other hand, the new nucleation rate JSW gives
higher values than any of the other three formulae. The values of JCNT are the closest ones to
the experimental data. A nearly perfect agreement of JCNT with the experiment is found near
240K. At 220K, the rates JCNT , JC and JGC all give lower values than the experimental data
while JSW predicts higher values. We observe in Figure. 3.4 at higher temperatures that all the
different formulae predict higher values than the experimental data.

220K230K240K250K260K

J
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−
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Figure 3.3: Comparison of the experimental nucleation rates Jexp (circles) for light water with
prediction of nucleation theory, data obtained from Wölk and Strey [71]. Star (∗): JC using
formula (2.38) calculated for temperatures of 260, 250, 240, 220 and 220K. Solid lines represent
JCNT in (2.37), which is equivalent to JM in (3.59). Dotted lines represent JSW from formula
(3.69) while dashed dotted lines are for JGC from (2.39), calculated at the same temperatures.
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Figure 3.4: Experimental nucleation rates Jexp as a function of saturation ratio S for water,
obtained from Brus et al. [6]. Symbols, from left to right: diamonds - 320K, triangles - 310K,
circles - 300K, and squares - 290K. Star (∗): JC from formula (2.38), calculated for the tem-
peratures of 320, 310, 300 and 290K. Solid lines: JCNT from (2.37), which is equivalent to JM
in (3.59). Dotted lines: JSW , given by formula (3.69). Dashed dotted lines: JGC , from formula
(2.39).

Based on Figures 3.3 and 3.4, our new formula JSW predicts higher nucleation rates than the
experiments at all the temperatures considered. To correct this we require a multiplicative factor
which is less than one. A physically meaningful candidate is a sticking coefficient αicrit ∈]0, 1].
Here αicrit < 1 reflects the possibility that not all collisions of free molecules with a given cluster
result in its growth. Moreover for the experimental data we considered, only our new formula
allows correction with a sticking coefficient at all temperatures. The other formulae predict
lower rates than the experiments at 220K so that a sticking coefficient would even lower them
further. We first consider the case where this coefficient depends only on the temperature T so
that we may write the general formula as

JSW = αicrit(T )
1

ωs
JCNT . (3.77)

We point out that we have not found experimental values of sticking coefficients for vapor to
liquid transitions. There are few substances whose sticking rates were measured experimentally.
For instance, Kashchiev [27, p. 266] reported sticking coefficient values for ice (2 × 10−3) and
NaPO3 crystal nuclei (2 × 10−6). In Stoyanova et al. [62], values of αicrit less than 10−6 were
reported for freezing of water droplets.

We therefore determine values of αicrit by making a least squares fit of JSW to the experimental
data. Table 3.4 shows the values of αicrit obtained at different temperatures. For the experi-
mental data obtained from Wölk and Strey [71], the values of α are of orders of 10−3. On the
hand, for the data from Brus et al. [6], αicrit has orders of 10

−5 and 10−6.
Figures 3.5 and 3.6 show the fitted results, with dotted lines, for the two different data sets.
However the slope of the experimental data is not well represented by the fitted values. For this
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Table 3.4: Temperature dependence of the sticking coefficient αicrit

T/K αicrit

220 8.5 ×10−3

230 6.3 ×10−3

240 4.6 ×10−3

250 3.8 ×10−3

260 5.1 ×10−3

(a)

T/K αicrit

290 1.3 ×10−5

300 3.5 ×10−6

310 1.7 ×10−5

320 5.6 ×10−5

(b)

reason we now consider a dependence of the sticking coefficients on both the temperature T and
the size icrit of the critical cluster. According to the Thomson formula (2.16), the size of the
critical cluster depends on the temperature T . For simplicity we assume that

αicrit := β2i
β1

crit, (3.78)

where the constants β1 and β2 are to be determined from the experimental data. The nucleation
rates then become

JSW = β2i
β1
crit

1

ωs
JCNT . (3.79)

Figures 3.7 and 3.8 show the variation of sticking coefficients with the critical size for data taken
from Wölk and Strey and from Brus et al. respectively. We observe that for each temperature
the sticking coefficient increases with increase in the the size of the critical cluster which seems
reasonable. In Figure 3.7, there is in general a decrease in sticking coefficients with increase in
temperature except for T = 260K. The same trend is observed in Figure 3.8 from 290 to 300K.
Moreover the values of the sticking coefficients lie between 10−7 and 10−1, just like in Table 3.4.
With the new dependence of the sticking coefficients on size, we observe from Figures 3.5 and
3.6 that the slope of the experimental nucleation rates is now well captured, see the solid lines.

Homogeneous nucleation of Argon

We set αicrit = 1 and compare the results of JCNT and JSW with experimental data from Sinha
et al. [57]. Argon nucleation rates of 1016 − 1018 cm3s−1 were registered from experiments.
Figure 3.9 shows a Wilson plot for the experimental data and theory. We observe that JCNT

predicts higher pressure values than the experiments for the above nucleation rates. Put in a
different way, we observe that JCNT predicts lower nucleation rates of 100 − 109 cm3s−1 for the
experimental values of pressure and temperature. By using our new corrected rates JSW , we
obtain a slight improvement on the discrepancy between experiment and theory. The pressure-
temperature region is now closer to the experimental values.

3.5.2 Crystallization process

Here we consider an example of melt crystallization where ωs = 1. Usually the solid-liquid
interfacial energy σ is not known for crystallization processes. Therefore most experiments are
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Figure 3.5: Experimental nucleation rates Jexp (circles) as a function of saturation ratio S for
light water, obtained from Wölk and Strey [71]. Dotted lines represent fitted values for JSW
from formula (3.77) calculated at the given temperatures. Fit parameters are given in Table 3.4
(a). Solid lines represent fitted values of JSW using formula (3.79) for size dependent sticking
coefficients shown in Figure 3.7.
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Figure 3.6: Experimental nucleation rates Jexp as a function of saturation ratio S for water,
obtained from Brus et al. [6]. Symbols, from left to right: diamonds - 320K, triangles - 310K,
circles - 300K, and squares - 290K. Dotted lines represent fitted values for JSW from formula
(3.77) calculated at the given temperatures. Fit parameters are given in Table 3.4 (b). Solid
lines represent fitted values of JSW using formula (3.79) for size dependent sticking coefficients
shown in Figure 3.8
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Figure 3.7: Sticking coeffient as a function of the critical cluster size using formula (3.78), data
from Wölk and Strey [71].
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from Brus et al. [6]. Symbols: diamonds - 320K, triangles - 310K, circles - 300K, and squares -
290K.
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Figure 3.9: The data from Sinha et al. [57] (diamonds) is compared with the prediction of
JCNT from formula (2.37) and JSW given by formula (3.69). The dashed lines correspond to
the indicated constant nucleation rates calculated by using JCNT . The light shaded region
corresponds to the pressure and temperature predicted by JCNT for the estimated nucleation
rates of the experiments. The dark shaded region corresponds to pressure and temperature
predicted by JSW for the given experimental rates.

carried out in order to determine its value together with the pre-exponential factor

A :=

(

D

V1

)(

4π

3V1

)1/3
( σ

kT

)1/2
(3.80)

which appears in the nucleation rate formula (3.76). We compare the nucleation rates JCRY

in (3.76), for ωs = 1, with experimental nucleation data for Gallium taken from Miyazawa and
Pound [38]. By considering two sets of experiments at T = −68.5,−69.5,−70.0 and −71.30C,
they obtained the following composite nucleation rate formula

Jexp = 1039.8 exp

(

− 1.54

T (∆T )2
× 108

)

cm−3s−1. (3.81)

They reported a value of σ = 0.0677Nm−1. We use this value and Table 3.5 to determine the
pre-exponential factor predicted by (3.80), with D calculated from (2.83). The experimental
temperatures lead to an average value of A = 1032.5. Therefore for Gallium, the nucleation rate
(3.76) becomes

JCRY = 1032.5 exp

(

− 1.54

T (∆T )2
× 108

)

cm−3s−1. (3.82)

It is clear that the experimental nucleation rate Jexp in (3.81) exceeds JCRY by a factor of about
107. Kelton [29, p. 122] reported a similar discrepancy for Mercury.

60



3.5. COMPARISON WITH EXPERIMENTS

Table 3.5: Values of various quantities used for calculation of different dependencies for Gallium
nucleation. Data taken from Gale and Totemeir [20].

Quantity Value

mc(kg) 1.16 × 10−25

Te(K) 302.9
∆h(Jkg−1) 8.02 × 104

ρ(kgm−3) 6.10 × 103 − 0.56 ∗ (T − Te)
η 0.4359 × exp

(

4.0 × 103/(8.314T )
)
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Chapter 4

Existence and uniqueness of
solutions

In this chapter we study the existence and uniqueness of solutions for the general thermodynami-
cally consistent mass-conserving Becker-Döring model (2.85) - (2.88) which includes a parameter
z0 representing the number of molecules of some inert substance. The important point to note
here is that the reciprocal (z0 + z1)

−1 appears in the flux (2.86). Therefore we have a finite
or infinite system of ordinary differential equations with a singularity in the right-hand side.
It must be shown that under appropriate initial conditions this singularity is avoided by the
solutions. It is clear that there is no singularity in the fluxes if z0 > 0. We discuss the solutions
for two different cases. One is the case z0 > 0 which shows that there is an inert substance in
the given system. The second case z0 = 0 was solved by Hermann et al. [24] by using the fluxes
in (2.87). They transformed the model with fluxes in (2.86) to the one with those in (2.87) by
using the time scale τ , defined here as, τ(t) :=

∫ t
0 z1(s) ds. However, this transformation gives a

solution for the desired flux case (2.86) for all times t > 0 only if the following three conditions
are satisfied

z1(t) > 0 for all t < ∞, τ(0) = 0, and τ(t) → ∞ for t → ∞. (4.1)

The solutions constructed by Hermann et al. [24] satisfy the first two conditions. The third
one requires the existence of a uniform lower bound on z1(t) or knowledge of the decay of z1(t)
as t → ∞. In particular, z1(t) must not go to zero faster than 1/t. They showed that under
some conditions, the solution z(t) tends to zero as t → ∞. Unfortunately, they did not discuss
the behavior of the decay of z1(t). For this reason we include the existence and uniqueness of
solutions to the model for z0 = 0 and fluxes given by (2.86). In Section 4.1 we introduce the
appropriate functional spaces and state some of the results which are essential for the following
sections. Section 4.2 contains the existence of solutions. We distinguish between the two cases
z0 = 0 and z0 > 0. We discuss the uniqueness of solutions for the two cases in Section 4.3.
Finally, in Section 4.4 we discuss the existence of equilibria for the model.

4.1 Function spaces

We are interested in solutions for which the total mass remains finite for all time. Let N0 denote
the set of natural numbers including zero, that is, N0 := N∪{0}. Like Ball et al. [4] we introduce
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the Banach sequence space

X = {z = (zi)i∈N0 ⊆ R : ‖z‖ < ∞}, where ‖z‖ = |z0|+
∞
∑

i=1

i|zi|. (4.2)

We write z ≥ 0 if zi ≥ 0 for all i ∈ N0 . We choose ρ ≥ 0 and set

X+ = {z ∈ X : z ≥ 0} and X+
ρ = {z ∈ X+ : ‖z‖ = ρ}. (4.3)

Theorem 4.1.1. The Banach space X can be identified with the dual space Y∗ of the space

Y = {y = (yi)i∈N0 ⊆ R : lim
i→∞

yi
i
= 0}, with norm ‖y‖Y = max

i≥1

{

|y0|,
|yi|
i

}

. (4.4)

The duality pairing of X and Y is defined as

〈y, z〉 =
∞
∑

i=0

ziyi. (4.5)

The proof of this theorem can be done similarly to the results by Naldzhieva [42] by making the
transformation zi → zi+1 and noting that

‖z‖X = |z1|+
∞
∑

i=2

(i− 1)|zi| and ‖z‖Y = max
i≥2

{

|y1|,
|yi|
i− 1

}

. (4.6)

The details of the proof are given in Appendix C.1.

Lemma 4.1.2 (Ball, Carr and Penrose). A sequence z(n) of elements of X converges weak∗ to
z ∈ X, we write z(n) ⇀∗ z, if and only if

(i) z
(n)
i → zi as n → ∞ for each i ∈ N0 and

(ii) supn∈N0
‖z(n)‖X < ∞.

The proof can be constructed by using the transformation zi → zi+1 and the norms in (4.6). We
can easily adapt the results in Naldzhieva [42] to construct the proof. This is done in Appendix
C.1

Definition 4.1.3 (Ball, Carr and Penrose). Let E ⊂ X. A function θ : E → R is sequentially
weak∗ continuous if for z(n), z ∈ E with z(n) ⇀∗ z, θ(z(n)) ⇀∗ θ(z).

Lemma 4.1.4 (Ball, Carr and Penrose). For z ∈ X+ and y ∈ Y the functional B(z) defined
by B(z) :=

∑∞
i=0 yizi is well defined and sequentially weak∗ continuous. In particular

ND(z) =

∞
∑

i=0

zi

is sequentially weak∗ continuous.

The proof of Lemma 4.1.4 follows directly from the results in Lemma 4.1.2 and the fact that the
constant sequence (1, 1, . . .) ∈ Y.
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CHAPTER 4. EXISTENCE AND UNIQUENESS OF SOLUTIONS

4.2 Existence of solutions

Here we prove existence of solutions to the model for the two different cases z0 = 0 and z0 > 0.
In both cases we solve the problem with Ji given by (2.86). For z0 = 0 the case for Ji in (2.87)
was solved by Herrmann et al. [24], see the remarks leading to (4.1). By using (1.24) and (1.27),
the flux equation (2.86) is equivalent to

Ji(z(t)) = ai

(

zi(t)
z1(t)

z1(t) + z0
− qi

qi+1

ND(t)

z1(t) + z0
zi+1(t)

)

. (4.7)

We make the following assumptions on the kinetic coefficients and initial data.

Assumption 4.2.1.

(i) The kinetic coefficients ai in the fluxes satisfy

ai = ξiα for α ∈ [0, 1[ and ξ > 0. (4.8)

(ii) For i ≥ 1 and qi > 0 we define ∆i by ∆i := qi/qi+1. The positive coefficients ai and
∆i must be chosen such that κ := inf i≥1{∆iai

ai+1
, 1} and ν := supi≥1∆i both exist and are

nonzero. It is also assumed that

M := sup
i≥2

(ai−1∆i−1 − ai∆i) < ∞ and 0 < R = lim
i→∞

qi
qi+1

< ∞, (4.9)

which implies that 1/R = limi→∞ q
1/i
i .

(iii) The initial data z(0) ∈ X+ must satisfy z0 + z1(0) > 0.

For z0 = 0, Assumption 4.2.1 (iii) is physically reasonable for nucleation of condensed phases
since free molecules must exist in the old phase before nucleation can take place. As a conse-
quence, this assumption implies that the initial total mass ρ(0) :=

∑∞
i=1 izi(0) in the system is

strictly positive.

Definition 4.2.2. A function z : [0, T [→ X+ is a solution of (2.85) on [0, T [, 0 ≤ T ≤ ∞ if
for given initial data z(0) ∈ X+ with z0(0) + z1(0) > 0 the following conditions are satisfied.

(i) z ≥ 0 on [0, T [.

(ii) supt∈[0,T [ ‖z(t)‖ < ∞, where ‖z(t)‖ := z0 +
∑∞

i=1 izi(t).

(iii) z solves (2.85), that is, each zi : [0, T [→ R is differentiable.

Section 4.2.1 contains the existence results for z0 = 0 while the solution for z0 > 0 is discussed
in Section 4.2.2.
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4.2.1 Existence for the case z0 = 0

For this case, it is convenient to divide the space X+ into two disjoint subspaces A and B which
are chosen such that

A := {z ∈ X+ : z1 <
κ

2

∞
∑

i=2

zi} and B := {z ∈ X+ : z1 ≥
κ

2

∞
∑

i=2

zi}, (4.10)

with κ from Assumption 4.2.1 (ii). We analyze the existence and uniqueness properties of solu-
tions whose initial data are taken from one of the subspaces above. The solution is constructed
in three steps. First we prove the existence of solutions to the finite dimensional system of size
n ∈ N obtained by using the truncation Jn(z

(n)) = 0 and zi = 0 for all i ≥ n+1. The results are
summarized in Lemmas 4.2.3 and 4.2.5. Secondly we construct an admissible limiting sequence
via Lemma 4.2.7. Finally we show that the constructed admissible sequence is consistent with
the infinite system. This is a standard procedure used by Ball et al. [4]. The existence result is
stated in Theorem 4.2.8.

Finite system

Here we prove existence of a unique solution z(n) to the following finite dimensional system of
size n ∈ N obtained by using Jn(z

(n)) = 0 and zi = 0 for all i ≥ n+ 1. It is given by

ż
(n)
1 (t) = −J1(z

(n)(t))−
n−1
∑

i=1

Ji(z
(n)(t)),

ż
(n)
i (t) = Ji−1(z

(n)(t))− Ji(z
(n)(t)) for 2 ≤ i ≤ n− 1, (4.11)

ż(n)n (t) = Jn−1(z
(n)(t)).

The system is solved for initial data obtained as truncations of the data z(0) ∈ X+ satisfying
Assumption 4.2.1 (iii). We set z0i := zi(0) ≥ 0 for 1 ≤ i ≤ n and note that z01 > 0 by
assumption. We consider the initial conditions

z
(n)
i (0) = z0i for 1 ≤ i ≤ n. (4.12)

Further we introduce ρ(n)(t) :=
∑n

i=1 iz
(n)
i (t) and note that ρ(n)(0) > 0. In system (4.11), the

total number of clusters and free molecules is given by N
(n)
D (t) :=

∑n
i=1 z

(n)
i (t), while the fluxes

are obtained from (4.7), with z0 = 0, as

Ji(z
(n)(t)) = ai

(

z
(n)
i (t)−∆i

N
(n)
D (t)

z
(n)
1 (t)

z
(n)
i+1(t)

)

. (4.13)

Now suppose that the initial data z(0) belong to subspace B defined in (4.10). Then

z01 ≥
κ

2

n
∑

i=2

z0i. (4.14)
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Define f (n)(t) := z
(n)
1 (t)−κ/2

∑n
i=2 z

(n)
i (t). Then (4.12) and (4.14) together imply that f (n)(0) ≥

0. By using (4.11) we have

ḟ (n)(t) = ż
(n)
1 (t)− κ

2

n
∑

i=2

ż
(n)
i (t)

= −J1(z
(n)(t))−

n−1
∑

i=1

Ji(z
(n)(t))− κ

2
J1(z

(n)(t)). (4.15)

Lemma 4.2.3. The system (4.11) - (4.13) with initial data in B has a unique solution for
t ≥ 0. At every t the solution satisfies the conditions z1(t) > 0, zi(t) ≥ 0 for all 2 ≤ i ≤ n and
f (n)(t) ≥ 0. Furthermore, the mass in the system is conserved, that is, ρ(n)(t) :=

∑n
i=1 izi(t) =

∑n
i=1 izi(0).

Proof. For ε > 0 consider the following system obtained by adding ε to each of the right-hand
side terms of (4.11) for 2 ≤ i ≤ n

żεi (t) =







Ji−1(z
(ε)(t))− Ji(z

(ε)(t)) + ε; for 2 ≤ i ≤ n− 1,

Jn−1(z
(ε)(t)) + ε, for i = n.

(4.16)

with initial conditions
z
(ε)
i (0) := z

(n)
i (0) + ε > 0, 2 ≤ i ≤ n. (4.17)

In order to satisfy (4.14) the initial number of free molecules is transformed into

z
(ε)
1 (0) = z

(n)
1 (0) + ε+

κ

2
(n− 1)ε > 0. (4.18)

For the solution to remain in the set B, the free molecules equation becomes

ż
(ε)
1 (t) = −J1(z

(ε)(t))−
n−1
∑

i=1

Ji(z
(ε)(t)) + ε+

κ

2
(n− 1)ε. (4.19)

We have the mass

ρ(ε)(0) = ρ(n)(0) +

(

n(n+ 1)

2
+

κ(n− 1)

2

)

ε > 0.

Note that for this system the mass increases linearly in time. To see this we differentiate ρ(ε)

with respect to t and use (4.16) together with (4.19) to obtain

d

dt
ρ(ε)(t) =

n
∑

i=1

iż
(ε)
i (t),

= −J1(z
(ε)(t))−

n−1
∑

i=1

Ji(z
(ε)(t)) + ε+

κ

2
(n− 1)ε

+

n
∑

i=2

i

(

Ji−1(z
(ε)(t))− Ji(z

(ε)(t)) + ε

)

,

= ε

(

1 +
κ

2
(n− 1) +

n
∑

i=2

i

)

> 0. (4.20)
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With f (ε)(t) := z
(ε)
1 (t)− κ/2

∑n
i=2 z

(ε)
i (t), the analogous equation to (4.15) becomes

ḟ (ε)(t) = −J1(z
(ε)(t))−

n−1
∑

i=1

Ji(z
(ε)(t))− κ

2
J1(z

(ε)(t)) + ε. (4.21)

We note from the definition of the fluxes that the right-hand sides of each of (4.16) and (4.19)

are continuous functions of z(ε) for z
(ε)
1 (t) > 0. Moreover they are even continuously differen-

tiable functions if z
(ε)
1 (t) > 0. Since the mass in the system is increasing we may deduce from

f (ε)(t) ≥ 0 that z
(ε)
1 (t) > 0. Suppose τε is the first time at which f (ε)(τε) = 0. Then z

(ε)
1 (t) > 0

on [0, t] for any t ∈]0, τε] so that the right-hand sides of (4.16) and (4.19) are locally Lipschitz
continuous with respect to z(ε) on the interval [0, t]. The Lipschitz constant can be constructed
from the Jacobian matrix of the right-hand side functions as the maximum value of its rows.
Thus local existence of solution is guaranteed by using the Picard-Lindelöf theorem.

To prove positivity of the solution we note that the initial conditions (4.17) and (4.18) are
strictly positive for 1 ≤ i ≤ n. Moreover by assumption, the inequality f (ε)(t) > 0 holds on the
interval [0, τε[ of existence. Suppose s ∈]0, τε[ is the first time for which one of the components

z
(ε)
i becomes zero. That is, there exists m : 2 ≤ m ≤ n such that z

(ε)
m (s) = 0. We exclude the

possibility for m = 1 since f (ε)(s) > 0, that is, z1 cannot become zero. At s we must have

ż(ε)m (s) ≤ 0 (4.22)

and

z
(ε)
i (s) ≥ 0, for all 1 ≤ i ≤ n.

After substituting (4.13) for the fluxes Ji in (4.16) and using ai = ξiα we have

żεm(s) =







(m− 1)αξz
(ε)
m−1(s) + ξmα ND(s)

z
(ε)
1 (s)

∆mz
(ε)
m+1(s) + ε; if 2 ≤ m ≤ n− 1,

(n− 1)αξz
(ε)
n−1(s) + ε if m = n.

(4.23)

Thus żnm(s) > 0 for all 2 ≤ m ≤ n. This is a contradiction to the inequality in (4.22) and

therefore proves that z
(ε)
i (·) > 0 on [0, t] for any t ∈]0, τε[ and all 1 ≤ i ≤ n.

Next we show that the solution can be extended to the whole interval [0, τε] by proving that it
is bounded up to τε < ∞. For this we integrate (4.20) to obtain

0 < z
(ε)
i (t) ≤

n
∑

i=1

iz
(ε)
i (t) =

n
∑

i=1

iz
(ε)
i (0) + tε

(

1 +
κ

2
(n− 1) +

n
∑

i=2

i

)

. (4.24)

Thereby the solution is bounded for all t ∈]0, τε].

Finally to prove global existence we show that for the above τε we have τε = ∞. Suppose that
τε < ∞. Then due to the condition f (ε)(0) > 0 and continuity of f (ε)(t) we must have

ḟ (ε)(τε) ≤ 0 (4.25)
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and
z
(ε)
i (τε) ≥ 0, for all 1 ≤ i ≤ n. (4.26)

Now we substitute for the fluxes according to (4.13) into (4.21) and rearrange to obtain

ḟ (ε)(t) =ε−
(

2 +
κ

2

)

a1z
(ε)
1 +

(

1 +
κ

2

) ND

z
(ε)
1

z
(ε)
2 a1∆1 + anz

(ε)
n

+

n
∑

i=2

(

ND

z
(ε)
1

ai−1∆i−1

ai
− 1

)

aiz
(ε)
i ,

>ε−
(

2 +
κ

2

)

a1z
(ε)
1 +

n
∑

i=2

(

ND

z
(ε)
1

κ− 1

)

aiz
(ε)
i , (4.27)

since z
(ε)
i (t) > 0 for all 1 ≤ i ≤ n on [0, τε] . We note that

N
(ε)
D (t)

z
(ε)
1 (t)

= 1 +
1

z
(ε)
1 (t)

n
∑

i=2

z
(ε)
i (t). (4.28)

Using this relation and f (ε)(τε) = z
(ε)
1 (τε)− κ/2

∑n
i=2 z

(ε)
i (τε) = 0 we have

ḟ (ε)(τε) > ε− κ

2

(

2 +
κ

2

)

a1

n
∑

i=2

z
(n)
i (τε) + (1 + κ)

n
∑

i=2

aiz
(n)
i (τε).

Next we use the condition ai > a1 on condensation rates and rearrange the results to obtain

ḟ (ε)(τε) > ε+ a1

(

1− κ2

4

) n
∑

i=2

z
(n)
i (τε)

Since κ ≤ 1, the above inequality implies that ḟ (ε)(τε) > 0. This contradicts (4.25) for τε < ∞.
Therefore τε = ∞ and the solution exists for all t ∈ [0,∞[ due to the bound in (4.24). To conclude
the proof of Lemma 4.2.3 we take the limit ε → 0 to obtain z(n)(t) = limε→0 z

(ε)(t) ≥ 0. We
note that the above convergence is uniform, see Hartmann [23, p. 5 & 25]. In particular, the
condition f (n)(t) ≥ 0 is satisfied. Mass conservation is obtained by taking ε = 0 in (4.20). This
leads to the following uniform upper bound on the solution

z
(n)
i (t) ≤ i−1ρ(n)(0) (4.29)

for each i.

Remark 4.2.4. We point out that we can use the condition f (n)(t) ≥ 0 to obtain an upper

bound on the quotient N
(t)
D /z

(n)
1 (t) via

N
(n)
D (t)

z
(n)
1 (t)

≤ 1 +
2

κ
. (4.30)

However, the condition f (n)(t) ≥ 0 does not explicitly give a time independent lower bound on

the number z
(n)
1 (t) of free molecules. To construct a uniform lower bound on zn1 (t) we note that

the mass

ρn(t) =

n
∑

i=1

izi(t) ≤ n

n
∑

i=1

zi(t) = nN
(n)
D (t).
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Thus by using mass conservation we have

N
(n)
D (t) ≥ ρ(n)(0)

n
. (4.31)

It follows from (4.30) and (4.31) that

z
(n)
1 (t) ≥ κ

(κ+ 2)

ρ(n)(0)

n
. (4.32)

Therefore (4.32) acts as a uniform lower bound on the number of free molecules for a fixed n on
[0,∞[.

Now we consider the existence and uniqueness of solutions for the finite system (4.11) with initial
data taken from A. The result is summarized in Lemma 4.2.5.

Lemma 4.2.5. The system (4.11) - (4.13) with initial data in A has a unique solution for all
t ≥ 0 with z1(t) > 0 and zi(t) ≥ 0 for 2 ≤ i ≤ n. There exists a finite time tA such that the time

derivative ż
(n)
1 (t) of z

(n)
1 (t) satisfies ż

(n)
1 (t) > 0 on [0, tA]. In particular, tA is the time it takes

for the solution to enter region B from A. Furthermore, the mass in the system is conserved,
that is, ρ(n)(t) = ρ(n)(0).

Proof. The existence, uniqueness and mass conservation can be proved analogously to the results
in Lemma 4.2.3. For the existence of the time tA it is sufficient to show that if z(n)(t) ∈ A at

time t, then ż
(n)
1 (t) > 0. Consider the free molecule equation in (4.11) and substitute the fluxes

according to (4.13). Then following the same procedure as in the derivation of (4.27) we obtain

ż
(n)
1 (t) > −2a1z

(n)
1 +

n
∑

i=2

(

N
(n)
D

z
(n)
1

κ− 1

)

aiz
(n)
i ,

or equivalently

ż
(n)
1 (t) > −2a1z

(n)
1 +

n
∑

i=2

(

κ+

∑n
i=2 z

(n)
i

z
(n)
1

κ− 1

)

aiz
(n)
i .

Recall that z(n)(t) ∈ A implies that z
(n)
1 (t) < κ/2

∑n
i=2 z

(n)
i . Now using this condition together

with ai > a1 for all 2 ≤ i ≤ n we obtain

ż
(n)
1 (t) >

2

κ
a1z

(n)
1 (t). (4.33)

The assumption z
(n)
1 (0) > 0 implies that the right-hand side of the above inequality is greater

than zero for all t ∈ [0, tA]. To prove the finiteness of tA we note that (4.33) implies that

z
(n)
1 (t) > z

(n)
1 (0) exp

(

2

κ
a1t

)

.

The conservation of mass means that after a finite time tm, with

tm < (κ/2a1) ln
(

ρ(n)(0)/z
(n)
1 (0)

)

,

all the mass will be contained in the free molecules. It is clear that at tm the solution will
already be in region B. The proof ends by noting that there exists a time tA with tA < tm.
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Remark 4.2.6. On [0, tA] the value of z
(n)
1 (t) is bounded below by z

(n)
1 (0). Thus we can use

mass conservation to bound the quotient N
(n)
D /z

(n)
1 by

N
(n)
D (t)

z
(n)
1 (t)

≤ ρ(n)(0)

z
(n)
1 (0)

(4.34)

on [0, tA].

Admissible solution

In the second step we construct an admissible solution which is a limit of a sub-sequence z(nk)(·)
of solutions z(n)(·) as k → ∞. To construct the admissible solution we apply the Arzela-Ascoli

theorem by showing that for each 1 ≤ i ≤ n the sequence of solutions z
(n)
i is uniformly bounded

and equicontinuous. Uniform boundedness follows directly from (4.29) while for equicontinuity

it is sufficient to show that the derivatives ż
(n)
i (t) are uniformly bounded in i and t. We use the

bounds (4.30) and (4.34) to define a constant K by

K := max

{

1 +
2

κ
,

ρ(n)

z
(n)
1 (0)

}

, (4.35)

so that for all initial conditions taken from X+ the solution satisfies

N
(n)
D

zn1
≤ K. (4.36)

From (4.11) we have

|ż(n)i (t)| ≤







|Ji−1(z
(n)(t))|+ |Ji(z(n)(t))|; if 2 ≤ i ≤ n,

∣

∣J1(z
(n)(t))| + |∑n

i=1 Ji(z
(n)(t))

∣

∣ if i = 1.
(4.37)

Using Assumption 4.2.1 (i) the fluxes satisfy

|Ji(z(n)(t))| ≤
n
∑

i=1

|Ji(z(n)(t))|,

≤ ξ

n
∑

i=1

(

iαz
(n)
i (t) + iαz

(n)
i+1(t)

N
(n)
D (t)

z
(n)
1 (t)

∆i

)

.

Next we use the conditions α ∈ [0, 1[, ν = supi≥1 ∆i < ∞, and (4.36) together with the mass-
conservation property for finite systems to obtain

|Ji(z(n)(t))| ≤
n
∑

i=1

|Ji(z(n)(t))| ≤
(

1 +Kν

)

ξ ρ(n)(0). (4.38)

Hence we have

|ż(n)i (t)| ≤ 2

(

1 +Kν

)

ξ ρn(0), (4.39)

for all 1 ≤ i ≤ n and for all t ∈ [0,∞[. If the mass ρ(n)(0) is bounded independently of n then

z
(n)
i (t) and ż

(n)
i (t) are uniformly bounded in n, i and t, giving the equicontinuity of the sequence.
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Lemma 4.2.7 (Admissible solution for z0 = 0). Let z(0) = (z0i)i∈N0 ∈ X+
ρ with z00 = 0 and

z01 > 0. Now for every n ∈ N let z(n) ∈ C([0,∞[;Rn) be the unique solution of (4.11) for the
initial data defined by

z
(n)
0i =

{

ρ∑n
k=1 kz0k

z0i; for 1 ≤ i ≤ n,

0 otherwise.
(4.40)

Then there exists a sub-sequence (z(nk))k∈N of (z(n))n∈N and a function z : [0,∞[→ X such that

(i) For every i ∈ N0, zi is continuous and z
(nk)
i

k→∞−−−→ zi uniformly on compact subsets of
[0,∞[.

(ii) The total number ND(z) of clusters and free molecules is continuous and we have ND(z
(nk))

k→∞−−−→
ND(z) uniformly on compact subsets of [0,∞[.

Proof. We note that the choice (4.40) of initial conditions implies that the mass ρ(n)(0) is such

that ρ(n)(0) = ρ for all n ∈ N. Therefore from (4.29) and (4.39) the sequence z
(n)
i (t) is uniformly

bounded and equicontinuous for each i ∈ N0. Thus by the Arzela Ascoli theorem there exists

a sub-sequence z
(nk)
1 and a function z1 such that z

(nk)
1 converges uniformly to z1 on compact

subsets of [0,∞[ as k → ∞. Similarly there exists a sub-sequence z
(nk)
2 converging uniformly to

z2 on compact subsets of [0,∞[ as k → ∞. This procedure is repeated for z
(n)
3 , z

(n)
4 , . . . and so on.

By using the diagonalization method we can extract a sequence z(nk) so that z
(nk)
i

k→∞−−−→ zi uni-
formly for every i ∈ N0 on compact subsets of [0,∞[. Since for every nk, we have z

nk
i ∈ C([0,∞[)

and znk
i (t) ≥ 0, then due to uniform convergence we must have zi ∈ C([0,∞[) and zi(t) ≥ 0 for

all t ∈ [0,∞[.

Furthermore since ND is weak∗ continuous due to Lemma 4.1.4, then ND(z
(nk)) converges point-

wise in time to ND(z) for k → ∞. Besides we have

|ṄD(z
(nk))| = | −

nk
∑

i=1

Ji(z
(nk))|.

Using (4.38) then gives

|ṄD(z
(nk))| ≤

(

1 +Kν

)

ξ ρ.

Similarly it is clear from mass conservation that ND(z
(nk)) ≤ ρ. Therefore by the Arzela Ascoli

theorem there exists a sub-sequence still denoted by z(nk) such that the sequence ND(z
(nk))

converges to some ND uniformly on compact subsets of [0,∞[. Due to the uniqueness of the
limit we must have ND(t) = ND(z(t)) =

∑∞
i=1 izi(t) for all t ≥ 0.

Up to this point we have constructed an admissible solution z to (1.2) via Lemma 4.2.7. In the
following section we prove that this solution is consistent with the infinite system (1.2).
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Consistency

Here we show that the admissible solution constructed above actually solves (2.85).

Theorem 4.2.8 (Existence for z0 = 0). Let the conditions of Lemma 4.2.7 be fulfilled. Then z

is a solution of (2.85) on [0,∞[ for initial data z(0) = (z0i)i∈N0 . In particular zi ∈ C([0,∞[)
for every i ∈ N0.

Proof. For the sub-sequence z(nk) we note by (4.8) and (4.13) that

lim
k→∞

Ji(z
(nk)(t)) = lim

k→∞
ξ iα

(

z
(nk)
i (t)−∆iz

(nk)
i+1 (t)

ND(z
(nk)(t))

z
(nk)
1

)

= ξ iα
(

zi(t)−∆izi+1(t)
ND(z(t))

z1

)

(4.41)

= Ji(z(t)),

with the convergence being uniform on compact subsets of [0,∞[. Thus Ji(z) ∈ C([0,∞[).
Since from (4.38) Ji(z

(nk)(t)) is uniformly bounded, then by using the Lebesgue dominated
convergence theorem we observe that

lim
k→∞

∫ t

0
Ji(z

(nk)(s))ds =

∫ t

0
Ji(z(s))ds. (4.42)

Besides, the continuity of Ji(z) in time implies that the fundamental theorem of calculus can be
applied to give

d

dt

∫ t

0
Ji(z(s))ds = Ji(z(t)). (4.43)

The convergence of the term
∑nk

i=1 Ji(z
(nk)(t)) which appears in the differential equation for the

free molecules is more involved. First of all we have to show that it is uniformly bounded and
converges point-wise towards a finite limit

∑∞
i=1 Ji(z(t)) as k → ∞. Secondly we must also show

that the series
∑∞

i=1 Ji(z(t)) is uniformly convergent so as to guarantee its continuity. For each
nk we regard the solution znk to the finite system as an element of the space X defined in (4.2)
by setting znk

i = 0 for all i > nk. Then we can use the mass conservation property of these
solutions to write

nk
∑

i=1

iznk
i (t) =

∞
∑

i=1

iznk
i (t) =

nk
∑

i=1

iznk
i (0) ≤

∞
∑

i=1

izi(0) = ρ.

Therefore, for a fixed m ∈ N we have

m−1
∑

i=1

iznk
i (t) +

∞
∑

i=m

iznk
i (t) ≤ ρ.

By taking the limit k → ∞ we note that both terms on the left-hand side of this inequality have
finite limits, due to the bound on the right. In the first one we use limk→∞ znk

i (t) = zi(t). Next
we take the limit m → ∞ to obtain

∞
∑

i=1

izi(t) ≤ ρ. (4.44)
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It can easily be seen from (4.36) and the uniform convergence of both ND(z
nk(t)) → ND(z(t))

and znk
1 (t) → z1(t) for k → ∞, that

ND(z(t))

z1(t)
≤ K. (4.45)

Now we use (4.44), (4.45) and Assumption 4.2.1 (ii), α < 1 to get

|
n
∑

i=m

Ji(z(t))| ≤
n
∑

i=m

ξ iα
(

zi(t) + ∆izi+1(t)
ND(z(t))

z1(t)

)

≤
n
∑

i=m

ξ
i

i1−α

(

zi(t) + ∆izi+1(t)
ND(z(t))

z1(t)

)

≤ ξ

m1−α

(

1 +Kν

)

ρ.

The bound is independent of n and t. This implies that the series
∑∞

i=1 Ji(z(t)) is uniformly
convergent. Continuity of the series follows from continuity of each Ji(z). Analogously, for
m < nk, we can derive the following estimate for the finite system

|
nk
∑

i=m

Ji(z
(nk))| ≤ ξ

m1−α

(

1 +Kν

)

ρ.

This means that for each fixed m < nk, the sequence Snk
m := |∑nk

i=m Ji(z(t))| is uniformly
bounded and hence convergent. We can choose m large enough to have

|
nk
∑

i=m

Ji(z
(nk))| ≤ ε

3
and |

∞
∑

i=m

Ji(z(t))| ≤
ε

3
.

Now these results together with the uniform convergence znk
i (t) → zi(t) lead to

|
nk
∑

i=1

Ji(z
(nk)(t))−

∞
∑

i=1

Ji(z(t))| ≤|
m−1
∑

i=1

(

Ji(z
(nk)(t))− Ji(z(t))

)

|+ |
nk
∑

i=m

Ji(z
(nk)(t))|

+ |
∞
∑

i=m

Ji(z(t))| ≤
ε

3
+

ε

3
+

ε

3
.

Therefore

lim
k→∞

nk
∑

i=1

Ji(z
(nk)) =

∞
∑

i=1

Ji(z) < ∞. (4.46)

By the Lebesgue dominated convergence theorem we have

lim
k→∞

∫ t

0

nk
∑

i=1

Ji(z
(nk)(s))ds =

∫ t

0

∞
∑

i=1

Ji(z(s))ds. (4.47)

Then we can still apply the fundamental theorem of calculus to write

d

dt

∫ t

0

∞
∑

i=1

Ji(z(s))ds =

∞
∑

i=1

Ji(z(t)). (4.48)
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Next we consider the convergence for the initial data in the limit k → ∞. This gives

z
(nk)
0i

k→∞−−−→ z0i (4.49)

for i ∈ N because ρ/
∑(nk)

i=1 z0i
k→∞−−−→ 1. Finally we write (4.11) in integral form as

z
(nk)
1 (t) =z

(nk)
1 (0) −

∫ t

0
J1(z

(nk)(s))ds −
∫ t

0

nk−1
∑

i=1

Ji(z
(nk)(s))ds,

z
(nk)
i (t) =z

(nk)
i (0) +

∫ t

0
Ji−1(z

(nk)(s))ds −
∫ t

0
Ji(z

(nk)(s))ds for 2 ≤ i ≤ n, (4.50)

z(n)n (t) =z(n)n (0) +

∫ t

0
Jnk−1(z

(nk)(s))ds.

Taking the limit as k → ∞ in the above system and using (4.42), (4.47) and (4.49) we obtain

z1(t) = z1(0)−
∫ t

0
J1(z(s))ds −

∫ t

0

∞
∑

i=1

Ji(z(s))ds,

zi(t) = zi(0) +

∫ t

0
Ji−1(z(s))ds −

∫ t

0
Ji(z(s))ds for i ≥ 2.

To conclude the proof we note that the right-hand sides of the above system are continuously
differentiable in t. Thus the left-hand sides must also be continuously differentiable. We can
then differentiate both sides with respect to t and use (4.43) together with (4.48) to show that
the solution z solves (2.85) in strong sense.

Remark 4.2.9. We point out that the solution which was constructed by Herrmann et al. [24,
Equation (A2) and the remark on P. 121] was weak in the sense that the continuity of the series
in (4.48) could not be established for the class of condensation rates they considered. Although
they considered a bigger class of rates, we are not aware of any applications with rates other
than those of the form in (4.8).

4.2.2 Existence for the case z0 > 0

Here we briefly discuss the existence of solutions to (2.85) - (2.88) in the presence of an inert
substance. The solution can be constructed analogously to the results in the previous section.

In this case the quotients z
(n)
1 (t)/(z0 + z

(n)
1 (t)) and N

(n)
D (t)/(z0 + z

(n)
1 (t)), which appear in the

flux (4.7) for finite systems, are such that

z
(n)
1 (t)

z0 + z
(n)
1 (t)

≤ 1 and
N

(n)
D (t)

z0 + z
(n)
1 (t)

≤ ρ

z0
. (4.51)

The existence result is summarized in the following theorem.

Theorem 4.2.10 (Existence for z0 > 0). Let z(0) = (zoi)i∈N0 ∈ X+
ρ with z00 = z0 > 0. Suppose

that the fluxes are given by (4.7) and let the conditions of Assumption 4.2.1 be fulfilled. Then
there exists a solution z(t) to (2.85) in the sense of Definition 4.2.2.

A general existence and uniqueness result with fluxes from (2.87) is stated later in Theorem
4.3.6.
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4.3 Uniqueness of solutions and Mass conservation

In this section we prove uniqueness of the solution by following an idea introduced by Laurençot
and Mischler [34]. There, the authors assumed that the coefficients ai satisfy

0 ≤ ai and ai+1 − ai ≤ K (4.52)

for some positive constant K. Clearly the choice ai = ξ iα, α ∈ [0, 1[ made in Section 4.2 satisfies
this condition with K = ξ. In addition, by Assumptions 4.2.1 (ii), we have

sup
i≥1

(ai∆i − ai+1∆i+1) = M < ∞.

We consider the case where the fluxes are given by (4.7). For z0 = 0, the case where Ji is given
by (2.87) was studied by Herrmann et al. [24]. In the case z0 > 0, the systems obtained by
using the two different flux expressions are mathematically equivalent. Solutions of one can be
deduced from the other through an appropriate time scaling.

Let z be a solution of (2.85) in the sense of Definition 4.2.2. Define a sequence F = (Fi)i∈N0 by

Fi(t) :=

∞
∑

j=i

zj(t). (4.53)

Then F is a solution to the system

Ḟi(t) = Ji−1(F(t)), i ≥ 2, (4.54)

Ḟ0(t) = Ḟ1(t) = −
∞
∑

i=1

Ji(F(t)), (4.55)

where the fluxes are derived from (4.7), with ∆i = qi/qi+1, by using the substitution zi =
Fi − Fi+1 for i ≥ 0. They are given by

Ji(F(t)) = ξ iα
[(

Fi − Fi+1

)

F1 − F2

F0 − F2
− ∆iF0

F0 − F2

(

Fi+1 − Fi+2

)]

. (4.56)

Definition 4.3.1. A function F : [0, T [→ l1(R) is a solution of (4.54) - (4.56) on [0, T [,
0 < T ≤ ∞ if

(i) Fi(t) ≥ Fi+1(t) ≥ 0 on [0, T [ for all i ∈ N0.

(ii) supt∈[0,T [

∑∞
i=1 i(Fi(t)− Fi+1(t)) < ∞.

(iii) limn→∞ nFn+1(t) = 0 for all t ∈ [0, T [.

(iv) F solves (4.54) - (4.56).

Claim: If z solves (2.85) then F solves (4.54) - (4.56). On the other hand if F solves (4.54) -
(4.56) then the sequence z = (zi)i∈N0 defined by zi = Fi − Fi+1 solves (2.85). The proof of this
claim can be done analogously to the results in Naldzhieva [42, Section 4]. For the first part,
the idea is to write (2.85) as a system of integral equations and then use (4.53) with infinity
replaced by a finite value, say n. The next step is to take the limit n → ∞, noting that due to
(4.46) Jn → 0 in this limit. For the second part one has to first show the existence of solutions
for (4.54) - (4.56) by following the same procedure used in Section 4.2. Then with zi = Fi−Fi+1

the solution to (2.85) can be constructed.
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Lemma 4.3.2. Let F be a solution of (4.54) - (4.56). Then
∑∞

i=1 Fi(t) =
∑∞

i=1 Fi(0) for all
t ≥ 0.

Proof. With zi = Fi − Fi+1 we note that

n
∑

i=1

izi(t) =

n
∑

i=1

i(Fi(t)− Fi+1(t)) =

n
∑

i=1

Fi(t)− nFn+1(t).

Next we take the limit n → ∞, while using Definition 4.3.1 (iii) and Definition 4.2.2 (ii) to
obtain

∞
∑

i=1

Fi(t) =
∞
∑

i=1

izi(t) < ∞.

For n ≥ 2 we have

n
∑

i=2

Fi(t)−
n
∑

i=2

Fi(0) =

∫ t

0

n
∑

i=2

Ji−1(F(s))ds =

∫ t

0

n
∑

i=1

Ji(F(s))ds.

Next we take the limit n → ∞ while noting that
∑∞

i=1 Ji(F(s)) is convergent due to |Ji(F(t))| ≤
const · i(Fi(t) − Fi+1(t)) and Definition 4.3.1 (ii). We therefore get the following result from
(4.55)

∞
∑

i=2

Fi(t)−
∞
∑

i=2

Fi(0) =

∫ t

0

∞
∑

i=1

Ji(F(s))ds = −F1(t) + F1(0).

The proof is accomplished by collecting like terms.

Remark 4.3.3. Mass conservation of solutions for (2.85) is therefore equivalent to the conser-
vation property for (4.54) and (4.55) proved in Lemma 4.3.2, since ρ(t) = z0 +

∑∞
i=1 izi(t) =

z0 +
∑∞

i=1 Fi(t).

Theorem 4.3.4 (Uniqueness). Let F and F̂ be two solutions for (4.54) - (4.56) such that
F(0) = F̂(0) for the initial data taken from X+.

(i) Suppose z0 > 0 and α ∈ [0, 1[,
or

(ii) Suppose z0 = 0 and α = 0,
Then F(t) = F̂(t) for all t ≥ 0.

Proof. For the two solutions we have corresponding solutions z and ẑ for (2.85). Define E :=
F− F̂. Then for i ≥ 2 we have by (4.56)

d

dt
Ei(t) =

d

dt
Fi(t)−

d

dt
F̂i(t) = Ji−1(F(t))− Ji−1(F̂(t)),

= ξ(i− 1)α
[

z1(Fi−1 − Fi)

z0 + z1
− ∆i−1F0(Fi − Fi+1)

z0 + z0
− ẑ1(F̂i−1 − F̂i)

z0 + ẑ1
+

∆i−1F̂0(F̂i − F̂i+1)

z0 + ẑ1

]

.
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We add and subtract the term ξ (i− 1)α[(F̂i−1 − F̂i)z1/(z0 + z1) +∆i−1(F̂i − F̂i+1)F0/(z0 + z1)]
to obtain

d

dt
Ei(t) =ξ(i− 1)α

[

z1(Ei−1 −Ei)

z0 + z1
− ∆i−1F0(Ei − Ei+1)

z0 + z1
+ (F̂i−1 − F̂i)

(

z1
z0 + z1

− ẑ1
z0 + ẑ1

)

+∆i−1(F̂i − F̂i+1)

(

F̂0

z0 + ẑ1
− F0

z0 + z1

)]

.

Next we add and subtract the term ξ (i−1)α[(F̂i−1−F̂i)z1/(z0+ẑ1)+∆i−1(F̂i−F̂i+1)F0/(z0+ẑ1)]
and then use ẑi = F̂i − F̂i+1. This gives

d

dt
Ei(t) =ξ (i− 1)α

[

z1(Ei−1 − Ei)

z0 + z1
− ∆i−1F0(Ei − Ei+1)

z0 + z1
+

ẑi−1

z0 + ẑ1

(

z1
ẑ1 − z1
z0 + z1

+ E1 − E2

)

+∆i−1
ẑi

z0 + ẑ1

(

F0(z1 − ẑ1)

z0 + z1
− E1

)]

.

We then apply z1 − ẑ1 = (F1 − F2)− (F̂1 − F̂2) = E1 − E2 to get

d

dt
Ei(t) =ξ (i− 1)α

[

z1(Ei−1 − Ei)

z0 + z1
− ∆i−1F0(Ei − Ei+1)

z0 + z1
− ∆i−1ẑi

z0 + ẑ1
E1

+

(

ẑi−1

z0 + ẑ1
− ẑi−1

z0 + ẑ1

z1
z0 + z1

+
∆i−1ẑi
z0 + ẑ1

F0

z0 + z1

)

(E1 − E2)

]

.

Multiplying this equation by sign(Ei) and simplifying the result, we obtain

d

dt
|Ei(t)| ≤ξ (i− 1)α

[

z1(|Ei−1| − |Ei|)
z0 + z1

− ∆i−1F0(|Ei| − |Ei+1|)
z0 + z1

+

(

z0ẑi−1

z0 + ẑ1
+

∆i−1ẑiF0

z0 + ẑ1

) |E2|
z0 + z1

+

(

z0ẑi−1

z0 + z1
+

∆i−1ẑiF2

z0 + z1

) |E1|
z0 + ẑ1

]

.

For n ≥ 3 we sum this inequality from 2 to n and simplify the result to get

d

dt

n
∑

i=2

|Ei(t)| ≤
n+1
∑

i=1

βi|Ei|. (4.57)

The coefficients βi are now given by

βi =











































































ξz1
z0 + z1

+
ξ

z0 + ẑ1

n
∑

i=2

(i− 1)α
(

z0ẑi−1 +∆i−1ẑiF2

z0 + z1

)

for i = 1,

ξ

z0 + z1
[2αz1 − (z1 +∆1F0)] +

ξ

z0 + ẑ1

n
∑

i=2

(i− 1)α
(

z0ẑi−1 +∆i−1F0ẑi
z0 + z1

)

for i = 2,

ξz1
z0 + z1

[iα − (i− 1)α] +
ξF0

z0 + z1
[(i− 2)α∆i−2 − (i− 1)α∆i−1] for 3 ≤ i ≤ n− 1,

ξF0

z0 + z1
[(n − 2)α∆n−2 − (n− 1)α∆n−1]−

ξz1
z0 + z1

(n− 1)α for i = n,

ξF0

z0 + z1
(n− 1)α∆n−1 for i = n+ 1.
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Now we turn our attention to part (i) of the uniqueness theorem, the case where z0 > 0. We
show that the coefficients βi are bounded independently of i. We note that

1

z0 + ẑ1
≤ 1

z0
,

z1
z0 + z1

≤ 1 and Fi ≤ ρ, for i ≥ 0. (4.58)

By using the above inequalities, we can construct upper bounds for the coefficients β1 and β2
via

β1 ≤ ξ

(

1 +
z0ρ̂+ νρ̂ρ

z20

)

and β2 ≤ ξ

(

1 +
z0ρ̂+ z0νρ+ νρ̂ρ

z20

)

,

where ν is defined in Assumption 4.2.1 (ii) and ρ, ρ̂ are the masses for the corresponding
systems. We can also construct upper bounds for βi, 3 ≤ i ≤ n, if the terms [iα − (i − 1)α]
and [(i − 2)α∆i−2 − (i − 1)α∆i−1] are bounded uniformly in n. This has been done in [42] for
the Gallium Arsenide example. For the other two examples, we use the condition M < ∞ in
Assumption 4.2.1 (ii). Finally we show that limn→0 βn+1|En+1(t)| = 0 for all t ≥ 0. For this we
have

βn+1|En+1| ≤ βn+1|Fn+1|+ βn+1|F̂n+1|

≤ βn+1

∞
∑

i=n+1

zi + βn+1

∞
∑

i=n+1

ẑi

≤ ξνρ

z0
nα

∞
∑

i=n+1

izi/i+
ξνρ

z0
nα

∞
∑

i=n+1

iẑi/i

≤ ξνρ

z0

(

ρ+ ρ̂

n1−α

)

.

The right-hand side goes to zero as n → ∞. Equation (4.57) can be written in integral form as

n
∑

i=2

|Ei(t)| ≤
n
∑

i=2

|Ei(0)|+
∫ t

0

(

β1|E1(s)|+
n+1
∑

i=2

βi|Ei(s)|
)

ds. (4.59)

Note that
∞
∑

i=1

|Ei(t)| ≤
∞
∑

i=1

|Fi(t)|+
∞
∑

i=1

|F̂i(t)| < ∞, (4.60)

and

|E1(t)| = |F1(t)− F̂1| = |
∞
∑

i=1

Fi(t)−
∞
∑

i=2

Fi(t)−
∞
∑

i=1

F̂i(t) +

∞
∑

i=2

F̂i(t)|

≤
∞
∑

i=2

|Ei(t)|+
∞
∑

i=1

|Ei(0)|, (4.61)

the last line being due to Lemma 4.3.2. Using (4.60) and (4.61) we can take the limit n → ∞
in (4.59) and apply the Lebesgue dominated convergence theorem to obtain

∞
∑

i=2

|Ei(t)| ≤ (1 + β1t)

∞
∑

i=2

|Ei(0)| + 2max
i∈N

βi

∫ t

0

∞
∑

i=2

|Ei(s)|ds. (4.62)
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Then the application of Gronwall’s Lemma gives the desired result that Ei(t) = 0 for all i ≥ 1
and for all t ≥ 0 and hence uniqueness.

For part (ii) we use z0 = 0, so that the coefficients βi become

βi =











































































ξ +
F2

z1

n
∑

i=2

ξ (i− 1)α∆i−1
ẑi
ẑ1

for i = 1,

ξ

[

2α −
(

1 + ∆1
F1

z1

)]

+

[

n
∑

i=2

ξ (i− 1)α∆i−1
ẑi
ẑ1

]

F1

z1
for i = 2,

ξ [iα − (i− 1)α] + ξ [(i− 2)α∆i−2 − (i− 1)α∆i−1]
F1

z1
for 3 ≤ i ≤ n− 1,

ξ [(n− 2)α∆n−2 − (n− 1)α∆n−1]
F1

z1
− ξ (n− 1)α for i = n,

ξ (n− 1)α∆n−1
F1

z1
for i = n+ 1.

(4.63)

The bound (4.45) is equivalent to F1/z1 ≤ K, where K is defined in (4.35). Since we have not
constructed a time independent lower bound on z1(t) the coefficients β1 and β2 can only be
bounded uniformly in n if α = 0. Then we have

β1 ≤ ξ + ξ

(

F1/z1 − 1

)

F̂2

ẑ1
ν

≤ ξ [1 + (K + 1)Kν] .

Similarly, for β2 we have

β2 ≤ ξ (1 +K)Kν.

For 3 ≤ i ≤ n− 1 we obtain

βi ≤ 2ξKν,

while
βn ≤ ξ (1 + 2Kν) .

The uniqueness result can be completed analogously to the proof of part (i).

Remark 4.3.5. If it is known a priori that the initial data are taken from A then up to the
time tA introduced in Section 4.2 we have a lower bound on z1 given by (4.34). We can therefore
prove uniqueness locally for α ∈ [0, 1[ and t ∈ [0, tA], since we saw in the proof of part (i) that
the terms [iα − (i− 1)α] and [(i− 2)α∆i−2 − (i− 1)α∆i−1] are bounded uniformly in n.

We now show how to construct the solutions to (2.85) when the fluxes are given by (2.87) and
z0 > 0. We multiply both sides of these equations by the nonzero term z0 + z1(t) to obtain

ż0(t) = 0

(z0 + z1(t))ż1(t) = −J1(z(t)) −
∞
∑

i=1

Ji(z(t)), (4.64)

(z0 + z1(t))żi(t) = Ji−1(z(t)) − Ji(z(t)) for i ≥ 2.
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The fluxes are now given by

Ji(z(t)) = ai (z1(t)zi(t)−∆iND(z(t))zi+1(t)) ,

which correspond to the (2.87). We introduce a new time scale τ and define zi(τ) = zi(t) for all
i ≥ 1. With ṫ(τ) = (z0 + z1(t)) we can transform (4.64) into

ż0(τ) = 0

ż1(τ) = −J1(z(τ)) −
∞
∑

i=1

Ji(z(τ)), (4.65)

żi(τ) = Ji−1(z(τ)) − Ji(z(τ)) for i ≥ 2,

where the differentiation is now with respect to τ . The fluxes are now written in the new time
scale as

Ji(z(τ)) = ai

(

zi(τ)z1(τ)−∆iND(z(τ))zi+1(τ)

)

. (4.66)

It is now very clear that solutions to (2.85) with Ji in (4.7) solve (4.65) and (4.66) in a different
time scale τ defined by

τ(t) :=

∫ t

0

1

z0 + z1(s)
ds. (4.67)

Since

0 <
1

z0 + ρ
≤ 1

z0 + z1(t)
≤ 1

z0
,

there is a one to one correspondence between t and τ . In addition, the time scale τ satisfies

τ(0) = 0 and τ(t → ∞) = ∞. (4.68)

We summarize the result in the following theorem.

Theorem 4.3.6 (Existence and Uniqueness for z0 > 0 and Ji given by (2.87)). Let z(t) be the
unique solution to (2.85) and (4.7) for z(0) ∈ X+. For the same initial data, the solution z(τ)
solves (4.65) and (4.66) uniquely in a time scale defined by (4.67).

Remark 4.3.7. If z(τ) is the unique solution to (4.65) and (4.66) for initial data z(0) ∈ X+,
then for the same initial data, z(t) solves (2.85) and (4.7) uniquely in a time scale defined by

t(τ) :=

∫ τ

0
z0 + z1(s) ds. (4.69)

4.4 Equilibrium distribution

An equilibrium state of the Becker-Döring system is a state z̄ ∈ X+ such that all fluxes Ji vanish
in z̄ and z̄0 = z0. In this section we discuss equilibrium solutions to (2.85) for the case where
z0 > 0. The case z0 = 0 was discussed already by Herrmann et al. [24]. For convenience we
repeat the definitions in (1.24) as

R := lim
i→∞

qi
qi+1

, q̃i := Riqi f̃(µ) :=

∞
∑

i=1

q̃iµ
i and g̃(µ) :=

∞
∑

i=1

iq̃iµ
i,
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Theorem 4.4.1 (Herrmann at al. [24]). Let z0 = 0. For any given mass ρ̄ > 0, there exists an
equilibrium state z̄ with ρ(z̄) = ρ̄ if and only if

f̃(1) > 1, or f̃(1) = 1 and g̃(1) < ∞. (4.70)

Moreover, if (4.70) is satisfied, then

(a) there exists a unique value µ̄ ∈]0, 1] such that f̃(µ̄) = 1.

(b) the equilibrium solution is given by

z̄i = ND(z̄)q̃iµ̄
i, for i ≥ 1 and ND(z̄) =

ρ̄

g̃(µ̄)
.

Now we turn our attention to the case where z0 > 0. It is clear that z = (z0, 0, 0, . . .) is an
equilibrium solution with mass z0. We study equilibrium states with z̄0 = z0 and prescribed
fixed positive total mass ρ > z0. By setting the fluxes Ji in (4.7) or (4.66) to zero and using
∆i = qi/qi+1, we obtain

z̄i+1 =

(

z̄1
N̄D

)

qi+1

qi
z̄i =

(

z̄1
RN̄D

)

q̃i+1

q̃i
z̄i, i ≥ 1. (4.71)

With µ̄ := z̄1/(RN̄D) this equation gives

z̄i =

(

z̄1
RN̄D

)i−1 q̃i
q̃1
z̄1 = N̄D q̃iµ̄

i = N̄Dqi(Rµ̄)i, for i ≥ 1. (4.72)

The condition N̄D = ND(z̄) and the constraint ρ(z̄) = ρ̄ require that

z0 + N̄Df̃(µ̄) = N̄D and N̄Dg̃(µ̄) = ρ̄− z0, (4.73)

where f̃ and g̃ are defined above. Note that both series have the same radius of convergence
µs = 1 and are strictly increasing on [0, 1]. We summarize the existence of equilibrium solutions
in the following theorem.

Theorem 4.4.2 (Equilibria). For any given mass ρ, with 0 < ρ < ∞, let 0 ≤ z0/(ρ− z0) < ∞.
Then there exists an equilibrium state z̄ with mass ρ if and only if

f̃(1) +
z0g̃(1)

ρ− z0
≥ 1. (4.74)

Equivalently, this condition implies existence of equilibria if

f̃(1) ≥ 1 or ρ ≤ z0 (1 + g̃(1)) , (4.75)

or if

0 <
g̃(1)

1− f̃(1)
< ∞ and z0 (1 + g̃(1)) < ρ ≤ z0

(

1 +
g̃(1)

1− f̃(1)

)

. (4.76)
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Moreover, if (4.74) is satisfied then there exists a unique value µ̄ such that

ρ̄ = z0

(

1 +
g̃(µ̄)

1− f̃(µ̄)

)

. (4.77)

The equilibrium solution is given by

z̄0 = z0, N̄D =
ρ̄− z0
g̃(µ̄)

, and z̄i = N̄D q̃iµ̄
i for i ≥ 1. (4.78)

This theorem shows that in the presence of an inert substance, there are more possibilities for
existence of equilibrium solutions than the condition (4.70) which was obtained by Herrmann
et al. [24] for z0 = 0. In fact one can obtain the results of Theorem 4.4.1 by setting z0 = 0 in
(4.74). The only case where equilibria of the form (4.78) do not exist, is the negation of (4.76),
given by

0 <
g(1)

1− f(1)
< ∞ and z0

(

1 +
g(1)

1− f(1)

)

< ρ. (4.79)

We conclude this section by showing how the results in Theorem 4.4.2 apply to the different
systems studied in Chapter 2. With S̄ = p0/p̄(T ) or S̄ = exp(η∆T/kT ), the liquid-vapor-inert
gas and crystallization in solution systems are equivalent. In both cases the existence of an
equilibrium state z̄ with z0 > 0 does not only depend on the values of S̄ and γ/kT , but also on
the mass in the system. In particular, the existence of equilibria fails for large values of S̄, γ/kT
and for a mass that satisfies (4.79). This is different from the case z0 = 0 where the existence of
an equilibrium solution doesnot depend on the mass. In the Gallium Arsenide Example 1.2.2,
the presence of an inert substance doesnot change the results discussed by Herrmann et al. [24].
In particular, we have R = exp(+β) > 1, for β > 0, so that the first inequality in (4.75) always
holds.
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Chapter 5

Metastability

The aim of this chapter is to show the existence of a metastable class of solutions for the
thermodynamically consistent model. In Section 5.1 we introduce the concepts on metastability
as used in the standard Becker-Döring models. Section 5.2 contains the existence of metastable
solutions for the modified Becker-Döring model.

5.1 Introduction

According to Penrose and Lebowitz [48], a metastable state is characterized by the following
conditions.

(i) Only one thermodynamic phase is present although the intensive thermodynamic param-
eters have values such that the equilibrium state would consist of more than one phase or
possibly a single but different phase.

(ii) The metastable state has a very long lifetime.

(iii) Escape from the metastable state is an irreversible process, that is, once the system has
left the metastable state, it is very unlikely to return.

We assume that the kinetic coefficients ai and bi satisfy the following conditions, cf. [46], for all
i ∈ N:

Assumption 5.1.1.

(i) there exist positive constants A,A′ and α ∈]0, 1[ such that 0 < A′ < ai < Aiα.

(ii) lim
i→∞

bi+1

bi
= 1.

(iii)
bi+1

ai+1
≤ bi

ai
and lim

i→∞

bi
ai

= µs > 0.

(iv) there exist G,G′, γ, γ′ > 0, γ ∈]0, 1[ such that µs exp(Gi−γ) <
bi
ai

< µs exp(G
′i−γ′

).

The following lemma will be useful for our results.
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Lemma 5.1.2 (Penrose [46]). For each µ > µs the second order difference equation for the
steady-state solutions

ai−1µfi−1(µ)− (bi + aiµ)fi(µ) + bi+1fi+1(µ) = 0, i ≥ 2 (5.1)

with the end conditions f1(µ) = µ and limi→∞ fi(µ) < ∞ implies a constant quantity J(µ)
defined by

J(µ) := aiµfi(µ)− bi+1fi+1(µ). (5.2)

The unique positive solution to difference equation is given by

fi(µ) = J(µ)Qiµ
i

∞
∑

r=i

1

arQrµr+1
, (5.3)

with the steady-state flux

J(µ) =

[ ∞
∑

i=1

1

aiQiµi+1

]−1

.

Further

(i) for a fixed µ > µs and all i ∈ N, ai+1fi+1(µ) ≤ aifi(µ).

(ii) for a fixed i,
fi(µ)

µ
≤ fi(µ

′)

µ′
if µ ≤ µ′. This implies that fi(µ) ≤ fi(µ

′) if µ ≤ µ′.

(iii) fi(µ) ≤ Qiµ
i ≤ a1

ai
µs

(

µ

µs

)i

exp

[

−G

(

i1−γ − 21−γ

1− γ

)]

for i ∈ N.

(iv) lim
µ→µs

fi(µ) = Qiµ
i
s for all i ∈ N.

We point out that the exponential term in part (iii) differs from the one used by Penrose [46]
and Kreer [30]. We have introduced the term 21−γ instead of 1 which they used. This is because
the argument used by Penrose to obtain the estimate before [46, Equation (9.3)], is not correct.
It works only if the lower limit m of the integral there is replaced by m + 1, see (5.32). Thus
the above change is necessary.

The original theory of metastability applies to the version of the kinetic equations with z1
constant and the situation where z1 = µ > µs. Becker and Döring [5] solved for the steady-
state solutions of this version where the fluxes Ji are independent of i but not zero. We denote
the non-equilibrium steady-state solutions by f(µ) := (fi(µ))i∈N, given in Lemma 5.1.2. The
common value of fluxes denoted by J(µ) is called the nucleation rate and it gives the rate per
unit volume at which clusters are acquiring new particles in the steady state. Becker and Döring
showed that for moderately small values of supersaturations, say δ := (µ−µs)/µs, the nucleation
rate J(µ) can be very small. This makes it possible to think of the steady state as representing
a metastable state in which large clusters are being formed extremely slowly. Penrose [46] went
beyond the Becker-Döring steady state consideration and proved that, subject to some further
conditions on the kinetic coefficients ai and bi, there is a class of time dependent metastable
solutions of the equations with δ = (µ − µs)/µs positive and small which take an exponentially
long time to decay to their asymptotic steady states. Kreer [30] later considered the standard
constant free molecule model and extended the class of allowed initial conditions for the existence
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of metastable solutions. He proved existence of such solutions with lifetimes proportional to
exp(Cδ−ω), for some constants C,ω > 0. With some additional assumptions on the kinetic
coefficients, Kreer also constructed time scales for equilibration towards the metastable state,
provided that the initial state contains an exponentially small mass of super-critical clusters.
Duncan and Dunwell [18] showed that metastability for the truncated standard constant free
molecule model can be explained in terms of the eigensystem of the resulting linear ordinary
differential system. In particular they showed that there is an eigenvalue which is so small
compared to the rest of the spectrum.

5.2 Metastability in the modified mass-conserving model

With careful choices of the relevant parameters we will show here that the metastability results
by Penrose [46] also extend to the thermodynamically consistent models. Define µ̃(t) by

µ̃(t) :=
z1(t)

RND(z(t))
. (5.4)

Here the existence of metastable solutions depends on the initial value of the quantity µ̃ defined
above. This is in contrast to the standard mass conserving model where metastability directly
depends on the concentration of free molecules. We are interested in cases where a given mass
cannot be contained in an equilibrium solution. This situation arises only if one has a negation
of (4.76), that is the situation of a supersaturated system. We assume that the function µ̃(t)
defined in (5.4) satisfies µ > µ̃(0) > µs = 1, where µ is given in Lemma 5.1.2. This requirement
means that the constant R defined in (4.9) must satisfy R < 1. Herrmann et al. [24] showed
that in the Gallium Arsenide example which was introduced by Dreyer and Duderstadt [16], the
parameter R is such that R > 1. This means that there is no metastability in this case.

Before we state the theorems on metastability, we introduce some important definitions.

Definition 5.2.1.

(i) The critical cluster size i∗ is the value of i that minimizes the quantity aiQiµ
i.

(ii) The rth moment Mr(t) of super-critical clusters at time t is defined as

Mr(t) :=
∞
∑

i=i∗+1

irzi(t) r = 0, 1. (5.5)

(iii) Finally we introduce the constants β, t0 and J∗ defined by

β :=
2− α

1− α
, t0 :=

i∗ + 1

A
, J∗ := Λai∗Qi∗µ

i∗ . (5.6)

Lemma 5.2.2. For a given µ > µs suppose that µ ∈ [bi/ai, bi+1/ai+1]. Then i = i∗. In addition,
the limit µ → µs implies that i∗ → ∞.
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Proof. Definition 5.2.1 (i) obviously implies that

a∗iQ
∗
iµ

i∗ ≤ ai∗−1Qi∗−1µ
i∗−1 and a∗iQ

∗
iµ

i∗ ≤ ai∗+1Qi∗+1µ
i∗+1.

Using these inequalities together with the first equation in (1.29) we obtain

bi∗

ai∗
≥ µ ≥ bi∗+1

ai∗+1
, (5.7)

with the convention b1 = ∞ to take care of the case where µ > b2/a2. The statement for the
limit follows using Assumption 5.1.1 (iii).

The following theorem is a modification of the result stated by Kreer [30, Lemma II] for the
standard constant free molecule model. It gives the existence and uniqueness of solutions to
(2.85) and (2.86). We will make a specific choice of µ in (5.9) which is very useful in the proof
of some bounds in Theorem 5.2.3.

Theorem 5.2.3 (Existence and bounds). Assume that M = supi≥1(bi − bi+1) < ∞. Let

z0(0) = z0 ≥ 0 and ρ(0) = z0+
∑∞

i=1 izi(0) be the initial mass in the system. For f̃(µ) and g̃(µ)
defined in (1.24) suppose that

0 <
g̃(µs)

1− f̃(µs)
< ∞ and ρs = z0

[

1 +
g̃(µs)

1− f̃(µs)

]

< ρ(0) = ρ < ∞. (5.8)

Define Λ := max{1, Rρ(0)} and choose

µ =
ρ(0)− z0
Rρ(0)

. (5.9)

For µ̃ in (5.4), suppose that the initial data in a solution of (2.85) and (2.86) satisfy µ̃(0) >
µs = 1 together with

0 ≤ zi(0) ≤ Λfi(µ), for all i ≥ 1, and that
∞
∑

i=1

i2zi(0) < ∞, (5.10)

where f(µ) = (fi(µ))i∈N is the steady-state sequence defined in Lemma 5.1.2. Then there exists
a unique solution defined for all t ≥ 0. It satisfies

µ̃(t) ≤ µ, (5.11)

0 ≤ zi(t) ≤ Λfi(µ) for all i ≥ 1, (5.12)

M0(t) ≤ M0(0) + J∗t, (5.13)

M1(t) ≤ 2β−2

{

M1(0) + t0J
∗ + t0J

∗

(

i∗ + 1

β

)β−1(

1 +
M0(0)

t0J∗
+

t

t0

)β
}

. (5.14)

where Mr(t), β, t0 and J∗ are given in Definition 5.2.1.
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We point out that in order to prove uniqueness of the solution of the standard model (1.2)
- (1.7), Ball et al. [4] made a stronger assumption on the initial data viz

∑∞
i=1 i

2zi(0) < ∞.
Laurençot and Mischler [34] showed later that for uniqueness the condition can be relaxed to
∑∞

i=1 izi(0) < ∞ if the kinetic coefficients satisfy ai+1−ai ≤ K, consequently ai ≤ i·max{K,a1},
and bi − bi+1 ≤ K for some positive constant K. Therefore to guarantee the uniqueness of the
solution it suffices to use the relaxed condition and to add the extra requirement bi − bi+1 ≤ K
to Assumption 5.1.1. Although we can solve the uniqueness problem by making such extra
requirements, the use of the strong assumption cannot be avoided. Penrose [46] used it to show
that the series

∑∞
i=1 Ji(z(t)) is convergent for all t ∈ [0,∞[ and also in the proof of the bounds

(5.13) and (5.14).

We construct the solution of (2.85) and (2.86) by considering an auxiliary n−dimensional system
obtained by truncating the infinite system at i = n and setting zi = 0 for all i > n. This
technique was used by Penrose [46] to solve the standard Becker-Döring model. It leads to the
following system of equations

ż
(n)
i (t) = Ji−1(z

(n)(t))− Ji(z
(n)(t)) for 2 ≤ i ≤ n,

ż
(n)
1 (t) = −J1(z

(n)(t)) −
n
∑

i=1

Ji(z
(n)(t)), (5.15)

ż
(n)
0 = 0.

The fluxes are given in (2.86), with zi = 0 for all i > n. The following lemma gives the existence
and uniqueness of solution for the finite system.

Lemma 5.2.4. Define zni (0) := zi(0), where zi(0) fulfills the conditions in Theorem 5.2.3. Then
there exists a unique solution z(n) of (5.15) defined for all t ≥ 0. It satisfies

z
(n)
i (t) ≥0 for all i ≥ 1 and t ∈ [0,∞[ , (5.16)

z
(n)
1 (t)

z0 +
∑n

i=1 z
(n)
i (t)

≤µR, (5.17)

z
(n)
i (t) ≤

n
∑

i=1

iz
(n)
i (t) ≤ρ(0)− z0, (5.18)

z0 +
∑n

i=1 z
(n)
i (t)

z0 + z
(n)
1 (t)

≤max

{

1 +
2

κ
,

ρ(0)

z0 + z1(0)

}

, (5.19)

n
∑

i=1

i2z
(n)
i (t) ≤σ exp

(

2Aρ(0)

z0 + ρ(0)
t

)

, (5.20)

where κ := min{µs, 1}. In addition

lim
k→∞

z
(nk)
i = zi(t) for all i ≥ 1 and t ∈ [0,∞[ . (5.21)

The results in (5.16), (5.18), (5.20), and (5.21) are analogous to those for the finite dimensional
system studied by Penrose [46]. Inequality (5.17) is essential for the proof of (5.11), while (5.19)
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is useful for the proof of existence and uniqueness of solutions, in particular for z0 = 0. It
is intended to show that the quotient ND(z(t))/z1(t), which appears in the fluxes (2.86), is
bounded for all t ≥ 0. For z0 > 0, one may or may not use (5.19) to prove the existence and
uniqueness of solutions since the denominator on the left-hand side is bounded from below by
z0 > 0. In this case the term on the left-hand side is bounded from above by the quotient
ρ(0)/z0, which follows directly from (5.18) and the lower bound on z0 + z1(t). For the proof of
(5.19), the reader is referred to Section 4.2.1. There we proved the inequality for z0 = 0. The
case for z0 > 0 can be showed in a similar way. Therefore we prove only inequality (5.17) in the
following way. The positivity of the solution implies that

z
(n)
1 (t)

z0 +
∑n

i=1 z
(n)
i (t)

≤ z
(n)
1 (t)

z0 + z
(n)
1 (t)

.

Next we use (5.9) and (5.18) to obtain

z
(n)
1 (t)

z0 +
∑n

i=1 z
(n)
i (t)

≤ ρ(0) − z0
ρ(0)

= µR.

We are now ready to prove Theorem 5.2.3.

Proof. (Theorem 5.2.3)
Apart from the inequality (5.11), all other parts of the theorem can be proved by following
Penrose [46]. We include the proof in order to justify the choices Λ = max{1, Rρ(0)} and µ
in (5.9). Additionally we want to demonstrate the need for inequality (5.11) and to derive the
relevant changes introduced to the different bounds in the theorem.

The bound in (5.11) follows by taking the limit n → ∞ and using (5.21) together with the
bounded convergence theorem.

To prove (5.12) the idea is to show that it holds for a system obtained by subtracting a term
εzi(t) from the right-hand side of the differential equation for zi, i ≥ 2 in the n−dimensional
system. For this system, positivity of solutions is guaranteed and hence the left-hand inequality
in (5.12) is satisfied. Now for any integer n, let z(n)(t) be the solution of the modified equations.
Suppose that the right-hand inequality is not true for some values of i and t. We shall show
that this hypothesis leads to a contradiction.

Note that by (5.10) the right-hand side of (5.12) holds at t = 0. Let T > 0 be the first time at
which the inequality is violated, say for i = I. Then there exists a time T+, with T+ > T , such
that

0 ≤ z
(n)
i (T ) ≤ Λfi(µ) for all i ≥ 1, z

(n)
I (T ) = ΛfI(µ), (5.22)

and

z
(n)
I (t) > ΛfI(µ) T < t < T+.

This inequality means that

ż
(n)
I (T ) ≥ 0. (5.23)
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In the remainder of the proof we show that this cannot be true. Suppose that I = 1, so that
z1(T ) = Λf1(µ) = Λµ. Then by omitting the superscript n for easy reading and using zn+1 = 0,
from (2.86) and (5.15) we have

ż1(T ) = −a1
(Λµ)2

z0 + Λµ
+ b2

RND

z0 + Λµ
z2(T )− a1

(Λµ)2

z0 + Λµ
+

n
∑

i=2

(biRND − aiΛµ)

z0 + Λµ
zi(T ).

Next we use (5.18) to get ND ≤ z0 +
∑n

i=1 izi(t) ≤ ρ(0). Now since Λ = max{1, Rρ(0)}, this
implies that RND ≤ Λ so that the above equation becomes

ż1(T ) ≤ −a1
(Λµ)2

z0 +Λµ
+ b2

RND

z0 + Λµ
z2(T )− a1

(Λµ)2

z0 + Λµ
+

n
∑

i=2

(bi − aiµ)

z0 + Λµ
Λzi(T ).

By Assumption 5.1.1 (iii) and (5.7) the coefficients of zi(T ) are non-negative for i ≤ i∗ but
negative for larger i. Define i∗∗ := min{n, i∗}. Then by using (5.22) and (5.22) we obtain

ż1(T ) ≤ −a1
(Λµ)2

z0 + Λµ
+ b2

Λ2f2(µ)

z0 + Λµ
− a1

(Λµ)2

z0 + Λµ
+

i∗∗
∑

i=2

(bi − aiµ)

z0 + Λµ
Λ2fi(µ),

≤ −a1
(Λµ)2

z0 + Λµ
+ b2

Λ2f2(µ)

z0 + Λµ
−

i∗∗−1
∑

i=1

(

ai
Λ2µfi(µ)

z0 + Λµ
− bi+1

Λ2fi+1(µ)

z0 + Λµ

)

− ai∗∗
Λ2µfi∗∗(µ)

z0 +Λµ
,

= −i∗∗
Λ2

z0 + Λµ
J(µ)− ai∗∗

Λ2µfi∗∗(µ)

z0 + Λµ
.

Since J(µ) and fi∗∗(µ) are both positive, we have a contradiction to (5.23). Now suppose that
I > 1. Subtracting εzi(T ) from (5.15) for I > 1 and using (2.86) we have

żI(T ) = aI−1
z1(T )

z0 + z1(T )
zI−1(T )−

bIRND + aIz1(T )

z0 + z1(T )
zI(T ) +

bI+1RND

z0 + z1(T )
zI+1(T )− εzI(T ).

Using (5.22), and zI+1(T ) = 0 if I = n, give

żI(T ) ≤ aI−1
z1(T )

z0 + z1(T )
ΛfI−1(µ)−

bIRND + aIz1(T )

z0 + z1(T )
ΛfI(µ) +

bI+1RND

z0 + z1(T )
ΛfI+1(µ)− εΛfI(µ).

Multiplying (5.1) by ΛRND/(z0 + z1(T )) for i = I and subtracting the resulting expression for
zero from the right-hand side of the above inequality, we get

żI(T ) ≤
Λ

z0 + z1(T )
[z1(T )− µRND] [aI−1fI−1(µ)− aIfI(µ)]− εfI(µ).

By (5.17) the first quantity in square brackets on the right is non-positive, and by Lemma 5.1.2
(i) the second is non-negative. This also gives a contradiction to (5.23). The next step is to
take the limit ε → 0 and then use the fact that the solutions of a differential equation depend

continuously on parameters in the equation. Finally we take the limit n → ∞ for z
(n)
i for each

i ∈ N and use (5.21) to obtain the desired result (5.13).

To prove (5.13) we first note that (2.86), (5.20), and Assumption 5.1.1 (i) imply that

J
(n)
i (z(t)) ≤ Aσ

i2−α
exp

(

2Aρ(0)

z0 + ρ(0)
t

)

, (5.24)
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while (2.86), (5.18), (5.20) and Assumption 5.1.1 (iv) give

J
(n)
i (z(t)) ≥ −ARσρ(0)

z0i2−α
µs exp(G

′) exp

(

2Aρ(0)

z0 + ρ(0)
t

)

. (5.25)

The two inequalities (5.24) and (5.25) lead to

|J (n)
i (z(t))| ≤ K

i2−α
exp

(

2Aρ(0)

z0 + ρ(0)
t

)

, (5.26)

where K := Aσmax{1, Rρ(0)µs exp(G
′)/z0}. In fact this inequality shows that due to α < 1

the series
∑∞

i=1 |J
(n)
i (z(t))| is convergent for all t ∈ [0,∞[. Now we note from the fundamental

theorem of calculus, the definition of M0 in (5.5) and (5.15) that

M0(t)−M0(0) = lim
n→∞

n
∑

i=i∗+1

∫ t

0
(Ji−1(z(s)) − Ji(z(s)))ds = lim

n→∞

∫ t

0
(Ji∗(z(s)) − Jn(z(s)))ds.

Due to the bound in (5.26) we have limn→∞ Jn(z(s)) = 0 so that we obtain

M0(t)−M0(0) =

∫ t

0
Ji∗(z(s))ds.

We use (2.86), (5.12), Lemma 5.1.2 (iii) and (5.6)3 to obtain

Ji∗(z(s)) ≤ Λa∗i fi∗(µ) ≤ Λai∗Qi∗µ
i = J∗, (5.27)

and then evaluate the integral to get (5.13).

Analogously it is easy to see, by using (2.85), (5.5), and the bound in (5.26) that

M1(t)−M1(0) = lim
n→∞

n
∑

i=i∗+1

∫ t

0

[

(i∗ + 1)Ji∗(z(s)) +

n−1
∑

i=i∗+1

Ji(z(s)) − nJn(z(s))

]

ds,

=

∫ t

0

[

(i∗ + 1)Ji∗(z(s)) +
∞
∑

i=i∗+1

Ji(z(s))

]

ds.

The series on the right-hand side is a uniformly convergent sum of continuous functions and
therefore a continuous function. Differentiating both sides and using (2.86), (5.27) and Assump-
tion 5.1.1 (i) give

Ṁ1(t) ≤ (i∗ + 1)J∗ +

∞
∑

i=i∗+1

aizi(t),

≤ (i∗ + 1)J∗ +A
∞
∑

i=i∗+1

iαzi(t).

We then apply Hölder’s inequality to obtain

Ṁ1(t) ≤ (i∗ + 1)J∗ +AM1−α
0 (t)Mα

1 (t).
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To solve the differential inequality we introduce the following scaled variables using t0 defined
in (5.6)

νr(t) :=
Mr(t)

t0J∗
, r = 0, 1 and τ := t/t0. (5.28)

In the new variables the inequality becomes

dν1
dτ

≤ (i∗ + 1)(1 + ν1−α
0 (τ)να1 (τ)).

We again use the Hölder’s inequality to get

dν1
dτ

≤ (i∗ + 1)(1 + ν0(τ))
1−α(1 + ν1(τ))

α,

which is equivalent to

d

dτ
(1 + ν1(τ))

1−α ≤ (i∗ + 1)(1 − α)(1 + ν0(τ))
1−α

and hence

(1 + ν1(τ))
1−α ≤ (1 + ν1(0))

1−α + (i∗ + 1)(1 − α)

∫ τ

0
(1 + ν0(s))

1−αds.

Rewriting (5.13) in the present notation gives ν0(t) ≤ ν0(0)+τ . Substituting this into the above
integral and evaluating the result, we get

(1 + ν1(τ))
1−α ≤ (1 + ν1(0))

1−α +
(i∗ + 1)

β

(

(1 + ν0(0) + τ)2−α − (1 + ν0(0))
2−α
)

,

where β is as defined in (5.6). Next we omit the negative term on the right-hand side and then
use Hölder’s inequality to obtain

(1 + ν1(τ))
1−α ≤ 2α

[

1 + ν1(0) +

(

(i∗ + 1)

β

)1/(1−α)

(1 + ν0(0) + τ)β
]1−α

.

This implies that

ν1(τ) ≤ 2α/(1−α)

[

1 + ν1(0) +

(

(i∗ + 1)

β

)1/(1−α)

(1 + ν0(0) + τ)β
]

.

Finally we use (5.28) to write the inequality in the original variables. This gives the required
expression (5.14) and ends the proof of Theorem 5.2.3.

We recall the following terminology used by Penrose [46]. For any quantity q(µ) depending on
µ, we say that

(i) q(µ) is exponentially small if for all m > 0 the quotient q(µ)/(µ − µs)
m is bounded as

µ → µs.

(ii) q(µ) is at most algebraically large if for some m > 0 the product q(µ)(µ−µs)
m is bounded

as µ → µs.
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The next theorem contains bounds on the quantities i∗ and J∗ in Theorem 5.2.3. It is intended
to show that the number M0(t) and mass M1(t) of super-critical clusters are exponentially small
if the time t is at most algebraically large.

Theorem 5.2.5. Define δ := (µ − µs)/µs > 0. There exists a constant δ0 > 0 such that the
following is true

(i) i∗ is at most algebraically large as δ → 0+, that is, for δ ∈]0, δ0[ we have

0 < i∗ <

(

1

2G′
δ

)−1/γ′

, (5.29)

see Assumption 5.1.1 (iv).

(ii) For Λ ≥ 1 fixed, J∗ is exponentially small as δ → 0+, that is, for δ ∈]0, δ0[ the following
bound holds

0 < J∗ < Λa1µs exp

{

G(24−γ + γ − γ2)

8(1− γ)
− γ

1− γ
G1/γ

(

1

δ

)(1/γ)−1
}

. (5.30)

Moreover J(µ) is also exponentially small since J(µ) ≤ J∗.

The proof of this theorem is constructed in a similar way to that by Penrose [46]. We pay
attention to the parameter Λ and the term 24−γ introduced on the right-hand side of (5.30).
These are the only changes to results by Penrose.

Proof. To prove part (i) we use Assumption 5.1.1 (iv) and (5.7) to get

µ ≤ bi∗

ai∗
< µs exp(G

′i∗−γ′
).

This implies that i∗ <
[

G′−1 ln(µ/µs)
]−1/γ′

. By using the mean value theorem, there exists a
constant µ′ ∈]µs, µ[ such that

ln(µ/µs) = (µ− µs)/µ
′ = δµs/µ

′ > δµs/µ. (5.31)

For δ0 < 1 we have 2µs > µ giving

ln(µ/µs) > δ/2.

Using this we finally obtain the right inequality in (5.29). The left inequality is trivial.

Next we prove part (ii) of the theorem. The left-hand inequality of (5.30) is clear from the
definition of J∗ in (5.6). We note that for any two integers m and n satisfying 1 ≤ m < n, we
have by (1.8)

Qn

Qm
=

(

am
an

) n
∏

r=m+1

(

ar
br

)

.
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Then by using the first inequality in Assumption 5.1.1 (iv) we get,

Qn

Qm
≤
(

am
an

)

µm−n
s exp

[

−
n
∑

r=m+1

Gr−γ

]

≤
(

am
an

)

µm−n
s exp

[

−
∫ n

m+1
Gr−γdr

]

=

(

am
an

)

µm−n
s exp

[

−G

(

n1−γ − (m+ 1)1−γ

1− γ

)]

. (5.32)

Next we set m = 1, n = i and use Q1 = 1 to obtain

Qiµ
i ≤ a1

ai
µs

(

µ

µs

)i

exp

[

−G

(

i1−γ − 21−γ

1− γ

)]

,

which implies that

aiQiµ
i ≤ a1µs exp

[

i ln

(

µ

µs

)

−G

(

i1−γ − 21−γ

1− γ

)]

. (5.33)

The minimum value of the right-hand side, achieved when i = [G/ ln(µ/µs)]
1/γ , is

a1µs exp

[

21−γG

1− γ
− γ

1− γ
G1/γ

[

ln

(

µ

µs

)]−(1−γ)/γ
]

. (5.34)

Since we are considering the limit µ → µs, we may take µ close enough to µs to ensure that
[G/ ln(µ/µs)]

1/γ ≥ 3/2. Then the second derivative Gγi−γ−1 of the exponent is bounded from
above by Gγ for all i in the interval defined by

[G/ ln(µ/µs)]
1/γ − 1/2 ≤ i ≤ [G/ ln(µ/µs)]

1/γ + 1/2,

and so by Taylor’s expansion with the second derivative as the remainder term, the exponent
itself exceeds its minimum value by at most 1

2Gγ(12 )
2 for all i in this interval. There is an integer

value of î within this interval for which (5.34) makes the right-hand side of (5.33) maximal giving

aîQîµ
î ≤ a1µs exp

[

21−γG

1− γ
− γ

1− γ
G1/γ

[

ln

(

µ

µs

)]−(1−γ)/γ

+
1

2
Gγ

(

1

2

)2
]

. (5.35)

Since also ai∗Qi∗µ
i∗ ≤ aiQiµ

i for all i ∈ N, this inequality leads to

J∗ = Λai∗Qi∗µ
i∗ ≤ Λa1µs exp

[

21−γG

1− γ
− γ

1− γ
G1/γ

[

ln

(

µ

µs

)]−(1−γ)/γ

+
Gγ

8

]

.

Finally we use (5.31) and µ > µs to obtain

J∗ ≤ Λa1µs exp

[

G(24−γ + γ − γ2)

8(1− γ)
− γ

1− γ
G1/γ

(

1

δ

)
1
γ
−1
]

,

which is the required expression (5.30).
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It is important to note here that we have proved two of the metastability conditions stated in
Section 5.1. Following the custom of identifying the sub-critical clusters, i ≤ i∗, with the old
phase and the super-critical ones, i > i∗, with the new phase, the results in Theorems 5.2.7 and
5.2.5 show that if t is at most algebraically large then the number of super-critical clusters is
exponentially small. Within this time the system is said to be in a metastable phase where only
the initial phase is present. We introduce the lifetime tM of the metastable phase as the time
after which the right-hand side of (5.13) is O(1). Using (5.13) and (5.30) give

tM ≈ 1

J∗
>

1

Λa1µs
exp

{

−G(24−γ + γ − γ2)

8(1 − γ)
+

γ

1− γ
G1/γ

(

1

δ

)(1/γ)−1
}

, (5.36)

which is a large quantity in the limit δ → 0.

Remark 5.2.6. For any given mass ρ > 0 the structure of the fluxes in (2.87) allows for a
scaling of the model (1.2) so that the resulting system has a unit mass. In this case we interpret
zi(t) as the number of clusters of size i per unit mass at time t. We recall from the introductory
paragraph of Section 5.2 that we require that R < 1. Now coupling these results we obtain
Λ = max{1, Rρ(0)} = 1 for the scaled system.

This remark shows that all the results of Theorems 5.2.3 and 5.2.5 hold with Λ = 1. The
following theorem is intended to show the last of the three conditions in Section 5.1 which
characterize the metastable state.

Theorem 5.2.7. For Λ = 1, let the requirements of Theorem 5.2.3 be fulfilled. Again let
f(µ) = (fi(µ))i∈N be the steady-state sequence. With z0 ≥ 0 consider any initial data for which

0 = M1(0) and 0 ≤ [fi(µ)− zi(0)], 1 ≤ i ≤ i∗

are exponentially small at µs. Then the unique solution for the modified model (1.2) and (2.87)
has an exponentially long lifetime in the sense that for each fixed i the following two results hold
in the limit µ → µs, which implies i∗ → ∞:

(i) If t is at most algebraically large, then [fi(µ)− zi(t)] is exponentially small.

(ii) limt→∞[fi(µ)− zi(t)] is not exponentially small.

The statement of the theorem is similar to that by Penrose [46]. The difference lies only in the
choice of initial conditions. Here we allow for an exponentially small deviation of the initial
distribution of sub-critical clusters from those of the steady-state distribution f(µ). Penrose
used initial conditions for which this deviation is equal to zero. The proof of the theorem follows
the idea of Penrose [46].

Proof. We use (5.5) and the mass conservation property for the modified model as well as the
assumption M1(0) = 0 to obtain

i∗
∑

i=1

i[zi(0) − zi(t)] = M1(t)−M1(0) = M1(t). (5.37)

We recall from Lemma 5.2.2 that µ → µs implies that i∗ → ∞. Therefore in the limit µ → µs,
for any given fixed value of i the summation on the left-hand side will eventually include a term
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i[zi(0) − zi(t)]. We add and subtract the term
∑i∗

i=1 ifi(µ) in the left-hand side of (5.37) to
obtain

i∗
∑

i=1

i[fi(µ)− zi(t)] =

i∗
∑

i=1

i[fi(µ)− zi(0)] +M1(t).

Our restriction on the initial data allows us to write

i∗
∑

i=1

i[fi(µ)− zi(t)] ≤ i∗
i∗
∑

i=1

[fi(µ)− zi(0)] +M1(t),

≤ i∗2 max
1≤i≤i∗

[fi(µ)− zi(0)] +M1(t). (5.38)

The inequality (5.12) for Λ = 1 shows that the left-hand side of the above inequality consists of
non-negative terms for each i. We can therefore write

[fi(µ)− zi(t)] ≤
i∗
∑

i=1

i[fi(µ)− zi(t)] ≤ i∗2 max
1≤i≤i∗

[fi(µ)− zi(0)] +M1(t). (5.39)

We recall that the bound (5.14) together with Theorem 5.2.5 imply that M1(t) is exponentially
small if t is at most algebraically large. Similarly we proved in Theorem 5.2.5 that i∗ is an
at most algebraically large quantity. Thus all the terms on the right-hand side of (5.39) are
exponentially small if t is at most algebraically large. This ends the proof of part (i).

To prove part (ii) we note that it is possible to use the results by Ball et al. [4, Chapter 5] and
Herrmann et al. [24, Chapter 4] to show that

lim
t→∞

zi(t) = RNDQiµ
i
s where ND =

ρ̄s − z0
g̃(µs)

and ρ̄s = z0

(

1 +
g̃(µs)

1− f̃(µs)

)

. (5.40)

Clearly for z0 = 0 this gives the result

lim
t→∞

zi(t) = 0,

which was proved by Herrmann et al. [24, Theorem 17, (NEQ)]. We note from (1.24) that
f̃(µs) < g̃(µs). Now using this condition and (5.40) we observe that

ND =
z0

1− f̃(µs)
=

z0[1− f̃(µs) + f̃(µs)]

1− f̃(µs)
<

z0[1− f̃(µs) + g̃(µs)]

1− f̃(µs)
= ρ̄s.

This result as well as the requirement ρs < ρ in (5.8) imply that for i ≤ i∗ we have

lim
t→∞

[fi(µ)− zi(t)] = fi(µ)−RNDQiµ
i
s,

>
fi(µ)

µ
µ−RρQiµ

i
s.

Next we use Lemma 5.1.2 (ii) and (iv) as well as Rρ ≤ Λ = 1 to obtain for i ≤ i∗

lim
t→∞

[fi(µ)− zi(t)] >
Qiµ

i
s

µs
µ−Qiµ

i
s =

µ− µs

µs
Qiµ

i
s, (5.41)
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which is positive and O(µ− µs). The latter is not exponentially small. For any fixed i, one can
always achieve the bound i ≤ i∗ by choosing µ close enough to µs so that (5.41) holds. This
ends the proof of the theorem.

The result in Theorem 5.2.7 (ii) as well as inequality (5.38) together with the exponentially small
quantities fi(µ)−zi(0) and M1(0) imply that in the limit t → ∞ the mass M1(t) of super-critical
clusters in not exponentially small.

Remark 5.2.8. Herrmann et al. [24] proved that for z0 = 0 the solution converges weak∗ to 0

in the limit t → ∞ and all the mass is transferred to larger and larger clusters. In this case we
can prove that

lim
t→∞

[fi(µ)− zi(t)] ≥
Qiµ

i
s

µs
µ =

(

µ− µs

µs
+ 1

)

Qiµ
i
s, i ≤ i∗,

which is not exponentially small.
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Chapter 6

Numerical approximation

In this Chapter we compute numerically the time dependent cluster distribution z(t) for finite
systems. We point out that due to the large range of parameter values involved in the nucleation
problem, care must be taken in order to decide which numerical method is to be used. This
problem falls into the class of stiff differential systems. For such problems certain implicit
methods, in particular BDF, perform better than explicit ones. See Dekker and Verwer [14],
Hairer and Wanner [22] as well as Shampine [53] for detailed information on stiff problems.
For general numerical methods for ordinary differential equations, one can also see Butcher [8],
Shampine et al. [55], Lambert [32] as well as Deuflhard and Bornemann [15].

Carr et al. [9] described an efficient numerical algorithm for solving the standard mass-conserving
Becker-Döring model. They reported that higher order stiff solvers do not correctly reproduce
the positivity property of the solutions to the model. They observed from their numerical
simulations that for small supersaturations, one requires a very large system for the solution
to exhibit metastability. Therefore, they exploited the special structure of the equations to
speed up the linear algebra required by implicit solvers for the problem. In particular the
Jacobian matrix for the system of equations has a tridiagonal arrow head form. However, in the
thermodynamically consistent models we cannot obtain such a structure of the Jacobian matrix
in a straight forward way. This is because of the presence of the term ND(z(t)) in the fluxes,
thereby leading to a dense Jacobian matrix. We obtain an efficient algorithm by applying the
transformation Fi(t) =

∑n
j=i zj(t) which was introduced by Laurençot and Mischler [34]. We

have already used it in Section 4.3 to prove the uniqueness of solutions.

6.1 Efficient numerical approximation

We consider finite systems of the modified mass-conserving model, which we studied in Chapter
3. There we discussed the zero flux and the zero particle number truncations. These respectively
led to equations (3.30) and (3.41).
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6.1.1 The zero flux truncation

Here we set Jn = 0 and zi = 0 for all i ≥ n. For Fi(t) =
∑n

j=i zj(t) we use equation (3.30) to
get

Ḟi(t) = Ji−1(F(t)), i ≥ 2, (6.1)

Ḟ0(t) = Ḟ1(t) = −
n−1
∑

i=1

Ji(F(t)), (6.2)

where the fluxes are now given by

Ji(F(t)) = ai

(

Fi(t)− Fi+1(t)

)

F1(t)− F2(t)

F0(t)− F2(t)
− bi+1RF0(t)

F0(t)− F2(t)

(

Fi+1(t)− Fi+2(t)

)

. (6.3)

This truncation implies that Fi = 0 for all i > n. We note that the conservation of mass is
equivalent to the conservation of the quantity z0 +

∑n
i=1 Fi(t), see Remark 4.3.3. Thus the

model (4.54) - (4.56) can be written as a differential algebraic system of equations (DAE) in the
following way

z0(t) = z0,

0 = (ρ− z0)−
n
∑

i=1

Fi(t), (6.4)

Ḟi(t) = Ji−1(F(t)), for 2 ≤ i ≤ n.

We introduce the vectors

Ḟi(t) :=











Ḟ1(t)

Ḟ2(t)
...

Ḟn(t)











, G(F) :=























(ρ− z0)−
∑n

i=1 Fi(t)

J1(F(t))
...

Ji−1(F(t))
...

Jn−1(F(t))























, (6.5)

and the n by n singular matrix

M =































0 0 . . . 0
0 1 0

0 1 0

...
. . .

...

0 1 0
0 1 0

0 . . . 0 1































.

Then (6.4) is equivalent to

MḞi(t) = G(F). (6.6)
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Below we report results obtained by using the Matlab ode15s solver for this system, see Shampine
and Reichelt [56] as well as Shampine et al. [54]. At each time step, the solver makes use of the
Jacobian of the vector G(F). If not specified, the solver approximates the Jacobian by using
finite differences. By providing the exact Jacobian matrix, the accuracy of our computations is
improved and since it has a sparse structure, the code is even faster. The Jacobian matrix for
the system (6.6) is a tridiagonal arrow head matrix of the form

· ·
· ·

























∂G(F)

∂F
= ,

where the entries at the positions of the dots and along the lines are to be specified. To do this,
we introduce various vectors and matrices. Define m := 1/(z0 + F1 − F2) and let

v := m2
[

a1
(

1/m2 − z20
)

− b2R (F2 − F3) (z0 − F2)
]

,

w := m2
[

−a1
(

1/m2 − z20
)

− b2R(z0 + F1) (z0 + F1 − F3)
]

.

We introduce the (n− 2)× 1 vectors d, e and f as

d := mb2R(z0 + F1)











1

0
...
0











,

e := m2



















a2z0(F2 − F3)− b3R(F3 − F4)(z0 − F2)

...
ai−1z0(Fi−1 − Fi)− biR(Fi − Fi+1)(z0 − F2)

...
an−1z0(Fn−1 − Fn)− bnRFn(z0 − F2)



















,

and

f := m2























a2(1/m − z0)1/m − z0(F2 − F3)− b3R(z0 + F1)(F3 − F4)

−z0a3(F3 − F4)− b4R(z0 + F1)(F4 − F5)
...

−z0ai−1(Fi−1 − Fi)− biR(z0 + F1)(Fi − Fi+1)
...

−z0an−1(Fn−1 − Fn)− bnR(z0 + F1)Fn























.

Lastly, we define the components p1, p2, . . . , pn−2 by

pi :=ai+1 + bi+2R
z0 + F1

F1 − F2
= ai+1 + bi+2R m

z0 + F1

1−mz0
,
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and define an (n− 2)× (n− 2) matrix T by

T := (1−mz0)























−p1 (p1 − a2) 0 . . . 0
a3 −p2 (p2 − a3) 0 0
0 a4 −p3 (p3 − a4) 0 0
...

...
0

0 an−2 −pn−3 (pn−3 − an−2)
0 . . . 0 an−1 −pn−2























.

With the above information, the Jacobian matrix is therefore given as

∂G(F)

∂F
=







1 1 uT

v w dT

e f T






. (6.7)

6.1.2 The zero particle number truncation

Here we set zi = 0 for all i ≥ n. Again we use the transformation Fi =
∑n

j=i zj(t) into (3.41).
This leads to the following differential algebraic system

z0(t) = z0,
n
∑

i=1

Fi(t) = (ρ− z0), (6.8)

Ḟi(t) = Ji−1(F(t))− Jn(F(t)), for 2 ≤ i ≤ n.

We now have an extra non-zero flux Jn appearing on the right-hand side. For the zero particle
number truncation, the vector G in (6.5) changes to

G(F) :=























(ρ− z0)−
∑n

i=1 Fi(t)

J1(F(t))− Jn(F(t))
...

Ji−1(F(t))− Jn(F(t))
...

Jn−1(F(t))− Jn(F(t))























.

With Jn(F(t)) = anFn(t)(F1(t)−F2(t))/(z0 +F1(t)−F2(t)) we have to modify the first, second
and nth column of the Jacobian matrix ∂G(F)/∂F defined in (6.7). In this case we have
additional terms involving an in all the following quantities

v = m2
[

a1
(

1/m2 − z20
)

− b2R (F2 − F3) (z0 − F2)− anz0Fn

]

,

w = m2
[

−a1
(

1/m2 − z20
)

− b2R(z0 + F1) (z0 + F1 − F3) + anz0Fn

]

.
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The (n− 2)× 1 vectors d, e and f are now given by

d =















mb2R(z0 + F1)

0
...
0

−an(1− z0m)















,

e = m2



















a2z0(F2 − F3)− b3R(F3 − F4)(z0 − F2)− anz0Fn

...
ai−1z0(Fi−1 − Fi)− biR(Fi − Fi+1)(z0 − F2)− anz0Fn

...
an−1z0(Fn−1 − Fn)− bnRFn(z0 − F2)− anz0Fn



















,

and

f = m2























a2(1/m− z0)1/m− z0(F2 − F3)− b3R(z0 + F1)(F3 − F4) + anz0Fn

−z0a3(F3 − F4)− b4R(z0 + F1)(F4 − F5) + anz0Fn
...

−z0ai−1(Fi−1 − Fi)− biR(z0 + F1)(Fi − Fi+1) + anz0Fn
...

−z0an−1(Fn−1 − Fn)− bnR(z0 + F1)Fn + anz0Fn























.

Lastly, the (n− 2)× (n− 2) matrix T now becomes

T = (1−mz0)























−p1 (p1 − a2) 0 . . . −an
a3 −p2 (p2 − a3) 0 −an
0 a4 −p3 (p3 − a4) 0 −an
...

...
−an

0 an−2 −pn−3 (pn−3 − an−2 − an)
0 . . . 0 an−1 −pn−2 − an























.

Note that we do not have the tridiagonal arrow head structure any more but the matrix is still
sparse.

6.2 Numerical example

We use the following parameters

ai = ξiα, q̃1 = R, q̃i = exp(−ã i2/3) for 2 ≤ i ≤ n, (6.9)

where ξ = 1, α = 2/3, ã = 8.4296 and R to be determined from the initial conditions. These
imply that bi+1 = aiq̃i/q̃i+1 = exp

(

ã
[

(i+ 1)2/3 − i2/3
])

. The initial conditions are given by

zi(0) =







z0 ≥ 0 for i = 0,
ρ(0) − z0 = 1 for i = 1,

0 otherwise.
(6.10)
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where z0 is to be specified. The initial data implies that ND(z(0)) = z0 + z1(0) = ρ(0) = ρ, so
that equations (5.4) and (5.9) give µ̃(0) = µ.

For a given value of z0 ≥ 0 we choose µ > 0 and calculate the following

R =
ρ− z0
µρ

, f̃(µs) =
∞
∑

i=1

q̃iµ
i
s, g̃(µs) =

∞
∑

i=1

iq̃iµ
i
s, ρs = z0

[

1 +
g̃(µs)

(1− f̃(µs))

]

, (6.11)

where µs = 1. The value of µ must be chosen so that all the assumptions of Theorem 5.2.3 are
fulfilled. The main requirements are µ > µs = 1, f̃(µs) < 1, and ρ > ρs. It is clear from Tables
6.1 and 6.2 that these requirements are indeed fulfilled.

µ = µ̃(0) R f̃(µs) g̃(µs) ρs z̄n→∞
1 z̄plateau1 nplateau

3 0.3333 0.33333490 0.33333650 0 0 0.99996972 403
4 0.2500 0.25000157 0.25000316 0 0 0.99994474 187
5 0.2000 0.20000157 0.20000316 0 0 0.99991124 111

Table 6.1: Parameter values for z0 = 0 giving ρ = 1 and various values for µ

µ = µ̃(0) R f̃(µs) g̃(µs) ρs z̄n→∞
1 z̄plateau1 nplateau

3 0.1667 0.16666824 0.16666983 1.20000417 0.2000 0.99993974 401
4 0.1250 0.12500157 0.12500316 1.14286101 0.1429 0.99989000 185
5 0.1000 0.10000157 0.10000316 1.11111482 0.1111 0.99982290 110

Table 6.2: Parameter values for z0 = 1 giving ρ = 2 and various values for µ

We point out that a necessary requirement for the condition f̃(µs) < 1 is that the parameter
ã in (6.9) must satisfy ã > 1.2, see the analysis in Section 3.1.3. This explains why the value
ã = 1, which was used by Carr et al. [9] and Duncan and Soheili [19] for the numerical solution
of the standard mass conserving Becker-Döring model, does not work for the thermodynami-
cally consistent models. Our choice ã = 8.4296 corresponds to nucleation of water vapor at a
temperature of 250C.

We recall from Section 4.4 that the equilibrium distribution z̄ is given by

z̄0 = z0, N̄D =
ρ− z0
g̃(µ̄)

, and z̄i = N̄D q̃iµ̄
i for i ≥ 1,

where µ̄, the equilibrium value of µ̃, is the unique solution of

z0
ρ− z0

g̃(µ̄) + f̃(µ̄) = 1. (6.12)

The functions f̃ and g̃ are defined in (6.11) with µs replaced by µ̄. For finite systems, we must
have f̃(µ̄) =

∑n
i q̃iµ̄

i and g̃(µ̄) =
∑n

i iq̃iµ̄
i. In this case, solutions of (6.12) will depend on the
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value of n. For a fixed n, we use the two different values z0 = 0 and z0 = 1 together with (6.10)
to determine µ̄ from (6.12). We then calculate the equilibrium number z̄1 of free molecules by
using

z̄1 = µ̄RN̄D =
ρ− z0
g̃(µ̄)

µ̄R. (6.13)

Figure 6.1 shows the variation of the equilibrium number of free molecules with the size n of the
largest cluster.
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Figure 6.1: Equilibrium number of free molecules calculated from (6.12) and (6.13)

We observe in all cases, that there is an initial plateau where the changes of z̄1 are minimal.
Depending on µ there is a maximum size of the largest cluster for which this holds. Exceeding
this size, an increase in the size of the largest cluster is compensated by a decrease in the values of
z̄1. For a fixed value of z0, the length of the plateau decreases with an increase in µ. For a given
µ, the values of z̄1 are lower for higher values of z0 within the plateau. This trend is reversed
when the size of the largest cluster is increased away from the plateau. These observations are
evident from Figures 6.1 and 6.2. We believe that the equilibrium number z̄1 of free molecules
converge to values where µ̄ = µs and ρ = ρs as the size of the largest cluster increases to infinity.
Denoted by z̄n→∞

1 , these values are given in Tables 6.1 and 6.2. For z0 = 0 they are not reached
since there is no solution to (6.12) because of the condition f̃(µs) < 1. On the other hand if
z0 > 0, then z̄n→∞

1 solves (6.12) with µ = µs and ρ = ρs.

The last two columns of Tables 6.1 and 6.2 indicate the height z̄plateau1 of the plateau and its
right end point nplateau. For our results, we define the plateau as the region where each value of
z̄1 is within a vertical distance 1.0× 10−5 of its two neighbors. The heights z̄plateau1 correspond
to the averages of the values of z̄1 within each plateau. Similar results were reported by Carr et
al. [9] on the equilibrium of the standard mass conserving Becker-Döring model.

103



CHAPTER 6. NUMERICAL APPROXIMATION

 

 

µ = 5, n = 115
µ = 4, n = 190
µ = 3, n = 405

z0 = 1

z0 = 0

z0 = 0

z0 = 1

z0 = 0

z0 = 1z̄ 1

number of molecules in the largest cluster
0 100 200 300 400

0.9994

0.9996

0.9998

1

Figure 6.2: Equilibrium number of free molecules calculated from (6.12) and (6.13) with maxi-
mum system size n
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Figure 6.3: Variation of the number of free molecules with time in seconds for Jn = 0

We now turn our attention to the time dependent solutions of the truncated modified mass-
conserving model. Figure 6.3 shows the time dependence of the number of free molecules for
different values of z0 and µ, with the zero flux truncation. In this case the solution goes through a
metastable state before attaining an equilibrium. We observe that the duration of the metastable
state depends on the choice of µ. For a fixed value of z0, there is an increase in the length of the
metastable state as one approaches µs = 1 from above. We point out that in order to capture
the metastable phase, there is a need to use larger and larger systems as one approaches µs

from above. For instance, using a system of size 115 with µ = 3 would not show the breakdown
of the metastable phase at about t = 1023s. Instead this phase would continue as if it were an
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equilibrium. On the other hand, if one uses n = 405 for µ = 5, the duration of the metastable
phase will not be affected. Instead the equilibrium number of free molecules will be lower than
the values indicated in the figure for the different values of z0. In addition, such a computation
would take more time. Interestingly, the results of Figure 6.3 are related to those in Figure
6.2 on equilibrium. In both figures, the heights of the plateaus are the same for corresponding
values of z0 and µ. To distinguish the metastable phase from an equilibrium, the system size n
must be bigger than the values nplateau indicated in Tables 6.1 and 6.2. For our choices of n the
equilibrium values of the free molecules are those indicated by the right end points of each of
the plots in Figure 6.2.

Table 6.3 shows the information returned by the solver when either the Jacobian matrix is given
explicitly or approximated numerically. The aim of the table is to illustrate the computational
advantages of using the exact Jacobian matrix. We observe that in all the cases for µ and n,
the number of function evaluations as well as the computational time reduce when the Jacobian
matrix is specified. A considerable improvement is observed for the case where µ = 3 and
n = 405.

µ̃(0) n numerical Jacobian exact Jacobian

3 405 Function evaluations 966 151
Computational time/s 1.7070 0.8297

4 190 Function evaluations 571 182
Computational time/s 0.8737 0.6487

5 115 Function evaluations 280 171
Computational time/s 0.6786 0.5557

Table 6.3: Computational information for z0 = 0 and Jn = 0

Next we consider the case for µ = 4, n = 190, and compare the results for the two truncations
considered. These are shown in Figure 6.4. We observe that for the zero flux truncation, the
solution undergoes a long metastable state before converging to an equilibrium. On the other
hand, the zero particle number truncation gives a steady-state solution which approximates the
metastable state of the zero flux truncation. According to Penrose and Lebowitz [48], a system
can remain in its metastable phase if one prevents the growth of the mass of super-critical clusters
in a given local region. The zero particle number truncation does exactly this. Therefore the
above results are expected.

Figure 6.5 shows the distribution z(t) at different time periods for µ̃ = 4.0 and n = 190. The
initial period ends at about t = 100, while the metastable period goes up to about t = 1011.
They were computed using the zero flux truncation.

105



CHAPTER 6. NUMERICAL APPROXIMATION

 

 

zero flux truncation
zero particle number truncation

z0 = 1

z0 = 0
z 1
(t
)

log10(t)
−10 −5 0 5 10 15 20 25

0.9996

0.9997

0.9999

1

Figure 6.4: Variation of the number of free molecules with time for the different truncations,
µ = 4.0 and n = 190
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Figure 6.5: Cluster size distribution at different time periods, µ = 4.0 and n = 190. The symbols
∗ represent values of log10(zicrit) at different times, where icrit = 67 in this case. The initial
period ends at about 100 while the metastable one goes up to about 1011.

Finally Figure 6.6 shows the fluxes for the critical cluster. They are the rates at which super-
critical clusters are being formed from the critical ones. We observe that the steady-state
formulae Js and Js2 are very good approximations to the nucleation rate within the metastable
phase. It is clear from the figure that after the metastable phase, the time dependent nucleation
rates drop down to zero thereby leading to an equilibrium distribution of clusters. By using
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(1.15) and (2.7) we note that the structure of ai in (6.9) must imply that

ξ = αiϑV
2/3
1

p0
kT

√

kT

2πm
.

We set the sticking coefficient αi to unity and use the two formulae in (2.11) with S = 1/R to
obtain

ξ =
γ

σ

p̄(T )

RkT

√

kT

2πm
.

We recall from (2.27) that ã = γ/kT so that we get

ξ =
ã

σ

p̄(T )

R

√

kT

2πm
. (6.14)

Our choice ξ = 1 in the numerical computations corresponds to a time scaling of the modified
Becker-Döring equations to a new time t related to the actual time τ by

t = ξτ.

This means that the time τlag it takes the nucleation rate Jicrit in Figure 6.6 to reach its
metastable value is given by

τlag =
tlag
ξ

≈ 102.5

ξ
. (6.15)

We recall that we have used the value ã = 8.4296 corresponding to water vapor at 250C. At this
temperature the steam tables by Wagner and Kretzschmar [66] give σ = 71.972 × 10−3Nm−1,
p̄(T ) = 3.170× 103Pa and m = 3.0× 10−26kg. Using these values and R = 1/4 in (6.14) as well
as (6.15) gives τlag ≈ 10−6s.

It was not possible to simulate results for µ very close to µs = 1. This is because of the need to
use very large systems and also the prolonged duration of the corresponding metastable phase.
In other words, after a very long time, the numerical errors accumulate and therefore render the
results inaccurate. These difficulties were also reported by Carr et al. [9] for the standard mass
conserving model.
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Figure 6.6: Nucleation rates at the critical cluster icrit = 67, for µ = 4.0 and n = 190. Here
Jicrit(t) represents the time dependent flux for the critical cluster, computed using (6.3) and the
zero flux truncation. The rates Js are the steady-state nucleation rates calculated from (3.66),
while Js2 is given by (3.67) with γ/kT = ã and S = 1/R = 4.0.
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Conclusions

This thesis was devoted to the dynamics of the Becker-Döring model as used in the nucleation
theory. We extended the liquid-vapor system of Dreyer and Duderstadt [16] by incorporating an
inert gas. We also derived the expression for the available free energy of a closed crystallization
system. Here the solvent was considered as an inert substance in which the free solute particles
or molecules are dissolved. From these two examples we stated a general thermodynamically
consistent mass-conserving Becker-Döring model with an additional parameter z0 taking care
of the presence of an inert substance. In addition, we studied the existence and uniqueness of
steady-state as well as time independent solutions to the model. We showed that under some
restrictions on the kinetic coefficients and initial data, there exists a metastable class of solutions
for the model. In the following sections we summarize the results of our work.

Steady-state solutions

We proved the existence and uniqueness of steady-state solutions for the truncated versions of
the model. One truncation was the zero flux truncation where we took a system of size n and
set Jn to zero. With this truncation we obtained only the equilibrium solution where all the
fluxes vanish. In the second truncation we set zi = 0 for all i ≥ n+1. This truncation led to the
non-equilibrium steady-state solutions where all the fluxes have a non-zero common value. For
very large systems, that is, in the limit n → ∞ we showed that such solutions do not exist for
the thermodynamically consistent models. However, by making extra assumptions we were able
to construct approximations to the steady states of the infinite models. In this way we were able
to derive a new correction of the classical nucleation rates. Our new formula predicts higher
nucleation rates than the classical one in the presence of an inert substance. We compared
the calculated nucleation rates with those observed in experiments. There was a discrepancy
between the predicted rates and the observed ones. We corrected this by accounting for the
sticking coefficients which shows that not all collisions of free molecules with a given cluster result
into its growth. For water vapor, we obtained sticking coefficients ranging between 10−7−10−1.
However, by considering the Argon data by Sinha et al. [57] we observed that our nucleation
rates are lower than those observed in experiments. In this case the sticking coefficient was not
enough to correct the discrepancy since it would even lead to lower rates. Therefore more work
has to be done in order to improve the nucleation rate prediction of the classical droplet model
for general substances.
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CHAPTER 7. CONCLUSIONS

Existence and uniqueness of solutions

We observed that for some choices of condensation rates the resulting modified model is singular
in z1. We showed in Chapter 4 that the singular problem can be solved directly without any
need to make a time scaling. This was possible due to the structure of the model. For z0 = 0, we
showed by making some assumptions on the kinetic coefficients and initial data that the quotient
ND(t)/z1(t) is bounded uniformly for all t ∈ [0,∞[. We proved the existence of solutions by
using the standard methods discussed by Ball et al [4]. For the singular fluxes in general,
uniqueness of solutions for z0 = 0 was only possible if the coefficients ai are size independent.
By making a stronger restriction on the initial data, we were able to prove uniqueness locally
for the whole class of ai given by (4.8), see Remark 4.3.5. It is important to note that the
commonly used initial conditions, where all the mass is put in free molecules, do not satisfy the
additional restriction. Therefore this extra result is essential for the mathematical completeness
of the theory but not commonly used in practice. Maybe such initial conditions are essential in
processes which involve a change from a more dense phase to a less dense one, since in this case
we may have a few free molecules initially. For example vaporization or melting processes.

We note that only for z0 = 0 and non singular fluxes did Hermann et al. [24] prove the existence
and uniqueness for the whole class of ai discussed in this thesis. As pointed out in the intro-
duction of Chapter 4, the solutions to their model solve the singular flux model for all t ≥ 0 if
z1(t) does not go to zero faster than 1/t or if it has a lower bound other than zero. Interestingly
the same conditions lead to the difficulty in proving the uniqueness of solutions to the singular
problem for the whole class ai = iα, with α ∈]0, 1[.

For z0 > 0, equilibrium solutions exist under more general cases than those for which z0 = 0.
In some cases there exists an upper bound on the mass contained in an equilibrium solution,
see (4.76). This is similar to the behavior of solutions for the standard mass conserving Becker-
Döring model which was discussed by Ball et al. [4].

Metastability

We showed in our study that metastability for the modified model applies only to the case
where R < 1, see (4.9) for the definition of R. This means that there is no metastability in the
Gallium Arsenide example which was introduced by Dreyer and Duderstadt [16]. In addition, the
existence of a metastable solution depends on the initial value of the quantity µ̃ defined in (5.4).
In particular, we can construct metastable solutions only for µ̃(0) ≥ µs = 1. This is in contrast
to the standard mass-conserving model where metastability depends on the initial free molecule
concentration. Importantly, the kinetic coefficients ai = 1 and bi+1 = exp(ã{i2/3 − (i − 1)2/3})
with ã = 1, which were used by Carr et al. [9] for the standard model, do not qualify for
metastability in the modified model. In particular the parameter ã must satisfy the condition
ã > 1.2.

Numerical results

We described an efficient numerical method for solving the truncated modified mass-conserving
model. The maximum system size n was assumed to be greater than the critical cluster predicted
by the Thomson formula (2.16). According to Penrose and Lebowitz [48] a system can be
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restricted in its metastable phase if one prevents the growth of the mass of super-critical clusters
in a given local region. The zero particle number truncation must therefore lead to steady-state
solutions which represent the metastable states of the zero flux truncation. This was evident
from our numerical results. It was difficult to simulate results for values of µ̃(0) very close to µs.
This was because of the need to use very large systems and also the prolonged duration of the
corresponding metastable states. In other words, after a very long time, the numerical errors
accumulate and therefore render the results inaccurate. These difficulties were also reported by
Carr et al. [9] for the classical mass conserving model. Therefore we did not validate the time
bounds for metastability breakdown which were given in Chapter 5.

In the following we mention some of the future work and open problems in relation to our work.

• It would be interesting to compare the nucleation rates derived here with experimental
data for crystallization in solutions. We did comparisons only for melt crystallization.

• For z0 = 0 the uniqueness result for the singular problem is open if ai = iα, with α ∈]0, 1[.
We proved uniqueness only for size independent coefficients.

• From a physical point of view we believe that in the presence of an inert substance, if one
initially has a supersaturated system of mass ρ, the asymptotic solution must have two
phases. In particular, as t → ∞, the solution must converge in some weak sense to an
equilibrium with mass ρs, the difference ρ − ρs going to larger and larger clusters. This
result was proved by Ball et al. [4] for the standard mass-conserving model. It is still an
open problem for the modified model with z0 > 0. Herrmann et al. [24] proved a similar
result for z0 = 0.

• A probable future work would be to show how the modified Becker-Döring model is related
to continuous models such as the Lifshitz-Slyozov-Wagner model or the Fokker-Planck
equation.
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Appendix A

Basic definitions and theorems

Definition A.0.1 (Lipschitz continuity). [23, p. 3]
A function f(y) defined on a y-set E ⊂ R

d is said to be uniformly Lipschitz continuous on
E with respect to y if there exists a constant K satisfying

|f(y1)− f(y2)| ≤ K|y1 − y2| for y1, y2 ∈ E. (A.1)

Definition A.0.2 (Uniform boundedness). [25, p. 9]
A family F of functions f(y) defined on some y-set E ⊂ R

d is said to be uniformly bounded

if, for all y ∈ E and all f ∈ F there exists a non-negative number M such that |f(y)| ≤ M .

Definition A.0.3 (Equicontinuity). [23, p. 3]
A family F of functions f(y) defined on some y-set E ⊂ R

d is said to be equicontinuous if,
for every ǫ > 0, there exists a δ = δǫ > 0 such that |f(y1) − f(y2)| ≤ ǫ whenever y1, y2 ∈ E,
|y1 − y2| ≤ δ and all f ∈ F .

Definition A.0.4 (Uniform convergence). [49, p. 49]
A family fn of functions defined on some y-set E is said to converge uniformly to a function f
on E if given ǫ > 0, there is an N such that for all y ∈ E and all n ≥ N , we have |f(y)−fn(y)| <
ǫ.

Theorem A.0.5 (Arzéla-Ascoli). [23, p. 4]
On a compact y-set E ⊂ R

d, let f1(y), f2(y), . . . be a sequence of functions which is uniformly
bounded and equicontinuous. Then there exists a sub-sequence fn(1)(y), fn(2)(y), . . . which is
uniformly convergent on E.

Theorem A.0.6 (Gronwall’s Inequality). [23, p. 24]
Let u(t) and v(t) be non-negative, continuous functions on [a, b]. For a constant C ≥ 0 suppose
that

v(t) ≤ C +

∫ t

a
v(s)u(s) ds for a ≤ t ≤ b.

Then

v(t) ≤ C exp

(∫ t

a
u(s) ds

)

.

In particular, if C = 0, then v(t) ≡ 0.
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Theorem A.0.7 (Picard-Lindelöf). [23, p. 8]
Let y, f ∈ R

d; f(t, y) continuous on a parallelepiped R : t0 ≤ t ≤ t0+a, |y0−y| ≤ b and uniformly
Lipschitz continuous with respect to y. Let |f(t, y)| ≤ M on R. Define α := min(a, b/M). Then

ẏ = f(t, y), y(t0) = y0

has a unique solution y = y(t) on [t0, t0 + α].

Theorem A.0.8 (Bounded convergence). [49, p. 84]
Let fn be a sequence of measurable functions defined on a y-set E of finite measure. Suppose that
there is a real number M such that |fn(x)| ≤ M for all n and all y ∈ E. If f(y) = limn→∞ fn(y)
for each y ∈ E, then

∫

E
f dy = lim

n→∞

∫

E
fn dy.

Theorem A.0.9 (Hölder’s Inequality). [61, p. 135]
For all non-negative real numbers ak, bk, k = 1, 2, . . ., one has the bound

∑

k

akbk ≤
(

∑

k

apk

)1/p(
∑

k

bqk

)1/q

,

provided that the powers p > 1 and q > 1 satisfy the relation

1

p
+

1

q
= 1.
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Appendix B

Derivation of the steady-state
formulae

B.1 The constant free molecule model

To derive the equations (3.24) - (3.26) we note that the definition of fluxes in (3.2) shows that

zs,F1 =
1

a1

(

JF + b2R
(

qin
)2

λ̄zs,F2

)

= µ, λ̄ =
zs,F1

ND(zs,F )
,

zs,Fi =
1

ai

(

JF + bi+1Rqinzs,Fi+1

)

, 2 ≤ i ≤ n− 1, (B.1)

zs,Fn =
1

an
JF .

For i = n the common flux JF is such that

JF = anz
s,F
n .

Now working backwards, for i = n− 1 we note that

zs,Fn−1 =
JF

an−1

(

1 +
bn
an

Rqin
)

=
JF

an−1

(

1 +
bn

an−1

an−1

an
Rqin

)

.

Next we use the first equation in (1.29) for i = n− 1 to obtain

zs,Fn−1 =
JF

an−1

(

1 +
an−1Qn−1

anQn
Rqin

)

.

Setting i = n− 2 in (B.1) and making use of the above formula for zs,Fn−1 as well as (1.29) give

zs,Fn−2 =
JF

an−2

(

1 +
an−2Qn−2

an−1Qn−1
Rqin +

an−2Qn−2

anQn

(

Rqin
)2
)

,

while i = n− 3 leads to

zs,Fn−3 =
JF

an−3

(

1 +
an−3Qn−3

an−2Qn−2
Rqin +

an−3Qn−3

an−1Qn−1

(

Rqin
)2

+
an−3Qn−3

anQn

(

Rqin
)3
)

.
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B.2. THE MODIFIED MASS-CONSERVING MODEL

Continuing this procedure up to i = 2, it can easily be verified that the equations (3.24) hold,
that is

zs,F1 = µ, zs,Fi = JFQi

(

1/Rqin
)i

n
∑

r=i

1

arQr(1/Rqin)r
, 2 ≤ i ≤ n. (B.2)

The common flux JF is obtained from the first equation in (B.1) by substituting for zs,F2 . This
gives

JF = zs,F1

(

1

a1
+

λ̄

R

n
∑

i=2

1

arQr(1/Rqin)r

)−1

, λ̄ =
zs,F1

ND(zs,F )
. (B.3)

By using (B.2) we note that

N s,F
D (zs,F ) =

n
∑

i=1

zs,Fi = zs,F1 + JF
n
∑

i=2

Qi(1/Rqin)i
n
∑

r=i

1

arQr(1/Rqin)r
.

Substituting for JF from (B.3) and dividing the resulting equation by N s,F
D (zs,F ) we get

(

1

a1
+

λ̄

R

n
∑

i=2

1

arQr(1/Rqin)r

)

= λ̄

(

1

a1
+

λ̄

R

n
∑

i=2

1

arQr(1/Rqin)r

)

+ λ̄
n
∑

i=2

n
∑

r=i

Qi(1/Rqin)i

arQr(1/Rqin)r
.

The desired expression (3.26) is obtained by changing the order of summation in the last term
on the right-hand side and simplifying the result.

B.2 The modified mass-conserving model

To derive equation (3.53) we note that the fluxes in (3.31) imply that

zs,Mi =
1

ai

(

JM +
b2R

λ
zs,Mi+1

)

, 1 ≤ i ≤ n, with λ =
zs,M1

ND(zs,M )
and zn+1 = 0. (B.4)

Starting with i = n we have zs,Mn = JM/an. We then continue backwards for i = n − 1, while
using the first equation in (1.29) to get

zs,Mn−1 =
JM

an−1

(

1 +
Qn−1an−1

Qnan(λ/R)

)

.

Setting i = n− 2 in (B.4) and substituting for zs,Mn−1 give

zs,Mn−2 =
JM

an−2

[

1 +
bn−1

an−1(λ/R)

(

Qn−1an−1

Qnan(λ/R)

)]

.

Next we use the first equation in (1.29) and simply the result to

zs,Mn−2 =
JM

an−2

[

1 +
Qn−2an−2

Qn−1an−1(λ/R)
+

Qn−2an−2

Qnan(λ/R)2

]

.

Continuing this procedure for i = n− 3, n − 4, . . . , 1 we obtain the general formula

zs,Mi = JMQi(λ/R)i
n
∑

r=i

1

arQr(λ/R)r
,

which confirms the result in (3.53).
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Appendix C

Proofs for some theorems

C.1 Functional spaces

Proof of Theorem 4.1.1.

In the proof we aim at constructing an isomorphic and bijective map between X and the dual
space Y∗ of Y. First we consider z ∈ X and show that for y ∈ Y the functional

Fz(y) :=

∞
∑

i=1

ziyi (C.1)

is well defined, linear and bounded. We note that

|Fz(y)| ≤|z1||y1|+
∞
∑

i=2

(i− 1)|zi|
|yi|
i− 1

≤max
i≥2

{

|y1|,
|yi|
i− 1

}

(

|z1|+
∞
∑

i=2

(i− 1)|zi|
)

= ‖y‖Y‖z‖X.

Thus Fz(y) is well defined. The linearity of Fz(y) is obvious from its definition. For boundedness
and hence continuity, see Kreyszig [31, Theorem 2.8-3], we have

‖Fz(y)‖Y∗ := sup
y∈Y

|Fz(y)|
‖y‖Y

≤ ‖z‖X. (C.2)

For a fixed z ∈ X and n ≥ 1 we define y(n) by

y
(n)
i =

{

(i− 1) · sign(zi); for 2 ≤ i ≤ n

sign(zi) otherwise.
(C.3)

Clearly y(n) ∈ Y with ‖y(n)‖Y = 1 and

‖Fz(y
(n))‖Y∗ ≥ |Fz(y

(n))| = |z1|+
n
∑

i=2

(i− 1)|zi|+
∞
∑

i=n+1

|zi|,

= ‖z‖X +

∞
∑

i=n+1

|zi| −
∞
∑

i=n+1

(i− 1)|zi|,

= ‖z‖X − ε, for n large enough.
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Since ε can be arbitrarily small, we must have

‖Fz(y
(n))‖Y∗ ≥ ‖z‖X. (C.4)

Combining (C.2) and (C.4) we obtain

‖Fz(y
(n))‖Y∗ = ‖z‖X. (C.5)

Up to now we have shown that for each z ∈ X we can construct a bounded linear functional
Fz(y) ∈ Y∗ and that the map I : X → Y∗ is isomorphic and hence injective. To prove that
I is a bijection, we have to show that each element of Y∗ has a preimage in X, that is, I is
surjective. A Schauder basis for Y is ei, where ei = (δij) has 1 in the ith position and zeros
otherwise. Then every y ∈ Y can be uniquely represented as

y =

∞
∑

i=1

yiei.

Let F ∈ Y∗, then for every y ∈ Y we have

F (y) =
∞
∑

i=1

yiF (ei).

Define zi := F (ei), then the proof is finished once we establish that z = (zi)i≥1 ∈ X. Choose
ỹ := (sign(zi))i≥1. Then ‖ỹ‖Y = 1 and

∞
∑

i=1

|zi| :=
∞
∑

i=1

zi sign(zi) = F (ỹ) < ∞.

As before we choose y(n) defined by (C.3) so that

‖F‖Y∗ ≥ |F (y(n))| = |z1|+
n
∑

i=2

(i− 1)|zi|+
∞
∑

i=n+1

|zi|,

= |z1|+
n
∑

i=2

(i− 1)|zi|+ ε for n large enough.

Therefore for n large enough we have

‖F‖Y∗ + 1 ≥ |z1|+
n
∑

i=2

(i− 1)|zi|.

Taking the limit as n → ∞ we obtain the result that z ∈ X and this ends the proof.

Proof of Lemma 4.1.2.

For bounded linear functionals a sequence F (n) converges weak∗ if there is an F ∈ Y∗ such that
F (n) → F as n → ∞. Therefore in the proof we show that weak∗ convergence as defined above
is exactly weak∗ convergence in Y ∗.
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“ ⇒ “: As in the proof of Theorem 4.1.1 we use the Schauder basis for Y and define a sequence

z(n) by z
(n)
i := F

z
(n)
i

(ei). Then convergence in Y∗ leads to

z
(n)
i := F

z
(n)
i

(ei)
n→∞−−−→ Fzi(ei) = zi.

For part (ii) we note that weak∗ convergent sequences are bounded, see Kreyszig [31, Corollary
4.9-7].
“ ⇐ “: If (i) and (ii) hold, then we prove that F

z(n)(y)
n→∞−−−→ Fz(y) for y ∈ Y. By using

definition (C.1) we observe that

| (F
z(n) − Fz) (y)| =|

∞
∑

i=1

(zni − zi)yi|,

≤|zn1 − z1||y1|+
m
∑

i=2

(i− 1)|zni − zi|
|yi|
i− 1

+
∞
∑

i=m+1

(i− 1)|zni − zi|
|yi|
i− 1

,

≤‖y‖Y
(

|zn1 − z1|+
m
∑

i=2

(i− 1)|zni − zi|
)

+max
i>m

|yi|
i− 1

∞
∑

i=m+1

(i− 1)|zni − zi|.

We first take the limit m → ∞ so that the second term on the right of the last inequality is
less than ε/2 for some ε > 0. This is possible since limi→∞ yi/(i − 1) = 0. Secondly to end the
proof we take the limit n → ∞ so as to make the first term less than ε/2 due to (i) in Lemma
4.1.2.

C.2 Additional results on metastability

Proof of Lemma 5.1.2

The proof is mostly taken from Penrose [46].

Proof. We first construct the solution fi(µ) to the difference equation (5.1). This equation
implies that the quantity J(µ) defined by

J(µ) := aiµfi(µ)− bi+1fi+1(µ) (C.6)

is independent of i. By applying McDonalds’s trick [37] we divide both sides of the above formula
by Qiµ

i+1 to obtain
J(µ)

Qiµi+1
=

aiµfi(µ)

Qiµi+1
− bi+1fi+1(µ)

Qiµi+1
.

We use the first equation in (1.29) and rearrange the result to get

J(µ)

aiQiµi+1
=

fi(µ)

Qiµi
− fi+1(µ)

Qi+1µi+1
. (C.7)

The ratio of successive terms of the series
∑∞

i=1Qiµ
i in the limit of large i is µ/µs. To see this

we note that
Qi+1µ

i+1

Qiµi
=

aiµ

bi+1
=

ai
bi

· bi
bi+1

µ.

118
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We then take the limit i → ∞ and use Assumptions 5.1.1 (ii) and (iii) to get the desired result.
Since we require that µ > µs, the denominators on the right-hand side of (C.7) grow without
bound as i → ∞. Hence by the requirement of boundedness of fi(µ) for large i, both terms on
the right of (C.7) tend to zero as i → ∞. Summing both sides of this equation from i = 1 to
infnity and simplifying the result give (5.2). The series is a convergent sum of positive terms so
that we can be sure that J(µ) > 0. To obtain fi(µ) we sum both sides of (C.7) from i to infinity.
After a simplification of the resulting equation we obtian (5.3). It is clear by substitution that
fi given by (5.3) is a solution of (5.1). To prove uniqueness suppose that the sequences gi and
fi are two solutions to (5.1). Define h̄i := fi − gi for i ∈ N. Then h̄i must satisfy

ai−1h̄i−1 − (bi + µai)h̄i + bi+1h̄i+1 = 0,

and

h̄1 = 0.

By following the same procedure used in the derivation of (5.2) from (C.7), we observe that

J(µ) = aiµh̄i − bi+1h̄i+1 = 0,

or equivalently that

aiµh̄i = bi+1h̄i+1 for all i.

Solving this recurence relation by starting with h̄1 = 0 we obtain h̄i = 0 for all i. Hence fi given
by (5.3) is the unique solution of (5.1).

To prove part (i) of Lemma 5.1.2 we note from (5.3) that

µaifi(z) = J(µ)

[

1 +

∞
∑

r=i+1

aiQi

arQr
µi−r

]

= J(µ)[1 + hi+1µ
−1 + hi+1hi+2µ

−2 + · · · ],

where now for i ∈ N

hi+1 :=
aiQi

ai+1Qi+1
=

bi+1

ai+1
.

By Assumption 5.1.1 (iii), hi is a decreasing function of i and hence every term in the series for
aifi(µ) is a decreasing function of i. To end the proof of this part we repeat the same expansion
for ai+1fi+1 and compare the resulting powers of µ. We note that this result, together with
Assumption 5.1.1 (i), implies that

fi+1 ≤
a1f1(µ)

ai+1
<

a1f1(µ)

A′
= const.

This shows that fi is indeed bounded for all i. In addition, if the coefficients ai increase without
bound then we have limi→∞ fi = 0.

Next we prove part (ii) by defining two new sequences for µ, µ′ > µs as

f̃i(µ
′, µ) := µ′fi(µ)− µfi(µ

′) i ≥ 1 (C.8)

119



APPENDIX C. PROOFS FOR SOME THEOREMS

and

J̃i(µ
′, µ) := aiµ

′f̃i(µ
′, µ)− bi+1f̃i+1(µ

′, µ) i ≥ 1. (C.9)

Using these definitions we obtain for i ≥ 2

J̃i−1(µ
′, µ)− J̃i(µ

′, µ) = ai−1µ
′f̃i−1(µ

′, µ)− bif̃i(µ
′, µ)− aiµ

′f̃i(µ
′, µ) + bi+1f̃i+1(µ

′, µ),

= ai−1µ
′[µ′fi−1(µ)− µfi−1(µ

′)]− (aiµ
′ + bi)[µ

′fi(µ)− µfi(µ
′)]

+ bi+1[µ
′fi+1(µ)− µfi+1(µ

′)],

= µ′[ai−1µ
′fi−1(z)− (aiµ

′ + bi)fi(µ) + bi+1fi+1(µ)]

− µ[ai−1µ
′fi−1(µ

′)− (aiµ
′ + bi)fi(µ

′) + bi+1fi+1(µ
′)].

By using the difference equation (5.1) for fi(µ
′) we see that the second bracketed term on the

right-hand side is zero. Next we eliminate the term bi+1fi+1(µ) from the remaining expression
with the help of (5.1) for fi(µ). This gives

J̃i−1(µ
′, µ)− J̃i(µ

′, µ) = µ′[ai−1µ
′fi−1(µ)− (aiµ

′ + bi)fi(µ)− ai−1µfi−1(µ) + (aiµ+ bi)fi(µ)]

= µ′(µ′ − µ)[ai−1fi−1(µ)− aifi(µ)]

≥ 0

since µ′ ≥ µ and part (i) of the lemma hold. Thus the sequence J̃1, J̃2, · · · is monotonically
decreasing and can therefore change sign at most once. Let ĩ be the unique value of i at which
this happens so that

J̃i

{

≥ 0, if i < ĩ;

< 0, if i ≥ ĩ,
(C.10)

where we take ĩ = 0 if all terms are negative and ĩ = ∞ if all are nonnegative. By the same
manipulations as in the derivation of (5.3) from (C.6) we can solve (C.9) for f̃i to obtain

f̃i = Qiµ
′i

∞
∑

r=i

Ji(µ
′, µ)

arQrµ′r+1
. (C.11)

Setting i = 1 and noting that f̃1(µ
′, µ) = 0 we obtain

Qiµ
′i

ĩ−1
∑

r=1

Ji(µ
′, µ)

arQrµ′r+1
+Qiµ

′i
∞
∑

r=ĩ

Ji(µ
′, µ)

arQrµ′r+1
= 0. (C.12)

By (C.10) the first term consists entirely of nonnegative terms and the second term consists of
negative terms. The proof is completed by showing that f̃i(z

′, z) is non positive. If i > ĩ then
by (C.10) all terms of the sum in (C.11) are negative and so f̃i(z

′, z) is negative. If i < ĩ then
there may be some positive terms as well, but by (C.12) these terms can at most cancel the
contribution of the negative terms. Thus in either case we have

f̃i(µ
′, µ) ≤ 0. (C.13)

Using the definition (C.8) of f̃i(z
′, z) in (C.13) and µ′ ≥ µ we get the desired result fi(µ)/µ ≤

fi(µ
′)/µ′.
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C.2. ADDITIONAL RESULTS ON METASTABILITY

The first inequality in part (iii) of the lemma follows directly by substituting (5.2) for J(µ) in
(5.3) and using the positivity of all terms in the series. To prove the second inequality we note
that for any two integers m and n satisfying 1 ≤ m < n, we have

Qn

Qm
=

(

am
an

) n
∏

r=m+1

(

ar
br

)

by (1.8),

≤
(

am
an

)

µm−n
s exp

[

−
n
∑

r=m+1

Gr−γ

]

,

by using the first inequality in Assumption 5.1.1 (iv). Then we bound the sum by an integral
to have

Qn

Qm
≤
(

am
an

)

µm−n
s exp

[

−
∫ n

m+1
Gr−γdr

]

=

(

am
an

)

µm−n
s exp

[

−G

(

n1−γ − (m+ 1)1−γ

1− γ

)]

.

To end the proof of part (iii) we set m = 1, n = i and use Q1 = 1 to obtain

Qiµ
i ≤ a1

ai
µs

(

µ

µs

)i

exp

[

−G

(

i1−γ − 21−γ

1− γ

)]

. (C.14)

For part (iv) we take the limit µ → µs in (C.6) and show that

lim
µ→µs

J(µ) = 0. (C.15)

To do this we use (1.8) to substitute for Qi in (5.2). This gives

J(µ)−1 =
1

a1

∞
∑

i=1

1

µi+1

i
∏

k=2

bk
ak

.

We then use Assumption 5.1.1 (iii) to get

J(µ)−1 ≥ 1

a1

∞
∑

i=1

1

µµs

(

µs

µ

)i

.

The right-hand side of this inequality is a geometric series with a common ratio zs/z < 1. This
gives

J(µ)−1 ≥ 1

a1µ(µ− µs)
.

In the limit µ → µs the right-hand side goes to infinity, thereby proving (C.15) and thus ending
the proof of Lemma 5.1.2.
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equations. J. Differential Equations, 191:518–543, 2003.

[27] D. Kashchiev. Nucleation, basic theory with applications. Butterworth Heinemann, 2000.

[28] D. Kashchiev and G.M. van Rosmalen. Review: Nucleation in solutions revisited. Cryst. Res.
Technol., 38, No. 7-8:555 – 574, 2003.

[29] K.F. Kelton. Crystal nucleation in liquids and glasses. In: H. Ehrenreich and D. Turnbull, Solid
state physics, volume 45. Academic Press, Inc., 1991.
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with collisional fragmentation. Physica D, 195:141–158, 2004.

[36] R. Mattheij and J. Molenaar. Ordinary differential equations in theory and practice. SIAM, 2002.

[37] J. E. McDonald. Homogeneous nucleation of vapor condensation. II. Kinetic aspects. Amer. J.
Phys., 31:31–41, 1963.

[38] Y. Miyazawa and G.M. Pound. Homogeneous nucleation of crystalline Gallium from liquid Gallium.
J. Cryst. Growth, 23:45 – 57, 1974.

[39] I. Müller and W. H. Müller. Fundamentals of thermodynamics and applications. Springer-Verlag,
2009.

[40] J. W. Mullin. Crystallization. Butterworth-Heinemann, 4th edition, 2001.

[41] A. S. Myerson. Handbook of industrial crystallization. Elsevier Science and Technology, 2nd edition,
2001.

[42] M. Naldzhieva. Die thermodynamisch konsistenten Becker-Döring Gleichungen. Diploma thesis,
Humboldt-Universität zu Berlin. Department of Mathematics, 2006.

123



BIBLIOGRAPHY

[43] B. Niethammer. On the evolution of large clusters in the Becker-Döring model. J. Nonlinear Sc.,
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